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Abstract. A projection space is a collection of spaces interrelated by the combinatorics of
projection onto tensor factors in a symmetric monoidal background category. Examples include
classical configuration spaces, orbit configuration spaces, the graphical configuration spaces of
Eastwood–Huggett, the simplicial configuration spaces of Cooper–de Silva–Sazdanovic, the
generalized configuration spaces of Petersen, and Stiefel manifolds. We show that, under nat-
ural assumptions on the background category, the homology of a projection space is calculated
by the Chevalley–Eilenberg complex of a certain generalized Lie algebra. We identify condi-
tions on this Lie algebra implying representation stability in the classical setting of finite sets
and injections.

1. Introduction

Experience has proven the value of studying configuration spaces in families. When organized
correctly, these spaces exhibit emergent algebraic structure that imposes strong constraints on
their topological invariants. One important means of organization involves the background space
in an essential way; one speaks of operads and their algebras and modules [22, 28], or of adding
a particle near the boundary of a manifold [29] or onto an edge of a graph [2]. Here, we pursue
an orthogonal organizing principle, namely that of the underlying combinatorics.

1.1. Context and motivation. As a motivating example, consider the ordinary configu-
ration space ConfI(X), defined as the space of injections from the finite set I into the topological
space X. The composite of injections being an injection, the collection of all such spaces forms
a presheaf on the category FI of finite sets and injections. In many examples of interest, this
combinatorial structure forces the rational (co)homology of configuration spaces to exhibit rep-
resentation stability [6].

There are now a number of machines devoted to the study of stability phenomena in various
contexts [19, 35]. Unfortunately, most of these machines are adapted to the study of automor-
phism groups, rather than configuration spaces. The goal of this paper is to develop a framework
better adapted to examples such as those listed in the following table.

Combinatorics Configuration space
Sets Ordinary
G-sets Orbit
Graphs Graphical [10]

Simplicial complexes Simplicial [7]
Collision structures Generalized [32]

Vector spaces Stiefel
1
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We proceed from the observation that the projection ConfJ(X) ! ConfI(X) induced by the
injection f : I ! J is subsumed by the map that splits an I-indexed configuration into a config-
uration indexed by the image of f and one indexed by its complement. The collection of all such
splitting maps can be regarded as a kind of cocommutative comultiplication, which, according
to the philosophy of Koszul duality, is governed by its Lie algebra of (derived) primitives.

The resulting interpretation of the homology of ordinary configuration spaces as Lie algebra
homology has proven quite fruitful [4, 9, 15, 23, 24, 25]. This success motivates us to generalize
the relationship, showing that the homology of something su�ciently like a configuration space
is governed by something like a Lie algebra.

1.2. Framework and results. Our first step is to generalize the relationship between
bijections and injections among finite sets in the relationship between a symmetric monoidal
category C and its projection category Pr(C). Roughly, a morphism in Pr(C) is (opposite to) a
projection onto a tensor factor in C (see Section 2.1 for details). We then make the following
definition, which encompasses all of the spaces listed in the table above (see Section 6.1).

Definition 1.1. A projection space over C is a functor X : Pr(C)op ! Top. We say that X
is reduced if its value on the monoidal unit is a singleton.

The bulk of the paper is spent in constructing the following composite functor, which asso-
ciates to each projection space X a C-twisted Lie algebra L(X) of rational primitives :

L : Fun(Pr(C)op,Top)
⇠=
// Funoplax(Cop

,Top)

A⇤

✏✏

Funoplax(Cop
,ChQ)

⇠=
// CoalgCom(Fun(C

op
,ChQ))

Q

✏✏

AlgLie(Fun(C
op
,ChQ)).

Briefly, the first functor witnesses a universal property of the projection category (Corollary 4.3);
the second is the functor of Sullivan chains, a suitable rational replacement for singular chains
(Corollary A.5); the third relies on a variant of Day convolution (Corollary 4.12); and the fourth
is Quillen’s Koszul duality functor [33]. The main result is as follows—see Section 5 for undefined
terms.

Theorem 1.2. Let X be a reduced projection space over the combinatorial symmetric monoidal
category C. There is a canonical isomorphism of C-twisted cocommutative coalgebras

H⇤(X;Q) ⇠= H
Lie

⇤ (L(X)).

As a consequence, the homology of generalized configuration spaces is calculated by the
Chevalley–Eilenberg complex of a certain Lie algebra. This general connection to Lie algebras
may at first seem surprising. Indeed, for ordinary configuration spaces, it is natural to view the
connection as arising by combining the Goresky–MacPherson formula, expressing the homology
of a stratified space in terms of poset homology, with the identification of the Lie operad with the
homology of the partition posets [32]. In the more general setting, the resulting poset homology
has no obvious relation to the Lie operad, yet the connection persists.

As foreshadowed above, we imagine Theorem 1.2 as a source and organizing principle for
stability phenomena. As a proof of concept, we show that our framework encompasses represen-
tation stability. Specifically, stability is tied to the eventual high connectivity of the Lie algebra
of rational primitives.
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Theorem 1.3. Let X be a reduced FIop-space taking values in path connected spaces. Suppose
that L(X) satisfies the following conditions.

(1) Hi(L(X)k) is finite dimensional for every i � 0 and k � 0.
(2) H0(L(X)k) = 0 for k > 1.
(3) Hi(L(X)k) = 0 for i fixed and k su�ciently large.

Then H
⇤(X;Q) is representation stable.

We deduce this theorem from a more general result encompassing projection spaces with
path disconnected values—see Theorem 6.14.

1.3. Future directions. Our work leaves a rather large number of natural questions unan-
swered (but see [20] and [21] for closely related work). The following three extensions at least
are likely within easy reach.

(1) Integer coe�cients. Our program relies crucially on a strictly symmetric replacement
for the oplax monoidal functor of singular chains. In characteristic zero, such a replace-
ment is within easy reach (see Appendix A). With a bit less laziness, one should be able
to work integrally, as in [32], after minor modifications of the techniques of [36]—see
also Remark A.6.

(2) Classical primitives. Let M be a (for simplicity) orientable n-manifold. In view of a
myriad of (semi-)classical results, it seems a virtual certainty that the Lie algebra as-
sociated to the ordinary configuration spaces of M is (quasi-isomorphic to) the tensor
product of the compactly supported Sullivan cochains of M with a free twisted Lie
algebra on one generator in degree n � 1 and weight 1 [13, 16, 23, 32]. It is likely
possible to deduce this claim easily from either of the last two references with a little
care taken in comparing models.

(3) Orbit primitives. The results of [3] suggest that the same description is valid verbatim
for orbit configuration spaces, save that the phrase “free twisted Lie algebra” should
be interpreted with respect to the category of equivariant bijections among free G-sets.

In more exotic settings, it is less clear what one should expect.

(4) Generalized primitives. What is the Lie algebra associated to generalized configuration
spaces? Petersen’s results in [32] suggest an expression in terms of the homology of the
order complex associated to a collision structure. One imagines that the Chevalley–
Eilenberg complex for this Lie algebra comprises the complexes described by Petersen,
in the same way that the various Totaro spectral sequences [38] assemble into the
Chevalley–Eilenberg complex of the Lie algebra described above in the case of ordinary
configuration spaces [22].

One imagines that Theorem 1.3 is merely the beginning of a robust connection between
stability phenomena and the twisted Chevalley–Eilenberg complex.

(5) FI-homology. We show that su�cient connectivity of L(X) implies representation sta-
bility. Is there a direct connection between this Lie algebra and FI-(hyper)homology [5]?
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(6) Higher stability. Is there an analogue of Theorem 1.3 characterizing higher order rep-
resentation stability in terms of L(X) [30]?

(7) Beyond representation stability. What finite generation properties does L(X) dictate
for projection spaces in more exotic contexts? What homological asymptotics do they
imply? Pursuit of this direction almost certainly entails grappling with thorny Noethe-
rianity problems for C-twisted commutative algebras, already notoriously di�cult (and
mostly unsolved) in the classical case C = FB [31].

It is likely that our framework and examples can be expanded considerably.

(8) Local coe�cients. One imagines a theory in the vein of [35] treating the homology
of projection spaces with compatibly twisted coe�cients. Stability phenomena in the
twisted (co)homology of configuration spaces is of considerable interest—see [11], for
example.

(9) Linear collision structures. It is likely that a linear version of the theory developed in
Section 3 would permit the expression of the homology of subspace arrangements as
twisted Lie algebra homology.

(10) Rational homotopy theory. In the language of [1], the Day convolution and pointwise
tensor products endow the category of presheaves of chain complexes with the structure
of a 2-monoidal category, and the singular chains of a projection space carry the struc-
ture of a double coalgebra in this category, with the second comultiplication induced by
the objectwise diagonal. Does this structure provide a faithful algebraic model for the
homotopy theory of rationalized projection spaces [33]?

1.4. Conventions. Chain complexes are bounded below and homologically graded. The r-
fold homological suspension is denoted [r]. When working with monoidal categories, we suppress
the associator whenever possible. We use the symbols ⌦ and 1 for the tensor product and unit
of a generic monoidal category, employing subscripts (rarely) to disambiguate as necessary (e.g.,
⌦C). An additive tensor category is an additive category equipped with a symmetric monoidal
structure whose tensor product distributes over finite coproducts. We write �k(V ) = (V ⌦k)⌃k ,
Symk(V ) = V

⌦k
⌃k

, �(V ) =
L

k�0
�k(V ), and Sym(V ) =

L
k�0

Symk(V ).

1.5. Acknowledgements. The author thanks Najib Idrissi and Roberto Pagaria for help-
ful conversations related to this work and the anonymous referee for her feedback. This paper
was written for the proceedings of the conference “Compactifications, Configurations, and Coho-
mology,” held at Northeastern University in October of 2021. The author extends his heartfelt
gratitude to the organizers, Peter Crooks and Alex Suciu, for the opportunity to speak, to write,
and to be reminded that face-to-face interaction in mathematics is a precious, even indispensable,
commodity. This work was supported by NSF grant DMS-1906174.

2. Projection categories

In this section, we introduce the projection category Pr(C) associated to a monoidal category
C. We then explore a selection of simple examples.

2.1. Definitions. Roughly speaking, we wish for a presheaf on the projection category
Pr(C) to carry a structure map for each projection of an object onto a tensor factor. The
following definition makes this idea precise.
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Definition 2.1. Let C1 and C2 be objects in the monoidal category C.

(1) A complementary morphism from C1 to C2 is the data of an object D of C together
with a morphism f : C1 ⌦D ! C2.

