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CRISPRs and Cas proteins provide microorganisms 
with RNA-guided adaptive immunity and offer trans-
formative technological opportunities for programma-
ble genome manipulation1,2. Cas9 and related enzymes 
are now widely used to edit or regulate the genomes of 
cultured and primary cells, animals and plants, vastly 
accelerating the pace of fundamental research and ena-
bling breakthroughs in agriculture and synthetic biology. 
In addition, genome editing offers the potential to both 
understand human genetics and cure genetic disease as 
never before. The biology and technological capabilities 
of CRISPR–Cas systems have driven efforts to under-
stand the molecules responsible for CRISPR–Cas func-
tions, including targeted DNA binding, cutting, editing 
and integration.

CRISPR–Cas systems are structurally and mecha-
nistically diverse. These systems typically consist of the 
CRISPR array, an adaptation module and a CRISPR 
RNA (crRNA) biogenesis and DNA/RNA-interference 
module (reviewed in refs3,4) (Figs 1,2). To provide adap-
tive and heritable immunity, the CRISPR array stores 
the genetic information of mobile genetic elements 
(MGEs) as ‘spacer’ sequences (typically ~25–50 bp in 
size, although the size can range from ~17 to ~72 bp)5,6 
inserted between short palindromic repeats (reviewed 
in ref.7). The Cas1–Cas2 adaptation machinery cap-
tures a segment of viral or plasmid DNA, the proto
spacer, in a bacterial cell and integrates it into the 
CRISPR array (Fig. 1). In DNA-targeting CRISPR–Cas 
systems, protospacer selection depends on the presence 
of a 3–5-bp-long protospacer adjacent motif (PAM) that 
is not integrated into the CRISPR array and serves to 

distinguish self from non-self target sequences (reviewed 
in ref.8).

Once the CRISPR array is transcribed, dedicated 
pre-crRNA processing Cas ribonucleases, or trans- 
activating crRNA (tracrRNA) and ‘host factor’ RNases, 
associate with and cleave the pre-crRNA repeat sequence 
to release individual crRNAs (reviewed in ref.9) (Fig. 1). 
Depending on the CRISPR class, several Cas proteins 
(class 1), or a single Cas protein (class 2), recruit the 
mature crRNA guide for DNA or RNA interference 
(Fig. 1). To prevent self-targeting of the complemen-
tary spacer within the CRISPR array, DNA-targeting 
systems recognize a PAM before interrogation of 
double-stranded DNA (dsDNA). Hybridization of the 
crRNA spacer sequence to the unwound target nucleic 
acid results in a conformational shift in the interference 
complex, activating the Cas nuclease for DNA or RNA 
cutting and invader destruction.

During the ongoing arms race between prokaryotes 
and viruses, structurally and mechanistically diverse 
CRISPR–Cas systems and anti-CRISPR proteins (Acr 
proteins) evolved to provide their hosts with a com-
petitive advantage (reviewed in refs10,11). Acr proteins 
inhibit or inactivate CRISPR-effector complexes, pre-
venting recognition and degradation of target sequences 
(reviewed in ref.12). Currently, the two CRISPR classes 
are subdivided into six types and more than 30 subtypes 
(reviewed in ref.11), differentiated by their interference 
module composition and nucleic acid target specificity 
(Fig. 2). For class I (types I, III and IV) and RNA-targeting 
class II (type VI) interference complexes, we refer the 
reader to recent reviews13–16.
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Advances in both biochemical and imaging meth-
ods have accelerated structural studies of Cas proteins 
and CRISPR–Cas complexes. In this Review, we focus 
on the mechanisms of CRISPR–Cas adaptive immunity, 
the diversity of DNA-targeting enzymes and emerging 
systems including CRISPR transposases that are advanc-
ing in part due to structural investigations. We discuss 
the process by which CRISPR–Cas systems provide 
adaptive immunity in microorganisms by capturing and 
integrating foreign DNA into CRISPR sequence arrays. 
We then turn to the mechanisms of genome surveillance 
and RNA-guided DNA targeting that lie at the heart of 
both bacterial adaptive immunity and genome editing 
applications. Finally, we explore the structural biology 
and functional implications of CRISPR transposases, 
whose biological activities and technological potential 
remain to be fully explored. Overall, the research dis-
cussed here represents the extraordinary pace of discov-
ery and development that underscores the progression of 
genome editing as a transformative toolbox for targeted 
genetic manipulation.

Origins and mechanisms of CRISPR spacer 
capture
Origins and evolution of the CRISPR integrase. The 
emergence of the CRISPR adaptation module was a 
key event in the origins of prokaryotic adaptive immu-
nity, enabling bacteria and archaea to record previ-
ous infections in the form of short foreign sequences 
inserted as spacers in host cell CRISPR arrays (Fig. 1). 
Phylogenetic studies suggest that the CRISPR adapta-
tion module evolved from ancestral casposons, a novel 
class of DNA transposons that encode a Cas1 homo-
logue, the caposase, as the transposase17. The remark-
able parallels in structure and function between the 
casposase and CRISPR integrase provide insight into 
the elements necessary for the emergence of CRISPR 
adaptation (Fig. 3a). Cas1 and Methanosarcina mazei 
casposase share a canonical two-domain architecture 
with an eight-stranded amino-terminal domain and a 
carboxy-terminal (C-terminal) domain containing the 
conserved active site residues E-H-E18. The structure 
of the casposase dimer bound to the integration tar-
get and the single-stranded DNA (ssDNA) casposon 
ends resembles that of the Cas1 dimer bound to the 
CRISPR repeat and 3′ overhangs of the protospacer19–22. 
Interestingly, the casposase contains an additional 
C-terminal helix–turn–helix domain, although it is 

unclear what role it plays in integration. The structural 
resemblance between the casposase and Cas1 translates 
to many functional similarities. The M. mazei caspo-
sase’s unique ability among transposases to integrate a 
variety of non-sequence-specific substrates provides the 
groundwork for the emergence of an adaptive immune 
system that needs to acquire diverse sequences to main-
tain a genetic record of prior infections18. Upon inte-
gration, the casposase generates 14–15-bp target site 
duplications23,24, similarly to how the CRISPR integrase 
generates 25–50-bp CRISPR repeat duplications25–28. 
Strikingly, the casposase’s mode of target recognition 
also parallels that of the CRISPR integrase. Unlike 
other DNA transposons that insert DNA into random 
locations23, the casposase inserts substrates into a pre-
ferred target site18,24, which is a key characteristic of the 
CRISPR integrase29,30. For the M. mazei casposase, a con-
served target motif within the target site duplications and 
a sequence motif 12–17 bp upstream of the target site 
duplication are crucial for directing integration18. This is 
analogous to CRISPR spacer acquisition, which depends 
on both a specific repeat sequence and sequence motifs 
within the upstream leader25,29,30. These similarities give 
insight into the origins of many key elements of CRISPR 
adaptation.

