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Abstract

The scramble number of a graph provides a lower bound for gonality and an upper bound

for treewidth, making it a graph invariant of interest. In this paper we study graphs of scramble

number at most two, and give a classification of all such graphs with a finite list of forbidden

topological minors. We then prove that there exists no finite list of forbidden topological

minors to characterize graphs with scramble number at most k for any fixed k ≥ 3.

1 Introduction

Chip firing games on graphs provide a combinatorial analog for divisor theory on algebraic curves
[1]. In chip firing games, a divisor is a placement of integer numbers of chips on the vertices of
a graph. A vertex can then be fired to donate one chip along each incident edge, rearranging the
chips into a new divisor. This brings us to the following question: how many chips do we need in
a divisor so that, given any vertex, we can perform chip-firing moves to place a positive number
of chips on that vertex, with a nonnegative number of chips on all other vertices? We call this
minimum number the gonality of G. Gonality has been extensively studied as a graph invariant
and was proved to be NP-hard to compute in [5]. Because computing gonality is computationally
difficult, bounds on it are of particular interest. Scramble number, developed in [7], is one such
graph invariant that serves as a lower bound for gonality: for any connected multigraph G, we
have

sn(G) ≤ gon(G).

One of the first theorems on scramble number was a complete characterization of the (connected)
graphs of scramble number 1, which are precisely the trees [7]. In this paper we push further to
characterize all graphs of scramble number 2.

K4 P3;3 C3;2,2,1
LL6

Figure 1: The four graphs from Theorem 1.1

Our main theorem refers to the four graphs in Figure 1, which we denote by K4 (the complete
graph on 4 vertices), P3;3 (a multipath), C3;2,2,1 (a multicycle), and LL6 (the loop-of-loops on 6
vertices).

Theorem 1.1. A graph has scramble number at most 2 if and only if it has none of K4, P3;3,
C3;2,2,1, and LL6 as a topological minor.

Since all graphs have a positive scramble number, and since the (connected) graphs of scramble
number 1 are precisely the trees, a (connected) graph has scramble number exactly 2 if and only
if it is not a tree and has none of the four graphs in Figure 1 as a topological minor.

For our other primary result, let Sm denote the set of all connected graphs of scramble number
at most m.

Theorem 1.2. The set Sm admits a characterization by a finite list of forbidden topological
minors if and only if m ≤ 2.
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Our paper is organized as follows. In Section 2 we present background material and useful
lemmas. In Section 3 we prove Theorem 1.1. In Section 4 we prove Theorem 1.2 by constructing,
for each k ≥ 3, an infinite family of graphs that are topological minor minimal among those with
scramble number k. In Section 5 we present some applications of our results.

2 Background and preliminaries

A graph G is a finite set of vertices, V (G), and a finite multiset of edges, E(G), such that every edge
connects exactly two vertices. We allow for multiple edges to connect the same pair of vertices, but
we do not allow an edge to connect a vertex to itself. A graph is connected if there exist a path of
edges and vertices between every pair of vertices in G, and is disconnected if it is not connected.
The edge connectivity of a graph G, denoted λ(G), is the minimum number of edges we must delete
from G to obtain a disconnected subgraph. The edge connectivity of a graph offers more insight
into the structure of the graph through the following integral graph theory theorem.

Theorem 2.1 (Menger’s Theorem [9]). A graph G has λ(G) ≥ k if and only if there exist k
edge-disjoint paths between every pair of vertices in G.

We define the degree of a vertex v to be the number of edges incident to v, i.e. the number of
edges that have v as an endpoint. A vertex u of degree two, incident to distinct vertices v and w
via edges e1 and e2, can be “smoothed”, meaning we delete u, e1, and e2 and add an edge between
v and w. If a graph H can be obtained from a graph G by deleting vertices, deleting edges, and
smoothing vertices, H is called a topological minor of G, denoted H � G. See Figure 2 for an
example.

v1

v2

v3v4
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G H

Figure 2: A topological minor H of a graph G, obtained by deleting v5 and its incident edges, and
smoothing v6.