(2) The composite of the complementary morphisms f1 : C1⌦D1 ! C2 and f2 : C2⌦D2 !
C3 is the complementary morphism f2 � (f1 ⌦D2) : C1 ⌦D1 ⌦D2 ! C2.

(3) An elementary equivalence from the complementary morphism f : C1 ⌦ D ! C2 to
the complementary morphism f

0 : C1 ⌦D
0 ! C2 is a map g : D ! D

0 fitting into the
commutative diagram

C1 ⌦D

f
##

C1⌦g
// C1 ⌦D

0

f 0
{{

C2

(4) We say that two complementary morphisms are equivalent if they di↵er by a finite
sequence of elementary equivalences.

We emphasize that the arrow g in the definition of an elementary equivalence is not required
to be an isomorphism—see Remark 2.6 below for more on this point.

Remark 2.2. The definition of a complementary morphism is biased by mapping order, i.e.,
whether to consider C1 ⌦D ! C2 or C1 ! C2 ⌦D. Up to opposites, the two choices produce
essentially the same result. The definition is also biaed by tensor order, i.e., whether to consider
C1 ⌦D or D⌦C1. Following this section, we will assume that C is symmetric monoidal, so this
bias will play no role.

Lemma 2.3. Composition is associative and unital up to equivalence and well-defined on
equivalence classes.

Proof. We give only an outline, leaving the (easy) details to the reader. For associativity,
one uses the associator of C to produce an elementary equivalence between the two composites,
and the compositional unit is the unitor C ⇠= C ⌦ 1. Well-definition in one composition factor
follows from the commuting diagram

C1 ⌦D1 ⌦D
0
2

C1⌦D1⌦g

✏✏

// C2 ⌦D2

C2⌦g

✏✏

// C3

C1 ⌦D1 ⌦D2
// C2 ⌦D

0
2

// C3,

and a similar diagram establishes well-definition in the second factor. ⇤

The lemma allows us our main definition.

Definition 2.4. Let C be a monoidal category. The projection category of C is the category
Pr(C) with the same objects as C and arrows the equivalence classes of complementary morphisms
under composition.

The projection category is functorial for strong monoidal functors. Briefly, given such a
functor F : C ! D, we define Pr(F ) = F on objects, and we declare that Pr(F ) send the
equivalence class of the complementary morphism C1 ⌦D ! C2 to the equivalence class of the
composite F (C1)⌦ F (D) ⇠= F (C1 ⌦D)! F (C2). It is a simple matter to check that Pr(F ) is a
well-defined functor.
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Remark 2.5. The functoriality described above is a shadow of a larger structure. Specifi-
cally, the projection category Pr(C) is the truncation of an obvious bicategory, and an elaboration
of the considerations of Section 4.1 shows that a lax monoidal functor between monoidal cat-
egories induces a pseudofunctor at the level of bicategories. We make no use of this extended
functoriality.

Remark 2.6. The projection category is closely related to a construction due to Quillen [18]
(see also [35, p. 11]). More precisely, the projection category is obtained from the bicategory
described in Remark 2.5 by replacing the morphism categories by their connected components,
while Quillen’s construction (in the case of a self-action) is obtained by replacing them with the
connected components of their maximal subgroupoids—see Example 2.7 for a simple example
illustrating the di↵erence. In particular, one should expect the two to coincide only when C is
itself a groupoid. The use of the full morphism category is essential to the universal property of
Theorem 4.2—see Remark 4.6 and Example 4.7.

Example 2.7. Let �1 denote the walking arrow, i.e., the category with objects 0 and 1 and
a unique non-identity morphism e : 0! 1. The usual rules of integer multiplication extend to a
unique symmetric monoidal structure on �1. With this monoidal structure, one finds that there
are the exactly five complementary morphisms. Since �1 has no non-identity isomorphisms,
these five morphisms are distinct in Quillen’s category. One checks that the resulting category
is the walking retract, i.e., the category generated by the arrows i : 0! 1 and r : 1! 0 subject

only to the relation r � i = id, where i = [0 ⌦ 0
e�! 1] and r = [1 ⌦ 0

id�! 0]. In contrast, the
commutative diagram

1⌦ 0⌦ 0

e

$$

1⌦e
// 1⌦ 1

id

}}

1

is a simple equivalence demonstrating the relation i � r = id in Pr(�1). Thus, the projection
category is instead the walking isomorphism.

2.2. Groupoid examples. We begin with the primordial motivating example. Although
this result is subsumed in Proposition 2.9, we include an independent proof, both for tactility
and for later use.

Proposition 2.8. There is a canonical isomorphism of categories

Pr(FB) ⇠= FI.

Proof. The two categories have the same objects. We define a functor from left to right
on arrows by sending the equivalence class of the complementary morphism f : I1 t J ⇠= I2 to
the injection f |I1 . One checks immediately that this prescription is invariant under equivalence
and respects identities. As for composition, the complementary morphisms f : I1 t J1

⇠= I2 and
g : I2 t J2

⇠= I3 compose to give g � (f t J2) : I1 t J1 t J2 ! I3, and

(g � (f t J2)) |I1= g � (f t J2) |I1= g|I2 � f |I1 ,
as required. To define the functor from right to left, we send the injection i : I1 ! I2 to the
equivalence class of the complementary morphism I1 t (I2 \ im(i)) ⇠= I2. The injection I = I is
sent to the equivalence class of It? ⇠= I, which is the identity of I in Pr(FB), and the composite
of i : I1 ! I2 and j : I2 ! I3 is sent to the equivalence class of I1 t (I3 \ im(j � i)) ⇠= I3, which
is equivalent to the appropriate composite via the bijection

I2 \ im(i) t I3 \ im(j) ⇠= I3 \ im(j � i)
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induced by j.
We have shown that both assignments are functors, and the composite functors are the

respective identities on objects by construction. On arrows, given f : I1 t J ⇠= I2, we have

I2 \ im(f |I1) = f(J),

and f
�1|f(J) provides an equivalence between our original complementary morphism and the

complementary morphism I1tf(J) ⇠= I2, which represents its image under the composite functor.
We leave it to the reader to check that the other composite is also the identity on arrows. ⇤

We now consider a class of example recurrent throughout the study of stability phenomena.
In the next result, the assumption that C be skeletal is made solely for simplicity of exposition.

Proposition 2.9. Let C be a skeletal symmetric monoidal groupoid. There is a canonical
bijection

HomPr(C)(C1, C2) ⇠=
a

C2=C1⌦D

Aut(C2)/Aut(D)

under which composition is given by the dashed filler in the following commutative diagram:

Aut(C2)⇥Aut(C3)

✏✏

(�⌦D2)⇥id
// Aut(C3)⇥Aut(C3)

�
// Aut(C3)

✏✏

Aut(C2)/Aut(D1)⇥Aut(C3)/Aut(D2) // Aut(C3)/Aut(D1 ⌦D2).

Proof. For each object D such that C2 = C1 ⌦ D, an automorphism of C2 determines a
complementary morphism C1 ⌦D ⇠= C2, and every complementary morphism is determined in
this way. Thus, we have a canonical surjection

a

C2=C1⌦D

Aut(C2)! HomPr(C)(C1, C2).

By definition, two automorphisms of C2 di↵er by an automorphism of the form C1 ⌦ g for
g 2 Aut(D) if and only if the corresponding complementary morphisms are equivalent. It follows
that the above surjection descends to the indicated disjoint union of orbit sets, and that each
of the resulting functions Aut(C2)/Aut(D)! HomPr(C)(C1, C2) is injective. Since C is skeletal,
complementary morphisms indexed by di↵erent choices of D are never equivalent, so the function
as a whole is injective, implying the first claim. The (essentially immediate) verification of the
second claim is left to the reader. ⇤

In the following result, FIG denotes the category of equivariant injections among free G-sets
with finitely many orbits, where G is a fixed group, and VIF denotes the category of linear
injections among finite dimensional vector spaces over a fixed vector space F (resp. FBG, VBF,
bijections).

Corollary 2.10. Let G be a group and F a field. There are the following canonical iso-
morphisms of categories:

Pr(FBG) ⇠= FIG

Pr(VBF) ⇠= VIF.
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2.3. The projection category of a deformation. We close this section with an obser-
vation on the relationship between the formation of projection categories and subcategories of a
certain type.

Definition 2.11. A subcategory ◆ : C0 ✓ C is a deformation of C if there is a functor
R : C! C0 and a natural transformation ⌧ : ◆ �R! id.

Note that any subcategory containing a deformation is itself a deformation.

Proposition 2.12. Let C be a monoidal category and C0 ✓ C a full subcategory containing
1 and closed under tensor products. If C0 is a deformation of C, then the induced functor
Pr(C0)! Pr(C) is fully faithful with image the subcategory Pr(C)0 ✓ Pr(C) with objects the objects
of C0 and morphisms the equivalence classes of complementary morphisms f : C1⌦D ! C2 such
that D lies in C0.

Proof. Prerequisitely, we note that Pr(C)0 is, in fact, a subcategory by closure under tensor
products. This same assumption, together with fullness and the assumption that 1 2 C0, implies
that the tensor product of C restricts to a monoidal structure on C0 with the same unit and
coherence isomorphisms, so Pr(C0) is defined, and the inclusion C0 ✓ C is strong monoidal, so
Pr(C0)! Pr(C) is defined. We claim that this functor factors through the inclusion of Pr(C)0 as
an isomorphism. The existence, surjectivity on objects, and fullness of the factorization being
essentially immediate, the main point is to verify faithfulness. Consider the zig-zag of simple
equivalences of the form

C1 ⌦D

f
%%

C1⌦g
// C1 ⌦D

0

f 0

✏✏

C1 ⌦D
00

f 00
xx

C1⌦g0
oo

C2,

with all objects but D0 lying in C0. By assumption, there is a functor R : C! C0 and a natural
transformation ⌧ : ◆ �R! id, from which we derive the enlarged diagram

C1 ⌦R(D)

C1⌦⌧

✏✏

C1⌦R(g)
// C1 ⌦R(D0)

C1⌦⌧

✏✏

C1 ⌦R(D00)

C1⌦⌧

✏✏

C1⌦R(g0
)

oo

C1 ⌦D

f
))

C1⌦g
// C1 ⌦D

0

f 0

✏✏

C1 ⌦D
00

f 00
uu

C1⌦g0
oo

C2.