The casposase structure also provides clues as to how 
the Cas1 integrase evolved to accommodate Cas2, a key 
subunit in most CRISPR integrases, as well as other bind-
ing partners involved in CRISPR adaptation19,21,31 (Fig. 3a; 
Supplementary Table 1). The casposase forms a tetramer 
for integration, composed of two dimers holding the tar-
get site between them18. Although the casposase is struc-
turally impeded from simultaneous tetramerization and 
binding to Cas2, similarities between the relevant inter-
face of the casposase dimer and the Cas2-interacting 
interface of Cas1 suggest that surface mutations could 
allow the casposase dimer to bind to a Cas2 protomer. 
Introduction of a bridging Cas2 would maintain the ori-
entation of the catalytic monomers towards each other 
and provide an extended binding surface for short DNA 
integration substrates. In addition to Cas2, the caspo-
sase also has interfaces that could accommodate bind-
ing to the CRISPR adaptation proteins Csn2 and Cas4, 
which assist Cas1–Cas2 in spacer acquisition in certain 
systems and are discussed in greater detail in later sec-
tions of this Review32. The relevant binding interface 
with the auxiliary protein Csn2 is the eight-stranded 
amino-terminal domain, which is remarkably similar 
in the Cas1 and casposase structures18,33. At the dimer 
level, the casposase also appears able to accommodate 
interactions with a Cas4 nuclease and even has a con-
served asparagine residue that is important for Cas4 
binding18,34. However, interestingly, in both the caspo-
sase and CRISPR Cas4–Cas1–Cas2 integrase structures, 
the relevant interface for Cas4 binding overlaps with the 
interface involved in integration target binding. Further 
work is required to elucidate when Cas1 acquired these 
binding partners in its evolution from the casposase into 
a functional CRISPR integrase.

Phylogenetic analyses imply the existence of an 
ancestral CRISPR integrase composed of only Cas1 
before the adoption of Cas2 (refs5,35). This Cas1 integrase 
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appears to mark the emergence of a precise ruler mecha-
nism characteristic of all CRISPR integrases that defines 
the length of integration substrates (Fig. 3). In a Cas1 
phylogenetic tree from a recent review, the subtype V-C 
and V-D Cas1 genes along with solo Cas1 genes form 
a branch rooted near the ancestral casposon branch36. 
These systems lack Cas2 entirely and have unusually 
short spacers (17–20 bp) and repeats (25 bp) compared 
with other CRISPR–Cas systems. Like the casposase, the 
subtype V-C Cas1 also forms a tetramer for integration37; 
however, whereas the casposase has a wide tolerance for 

different substrate lengths18, the subtype V-C integrase  
has a precise ruler mechanism that favours short 
integration substrates. More structural characteriza-
tion is required to determine the evolutionary path 
from the casposase to a functional CRISPR integrase  
and the emergence of the ruler mechanism. Interestingly,  
compared with the casposase, the subtype V-C Cas1 
integrase shows greater promiscuity for the integration 
site. Across different CRISPR–Cas systems, CRISPR 
integrases display differing levels of intrinsic specificity 
for the integration site, and some rely on host factors 
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Fig. 1 | CRISPR–Cas systems provide bacteria and archaea with adaptive immunity. The three stages of CRISPR 
immunity: adaptation, CRISPR RNA (crRNA) biogenesis and interference. In adaptation, Cas1–Cas2 (Protein Data Bank 
(PDB) ID 5DS4)20 inserts protospacers, derived from foreign genetic elements, into the CRISPR array as new spacers 
(represented as differently coloured rectangles) that are separated by CRISPR repeats (represented as blue diamonds). 
During crRNA biogenesis, the CRISPR array is transcribed into pre-crRNA, which is processed into mature crRNAs that 
each have a single spacer. The crRNA (or in some cases, the dual crRNA–trans-activating crRNA (tracrRNA)) assembles with 
the effector protein or complex to form a surveillance complex that recognizes and degrades foreign genetic elements 
complementary to the crRNA spacer during interference. Class 1 systems have multisubunit effector complexes, whereas 
class 2 systems have single-subunit effector proteins. Target cleavage by the class 1 type I Cascade–Cas3 effector complex 
(left), the class 2 type II Cas9 effector (centre) and the class 2 type V Cas12a effector (right) is depicted schematically, and 
representative structures of the effector complexes are shown beneath: Cascade–Cas3 bound to crRNA and target DNA 
(PDB ID 6C66)181; Cas9 bound to guide RNA (composed of crRNA and tracrRNA) and target DNA (PDB ID 4UN3)91; and 
Cas12a bound to crRNA and target DNA (PDB ID 5NFV)124. Nucleic acids in the structures are colour-coded: DNA, brown; 
RNA, black. PAM, protospacer adjacent motif.
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such as the integration host factor to guide them to the 
correct site (reviewed in ref.32). For systems that rely on 
integration host factor, the phase of the integration host 
factor binding motifs appears to be crucial to integra-
tion efficiency, as uncovered by a recent study examining 
the diversity and evolution of different CRISPR leader 
sequences38. It is unclear what host factors the subtype 
V-C Cas1 integrase may require for specific integration. 
Further investigation could shine light on the evolution 
of the mechanisms by which CRISPR–Cas systems iden-
tify the preferred integration site and coevolution of the 
adaptation module with their supporting host factors.

A key event in the evolution of the CRISPR integrase 
is the acquisition of Cas2, transforming the tetrameric 
structure of the casposase and subtype V-C Cas1 into 
the canonical heterohexameric Cas1–Cas2 complex 
observed in most CRISPR–Cas systems (Supplementary 
Table 1). On the basis of comparative sequence studies, 
the CRISPR adaptation module most likely adopted 
Cas2 from toxin–antitoxin (TA) modules3,39 (Fig. 3a). 
Structural comparisons with the functional TA mod-
ule of Haemophilus influenzae VapXD provide further 
insight into the evolutionary connection between TA 
systems and CRISPR adaptation40. The protein VapD is 
structurally related to Cas2: both form homodimers with 
a core ferredoxin fold and share conserved structural ele-
ments, including a similar nuclease active site, although 
Cas2 nuclease activity does not appear to be required 
for CRISPR acquisition31,41,42. Further work is required to  
understand VapD’s mode of action in contributing  
to pathogenicity in the TA module and whether and how 
it is relevant to Cas2’s role in CRISPR–Cas systems. The 
main structural differences between VapD and Cas2 
occur in regions involved in interactions with the VapX 
antitoxin and Cas1 (ref.40). VapD has two additional 
helices involved in VapX antitoxin binding, which, on 
the basis of alignments with the Cas1–Cas2 structure 

bound to protospacer DNA, would sterically occlude 
protospacer binding19–22,40. Cas2, on the other hand, has 
an additional β-hairpin at the C terminus responsible for 
Cas1 interaction. These architectural differences hint at 
the loss of VapX as a binding partner and the adoption 
of Cas1 as a new binding partner in the transforma-
tion of VapD from a toxin in a TA system to a crucial 
component of the CRISPR adaptation module. There is 
a potential evolutionary advantage for the adoption of 
Cas2 as a structural unit in the integrase structure, which 
could provide increased stability and would lengthen the 
internal ruler to enable integration of longer sequences, 
offering greater targeting specificity of the crRNA for 
downstream CRISPR immunity processes37. However, 
the loss of the VapX antitoxin as a binding partner could 
have toxic effects, which the bacteria would need to 
account for to recruit VapD into the CRISPR integrase.