If H can be obtained from G by deleting edges and vertices, we call H a subgraph of G. Given a
subset S ⊂ V (G), we let G[S] denote the subgraph induced by S; that is, the subgraph with vertex
set S and edge multiset consisting of all edges from E(G) with both endpoints in S. If G[S] is a
connected graph, we refer to S as a connected subset of V (G).

Later on we will use work from [8] applied to graphs of edge-connectivity 3. These results
are most easily phrased in the language of pseudographs, in which we do allow loops connecting
vertices to themselves. A graph G is called 3-edge-minimal if λ(G) = 3, but for every edge in G
we have λ(G− e) < 3, where G− e denotes G with the edge e deleted. We describe two operations
on a graph G: in the operation O+

1 , an edge of G is subdivided and an edge is added to connect

the new vertex to another vertex; and in the operation O
(2)
1 , an edge of G is subdivided to yield a

new vertex z, and then another edge (not adjacent to z) is subdivided to yield another new vertex
w, and then an edge is added to connect z and w. We remark that these operations depend on
the choice of vertices and edges. For examples of these operations, we refer the reader to Figure
3. The leftmost graph can be turned into the upper adjacent graph through the operation O+

1 by
subdividing the loop and attaching the new vertex to the middle vertex; alternatively, that graph

can be turned into the lower adjacent graph through the operation O
(2)
1 by adding a vertex to the

loop, subdividing one of the previously existing edges, and connecting the two new vertices them

with an edge. Two more operations are illustrated on the right, both instances of O
(2)
1 .

Theorem 2.2 (Corollary 17 in [8], k = 1 case). Let G be a 3-edge minimal multigraph with at
least two vertices. Then either there is a pseudograph G1 with λ(G1) ≥ 3 and |V (G1)| = |V (G)|−1,
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such that G is obtained from G1 by performing the operation O+
1 ; or else there is a pseudograph

G2 with λ(G2) ≥ 3 and |V (G2)| = |G| − 2, such that G is obtained from G2 by performing the

operation O
(2)
1 .

We use this to prove the following corollary, which will be useful in the proof of Theorem 1.1.

Corollary 2.3. If G is a 3-edge-connected graph on three or more vertices, then G contains one
of K4, P3;3, and C3;2,2,1 as a topological minor.

Proof. We prove this by induction on the number of vertices |V (G)|. If |V (G)| = 3, then the
underlying simple graph of G is either the path on three vertices P3 or the cycle on three vertices C3.
In the first case, each edge must appear as 3 or more parallel copies to ensure 3-edge-connectivity,
so P3;3 is a subgraph. In the second case, at least two edges must appear as 2 parallel copies to
ensure 3-edge-connectivity, so C3;2,2,1 is a subgraph.

Now let |V (G)| ≥ 4, and assume the claim holds for all 3-edge-connected graphs with between
3 and |V (G)| − 1 vertices. By Theorem 2.2, we can obtain G from a pseudograph G1 on one fewer

vertex using O+
1 , or from a pseudograph G2 on two fewer vertex using O

(2)
1 .

We now deal with several cases.

(i) The relevant Gi is a graph on 3 or more vertices. By the inductive hypothesis, Gi has one of
the three graphs as a topological minor; and Gi is itself a topological minor of G, giving us
the desired claim.

(ii) The relevant Gi is a graph on 2 vertices; this occurs only when |V (G)| = 4, and when G is

obtained via O
(2)
1 from P2;n (a graph with two vertices connected by n edges) for some n ≥ 3,

as these are all 3-edge-connected graphs on 2-vertices. Up to symmetry there is only one way

to perform O
(2)
1 on P2;n, and it yields K4 as a subgraph. Thus G has K4 as a topological

minor.

(iii) The relevant Gi is a pseudograph that is not a graph, i.e. Gi has at least one loop. Since G
is a graph, the operation must eliminate any loops. If G is obtained from G1 by O+

1 , then
the edge that is subdivided must be the loop, say l rooted at a vertex v ∈ V (G1), where
G1 − l is a simple graph. We know that |V (G1 − l)| = |V (G1)| = |V (G)| − 1, which is
between 3 and |V (G)| − 1, and since removing l does not change edge-connectivity we know
that λ(G1 − l) ≥ 3. This allows us to apply our inductive hypothesis to show that G1 − l,
and thus G, has one of the three graphs as a topological minor.