This diagram supplies the following chain of simple equivalences:

f ⇠ f � C1 ⌦ ⌧ ⇠ f
0 � C1 ⌦ ⌧ ⇠ f

00 � C1 ⌦ ⌧ ⇠ f
00
,

all of which lie in C0. In the same way, an arbitrary zig-zag of simple equivalences expressing the
equivalence in C of two complementary morphisms with source and target in C0 may be replaced
by a (perhaps longer) zig-zag of simple equivalences in C0. In other words, complementary
morphisms in C0 are equivalent if and only if they are equivalent as complementary morphisms
in C, which is faithfulness. ⇤

3. Collision structures

In this section, we develop a general combinatorial framework encompassing all of our ex-
amples. Inspired by [32], we define a collision structure to be a set of partitions of a finite set
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closed under merging blocks. We define a notion of morphism between collision structures and
calculate the projection category associated to the category of collision structures and bijections
(Theorem 3.11).

3.1. Definitions. We begin by recalling a few standard ideas regarding partitions.

Definition 3.1. Let I be a set. A partition of I is a set P of nonempty subsets of I, called
blocks, such that every element of I is contained in exactly one block of P . We say that P is a
refinement of P 0, written P  P

0, if every block of P 0 is a union of blocks of P .

The data of a partition P of I is equivalent to the data of the equivalence relation ⇠P on
I given by declaring that two elements are equivalent provided they lie in the same block of P .
Note that the empty set admits a unique partition, which is itself empty.

Partitions of I form a poset ⇧I under refinement, which has the unique minimum {{i}}i2I

and, if I is nonempty, the unique maximum {I}.

Definition 3.2. A collision structure on the set I is an upward closed subset S ✓ ⇧I , i.e.,
such that P 0 2 S whenever P 2 S and P  P

0.

We think of a collision structure as prescribing which collisions among elements of the under-
lying set are forbidden. From this point of view, the requirement of upward closure is obvious.

The intersection or union of collision structures on a fixed set is again a collision structure;
therefore, it is sensible to speak of the largest and smallest collision structure with a given
property, and of the collision structure generated by a set of partitions.

Example 3.3. The trivial collision structure ? ✓ ⇧I is initial among collision structures on
I.

Given a partition P of I and an injection f : I ! J , we write f⇤P for the partition of J
given by the images under f of the blocks of P , together with the singletons in the complement
of the image of f . Given a subset S ✓ ⇧I , we write f⇤S for the collision structure generated by
the set {f⇤P : P 2 S}.

Definition 3.4. Let S and T be collision structures on I and J . We say that an injection
f : I ! J is a map of collision structures if f⇤S ✓ T .

Since we clearly have g⇤f⇤S = (g � f)⇤S, maps of collision structures on finite sets form
a category CSI. We will also be interested in the wide subcategory CSB of bijective maps of
collision structures.

As we will see below in Section 6.1, a collision structure S has an associated configuration
space, in which collisions among particles are forbidden if the resulting partition lies in S. These
spaces are precisely the generalized configuration spaces of [32]. We close this section by observ-
ing that the category of collision structures subsumes the combinatorics underlying the graphical
configuration spaces of [10] and the simplicial configuration spaces of [7]

Example 3.5. A graph � determines a collision structure S� on its set V of vertices by
declaring that P 2 ⇧V lies in S� if and only if some block of P contains an edge. An injection
between vertex sets is a map of collision structures if and only if it is a graph homomorphism.

Example 3.6. A simplicial complex K determines a collision structure SK on its set V of
vertices by declaring that P 2 ⇧V lies in SK if and only if some block of P is not a simplex of K
(we use that the set of simplices is closed under the formation of subsets). An injection between
vertex sets is a map of collision structures if and only if it preserves non-simplices.1

1Maps of this kind are called “cosimplicial” in [7]. We avoid this terminology for reasons that are likely
obvious.
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Note that the collision structure associated to a graph according to Example 3.5 coincides
with the collision structure associated to its independence complex according to Example 3.6.

From these examples, we obtain the categories GI and SCI of injections among graphs and
simplicial complexes, respectively, both full subcategories of CSI, and similarly for bijections.

3.2. Monoidal structure and projection category. The main result of this section
identifies the projection category of the category CSB of collision structures and bijections. In
order to formulate such a result, we first require a monoidal structure.

Definition 3.7. Let S and T be collision structures on I and J , respectively. The disjoint
union of S and T is the collision structure S t T ✓ ⇧ItJ generated by (◆I)⇤S [ (◆J)⇤T , where
◆I : I ! I t J denotes the inclusion (resp. J).

This definition is arranged so that ◆I and ◆J are maps of collision structures.

Lemma 3.8. Disjoint union of collision structures extends to a unique symmetric monoidal
structure such that the forgetful functor CSB! FB is strong monoidal.

Proof. The main point is to verify that the (suppressed) associator of finite sets is an
isomorphism of collision structures, but it is not di�cult to check, given collision structures Si

on Ii for i 2 {1, 2, 3}, that (S1 t S2) t S3 and S1 t (S2 t S3) are both generated by the setS
3

i=1
(◆Ii)⇤Si. ⇤
By functoriality for strong monoidal functors, we obtain an induced functor at the level of

projection categories, concerning which we have the following result.

Lemma 3.9. The induced functor Pr(CSB)! Pr(FB) is faithful.

Proof. For i 2 {1, 2}, let Si and Ti be collision structures on Ii and Ji, respectively.
Consider the following diagram of bijections:

I1 t J1

f1
##

I1tg
// I1 t J2

f2
{{

I2.

It su�ces to show, assuming that f1 and f2 are maps of collision structures (and g not necessarily
so), that f1 and f2 are equivalent as complementary morphisms in CSB. Let T3 denote the
collision structure on J2 generated by g⇤T1 and T2. Then g is a map of collision structures from
T1 to T3, and the identity is a map of collision structures from T2 to T3. We claim that f2 is a
map of collision structures from S1 t T3 to S2, for which it su�ces to verify the following three
containments:

(f2)⇤(◆I1)⇤S1 ✓ S2

(f2)⇤(◆J2)⇤g⇤T1 ✓ S2

(f2)⇤(◆J2)⇤T2 ✓ S2.

The first and third containment are the assumption that f2 is a map of collision structures, and
the second follows from the assumption that f1 is so, since f2 �◆J2 �g = f1 �◆J1 by commutativity.
We have established the existence of the commutative diagram

S1 t T1

f1
%%

I1tg
// S1 t T3

f2
✏✏

S1 t T2

f2
yy

id
oo

I2
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of collision structures, which represents a pair of elementary equivalences connecting f1 and
f2. ⇤

Example 3.10. Via Examples 3.5 and 3.6, the disjoint union of graphs and of simplicial
complexes corresponds to the disjoint union of collision structures. In other words, the inclusions
GB ✓ CSB and SCB ✓ CSB are strong monoidal.

We come now to the main result of this section.

Theorem 3.11. There is a canonical isomorphism of categories

Pr(CSB) ⇠= CSI.

Proof. The two categories have the same objects, and we wish to extend this equality to
an isomorphism of categories. Forgetting collision structures determines the vertical functors in
the diagram

Pr(CSB)

✏✏

// CSI

✏✏

Pr(FB)
⇠=
// FI,

where the bottom functor is the isomorphism of Proposition 2.8. Since the vertical functors are
faithful by Lemma 3.9 and by definition, respectively, the dashed functor (extending the identity
on objects) is unique if it exists.

By definition, an arrow from S1 to S2 in the source of the putative functor is represented by
a bijection f : I1 t J ⇠= I2 such that f⇤(S1 t T ) ✓ S2. We have

(f |I1)⇤S1 = (f � ◆I1)⇤S1 = f⇤(◆I1)⇤S1 ✓ f⇤(S1 t T ) ✓ S2,

so the injection f |I1 defines a morphism from S1 to S2 in CSI. Thus, the dashed functor exists.
To obtain its inverse, it su�ces for the same reasons to note, given an injection i : I1 ! I2 with
i⇤S1 ✓ S2, that the bijection I1t(I2 \ im(i)) ⇠= I2 lifts uniquely to a complementary morphism in
CSB. For existence, we note that the bijection in question is a map of collision structures when
I2 \ im(i) carries the empty collision structure. For uniqueness, we note that, for any collision
structure T on I2 \ im(i), any permutation of this set defines a morphism of collision structures
? ! T ; therefore, any lift of I1 t (I2 \ im(i)) ⇠= I2 to a complementary morphism is equivalent
to the lift constructed above. ⇤

Corollary 3.12. There are the following canonical isomorphisms of categories:

Pr(GB) ⇠= GI

Pr(SCB) ⇠= SCI.

Proof. We aim to use Proposition 2.12, the main point being to verify that GB and SCB
are deformations of CSB. We begin by observing that the assignment of a finite set to its
trivial collision structure defines a fully faithful functor FB ! CSB, which is a section of the
forgetful functor. Identifying FB with its essential image under this functor, we observe that
FB is a deformation of CSB, since the trivial collision structure is initial. Moreover, we have
the containment FB ✓ GB \ SCB; indeed, the trivial collision structure on I corresponds to
the discrete graph on I and to the simplex spanned by I. Since a subcategory containing a
deformation is itself a deformation, the proof is complete.

⇤
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4. Monoidal matters

In this section, we consider interactions among various tensor products. First, we prove
the structural result that the opposite of the projection category represents oplax symmetric
monoidal functors with Cartesian target (Corollary 4.3). Second, we show that, under restrictive
but applicable hypotheses, a variant of Day convolution identifies such oplax functors with certain
coalgebras (Corollary 4.12). These two results form the bridge from combinatorial structure to
algebraic structure underpinning our proof of Theorem 1.2.

4.1. Projection categories and lax structures. The goal of this section is to establish
a universal property of the projection category in the symmetric setting. Before articulating
this universal property in Theorem 4.2 below, we pause to establish notation regarding a few
standard concepts.

Definition 4.1. Let C and D be monoidal categories.

(1) A lax (monoidal) structure on a functor F : C ! D is a natural transformation µ :
F⌦F ! F �⌦ and a morphism ⌘ : 1! F (1) such that the following diagrams commute
for all C1, C2, C3 2 C.

F (C1 ⌦ (C2 ⌦ C3))
⇠

F ((C1 ⌦ C2)⌦ C3)

F (C1)⌦ F (C2 ⌦ C3)

µ

OO

F (C1 ⌦ C2)⌦ F (C3)

µ

OO

F (C1)⌦ (F (C2)⌦ F (C3))

F (C1)⌦µ

OO

⇠
(F (C1)⌦ F (C2))⌦ F (C3)

µ⌦F (C3)

OO

F (C1 ⌦ 1) F (C1)⌦ F (1)
µ
oo

F (C1)
⇠

o

F (C1)⌦ 1.