Recruitment of reverse transcriptases for RNA spacer 
acquisition. In the evolution of CRISPR spacer capture, 
some acquisition modules apparently recruited reverse 
transcriptases (RTs) from group II introns, enabling 
these systems to acquire spacers from RNA in addition 
to DNA43–45 (Fig. 3). In several of these systems, the RT 
is fused with either Cas1 or the Cas6 maturase, enabling 
coordinated integration and crRNA generation46,47 
(Fig. 3b). The Marinomonas mediterranea Cas6–RT–
Cas1–Cas2 integrase has been shown to carry out pre-
cise ligation of short ssRNA substrates into the CRISPR 
array in vitro and to conduct target primed reverse 
transcription using the free 3′ DNA end generated after 
RNA ligation43. Interestingly, for these fusions, the Cas6 
domain is required for RNA spacer acquisition, and 
analysis of RT-containing systems suggests coevolution 
of the Cas6 and RT domains46. The recently charac-
terized Thiomicrospira Cas6–RT–Cas1–Cas2 complex 
shows structural interactions between the Cas1–Cas2 

cas1 cas2RT

cas1 cas2cas4

cas1 cas2

Type III

Type I

Type IV

Type V

Type II

Type VI

cas1 cas2cas4

cas1 cas2cas4

cas1 cas2

Adaptation crRNA biogenesis and interference

csn2

cas6

cas6

cas6

cas7

cas9

cas12

cas13

cas3cas8cas11cas5

cas5 cas10

cas7
(csf1)

cas11cas5

Class 1

Class 2

cas7 cas11

Nucleic acid
target specificity

DNA

DNA and RNA

RNA

DNA

DNA

dinG 
or cysH

cas8
DNA

CRISPR

Fig. 2 | Modular organization of CRISPR–Cas systems. CRISPR–Cas systems are classified into two classes and six types. 
The functional modules involved in adaptation and CRISPR RNA (crRNA) biogenesis and interference for each type are 
illustrated, and the nucleic acid target specificity is indicated. Genes present in only some subtypes are marked by dashed 
outlines. RT, reverse transcriptase.

www.nature.com/nrmicro

R e v i e w s

644 | November 2022 | volume 20	



0123456789();: 

integrase, the RT and the Cas6 maturase, enabling func-
tional crosstalk between the three active sites47 (Fig. 3a). 
A connecting α-helix links the RT and Cas1 active sites, 
and serves as a potential regulator of the two activities. 
Although much of the RT domain aligns closely to the 
group II intron RT structure48, its palm region con-
taining the catalytic centre appears to be in an inactive 
conformation47. The distinct RT conformation and the 
occluded Cas1 active site hint at larger conformational 
changes that may coordinate the different enzymatic 
activities of the complex. Further structural character-
ization is required to understand how the RT and Cas1 
achieve CRISPR sequence integration from RNA sub-
strates as well as Cas6’s role in this process. How the RNA 
substrate is reverse transcribed, whether ssRNA ligation 
represents an actual intermediate step in vivo and how 
this intermediate is resolved into a full-site integration 
product are questions that remain to be addressed. It is 
also not known whether RNA spacer acquisition confers 
immunity against RNA bacteriophages and other foreign 
RNA elements.

CRISPR integration substrate biogenesis, selection,  
processing and orientation. Whereas the CRISPR proto
spacer integration mechanism has been well character-
ized biochemically and structurally32,49 (Supplementary  
Table 1), the processes upstream of integration, includ-
ing substrate biogenesis and orientation, are less well 
understood. In the current model for spacer acquisition, 
RecBCD or AddAB generates DNA degradation prod-
ucts from foreign genetic material that are the precur-
sors for CRISPR integration50,51. The molecular details of 
CRISPR substrate biogenesis remain unknown, although 
recent studies have elucidated how substrate precursors 
are selected, processed to the correct length and inte-
grated in the correct orientation with respect to the 
PAM position to yield functional crRNA generation for 
downstream CRISPR–Cas immunity processes19,34,52–56.

Cas1–Cas2 binds to suitable precursor DNA sub-
strates, which are then processed into mature integration- 
competent molecules. The Escherichia coli Cas1–Cas2, 
which has a PAM-binding pocket formed by the groove 
of the C-terminal domain of the catalytic Cas1a and 
the C-terminal tail of the non-catalytic Cas1b, prefer-
entially selects partially duplexed DNA substrates with 
long 3′ single-stranded overhangs that contain a PAM 
sequence in the correct location flanking the eventually 
integrated spacer19,52 (Fig. 4a,b). Cas1–Cas2 has exquisite 
control over the length of the duplex region: the E. coli 
integrase caps the ends of a 23-bp duplex with tyrosine 
residues19,20. This capping is similarly observed in other 
Cas1–Cas2 complexes, such as the Enterococcus faecalis 
and Synechocystis sp. PCC6803 Cas1–Cas2, which use 
histidine and aspartate residues, respectively, to cap a 
22-bp duplex21,57. The 3′ single-stranded overhangs 
are threaded into the Cas1 active site channels19–21. 
Cas1–Cas2 likely predetermines the length of the even-
tual spacer by protecting the correctly sized region of the 
substrate from being processed. In certain systems, Cas2 
is naturally fused to a DnaQ-like exonuclease domain, 
which processes long 3′ overhangs of precursor prespac-
ers to the correct length for integration58. For the E. coli 

system, which lacks such a natural fusion, DnaQ exonu-
cleases, including DNA polymerase III and ExoT, have 
been shown to catalyse DNA substrate processing when 
provided in concert with Cas1–Cas2 (refs52,53). Further 
structural characterization is required to understand 
the molecular details of the interaction between these 
processing enzymes and the Cas1–Cas2 integrase.

In certain type I, type II and type V CRISPR–Cas sys-
tems, the Cas4 nuclease works together with Cas1–Cas2 
for spacer acquisition and assists in PAM selection and 
substrate maturation34,54,55,59. In these systems, Cas4, 
rather than Cas1, contains the PAM-binding pocket 
that sequesters the PAM-containing 3′ overhang34 
(Fig. 4a,b). For the Geobacter sulfurreducens system, 
only the presence of a short DNA molecule contain-
ing a PAM triggers assembly of a functional integrase 
complex consisting of the natural Cas4–Cas1 fusion 
and its associated Cas2, suggesting that Cas4 acts as a 
gatekeeper in selecting suitable substrate precursors. 
Cas4 further functions as an endonuclease that cataly-
ses precise cleavage of PAM sequences before the sub-
strate becomes fully integrated55,59. This step is crucial 
for preventing self-targeting of newly acquired CRISPR 
spacer sequences to the host cell CRISPR array when the 
immune system is active.

For both the E. coli Cas1–Cas2 and various 
Cas4–Cas1–Cas2 integrases, PAM binding establishes 
the directionality of integration. Sequestration of the 
PAM prevents its trimming by processing nucleases 
and temporarily blocks that side of the substrate from 
integration (Fig. 4a). Meanwhile, the non-PAM 3′ side of 
the DNA is trimmed efficiently and freed for integration 
into the leader-proximal end of the repeat, the preferred 
first integration site for both systems34,52. In the E. coli 
system, half-site integration enables further trimming of 
the PAM52, although it is unclear whether this is done 
by processing enzymes or by Cas1. In the recently char-
acterized G. sulfurreducens system, half-site integration 
activates Cas4 to cleave the PAM34. The structure of  
G. sulfurreducens Cas4–Cas1–Cas2 suggests that a sub-
optimally placed catalytic lysine residue in the conserved 
D-E-K motif in the Cas4 active site initially inhibits PAM 
cleavage, and a conformational change resulting from 
half-site integration can reposition the lysine to activate 
endonucleolytic PAM cleavage (Fig. 4c). In both E. coli and 
G. sulfurreducens, PAM processing frees that DNA strand 
for full integration of the prespacer. These studies show 
that conformational dynamics of PAM sequestration 
and delayed trimming is a recurring theme in the tightly 
regulated stepwise processing and directional integra-
tion of prespacers. Whether systems that lack PAMs 
coordinate spacer orientation remains to be determined.

In subtype II-A CRISPR–Cas systems, including 
those found in Streptococcus pyogenes and Streptococcus 
thermophilus, which do not encode Cas4, Cas9 is respon-
sible for PAM recognition for spacer acquisition60,61.  
In these systems, all the genes encoded in the CRISPR 
locus (tracrRNA, cas9, cas1, cas2 and csn2) are required 
for spacer acquisition60. Although Cas9’s PAM-binding 
motif is not necessary to acquire new spacers, it is 
required to select functional PAM-adjacent spacers that 
would provide immunity60. Cas9’s HNH domain appears 

NATure RevIewS | MICRobIology

R e v i e w s

	  volume 20 | November 2022 | 645



0123456789();: 

Mg2+

Cas1b

Cas1b

Cas1a Cas1a

Cas6

Cas6

RT

RT

Spacer

Spacer

Spacer

Leader

Protospacer
Protospacer

Protospacer

90° 

cas1
Casposase

Casposon

TIRTIR polB

Adaptation modules Type or subtype

Cas1 mini-integrase

Cas1–Cas2 integrase

Association with
prespacer processing
enzymes

Association
with RTs

Association with
CRISPR interference
proteins

I, II, V

I-E

I, II, III, V, VI

V-C/D

III, VI

I-F

II

TA module

cas1RT cas2

RT

vapD

DNA primer
dATP

cas1 cas2

cas1 cas2RT

cas1 cas2RT

cas1cas6 cas2

cas1cas4 cas2

cas1cas4 cas2

RT

DEDDhcas2cas1

cas3cas2cas1

cas1 cas2 csn2cas9

cas1

CRISPR adaptation module

Group II intron

Endonuclease

V-C/D CRISPR
Cas1 mini-integrase

Casposase
VapXD TA complex

Cas6–RT–Cas1–Cas2 CRISPR integrase

Group II intron RT

Cas1–Cas2 CRISPR integrase

RNA template

~18 bp

~33 bp

Antitoxin Toxin

VapDVapD

Cas2

Cas2

Cas2 Cas2

Cas2

Cas2

Cas1a

Cas1b Cas1b

Cas1a

CRISPR repeat
(25 bp)

CRISPR repeat

Cas1b

Cas1b

Cas1a

Cas1a

Leader

CRISPR repeat (28 bp)Cas1b Cas1b

Cas1a
Cas1a

VapX
Casposon ends

dsDNA target (14 bp)

Cas1b

Cas1b Cas1a

Cas1b

a

b

Cas1b

www.nature.com/nrmicro

R e v i e w s

646 | November 2022 | volume 20	



0123456789();: 

to have exonuclease activity independent of a guide RNA 
sequence that can trim DNA precursors to the correct 
size for integration62. Other host nucleases can also 
carry out this function since Cas9’s nuclease activity is 
not required for spacer acquisition in vivo60. Cas9 has 
been shown to form a complex with Cas1–Cas2 and 
the auxiliary protein Csn2 (refs33,60,62); however, further 
structural characterization is necessary to establish how 
these domains coordinate DNA substrate selection and 
integration.

In addition to naive adaptation, resulting from 
infection of previously unencountered bacteriophages 
or viruses, some CRISPR–Cas systems have evolved 
another pathway for spacer acquisition, known as 
primed adaptation, to efficiently adapt to previously 
encountered invading DNA that has acquired escape 
mutations. The current understanding of primed adap-
tation was reviewed recently49. In type I systems, this 
involves the formation of a primed acquisition complex,  
consisting of Cas1–Cas2, Cascade and Cas3, that trans
locates along DNA and hands over Cas3 cleavage products  
to Cas1–Cas2 for integration26,56,63,64. Although fluores-
cence and chromatin immunoprecipitation experiments 
have provided insight into the molecular mechanisms of 
type I priming56,64,65, the nature of Cascade’s conforma-
tional changes during priming, primed acquisition com-
plex assembly and substrate handover from Cas3 to the 
Cas1–Cas2 integrase is not yet known. In type II systems, 
priming is directly correlated with target cleavage by 
Cas9 (refs66,67). Structural and single-molecule data will 
also be required to understand substrate handover from 
Cas9 to the integrase in type II priming and whether 
it involves the Cas9–Csn2–Cas1–Cas2 supercomplex33.

The distinctions between these CRISPR sequence 
integration systems demonstrate that CRISPR adapta-
tion has evolved diverse mechanisms for PAM recog-
nition and DNA substrate generation. This knowledge 
may help to advance the development of CRISPR 
adaptation-based molecular recording tools, which 
have been used for in vivo data storage in bacteria68–71. 
A greater understanding of the elements required for 
integration substrate selection and processing may  
be the key to increasing the efficiency of these tools 
and expanding their use in other microorganisms and 

mammalian cells to study horizontal gene transfer 
and lineage tracing.