F (C1)⌦⌘

OO

A lax (monoidal) functor is a functor equipped with a (typically suppressed) lax struc-
ture.

(2) Suppose that C and D are symmetric monoidal. We say that the lax functor F : C! D
is symmetric if the following diagram commutes:

F (C1 ⌦ C2)
⇠

F (C2 ⌦ C1)

F (C1)⌦ F (C2)

µ

OO

⇠
F (C2)⌦ F (C1).

µ

OO

(3) Let F1 and F2 be lax functors. A natural transformation ⌧ : F1 ! F2 is monoidal if
the following diagrams commute:

F1(C1 ⌦ C2)
⌧

// F2(C1 ⌦ C2) F1(1)
⌧

// F2(1)

F1(C1)⌦ F1(C2)

µ

OO

⌧⌦⌧
// F2(C1)⌦ F2(C2)

µ

OO

1

⌘

aa

⌘

==

(4) A (symmetric) oplax structure on F : C! D is a (symmetric) lax structure on F
op.
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It is immediate from the definitions that monoidality and symmetry is closed under compo-
sition; therefore, lax symmetric monoidal functors and monoidal natural transformations form
a category Funlax(C,D). Likewise, we have the category Funoplax(C,D) = Funlax(Cop

,Dop)op of
oplax symmetric monoidal functors. The reader should note that we do not reflect the condi-
tion of symmetry in the notation, since we will have no cause to consider nonsymmetric (op)lax
functors.

Theorem 4.2. Let C be a symmetric monoidal category and D a category with finite coprod-
ucts. There is a canonical isomorphism of categories

Fun(Pr(C),D) ⇠= Funlax(C,D).

In our application, it will be the dual version of this result that will be of most interest.

Corollary 4.3. Let C be a symmetric monoidal category and D a category with finite
products. There is a canonical isomorphism of categories

Fun(Pr(C)op,D) ⇠= Funoplax(Cop
,D).

Proof. By our assumption on D, the opposite category Dop has finite coproducts, so The-
orem 4.2 supplies the middle of the three isomorphisms of categories:

Fun(Pr(C)op,D) ⇠= Fun(Pr(C),Dop)op ⇠= Funlax(C,Dop)op ⇠= Funoplax(Cop
,D).

⇤
We begin the proof of the theorem by observing that C is the source of a natural functor to

its own projection category.

Lemma 4.4. The assignments ◆(C) = C and ◆(C1 ! C2) = [C1 ⌦ 1 ⇠= C1 ! C2] determine
a functor ◆ : C! Pr(C).

Proof. It is immediate that ◆ preserves identities. For composition, we appeal to the
commutative diagram

C1 ⌦ 1⌦ 1 ⇠

o

C1 ⌦ 1

o

// C2 ⌦ 1

o

⇠
C2

✏✏

C1 ⌦ 1 ⇠
C1

// C2
// C3

The composite in the bottom row represents ◆(C1 ! C2 ! C3), while the full clockwise composite
represents ◆(C2 ! C3) � ◆(C1 ! C2). Since the leftmost vertical arrow is the identity of C1

tensored with the unitor, commutativity implies that the two complementary morphisms are
equivalent, as desired. ⇤

The equivalence of Theorem 4.2 will be given by restriction along the functor ◆ of Lemma
4.4. The following result will allow us to make sense of this idea.

Lemma 4.5. Let D be category with finite coproducts.

(1) Given a functor G : Pr(C) ! D, the restriction ◆
⇤
G carries a canonical lax structure,

which is symmetric.
(2) Given a natural transformation ⌧ : G1 ! G2 in Fun(Pr(C),D), the restriction ◆

⇤
⌧ is

monoidal.

Proof. Since the unit in D is initial, we have the unique map 1! G(1). The identity and
the symmetry of C determine complementary morphisms from C1 and C2 to C1⌦C2, respectively.
Applying G and invoking the universal property of the coproduct in D, we obtain a family of
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maps of the form G(C1)tG(C2)! G(C1⌦C2). The verification that these maps form a natural
transformation, although straightforward, reveals a subtle asymmetry, which may at first be
surprising; for this reason, we choose to include some details. The verification of the axioms
of a symmetric lax structure and a monoidal natural transformation are left to the enthusiastic
reader.

By the universal property of the coproduct, naturality in the first variable amounts to the
commutativity of the diagrams obtained by applying G to the following two diagrams in Pr(C):

C1

[C1⌦C2=C1⌦C2]

✏✏

[C1⌦1⇠=C1
f�!C0

1]
// C

0
1

[C0
1⌦C2=C0

1⌦C2]

✏✏

C1 ⌦ C2

[C1⌦C2⌦1⇠=C1⌦C2

f⌦C2����!C0
1⌦C2]

// C
0
1
⌦ C2.

C2

[C2⌦C1
⇠=C1⌦C2]

uu

[C2⌦C0
1
⇠=C0

1⌦C2]

))

C1 ⌦ C2

[C1⌦C2⌦1⇠=C1⌦C2

f⌦C2����!C0
1⌦C2]

// C
0
1
⌦ C2

The composites in the first diagram are represented by the respective rows of the following
commutative diagram in C:

C1 ⌦ 1⌦ C2

o

⇠
C1 ⌦ C2

f⌦C2
// C

0
1
⌦ C2

C1 ⌦ C2 ⌦ 1 ⇠
C1 ⌦ C2

f⌦C2
// C

0
1
⌦ C2.

As indicated, the symmetry of C supplies an elementary equivalence between the two, establish-
ing the desired commutativity. On other hand, the counterclockwise composite and righthand
diagonal arrow in the second diagram are represented by the clockwise composite and bottom
arrow, respectively, of the following commutative diagram in C:

C2 ⌦ C1 ⌦ 1

o

⇠
C1 ⌦ C2 ⌦ 1

o

C2 ⌦ C1

C2⌦f

✏✏

⇠
C1 ⌦ C2

f⌦C2

✏✏

C2 ⌦ C
0
1

⇠
C

0
1
⌦ C2.

The lefthand vertical composite gives a simple equivalence between the two, establishing the
claim. Naturality in the second variable is similar. ⇤

Note that the arrow providing the final simple equivlanece of this proof is in general not an
isomorphism—see Remark 4.6 below.

Proof of Theorem 4.2. Invoking Lemma 4.5, we obtain the (abusively named) functor

◆
⇤ : Fun(Pr(C),D)! Funlax(C,D),

which we claim to be an isomorphism. To prove this claim, we construct an inverse isomorphism
explicitly. Given a symmetric lax functor F : C ! D, we define the value of F : Pr(C) ! D on
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the equivalence class of f : C1 ⌦D ! C2 to be the composite

F (C1)! F (C1) t F (D)
µ�! F (C1 ⌦D)

F (f)���! F (C2).

One checks immediately that this definition is independent of the choice of representative and
that F , so defined, is a functor. To conclude, it su�ces to verify that the objectwise identities
◆⇤G(C) = G(C) and ◆

⇤
F (C) = F (C) form a natural transformation and a monoidal natural

transformation, respectively.
Unpacking the definitions, one finds that the value of ◆⇤G on the equivalence class represented

by C1 ⌦ D ! C2 is the value of G on the equivalence class of the composite of C1 ⌦ D ⌦ 1 ⇠=
C1⌦D ! C2, viewed as a complementary morphism with source C2⌦D, with C1⌦D = C1⌦D,
viewed as a complementary morphism with source C1. This composite is simply C1 ⌦D ⌦ 1 ⇠=
C1 ⌦D ! C2, viewed as a complementary morphism with source C1, which is equivalent to our
original complementary morphism via the unitor D ⌦ 1 ⇠= D. It follows that ◆⇤G = G.

Similarly, one finds that the value of ◆⇤F on a morphism C1 ! C2 is the composite in the
top row of the diagram

F (C1)

⇠

// F (C1) t F (1)
µ
// F (C1 ⌦ 1) ⇠

F (C1) // F (C2)

F (C1) t 1

F (C1)t⌘

OO

⇠

Since the diagram commutes by our assumption on F , this composite is simply the value of F
on our original morphism. It follows that ◆

⇤
F = F as bare functors, so it remains to verify

that the two lax structures coincide. Since the unit in D is initial, the second diagram in the
definition of a monoidal natural transformation commutes automatically. As for the first, it is
an easy exercise to check that the lax structure morphism for ◆⇤F produced by Lemma 4.5, as a
morphism F (C1) t F (C2) ! F (C1 ⌦ C2) in D, has the same components as µ; we remark only
that the argument uses the compatibility of µ with the respective monoidal symmetries. The
claim then follows from the universal property of the coproduct in D. ⇤

Remark 4.6. As our proof shows, the (rather curious) situation is that the universal property
of Theorem 4.2 fails to hold for Quillen’s category not because one cannot define the desired lax
monoidal structure maps, but rather because they do not form a natural transformation unless
C is a groupoid. The coarser equivalence relation of Pr(C) is precisely what is needed to repair
this defect.

Example 4.7. We return to Example 2.7. By definition, the data of a functor from �1 is
that of an arrow f : X ! Y in the target, and our previous analysis shows that the data of an
extension of this functor to Quillen’s construction is that of a retraction g of f . Assuming the
target category to have finite coproducts, suppose that we are instead given the data of a lax
monoidal structure on the functor in question. The composite arrow

g : Y ! X t Y ! X

is again a left inverse to f , as is readily seen from the commutative diagram

X t Y

✏✏

ftY
// Y t Y

✏✏

? t Y
!tY
oo

X
f

// Y.

⇠=

99
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According to Example 2.7, the category Pr(�1) is the walking isomorphism, so we should expect
that g is also a right inverse; indeed, this fact follows easily from the commutative diagram

? tX
!tX
// X tX

✏✏

Xtf
// X t Y

✏✏

X

⇠=

ee

X.

4.2. Day convolution. In this section, we consider two natural tensor product operations
defined on functors between symmetric monoidal categories, the left and right Day convolution
tensor products. With mild assumptions on the two categories, it is well known that left convo-
lution determines a symmetric monoidal structure on the functor category. A game of opposites
then gives conditions under which right convolution determines a symmetric monoidal structure.
Although these conditions are significantly more restrictive, they are nevertheless applicable in
our setting of interest.