DNA-targeting class 2 systems
The DNA-targeting class 2 CRISPR–Cas9 system 
provided the first Cas effector that was harnessed for 
precision genome editing. Class 2 enzymes, includ-
ing Cas9 (refs72–78) and Cas12 (refs79–83), are now used 
extensively for genome engineering across a wide 
range of species and have been co-opted as program-
mable DNA-targeting modules for biotechnological 
applications2,84.

Cas9 and Cas12 rely on similar principles to recog-
nize and cut DNA at an RNA-guide complementary 
DNA sequence (reviewed in refs85,86) (Fig. 5a). These 
ribonucleoprotein (RNP) effectors become nuclease 
active only upon recognition of a cognate target DNA 
sequence. To identify the target, the RNP recognizes the 
PAM to initiate an ATP-independent DNA unwinding 
process that allows pairing of the target DNA strand (TS) 
to the RNA guide (reviewed in ref.8). During the RNA–
DNA hybridization process, the ‘non-target’ DNA strand 
(NTS) is unpaired from the TS, and the Mg2+-dependent 
endonuclease cuts both DNA strands individually, using 
either two separate active sites (HNH and RuvC in Cas9) 
or a single active site (RuvC in Cas12).

DNA-targeting mechanism of Cas9. Type II CRISPR 
Cas9 proteins are multidomain enzymes that range in 
size from 700 amino acids (subtype II-D) to more than 
1,700 amino acids (subtype II-C)11,87. The functional 
RNP comprises Cas9 complexed with a dual-guide 
RNA formed by the crRNA hybridized to a tracrRNA 
scaffold or bound to an engineered single-guide RNA 
fusion of crRNA and tracrRNA72 (Fig. 5b). Cas9’s archi-
tecture resembles a bilobed structure composed of a 
crRNA–TS duplex recognition lobe (Rec lobe) and 
nuclease lobe (Nuc lobe)88,89, which rearrange themselves 
relative to each other for target binding and cutting85. 
The lobes are further divided into several subdomains: 
Rec1, Rec2 and Rec3 of the Rec lobe; and RuvC, HNH 
and wedge–PAM-interacting domains of the Nuc lobe 
(Supplementary Table 2). In the absence of a guide RNA, 
apo-Cas9 resides in an open conformation that transi-
tions into a closed conformation upon guide recruit-
ment, which stabilizes the flexible PAM-interacting 
domain for PAM identification88–91 (Fig. 5b). Upon target 
DNA binding, the RuvC and HNH nuclease domains 
shift their relative conformations in concert with the 
Rec lobe to enable nuclease activation92–98, producing a 
blunt-ended DNA cut72 (Fig. 5b).

Whereas nuclease activation and cutting have been 
studied in great detail93–95,99–104, the process by which Cas9 
interrogates each candidate sequence to identify a cog-
nate target sequence has only recently been addressed. 
To locate candidate targets for sequence interrogation, 
Cas9 identifies PAM sequences during facilitated 1D 
diffusion along DNA or by random 3D collision105,106. 
Disulfide crosslinking of an N4-cystamine-modified 
DNA to a cysteine-functionalized S. pyogenes Cas9 
(T1337C) allowed trapping of the transient interrogation 
state and revealed the mechanism by which Cas9 ‘reads’ 

Fig. 3 | Evolution and diversity of the CRISPR integrase architecture. a | Contributions 
of casposons, toxin–antitoxin (TA) modules and group II introns to the origins and 
evolution of the CRISPR adaptation module, and depiction of homologous structures. 
Casposase bound to integration product mimic (Protein Data Bank (PDB) ID 6OPM)18. 
DNA substrate is colour-coded: double-stranded DNA (dsDNA) target, dark blue; 
casposon ends, brown (top left). VapXD TA complex (PDB ID 6ZN8)40 (top right). Subtype 
V-C or V-D CRISPR Cas1 mini-integrase cartoon (middle left), Cas1–Cas2 CRISPR 
integrase bound to full-site integration product mimic (PDB ID 5VVK)22 (middle right) and 
Cas6–reverse transcriptase (RT)–Cas1–Cas2 CRISPR integrase (PDB ID 7KFU)47 (bottom).  
Two of the four Cas6–RT domains are missing. DNA substrates are colour-coded: leader, 
red; CRISPR repeat, dark blue; spacer, yellow; protospacer, brown. Structure of group II 
intron RT bound to RNA template–DNA primer and deoxyadenosine triphosphate  
(dATP) (PDB ID 6AR3)48 (bottom left). Nucleic acids are colour-coded: RNA, lavender; 
DNA brown. Protein structures are coloured by domain: catalytic Cas1a monomer, dark 
green; non-catalytic Cas1b monomer, light green; Cas2/VapD, light yellow; VapX, grey; 
Cas6, light blue; RT, magenta. Protospacer lengths are indicated for the subtype V-C/D 
Cas1 integrase and Cas1–Cas2 integrase. b | Diversity of domain organizations of CRISPR 
adaptation module. TIR, terminal inverted repeat sequence.
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DNA107 (Fig. 5c). Surprisingly, the cryogenic electron 
microscopy-based study revealed that the RNP associ-
ates with the PAM in an open bilobed conformation107, 
previously only observed in the apo state88 (Fig. 5b,c). 
To flip the PAM-adjacent bases for DNA interrogation, 
Cas9 bends and twists the DNA to locally melt the 

dsDNA, accompanied by a conformational shift of the 
bilobed structure to a closed conformation107 (Fig. 5c). 
Following initial DNA melting, the TS is gradually paired 
to the guide108, producing a ‘linear’ crRNA–DNA hybrid 
intermediate that transits to a ‘kinked’ duplex confor-
mation upon complete target binding96,97. The kinked 
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conformation in turn facilitates docking of the HNH 
domain to the crRNA–TS hybrid as observed in recent 
structures, further permitting NTS binding within the 
RuvC for DNA cutting94,95,97,98. In the presence of exten-
sive crRNA–TS mismatches, the kinked conformation 
cannot be assumed, thus resulting in inhibition of 
off-target DNA cutting97. Although the structure-guided 
design of high-fidelity Cas9 variants has yielded more 
accurate genome editing enzymes97,99,109,110, alteration of 
the electrostatics governing the speed of DNA–protein 
and interdomain interactions of Cas9 during the early 
interrogation stage might enable the engineering of 
faster genome editing tools.

DNA-targeting mechanism of Cas12. Type V CRISPR 
Cas12 proteins are multidomain enzymes that range in 
size from 400–800 amino acids (subtype V-F; Cas14) 
up to 1,100–1,500 amino acids (subtype V-B; Cas12b). 
In contrast to Cas9, Cas12 proteins are highly diverse 
and are classified into more than ten subtypes (subtypes 
V-A to V-K, and several of subtype V-U)11, which dif-
fer in their RNP biogenesis pathways, RNP composi-
tion and in some instances in their nucleic acid target 
preference (Supplementary Table 3). Functional RNPs 
comprise a Cas12 protein either bound to one crRNA 
guide (for example, subtypes V-A79,111,112 and V-J83,113,114) 
or bound to a crRNA and tracrRNA hybrid (for example,  
subtypes V-B5,115 and V-E35,81,116) or a crRNA and 
short-complementarity untranslated RNA (scoutRNA) 
hybrid in subtype V-C or V-D5,117–119. In some cases, 

these enzymes form homodimeric complexes on a 
crRNA and tracrRNA scaffold (subtype V-F)120,121. The 
structural and functional diversity of Cas12 enzymes has 
defied a simple naming system (Supplementary Table 3).

In general, Cas12 protein architectures possess a 
Cas9-analogous bilobed architecture111 (Fig. 6a), composed 
of Rec and Nuc lobes that are characteristic of even the 
most compact Cas12 effectors, such as Cas14 (also known 
as Cas12f; subtype V-F)121,122, Cas12g (subtype V-G)123 
and CasΦ (also known as Cas12j; subtype V-J)113 (Fig. 6a). 
Structural studies of diverse Cas12 proteins revealed sim-
ilarities beyond the bilobed architecture (Supplementary 
Table 3). In particular, a crRNA oligonucleotide-binding 
domain and the RuvC domain form a flexible platform 
from which the Rec lobe domains (Rec1 and Rec2) and 
DNA-loading ‘nuclease’ (Nuc) or zinc-ribbon domains 
emanate (Fig. 6b). In addition to this general architecture, 
other small domains are sometimes fused or inserted to 
aid in PAM identification (PAM-interacting domain) 
and NTS binding (NTS-binding domain) or to guide 
recruitment via a zinc-finger (zinc-finger domain) 
(Supplementary Table 3).

Following from their shared architecture, Cas12 
proteins use similar mechanisms to bind and cut 
DNA as exemplified by Cas12a. In the absence of a 
guide RNA, Cas12a assumes a flexible ‘open’ confor-
mation112, which upon crRNA binding transitions to 
a ‘closed’ conformation111,112,124 that is poised for PAM 
recognition124,125. In the closed conformation, the Rec 
domains structurally occlude the RuvC active site 
for nuclease repression112,124. Upon PAM-dependent 
unwinding of a dsDNA target and hybridization of the 
TS to the crRNA, the Rec domains rearrange themselves 
to accommodate the heteroduplex124,126 (Fig. 6b). This 
rearrangement coincides with opening and activation 
of the RuvC active site to sequentially cleave first the 
single-stranded NTS and then the TS124,127,128, produc-
ing a 5′-overhang staggered cut79. However, whether the 
sequential cutting mechanism applies to other type V 
enzymes remains to be demonstrated. Recent structural 
data revealed the ssDNA substrate bound to two mag-
nesium cofactors within the RuvC active site of Cas12i 
and CasΦ/Cas12j, detailing the two metal ion catalysis 
mechanism of Cas12 enzymes113,129. After cis DNA cut-
ting, the RuvC domain remains activated for nonspecific 
ssDNA ‘shredding’ in trans130,131.

Structural information on the DNA interro
gation process is not yet available, but opening of the 
duplex downstream of the PAM might involve DNA 
bending132. This mechanism is supported by the obser-
vation that distorted DNA may expose ssDNA seg-
ments, which could be recognized by Cas12 (ref.133). 
Analogously to Cas9, 1D diffusion along DNA may aid 
in PAM localization beyond 3D collision134. Notably, the 
PAM-interacting domain is often found associated with 
the unwound DNA, and might therefore be involved in 
DNA unwinding. However, whether these domains and 
other adjacent elements actively assist in DNA unwind-
ing, or only associate with the unwound DNA for stabi-
lization, is not clear. Producing a solid understanding 
of the DNA interrogation mechanism will be crucial to 
further develop Cas12-based genome editing tools.

Fig. 4 | Mechanisms of CRISPR prespacer biogenesis and orientation. a | Prespacer 
processing and directional integration by Escherichia coli Cas1–Cas2 and Cas4-assisted 
CRISPR adaptation systems. In the schematic cartoons, the DNA prespacer (brown) is 
bound to Cas1–Cas2 (green) and the 3′ ends are trimmed by exonucleases (grey). 
The protospacer adjacent motif (PAM; shown in brown boxes) for each system is initially 
protected from trimming, and the non-PAM 3′ end is integrated into the leader side  
of the CRISPR array (leader, red; repeat, dark blue; spacer, yellow). PAM processing  
is performed by exonucleases or Cas1 in the E. coli system and by Cas4 (pink) in 
Cas4-assisted acquisition, and the processing sites are indicated by arrowheads. After 
PAM processing, the 3′ end is freed for spacer-side integration. The associated structures 
of E. coli Cas1–Cas2 (left) and Geobacter sulfurreducens Cas4–Cas1–Cas2 (right) at 
different stages of spacer acquisition are shown next to the cartoons. E. coli Cas1–Cas2 
structures from top to bottom: Cas1–Cas2 bound to dual-PAM prespacer DNA (Protein 
Data Bank (PDB) ID 5DQZ)19; Cas1–Cas2 bound to half-site integration product mimic 
(PDB ID 5VVJ)22; Cas1–Cas2 bound to full-site integration product mimic (PDB ID 5VVK)22. 
As a point of clarification, the first E. coli structure uses a dual-PAM prespacer DNA  
as a substrate. It is expected that the natural substrate in cells only has a single PAM, 
shown in the cartoon model. If the cell does encounter a dual-PAM prespacer DNA, it is 
unclear how PAM protection on both sides affects PAM processing and integration. 
G. sulfurreducens Cas4–Cas1–Cas2 structures from top to bottom: Cas4–Cas1–Cas2 
bound to single-PAM prespacer DNA (PDB ID 7MI5)34; Cas4–Cas1–Cas2 bound to half-site 
integration product mimic with Cas4 still engaged in PAM recognition (PDB ID 7MIB)34; 
Cas4–Cas1–Cas2 bound to full-site integration product mimic (PDB ID 7MI9)34. In the  
top two G. sulfurreducens Cas4–Cas1–Cas2 structures, the three non-PAM-interacting 
Cas4 proteins are missing. In the Cas4–Cas1–Cas2 bound to the full-site integration 
product mimic structure, all four Cas4 proteins are missing. b | Close-up of Cas1 PAM 
interaction (left) in E. coli Cas1–Cas2 (PDB ID 5DQZ)19 and Cas4 PAM interaction (right)  
in G. sulfurreducens Cas4–Cas1–Cas2 (PDB ID 7MI4)34. PAM-interacting residues and 
sequence-specific hydrogen-bonding interactions are depicted. The arrow depicts the 
PAM-processing cleavage site. c | Close-up of Cas4 active site, with the arrow depicting 
the PAM-processing cleavage site. In the integrase structures, Cas4 is shown in pink,  
and the other domains follow the colour coding from Fig. 3. The DNA substrates are 
colour-coded: leader, red; repeat, dark blue; spacer, yellow; prespacer, brown.
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A potential role of Cas9/Cas12-ancestral proteins 
in transposon homing. Cas9 and Cas12 are believed 
to have evolved from insertion sequence IS200/
IS605 transposon-associated nucleases of unknown 
functionality135,136. Recent bioinformatic analysis and 
experimental data show that the Cas9-ancestral IscB 
and the distantly related Cas12-ancestral TnpB nucle-
ases are mechanistically akin to Cas9 and Cas12, 
respectively87,137. Similarly to the CRISPR-associated 
Cas proteins, IscB and TnpB both use a guide RNA to 
bind and cleave guide-complementary DNA in a tar-
get adjacent motif-dependent manner87,137. Rfam (RNA 
families database) searches to identify potential homo-
logues of the IscB-associated guide suggested that the 