Definition 4.8. Let F,G : C ! D be functors. The left (resp. right) Day convolution
tensor product of F and G is the left (resp. right) Kan extension F ⌦G in the diagram

C⇥ C

⌦C

✏✏

F⇥G
// D⇥D

⌦D
// D

C

F⌦G

55

It should be emphasized that either convolution may fail to exist for some or all pairs of
functors with fixed source and target. When the left convolution does exist, it is given explicitly
by the formula

(F ⌦G)(C) = colim
⇣
(⌦C # C)! C⇥ C

F⇥G���! D⇥D
⌦D��! D

⌘
,

and similarly for right convolution. Mere existence, however, does not guarantee that convolution
extends to a monoidal structure.

Theorem 4.9. If D admits, and ⌦D distributes over, colimits indexed by (⌦C # C) for every
object C 2 C, then left Day convolution extends to a canonical symmetric monoidal structure on
Fun(C,D). In this case, there is a canonical isomorphism of categories

Funlax(C,D) ⇠= AlgCom(Fun(C,D)).

Although this result is essentially standard, it is typically stated with the unnecessarily strong
assumption that ⌦D distributes over all colimits. In the left handed setting, this assumption is
almost always satisfied; it is in dualizing to the right handed setting in Corollary 4.12 that we
require the weaker assumption. For these reasons, we have opted to include an outline of the
proof—the reader may consult [8, 17, 27], for example, for further details.

Proof of Theorem 4.9. The existence assumption grants that F ⌦G is defined for every
F and G. A unit is supplied by the functor 1Day given by the left Kan extension of the inclusion
of 1D along the inclusion of 1C. Indeed, we claim that the left Kan extensions indicated by the
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dashed arrows are as claimed in the following diagrams:

C
(1D,F )

//

(1C,id)

✏✏

D⇥D
⌦D
// D C

F
// D

C⇥ C

1Day⇥F

::

⌦C

✏✏

C

1Day⌦F

::

C

F

AA

For the righthand diagram, there is nothing to show, and the identification of the innermost Kan
extension in the lefthand diagram is immediate from the definitions. Invoking our assumption
on distributivity of ⌦D, it follows that the outer left Kan extension is as indicated. We obtain
a left unitor by observing that the left unitors of C and D give an isomorphism between the two
diagrams, and similarly for a right unitor. The same considerations su�ce to identify the left
Kan extensions in the following diagram:

C⇥ C⇥ C

⌦C⇥id

✏✏

F1⇥F2⇥F3
// D⇥D⇥D

⌦D⇥id
// D⇥D

⌦D
// D

C⇥ C

⌦C

✏✏

F1⌦F2⇥F3

22

C

(F1⌦F2)⌦F3

44

We obtain an associator after observing that the associators of C and D furnish an isomorphism
between this diagram and the corresponding diagram for F1 ⌦ (F2 ⌦ F3). The same approach
furnishes a symmetry. The coherence axioms for Fun(C,D) follow directly from the coherence
axioms for C andD, since each structure morphism in the former was built from the corresponding
structure morphisms in the latter two.

Toward the final claim, we observe that, by the universal property of the colimit, a monoid
structure on F : C ! D provides a compatible collection of maps F (C1) ⌦ F (C2) ! F (C), one
for each arrow C1⌦C2 ! C. By specializing to the case C1⌦C2 = C, such a collection furnishes
a collection of candidate components F (C1) ⌦ F (C2) ! F (C1 ⌦ C2) of a lax structure map.
Conversely, a lax structure furnishes a candidate monoid structure map via the composites

F (C1)⌦ F (C2)! F (C1 ⌦ C2)! F (C).

Similar remarks apply to units, and it remains to verify that the associativity, symmetry, and
unitality constraints of the two structures coincide, a task we leave to the reader. ⇤

Before continuing we record a useful consequence of the proof.

Corollary 4.10. If D admits, and ⌦D distributes over, colimits indexed by (⌦C # C)
for every object C 2 C, then the left Day convolution tensor product

Nn
i=1

Fi is canonically
isomorphic to the left Kan extension in the diagram

Cn

⌦(n)
C

✏✏

(Fi)
n
i=1

// Dn
⌦(n)

D
// D

C

⌦n
i=1Fi

44
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The existence of the right convolution monoidal structure will rely on a technical condition
on the structure of overcategories in C, which we refer to as sparsity. We record several other
related technical conditions for later use. In the following definition, we view finite sets as discrete
categories.

Definition 4.11. Let C be an object in the symmetric monoidal category C.

(1) We say that C is n-separable if (⌦(n)
C # C) receives a final functor from a finite set.

(2) We say that C is freely n-separable if (⌦(n)
C # C) receives a ⌃n-equivariant final functor

from a finite free ⌃n-set.
(3) We say that C is sparse if every object of C is 2-separable.

Corollary 4.12. If C is a sparse symmetric monoidal category and D an additive tensor
category, then right Day convolution extends to a canonical symmetric monoidal structure on
Fun(Cop

,D). In this case, there is a canonical isomorphism of categories

Funoplax(Cop
,D) ⇠= CoalgCom(Fun(C

op
,D)).

Proof. In light of the isomorphism Fun(Cop
,D) ⇠= Fun(C,Dop)op, together with the fact

that the formation of the opposite category interchanges limits and colimits, it su�ces to show
that C andDop satisfy the hypotheses of Theorem 4.9. By sparsity, a colimit indexed by (⌦C # C)
is simply a finite coproduct in Dop. The proof is complete upon observing that Dop is also an
additive tensor category, since distributivity over finite coproducts is equivalent to distributivity
over finite products by additivity. ⇤

Remark 4.13. The right convolution tensor product seems less well known than its sinistral
cousin, perhaps due to the apparent restrictiveness of sparsity. We direct the reader to [24] for
a prior instance of its use; one assumes that there are other antecedents, but none are known to
the author.

4.3. Examples. In this section, we specialize the general theory of the preceding section
to the examples of interest.

Given a collision structure S on J and a function f : I ! J , we write f
⇤
S for the largest

collision structure on I for which f is a map of collision structures, i.e.,

f
⇤
S = {P 2 ⇧I : f⇤P 2 S}.

It is easy to check that f
⇤
S, so defined, is a collision structure; note, however, that it may be

empty. In the case of the inclusion of a subset I0 ✓ I, we write S|I0 .

Example 4.14. If S = S� is the collision structure associated to a graph � with vertex set
I according to Example 3.5, then S�|I0 is the collision structure associated to the full subgraph
spanned by I0.

Example 4.15. If S = SK is the collision structure associated to a simplicial complex K

with vertex set I according to Example 3.6, then SK |I0 is the collision structure associated to
the full subcomplex spanned by I0.

Write Surj(I, n) for the set of surjections of I onto the set {1, . . . , n}; in other words, Surj(I, n)
is the set of ordered partitions of I with n blocks.

Lemma 4.16. Let S be a collision structure on I. For every n � 0, there is a canonical
inclusion

Surj(I, n) ✓ (t(n)CSB # S),
which is final if I is non-empty.
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Proof. We define the inclusion by sending p 2 Surj(I, n) to the map
Fn

j=1
S|p�1(j) ! S of

collision structures given by the canonical bijection
Fn

j=1
p
�1(j) ⇠= I. Given collision structures

Sj on the finite sets Ij and a bijective map f :
Fn

j=1
Sj ! S of collision structures, define

pf : I ! {1, . . . , n} by defining pf (i) to be the index j such that i 2 f(Ij); note that there is
precisely one such index by bijectivity. Then p

�1

f (j) = f(Sj), and we have the commutative
diagram:

nG

j=1

Ij

f
��

Fn
j=1 f |Ij

//

nG

j=1

p
�1

f (j)

⇠=
}}

I

Finality follows upon noting that the components of the dashed arrow are uniquely determined
by commutativity, each component is a map of collision structures, and no such dashed arrow
exists for any p 6= pf . ⇤

Corollary 4.17. If S is a collision structure on I, then S is n-separable as an object of
CSB for every n � 0, freely if I is non-empty. In particular, CSB is sparse.

Proof. Since ⌃n acts freely on Surj(I, n), Lemma 4.16 directly implies that any collision
structure on a non-empty finite set is freely n-separable for every n � 0. For the edge case, we

note that (t(n)CSB # ?) is a singleton for every n � 0. ⇤
Corollary 4.18. A graph, a simplicial complex, or a finite set is n-separable as an object

of GB, SCB, or FB, respectively, for every n � 0, freely if non-empty. In particular, all three
categories are sparse.

Proof. First, the inclusion of Surj(I, n) of Lemma 4.16 factors through (t(n)GB # �), (t
(n)
SCB #

K), or (t(n)FB # I), respectively. For the first two, this claim follows from Examples 4.14 and 4.15,
and for the third it is obvious. Since these three subcategories are full, each inclusion is also
final. ⇤

Combining these corollaries with Corollary 4.12, we see that it is sensible to contemplate
right Day convolution in this context. Corollary 4.10 and Lemma 4.16 yield the following formula
for this tensor product.

Corollary 4.19. Let D be an additive tensor category. Given functors Fj : CSBop ! D
for 1  j  n and a collision structure S on I, there is a canonical natural isomorphism

0

@
nO

j=1

F

1

A (S) ⇠=
M

I=
Fn

j=1 Ij

nO

j=1

F (S|Ij ).

Examining the proof of Corollary 4.18, we see that the same formula holds for GB and SCB
(and FB, of course). By Examples 4.14 and 4.15, this formula may be interpreted geometrically
in terms of full subgraphs and full subcomplexes, respectively.

5. Twisted Koszul duality

The purpose of this section is to explain how the theory of Koszul duality between Lie
algebras and cocommutative coalgebras extends to the twisted setting—see Theorem 5.15. Clas-
sically, this theory is developed under two key assumptions: first, that the ground ring is a
field of characteristic zero; second, that the graded objects in question are su�ciently connected
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[12, 33]. These assumptions serve to guarantee the good behavior of divided powers—their
homotopy invariance and nilpotence, respectively. In our setting, the same good behavior is
guaranteed instead by the presence of a weighting with certain natural properties—see Section
5.1. Otherwise, the arguments are essentially identical, and we will at times allow ourselves a
certain brevity.

We work throughout over a fixed ground field F, a limitation easily overcome by judicious
assumptions of flatness.

5.1. Weights. In this section, we introduce a piece of extra structure that will serve as a
substitute for connectivity and divisibility. In the next definition, we refer to Definition 4.11.

Definition 5.1. Let C be a monoidal category.

(1) A weighting of C is a lax monoidal functor w : C! Z�0. The value w(C) is the weight
of C. The pair (C, w) is a weighted monoidal category

(2) A combinatorial monoidal category is a weighted monoidal category such that C 2 C is
freely n-separable for every n � 0 whenever w(C) > 0.

Concretely, a weighting amounts to the assignment of a non-negative integer w(C) to each
C 2 C such that the following inequalities hold for every C1, C2 2 C:

(1) w(C1)  w(C2) whenever HomC(C1, C2) 6= ?
(2) w(C1) + w(C2)  w(C1 ⌦ C2).

Example 5.2. Recording the cardinality of a finite set determines a weighting of FB, whence
of CSB, GB, and SCB. By the results of Section 4.3, these weighted monoidal categories are
combinatorial.

Definition 5.3. Let C be a weighted monoidal category and D an additive tensor category.
We say that a functor F : C! D is concentrated in weight � k if F (C) = 0 whenever w(C) < k.
If F is concentrated in weight � 1, then we say that F is reduced.

This definition is justified by the following simple result.

Lemma 5.4. If D is an additive tensor category, then D admits a zero object 0, and 0⌦D ⇠= 0
for every D 2 D.

Proof. Additivity guarantees the existence of the biproduct indexed by the empty set,
which is to say a zero object. Second, since the tensor product of D distributes over finite
coproducts, we have

0⌦D ⇠= colim
⇣
? !�! D

⌘
⌦D ⇠= colim

⇣
?⇥D

!⇥id���! D⇥D
⌦�! D

⌘
⇠= colim

⇣
? !�! D

⌘
⇠= 0.

⇤
The comparison to connectivity made above is justified by the following result.

Lemma 5.5. Let C be a sparse weighted symmetric monoidal category. If Fi : Cop ! D is
concentrated in weight � ki for i 2 {1, 2}, then F1 ⌦ F2 is concentrated in weight � k1 + k2.

Proof. Let C 2 C be an object with w(C) < k1 + k2. From our assumption of sparsity and
the definition of right Day convolution, there is a collection of arrows C1 ⌦ C2 ! C such that

(F ⌦G)(C) ⇠=
M

C1⌦C2!C

F1(C1)⌦ F2(C2) = 0,

so it su�ces to show that each summand vanishes. We have the inequality

k1 + k2 > w(C) � w(C1 ⌦ C2) � w(C1) + w(C2).
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Since weights are non-negative, it follows that w(C1) < k1 or w(C2) < k2, whence F1(C1) = 0
or F2(C2) = 0. ⇤

The comparison to divisibility made above is justified by the following result.

Lemma 5.6. Let C be a combinatorial symmetric monoidal category and ⌧ : F1 ! F2 a
natural transformation between reduced functors from Cop to the category of chain complexes in
an Abelian tensor category. If ⌧ is a quasi-isomorphism in weight < n, then �k(⌧) is a quasi-
isomorphism in weight < n + k � 1 for every k > 0. In particular, if k > 1, then �k(⌧) is a
quasi-isomorphism in weight  n.

Proof. Fix C 2 C with w(C) < n + k � 1. If w(C) = 0, then T
k(Fi)(C) = 0 by Lemma

5.5, and there is nothing to show, so assume otherwise. Then C is freely n-separable by our
assumption on C, so Corollary 4.10 grants the existence of a finite, ⌃k-free set {fr : C1,r ⌦ · · ·⌦
Ck,r ! C} of morphisms such that

T
k(Fi)(C) ⇠=

M

r

kO

j=1

Fi(Cj,r)

compatibly with T
k(⌧). Since the Fi are reduced, we may assume without loss of generality that

w(Cj,r) > 0 for every j and r. It then follows from the inequality

n+ k � 1 > w(C) �
kX

j=1

w(Cj,r)

that w(Cj,r) < n for every j and r. By assumption, ⌧Cj,r is a quasi-isomorphism, so T
k(Fi)(C)

is a quasi-isomorphism. By freeness, this quasi-isomorphism descends to a quasi-isomorphism on
⌃k-invariants, completing the proof. ⇤

Remark 5.7. In a previous version of this paper, Lemma 5.6 was stated with the weaker
bound only. We thank the referee for pointing out that the proof establishes the improved bound.

5.2. Twisted (co)algebraic structures. We come now to the main definitions.

Definition 5.8. Let C be a sparse symmetric monoidal category. A C-twisted Lie algebra
(over F) is a Lie algebra in Fun(Cop

,ChF), regarded as symmetric monoidal under right Day
convolution.

Similarly, one has the notion of a C-twisted cocommutative coalgebra, and so on. In the case
C = FB, one recovers the classical notion of a twisted (co)algebraic structure.

Remark 5.9. As the reader may know, the term “Lie algebra” has several inequivalent
definitions. Ultimately, we will specialize to a setting in which all such definitions coincide, so
the reader is welcome to imagine that her favorite definition is also ours.

Given a C-twisted cocommutative coalgebra K, we write K for the kernel of the counit
K ! 1.

Lemma 5.10. Let L be a C-twisted Lie algebra and K a C-twisted cocommutative coalgebra.

(1) The unique degree �1 coderivation @CE of �(L[1]) extending the composite

�(L[1])[�1]! �2(L[1])[�1] [�,�][1]�����! L[1]

squares to zero.
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(2) The unique degree �1 derivation @Q of Lie(K[�1]) extending the composite

K[�1] �[�1]����! Lie2(K[�1])[1] ✓ Lie(K[�1])[1]
squares to zero.

Proof. We give only a brief outline, the proof being entirely parallel to the corresponding
portions of [12, IV.22(b),(e)]. For the first claim, since the square of a coderivation of odd degree
is again a coderivation, and since �(L[1]) is cofree (as a conilpotent cocommutative coalgebra),
it su�ces to verify that the composite

�3(L[1])[�2]! �2(L[1])[�1]! L[1]

vanishes, which is equivalent to the Jacobi identity. The proof of the second claim is essentially
the same save that we appeal instead to coassociativity. ⇤

This result permits the following fundamental definition.

Definition 5.11. Let L be a C-twisted Lie algebra and K a C-twisted cocommutative
coalgebra.

(1) The Chevalley–Eilenberg complex of L is the C-twisted graded cocommutative coalgebra

CE(L) = (�(L[1]), @CE + @L).

Its homology is called the Lie algebra homology of L and denoted H
Lie
⇤ (L).

(2) The Quillen complex of K is the C-twisted graded Lie algebra

Q(K) = (Lie(K[�1]), @Q + @K).

Remark 5.12. Some readers may be surprised at the appearance of divided powers rather
than symmetric powers in the Chevalley–Eilenberg complex. The two coincide in characteristic
zero, and more generally in any setting in which the norm map is an isomorphism on tensor
powers (as it will be below).

These two complexes are closely interrelated.

Lemma 5.13. Let L be a C-twisted Lie algebra and K a C-twisted cocommutative coalgebra.

(1) The map ⌘ : K ! CE(Q(K)) of C-twisted coalgebras induced by the inclusion ◆ : K ⇠=
K[�1][1] ✓ Q(K)[1] is a chain map.

(2) The map ✏ : Q(CE(L)) ! L of C-twisted Lie algebras induced by the projection ⇡ :
CE(L)[�1]! L[1][�1] ⇠= L is a chain map.

Proof. Again, we give only a brief outline, as the details are parallel to the relevant por-
tions of the proof of [12, Thm. 22.9]. Writing �1 and �2, respectively, for the clockwise and
counterclockwise composites in the diagram

K

@K

✏✏

⌘
// CE(Q(K))

@CE+@Q(K)

✏✏

K
⌘
// CE(Q(K)),

the first claim is the equality �1 = �2. Since ⌘ is a map of coalgebras, the �i are coderivations;
therefore, since CE(Q(K)) is cofree, it su�ces to check that the composite

K
�i�! CE(Q(K))

⇡�! Q(K)[1]

is independent of i, which is essentially a tautology. The proof of the second claim is similar. ⇤
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5.3. Duality. In order to state the main result, we require one further definition.

Definition 5.14. Let C be a sparse weighted symmetric monoidal category. We say that
a C-twisted Lie algebra is reduced if its underlying functor is so. We say that a C-twisted
cocommutative coalgebra K is reduced if K is so.

The goal of this section is to prove the following analogue of [12, Thm. 22.9].

Theorem 5.15. If C is combinatorial, then the maps ⌘ and ✏ are quasi-isomorphisms on
reduced objects.

The main ingredients are the following two lemmas.

Lemma 5.16. If C is combinatorial, then the Chevalley–Eilenberg complex preserves and
reflects quasi-isomorphisms between reduced C-twisted Lie algebras.

Proof. Let ' : L1 ! L2 be a map of C-twisted Lie algebras. Assuming that ' is a quasi-
isomorphism, Lemma 5.6 grants that �k('[1]) is also a quasi-isomorphism for every k � 0.
Filtering the Chevalley–Eilenberg complex by tensor degree, we conclude that ' induces a quasi-
isomorphism at the level of associated graded complexes. By induction and the five lemma, it
follows that CE(') is a quasi-isomorphism after restriction to any filtration stage; therefore, since
direct limits preserve quasi-isomorphisms, CE(') itself is a quasi-isomorphism.

For reflection, we adapt the argument of [14, 4.1.9]. Assuming that CE(') is a quasi-
isomorphism, let C 2 C be of minimal weight such that 'C is not a quasi-isomorphism. Since
the Li are reduced, we have n := w(C) > 0. Setting Ri := coker(Li[1] ! CE(Li)), we have the
following commutative diagram of chain complexes with exact rows:

0 // L1(C)[1]

'C [1]

✏✏

// CE(L1)(C)

CE(')C

✏✏

// R1(C) //

✏✏

0

0 // L2(C)[1] // CE(L2)(C) // R2(C) // 0.

It su�ces to show that the righthand vertical arrow is a quasi-isomorphism; indeed, since the
middle arrow is a quasi-isomorphism by assumption, the five lemma then implies that the lefthand
arrow is a quasi-isomorphism, a contradiction. To this end, we filter Ri by tensor degree, as
above, and observe that the associated graded pieces are of the form �k(Li[1]) for k > 1. By
minimality, ' is a quasi-isomorphism in weight < n, so Lemma 5.6 implies that �k(Li[1]) is a
quasi-isomorphism in weight  n for k > 1. In particular, the righthand vertical arrow above
induces a quasi-isomorphism at the level of associated graded complexes, and the same argument
as before completes the proof. ⇤

Lemma 5.17. The projection ⇢ : CE(Lie(V ))! V [1]� 1 is a quasi-isomorphism.