RNA-guide structure partially matches that of HEARO 
RNA87, a non-coding RNA that was identified bioinfor-
matically to be an HNH endonuclease-associated RNA 
and open reading frame138. Notably, HNH endonu-
cleases are sometimes used by transposons as homing 
endonucleases139,140. On the basis of the RNA-guided 
DNA cleavage activity of TnpB, which might guide 
TnpB to the site of previously excised IS200/IS605 ele-
ments, a process analogous to group I intron homing 
was hypothesized137. Whether TnpB and potentially 
IscB indeed perform RNA-guided transposon homing 
remains to be demonstrated.

Studies of IscB and TnpB further demonstrated 
that these RNA-guided nucleases can induce genome 
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editing in eukaryotic cells, although with markedly low 
efficacy87,137. Structural and biochemical studies will be 
instrumental in the development of IscB- or TnpB-based 
genome editing tools, and might reveal further similarities 
between IscB and Cas9, as well as TnpB and Cas12.

CRISPR-associated transposons
The CRISPR adaptation and interference modules dis-
cussed in this Review are examples of how bacteria and 
archaea have recruited various MGEs to evolve machin-
ery for adaptive immunity. However, an opposing evo-
lutionary process appears to have enabled Tn7-like 
transposons, on multiple independent occasions, to 
co-opt CRISPR–Cas machinery for transposon mobiliza-
tion in type I, IV and V CRISPR–Cas systems141–145. These 
CRISPR-associated transposons (CASTs) include the core 
transposition machinery, TnsB and TnsC (and sometimes 
TnsA), as well as TniQ (a homologue of E. coli TnsD), 
which is involved in recruiting the transposase to the tar-
get site. Structural data have yielded the first insights into 
the interactions between these transposase complexes and 
CRISPR effectors, and how the crRNA guides the trans-
poson to its complementary target sites for directional 
insertion at a precise distance from the PAM146–152.

Type I CASTs. Type I CAST systems utilize the CRISPR 
effector–crRNA complex to recruit the accompanying 
transposase to the target site to direct RNA-guided 
DNA transposition141 (Fig. 7a). Recent characterizations 
of the Vibrio cholerae TniQ–Cascade–crRNA complex 
have revealed key structural elements involved in this 
functional coupling146–149. The global architecture of 
the V. cholerae subtype I-F3 Cascade is similar to that 
of subtype I-F1 Cascade structures, which have been 
extensively described153,154. However, there are notable 
structural differences that facilitate specific interactions 
between Cascade and TniQ in the V. cholerae system. 
One major difference is the interaction between Cas6 
and Cas7.1, which forms the interface at which TniQ 
binds (Fig. 7b). Whereas the ferredoxin-like domain 
of Cas6 mediates the Cas6–Cas7.1 interaction in the 
canonical Pseudomonas aeruginosa system, the Cas6 
thumb domain provides this contact in V. cholerae, 
freeing Cas6’s ferredoxin-like domain to interact with 
one monomer of the TniQ dimer146–149. Interestingly, a 
similar Cas6 rearrangement was previously observed in 
the minimal subtype I-F2 system155, which is not TniQ 
associated. On the opposing side of the TniQ dimer, 
the second TniQ monomer is recruited to the adjacent 
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Cas7 (refs146–149). Another important contact occurs 
between TniQ and the helical bundle domain of Cas8/5 
(Cas8/5HB domain) (Fig. 7b). The Cas8/5HB domain typ-
ically recruits Cas2–Cas3 for target cleavage in canoni-
cal subtype I-F1 systems153,156; however, notably, the cas3 
genes are absent along with cas1 and cas2 in the type I 
CAST systems141,142,144, suggesting that the Cas8/5HB 
domain has adapted its function for TniQ recruitment. 

The remainder of the Cas8 subunit is responsible for 
PAM recognition and triggering R-loop formation, as 
in canonical Cascade–crRNA complexes21,157. These 
insights indicate key architectural changes necessary to  
co-opt the CRISPR effector from adaptive immunity 
to transposon mobilization. TniQ binding to Cascade–
crRNA sets the stage for the eventual recruitment of 
the rest of the transposase TnsABC for transposon 
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insertion, although further characterization is required 
to understand that interaction and mechanism.

Type V CASTs. Subtype V-K CAST systems represent 
another example where transposons have co-opted 
the CRISPR effector, in this case using a Cas12k with a 
naturally inactivated nuclease domain for RNA-guided 
transposon insertion142,143 (Fig. 7c). Cas12k requires a 
crRNA guide and a tracrRNA for target recognition, and  
is responsible for PAM identification and R-loop for-
mation. Cas12k’s architecture is similar to that of other 
type V Cas12 effectors, although it is missing the canon-
ical RuvC active site D-E-D motif, rendering it incapable 
of target cleavage151,152 (Fig. 7d). Additionally, in contrast 
to other Cas12 effectors, Cas12k is missing a Nuc domain 
and has a longer lid motif in a closed conformation that 
does not change upon target recognition152. The lid 
motif is well conserved and appears to be essential for 
RNA-guided DNA transposition activity, although it is 
unclear what role it plays.

TniQ is also crucial for RNA-guided DNA transposi-
tion in type V CAST systems152. Structural studies on the 
Scytonema hofmanni TniQ and AAA+ regulator protein 
TnsC150 suggest the TniQ–TnsC interaction is important 
in target search and establishing the orientation of trans-
poson insertion with respect to the PAM site (Fig. 7c,e). 
Similarly to MuB from bacteriophage Mu, the adeno-
sine triphosphatase TnsC forms polymeric filaments on 
DNA in the presence of ATP150,158. This unidirectional 
filamentation stops once TnsC encounters TniQ, which 
selectively interacts with the polymerizing face, as shown 
in the TniQ–TnsC complex structure (Fig. 7e). This is 
hypothesized to specify the orientation of transposon 
insertion with respect to the PAM site.

How TniQ–TnsC and Cas12k communicate in 
determining the target site is still unclear. Data from 
immunoprecipitation assays with the S. hofmanni CAST 
system suggest that TniQ does not interact with Cas12k 
directly151, hinting at a distinct role for TniQ in type V 
CAST systems compared with that in type I CAST 
systems. It is thus unclear whether TniQ caps TnsC 
polymerization proximal to or distal to Cas12k150,151 
(Fig.  7c). Notably, the C-terminal subtype I-F3 
Cascade-interacting domain of TniQ is absent in type V- 
associated TniQ homologues, suggesting a divergent 
transposition mechanism that may not rely on direct 
interactions with the CRISPR effector151. Data in micro-
bial systems show that at least one of the type V CAST 
systems has promiscuous DNA integration activity159,160, 
implying some independence from the guide RNA or a 
requirement for additional factors to ensure target site 
specificity. It is hypothesized that Cas12k’s involvement 
in DNA unwinding and R-loop formation may facilitate 
TnsC filament nucleation, which likely helps to recruit 
the transposase TnsB to catalyse DNA transposition151. 
Structural and functional data show that TnsC polym-
erization occurs on DNA that is structurally distorted 
to accommodate the TnsC helical filament and that 
the TnsC–DNA interactions are crucial for DNA 
transposition151. Immunoprecipitation assays suggest 
a direct interaction between TnsC and TnsB, but the 
molecular details remain unknown151. Biochemical data 

show that TnsB triggers disassembly of TnsC filaments 
by stimulating its ATPase activity. According to the 
hypothesized mechanistic model, TnsC filament disas-
sembly exposes the target site to produce an integration 
competent state for TnsB, which is consistent with how 
systems that have both Mu and prototypic Tn7 carry out 
transposition158,161.

CASTs multitask for transposon mobilization and 
homing. CAST systems use two propagation mech-
anisms analogous to the two modes of transposition 
by CRISPR-less Tn7 transposons162,163. For Tn7 trans-
posons, transposon propagation is facilitated either by 
TnsD, which directs transposition to the homing site, 
or by TnsE, which directs the transposon to MGEs164. 
Whereas the pathways described in the previous sections 
might be used to facilitate targeting of MGEs for hori-
zontal transfer, structural variation of the transposon 
machinery by alternative RNA guides or TnsD homo-
logues reprogrammes the machineries for homing162,163. 
In subtype V-K and subtype I-F3 CRISPR–Cas systems, 
a ‘delocalized’ and structurally distinct guide RNA, 
derived from a locus outside the CRISPR array, guides 
the CAST system to the homing site162,163. Distinct from 
this propagation mode, subtype I-B1 CASTs utilize 
two different TnsD homologues, one with similarity to 
subtype I-F3 TniQ for CRISPR–Cas-dependent mobi-
lization and one, more closly related to Tn7 TnsD, for 
CRISPR–Cas-independent homing162. A similar mech-
anism was recently described for a variant subtype I-F3 
CAST system, which uses two divergent TniQ-family 
proteins for either mobilization or homing165. Structural 
and biochemical studies elucidating divergent CAST 
systems and the CAST homing pathway will be essen-
tial to understand the alternative mechanisms and 
might aid in the establishment of CASTs for genome 
engineering141,142,159,160,165.

Conclusion and outlook
Fifteen years after the demonstration of the adaptive 
immunity function of CRISPR–Cas in bacteria1, struc-
tural and analytical studies have uncovered a pleth-
ora of specific nucleic acid recognition, insertion and 
destruction mechanisms. CRISPR–Cas systems use 
sophisticated machinery to carry out their functions 
with exquisite control. From a biological perspective, 
the architectures of CRISPR–Cas enzymatic machin-
eries reflect different drivers of genome evolution 
and reveal an intricate two-sided evolutionary rela-
tionship between CRISPR–Cas systems and MGEs. 
CRISPR–Cas systems have recruited MGEs to aid  
in their defence against invaders on multiple occasions in  
the evolutionary history of CRISPR–Cas, as observed 
in the origins of the Cas1–Cas2 adaptation module 
from casposons and TA modules, the recruitment of  
RTs from retrotransposons and the evolution of class 2 
effectors from transposon-encoded IscB and TnpB 
nucleases. The discovery of CRISPR-associated trans-
posons shows evidence of the reverse evolutionary 
trend, where transposons have hijacked CRISPR effec-
tors for their own evolutionary success. This relationship 
between CRISPR–Cas and MGEs fits the ‘guns for hire’ 
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paradigm44, where homologous proteins can be shut-
tled between different systems and exploited for their 
structural/functional properties, creating a toolbox for 
natural genetic engineering.

The toolbox that nature has developed for genetic 
manipulation along with the ease of programmability 
has catalysed the translation of CRISPR–Cas immune 
systems into versatile tools for genome editing and 
biotechnology166,167. The structural and biochemical 
characterization of naturally occurring CRISPR–Cas 
systems, and their engineered variants116,168–175, will 
continue to be a cornerstone in the development of 
next-generation gene editing tools and other CRISPR- 
based technologies, including transcriptional regulation; 
nucleic acid imaging, detection and diagnostics; and 
molecular recording.

Recent developments in the computational predic-
tion of protein and RNA structures, using deep learn-
ing strategies176,177, have already begun to transform 
research in biology and are likely to further accelerate 
CRISPR–Cas research; however, structure prediction of 
protein–RNA/DNA complexes is a non-trivial task and 
will require the development of novel computational 

approaches that will likely integrate deep learning 
strategies and the prediction of protein–RNA/DNA 
binding interfaces178. Mapping of interfaces by experi-
mental approaches, such as crosslinking and hydrogen–
deuterium exchange mass spectrometry, might further 
inform these computational methods.

Although the recent computational methods are 
becoming increasingly capable, they are not suitable to 
predict the structural dynamics and intermediary stages 
of CRISPR-mediated nucleic acid binding and cutting. 
Cryogenic electron microscopy structure determination 
and molecular dynamics simulations are likely to con-
tinue contributing insights into the intricate nucleic acid 
identification and cutting mechanisms107,179,180. Structural 
insights into the fundamental mechanisms at the heart 
of CRISPR–Cas systems will enable continued devel-
opment of these versatile enzymes for precise genome 
manipulation. In addition, this line of investigation will 
guide protein engineering strategies to unlock more 
efficient and safer tools for applications in research, 
medicine and agriculture.
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