Proof. Since adjunctions compose, the universal enveloping algebra of Lie(V ) is the tensor
algebra T (V ); therefore, the homology of the Chevalley–Eilenberg complex is canonically isomor-
phic to TorT (V )

⇤ (1, 1), which may be computed from the two-step complex T (V ) ⌦ V ! T (V ).
The claim follows immediately. ⇤

With these results in hand, we complete the proof.

Proof of Theorem 5.15. Filtering Q(K) by bracket length, the associated graded Lie
algebra is Lie(K[�1]), and the induced filtration on CE(Q(K)) has associated graded object
CE(Lie(K[�1])). The composite

K
gr(⌘)���! CE(Lie(K[�1])) ⇢�! K
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is the identity, and ⇢ is a quasi-isomorphism by Lemma 5.17, so gr(⌘) is also a quasi-isomorphism.
It follows as before that ⌘ is a quasi-isomorphism. It is easy to check that CE(✏) � ⌘ = id, so
it follows that CE(✏) is a quasi-isomorphism, and Lemma 5.16 implies that ✏ is also a quasi-
isomorphism. ⇤

Remark 5.18. In classical operadic Koszul duality [26], the cobar construction (playing
the role of the Quillen complex) fails to preserve quasi-isomorphisms in general, so one obtains
instead an equivalence between standard homotopy theory on the algebra side and a nonstandard
homotopy theory on the coalgebra side. From this point of view, the main point of this section
is that Q does preserve quasi-isomorphisms in our setting, which is the essential content of the
reflection clause of Lemma 5.16.

6. Projection spaces

We arrive at last at our primary object of study. After cataloguing examples of projection
spaces of interest, we define the functor of rational primitives and prove Theorems 1.2 and 1.3
as stated in the introduction.

6.1. Examples. We recall that, according to Definition 1.1, a projection space (over C) is
a topological presheaf on Pr(C). We begin with the most basic example.

Example 6.1. Viewing a finite set as a discrete topological space defines a functor FI! Top.
By restriction along this functor, any presheaf of spaces on Top determines a projection space over
FB (recall Proposition 2.8); in particular, this construction applies to the representable presheaf
Map(�, X) for any topological space X. Under the identification Map(I,X) ⇠= X

I , one checks
that the structure map associated to the injection f : I ! J is the projection ⇡f : XJ ! X

I ,
whose ith component is the projection onto the factor of XJ indexed by f(i).

Although this example is rather uninteresting, it gives rise to the main motivating example.

Example 6.2. Given a finite set, the configuration space of I-indexed points in X is defined
as the subspace ConfI(X) ✓ X

I of injective functions I ! X. Since the restriction of an
injection along an injection is again an injection, the dashed filler exists in the diagram

ConfJ(X)

✏✏

// X
J

⇡f

✏✏

ConfI(X) // X
I
,

so the collection of all such configuration spaces inherits the structure of a projection space over
FB.

The next two examples generalize the previous two in the presence of an action by a group
G.

Example 6.3. Applying the considerations of Example 6.1 to the inclusion FIG ! TopG
and the functor MapG(�, X) represented by the G-space X, we obtain a projection space over
FBG (recall Corollary 2.10). Concretely, the value of this projection space on the finite free G-set
I is X

I0 , where we have written I ⇠= G ⇥ I0 non-canonically. The structure maps combine the
action of G with the projections of Example 6.1.

Example 6.4. Given a finite free G-set I, the orbit configuration space of I-indexed points
in X is defined as the subspace ConfGI (X) ✓ MapG(I,X) of injective equivariant functions.
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Equivalently, writing I ⇠= G⇥ I0 (non-canonically), the orbit configuration space is the subspace
of XI0 consisting of tuples with pairwise disjoint orbits, i.e., it is the pullback

ConfGI (X)

✏✏

// X
I0

✏✏

ConfI0(XG) // (XG)I0 .

Since equivariant injections are closed under composition, the first description endows the col-
lection of orbit configuration spaces with the structure of a projection space over FBG.

There is also a linear analogue of these examples. We fix a topological field F, the cases of
R and C being of greatest interest.

Example 6.5. By restricting along the inclusion of VIF into the category of topological
vector spaces, a presheaf of spaces on the latter determines a projection space over VBF (recall
Corollary 2.10); in particular this construction applies to the representable presheaf HomF(�,W )
for any topological vector space W . Since the restriction of an injection along an injection is
again an injection, the dashed filler exists in the diagram

Vn(W )

✏✏

// HomF(Fn
,W )

'_

✏✏

Vm(W ) // HomF(Fm
,W ),

where Vn(W ) denotes the space of linear injections of Fn into W , which is simply the usual
non-compact Stiefel manifold of n-frames in the real or complex case.

Remark 6.6. One imagines that our framework expands easily to encompass algebrogeo-
metric examples such as flag varieties in positive characteristic.

Given a partition P of I, we write �P = {(xi)i2I : i1 ⇠P i2 =) xi1 = xi2}. Given a
collision structure S on I, we set �S =

S
P2S �P and define the generalized configuration space

[32] associated to S as

ConfS(X) = X
I \�S .

Notice that, if P  P
0, then �P 0 ✓ �P , so �S =

S
P2S0

�P for any generating set S0 ✓ S.

Lemma 6.7. Let S and T be collision structures on I and J , respectively, and f : I ! J an
injective map of collision structures. The dashed filler exists in the diagram

ConfT (X)

✏✏

// X
J

⇡f

✏✏

ConfS(X) // X
I
.
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Proof. By our assumption on f , we have the containment �f⇤S ✓ �T . On the other hand,
we calculate that

⇡
�1

f (�S) =
[

P2S

⇡
�1

f (�P )

=
[

P2S

{(xj)j2J : i1 ⇠P i2 =) xf(i1) = xf(i2)}

=
[

P2S

{(xj)j2J : f(i1) ⇠P f(i2) =) xf(i1) = xf(i2)}

=
[

P2S

{(xj)j2J : j1 ⇠f⇤P j2 =) xj1 = xj2}

=
[

P2S

�f⇤P

= �f⇤S ,

where the last equality uses that {f⇤P : P 2 S} is a generating set for f⇤S by definition. Thus,
we have the containment ConfT (X) ✓ X

J \ ⇡�1

f (�S) = ⇡
�1

f (ConfS(X)), as desired. ⇤

Example 6.8. Pulling the projection space I 7! X
I of Example 6.1 back along the forgetful

functor from collision structures to finite sets, we obtain a projection space over CSB with
the same values. Invoking Lemma 6.7, we obtain a projection space over CSB extending the
assignment S 7! ConfS(X) on objects.

Remark 6.9. There is an obvious common generalization of Examples 6.4 and 6.8, which
one would likely dub a generalized orbit configuration space. The ensemble of such also forms
a projection space, where one would likely dub the relevant combinatorial object a G-collision
structure.

Example 6.10. Restricting the projection space of Example 6.8 to GI, we obtain a projection
space over GB extending the assignment � 7! ConfS�(X) on objects.

Example 6.11. Restricting the projection space of Example 6.8 to SCI, we obtain a projec-
tion space over SCB extending the assignment K 7! ConfSK (X) on objects.

As the reader will easily verify, all of the examples of projection spaces given in this section
are reduced.

6.2. Proofs of the main results. In the following definition, the reader may take the
functor A⇤ to be any symmetric replacement for the oplax monoidal functor rational singular
chains. A specific example of such a replacement is given below in Appendix A.

Definition 6.12. Let C be a sparse symmetric monoidal category and X a projection space
over C. The C-twisted Lie algebra of (derived) rational primitives of X is the value on X of the
composite functor

L : Fun(Pr(C)op,Top)
(4.3)

// Funoplax(Cop
,Top)

A⇤

✏✏

Funoplax(Cop
,ChQ)

(4.12)
// CoalgCom(Fun(C

op
,ChQ))

Q

✏✏

AlgLie(Fun(C
op
,ChQ)).
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Proof of Theorem 1.2. Since the isomorphisms of Corollaries 4.3 and 4.12 do not change
the underlying functor, we have

H
Lie

⇤ (L(X)) = H⇤(CE(Q(A⇤(X))))
⇠= H⇤(A⇤(X))
⇠= H⇤(X;Q)

by Theorem 5.15 and Corollary A.5. ⇤

We turn now to stability. The prevailing philosophy that has emerged in the wake of the
discovery of representation stability is that stability phenomena are the concrete consequences of
finite generation results, representation stability itself being equivalent to finite generation over
FI [6]. Prerequisitely, then, one requires an action.

A feature of the Chevalley–Eilenberg complex is that it is a symmetric monoidal functor,
converting products into tensor products. Thus, as explained at greater length in [25], a central
Lie subalgebra L0 ✓ L gives rise to an action of �(L0[1]) on Lie algebra homology, while an
Abelian quotient L ! L1 gives rise to an action of Sym(L1[1]) on Lie algebra cohomology.
Through Theorem 1.2, these two constructions give rise to a host of actions on the (co)homology
of a projection space, each a potential source of stability phenomena.

Remark 6.13. In the case C = Z�0, as shown in [25], these two types of action are united
in the action of a single algebra, called a transit algebra. It is less clear how to describe their
interaction in general, especially when C is not a groupoid.

We now show that this potential is often realized in the classical case C = FB. A functor
from this category (or its opposite) is a symmetric sequence, i.e., a list of objects indexed by
the non-negative integers (their weights), together with a ⌃k-action on the kth object for each
k � 0. We indicate the weight with a subscript, and we write V (1) for the symmetric sequence
with V (1)1 = V and V (1)k = 0 for k 6= 1.

Theorem 6.14. If X is a reduced FIop-space, then H
⇤(X) is canonically a Sym(H0(X1)(1))-

module. This module is finitely generated provided L(X) satisfies the following conditions.

(1) Hi(L(X)k) is finite dimensional for every i � 0 and k � 0.
(2) H�1(L(X)k) = 0 for k > 1 and Hi(L(X)) = 0 for i < �1.
(3) Hi(L(X)k) = 0 for i fixed and k su�ciently large.

It is well known that representation stability is equivalent to finite generation over the free
twisted commutative algebra on a single generator in degree 0 and weight 1, so Theorem 1.3 is
a special case of this result. In general, the finite generation of the theorem implies a kind of
generalized representation stability [34].

Remark 6.15. We briefly contextualize the assumptions of the theorem. The third as-
sumption is that L(X) is eventually highly connected ; one should view this assumption, which
resembles standard hypotheses in the study of homological stability, as the key assumption. The
first assumption is simply that each component space is of finite type, as will be the case in
most examples of interest. The second assumption, which may at first appear the strangest, is
in fact also quite reasonable; indeed, it is not hard to show that it holds whenever X is path
connected in each weight, or more generally when H0(X) is cogenerated cofreely by H0(X1), as
is the case for configuration spaces. One could weaken this assumption at the cost of a more
involved statement.

Lemma 6.16. If X is a reduced FIop-space, then L(X) admits the Abelian twisted Lie algebra
H0(X1)(1)[�1] as a canonical quotient.
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Proof. We begin by observing the canonical isomorphism L(X)1 ⇠= A⇤(X1)[�1] of chain
complexes. Extending by zero, we obtain the composite map

L(X)! A⇤(X1)(1)[�1]! H0(X1)(1)[�1],
where the second composition factor is the projection to the quotient. This map is clearly
surjective, and it is a map of Lie algebras; indeed, L(X) is reduced, and weight is additive under
the bracket. ⇤

Proof of Theorem 6.14. The Chevalley–Eilenberg complex is the total complex of a bi-
complex, whose di↵erentials reflect the internal di↵erential of the Lie algebra and the Lie bracket,
respectively. One of the two spectral sequences associated to the dual of this bicomplex has the
form

E1
⇠= Sym(H⇤(L(X))[1]) =) H

⇤(X;Q)

(we use our first assumption to guarantee that the dual of the divided power is the symmetric
power). This spectral sequence is a spectral sequence of Sym(H0(X1)(1))-modules by functori-
ality, since the action arises from a map of Lie algebras. As such a module, the E1-page is freely
generated by Sym(V ), where

V =
H

⇤(L(X))[1]

H0(L(X1)(1))[1]
.

By our first assumption, H0(X1) is finite dimensional, so Sym(H0(X1)(1)) is Noetherian [37];
thus, it su�ces to show that Sym(V ) is finite dimensional in fixed degree i, for which we calculate
that

Sym(V )k,i =
M

r�0

0

@
M

k1+···+kr=k

M

i1+···+ir=i

Ind⌃kQr
j=1 ⌃kj

rO

j=1

Vkj ,ij

1

A

⌃r

.

For fixed k, this expression is finite dimensional by reducedness and our first assumption, so
it su�ces to show that it vanishes for k su�ciently large. By our third assumption on L(X),
there exists ` su�ciently large so that Vk,i = 0 for k � `; therefore, the summand indexed by r

vanishes for k � r`. On the other hand, our second assumption on L(X) implies that Vk,i = 0 for
i  0, so we may take ij > 0 for 1  j  r in the above expression. It follows that the summands
indexed by r > i all vanish. Combining these observations, we conclude that Sym(V )k,i = 0 for
k � i`, as desired. ⇤

Remark 6.17. Let M be a (for simplicity) orientable manifold of dimension n. According to
the conjecture articulated in Section 1.3(2), the homology of the Lie algebra of rational primitives
of the ordinary configuration spaces of M can be described in weight k as the vector space
H

�⇤(M) ⌦ Lie(k)[k(n � 1)], where Lie(k) is the kth Lie representation. As long as n > 1, this
Lie algebra satisfies the assumptions of Theorem 6.14, so we recover the primordial example of
representation stability. This analysis does not actually depend on the validity of the conjecture,
since the Chevalley–Eilenberg complex of this Lie algebra does calculate the correct homology.

Appendix A. Sullivan chains

The cup product arises from the Alexander–Whitney map C⇤(X ⇥ Y )! C⇤(X)⌦C⇤(Y ), a
natural transformation constituting an oplax monoidal structure that is famously not symmet-
ric. Fortunately, the failure of symmetry is governed by highly coherent homotopies, which are
strictifiable in characteristic zero for abstract reasons.

The purpose of this appendix is to present an explicit model for this strictification. In brief,
we construct a pre-dual of (a completion of) the functor of Sullivan cochains A

⇤, a reference
for which is [12, II.10(c)], where it is denoted APL. It is common to discuss this complex in
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barycentric coordinates, but the expression in increasing coordinates given in [36] will be more
convenient for our purposes.

Write Vn for the chain complex with basis {x1, . . . , xn, dx1, . . . , dxn}, where |xi| = 0. This
complex carries a natural simplicial structure via the maps

@i(xk) =

(
xk k  i

xk�1 k > i
sj(xk) =

(
xk k  j

xk+1 k > j.

The dual V _
n thus carries a natural cosimplicial structure.

Definition A.1. Fix n � 0.

(1) The complex of Sullivan cochains on the standard n-simplex �n is the commutative
di↵erential graded algebra A

⇤(�n) freely generated by Vn.
(2) The complex of Sullivan chains on the standard n-simplex �n is the conilpotent co-

commutative di↵erential graded coalgebra cofreely cogenerated by V
_
n .

(3) The complex of completed Sullivan cochains on �n is bA⇤(�n) = A⇤(�n)_, regarded as
a commutative di↵erential graded algebra.

Each of these constructions inherits a (co)simplicial structure; indeed, each is obtained by
applying a functor pointwise to a (co)simplicial object.

Definition A.2. Write ◆ : �! Fun(�op
, Set) for the Yoneda embedding.

(1) The functor of Sullivan cochains is the left Kan extension A
⇤ in the diagram

�

◆

✏✏

A⇤
(�

•
)
// AlgCom(ChQ)op

Fun(�op
, Set)

A⇤
=◆!A

⇤
(�

•
)

66

(resp. completed Sullivan cochains, bA⇤).
(2) The functor of Sullivan chains is the left Kan extension A⇤ in the diagram

�

◆

✏✏

A⇤(�
•
)
// CoalgCom(ChQ)

Fun(�op
, Set).

A⇤=◆!A⇤(�
•
)

66

The complex of Sullivan (co)chains on the topological space X is the value of the corresponding
functor on the singular set of X.

Note the canonical isomorphism bA⇤ ⇠= A
_
⇤ ; indeed, dualization is colimit preserving when

viewed as a functor from cocommutative di↵erential graded coalgebras to the opposite category
of commutative di↵erential graded algebras.

Lemma A.3. The map A
⇤ ! bA⇤ induced by the composite V• ! (V _

• )_ ! bA⇤(�•) is a
quasi-isomorphism.

Proof. By [12, Prop. 10.5], it su�ces to check that the induced map A
⇤(�n)! bA⇤(�n) is

a quasi-isomorphism for each n � 0. Since the unique map 0! Vn is a quasi-isomorphism, and
since symmetric powers preserve quasi-isomorphisms over Q, it follows that the unit of A⇤(�n) is
a quasi-isomorphism. Since the linear dual of a quasi-isomorphism is also a quasi-isomorphism,
it follows that the unique map V

_
n ! 0 is a quasi-isomorphism; therefore, after invoking the

same property of symmetric powers a second time, it follows that the counit of A⇤(�n) is a
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quasi-isomorphism. By the same property of the linear dual, it now follows that the unit of
bA⇤(�n) is a quasi-isomorphism. Since the map in question is compatible with units, being a
map of algebras, the claim follows. ⇤

Theorem A.4. Let K be a simplicial set and write N⇤ for the functor of rational normalized
chains. There is a natural quasi-isomorphism A⇤(K) ' N⇤(K) of di↵erential graded coalgebras.

Proof. The proof closely follows that of [12, Thm. 10.9]. At the level of simplices, the
respective counits induce the maps

A⇤(�
•) A⇤(�

•)⌦N⇤(�
•)! N⇤(�

•)

of cosimplicial di↵erential graded coalgebras. Since both are objectwise acyclic, these maps are
quasi-isomorphisms. Kan extending, one obtains the zig-zag

A⇤ = ◆!A⇤(�
•) ◆! (A⇤(�

•)⌦N⇤(�
•))! ◆!N⇤(�

•) ⇠= N⇤,

where the rightmost isomorphism is justified by the observations that colimits of coalgebras are
computed at the level of chain complexes; that N⇤ is colimit-preserving; and that the identity
functor is the left Kan extension of the Yoneda embedding along itself. One could argue directly
that these maps are quasi-isomorphisms by appealing to a cosimplicial version of [12, Prop.
10.5]. Alternatively, consider the following commutative diagram of functors from simplicial sets
to commutative di↵erential graded algebras:

bA⇤
// ◆!

�
(A⇤(�•)⌦N⇤(�•))_

�
N

⇤
oo

◆!( bA⇤(�•)⌦N
⇤(�•))

OO

A
⇤

OO

// ◆! (A⇤(�•)⌦N
⇤(�•))

OO

N
⇤
,oo

the top row is the linear dual of the zig-zag of interest, the maps in the bottom row are shown to be
quasi-isomorphisms in [12, Thm. 10.9], and the lefthand vertical arrow is a quasi-isomorphism by
Lemma A.3; therefore, since formation of the linear dual reflects quasi-isomorphisms, it su�ces
to show that the vertical maps in the middle column are quasi-isomorphisms. By [12, Prop.
10.5], it su�ces to show that the maps

A
⇤(�n)⌦N

⇤(�n)! bA⇤(�n)⌦N
⇤(�n)! (A⇤(�

n)⌦N⇤(�
n))_

are quasi-isomorphisms for each n � 0. The first is the quasi-isomorphism of Lemma A.3 tensored
with the identity. The second is the canonical map from the tensor product of the linear duals
to the linear dual of the tensor product, which is a quasi-isomorphism on complexes with finite
dimensional homology. ⇤

Corollary A.5. Let X be a topological space. There is a natural quasi-isomorphism

A⇤(X) ' C⇤(X;Q)

of di↵erential graded coalgebras and of oplax monoidal functors.

Proof. Restricting the quasi-isomorphism of Theorem A.4 along the singular set functor,
we obtain the desired quasi-isomorphism of coalgebras. To complete the proof, we need only
recall that the coalgebra structure on singular chains determines the oplax monoidal structure
via

C⇤(X ⇥ Y )! C⇤(X ⇥ Y )⌦ C⇤(X ⇥ Y )
C⇤(⇡1)⌦C⇤(⇡2)����������! C⇤(X)⌦ C⇤(Y ).
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⇤
Remark A.6. One imagines that our approach in this appendix translates essentially un-

changed to the setting of [36], providing a symmetric model for integral singular chains. We
have not checked the details.
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