If G is obtained from G2 by O
(2)
1 , there are several subcases to consider. The operation O

(2)
1

must eliminate any loops in G2, of which there can be at most 2 by the structure of O
(2)
1 . Let

L be the set of all loops in G2. By the same logic as the previous argument, if |V (G)| ≥ 5
we have G2 − L is a 3-edge-connected simple graph on 3 or more vertices, giving it (and G)
one of the three graphs as a topological minors by the inductive hypothesis. The last case to
deal with is if |V (G)| = 4, and therefore |V (G2)| = 2. Since λ(G2) ≥ 3, we know that G2 is
of the form P2,n with either 1 or 2 loops attached, possibly on the same vertex or on different

vertices. If one loop, there are two ways to perform O
(2)
1 to eliminate the loop, one of which

yields P3;3 and the other of which yields C3;2,2,1 as a topological minor. If two loops, there is

a unique way to perform O
(2)
1 to eliminate both of them; regardless of the placement of the

loops, this yields C3;2,2,1 as a topological minor. These operations are illustrated in Figure 3.

We conclude by induction that every 3-edge connected graph on three or more vertices has one
of our three graphs as a topological minor.

We now move on to scramble number. An egg on a graph G is a connected subset of vertices.
A scramble on a graph G is a collection of eggs on G.

Every scramble has an order, which requires several steps to calculate. An egg-cut for a scramble
is a collection of edges in E(G) that, when deleted, disconnect the graph into two components,
each of which contains an egg. The egg-cut number of a scramble S, denoted e(S), is the minimum
size of an egg-cut for S. A hitting set for a scramble is a set of vertices in V (G) such that every
egg contains at least one vertex in that set. The hitting number of a scramble S, denoted h(S), is
the minimum size of a hitting set for S.
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Figure 3: Possible operations to turn G2 into G, one yielding P3;3 and the others yielding C3;2,2,1

as a topological minor

These two definitions bring us to the order of a scramble S, which is defined as

||S|| = min{h(S), e(S)}.

The scramble number of a graph G is then the maximum possible order of a scramble S on G.
That is,

sn(G) = max
S onG

{||S||}.

Example 2.4. Figure 4 presents a scramble on each of four graphs. In each scramble, the eggs
are denoted by circled collections of vertices. Since for these examples all the eggs are disjoint, the
hitting number for each scramble is the number of eggs, i.e. 4 for the scramble on K4 and 3 for the
other three. Each of the scrambles has an egg-cut number of 3; taking the minimum of the two
relevant numbers, each scramble has order 3. We remark that the egg-cut number may be smaller
than the minimum number of edges incident to an egg; for instance, in the scramble on LL6, each
egg is incident to 4 edges, but an egg-cut of size 3 can be obtained by deleting two parallel edges
and the edge opposite them in the underlying cycle graph C6. Thus for any graph G in this figure
we have sn(G) ≥ 3; later, in Example 2.12, we give an argument that sn(G) = 3 for each.

K4 P3;3 C3;2,2,1

LL6

Figure 4: Example of scrambles of order three.

We now present some previous results. Recall a graph G is a tree if there is exactly one path
between each pair of vertices of G, or equivalently if G is connected and acyclic.

Lemma 2.5 ([7, Corollary 4.2]). A graph G has sn(G) = 1 if and only if G is a tree.

Lemma 2.6 ( [4, Lemma 2.5]). Let G be a graph. Then, sn(G) ≥ min{λ(G), |V (G)|}.

This is a powerful result for us as it is often easier to compute λ(G) than trying to compute
sn(G) directly. For the next lemma, we define a bridge to be an edge in G such that deleting the
edge disconnects G.

Lemma 2.7 ([4, Lemma 2.4]). If G is a graph with bridge e and the two connected components
of G− e are G1 and G2, then sn(G) = max{sn(G1), sn(G2)}.

These next two lemmas will allow us to conclude that scramble number is topological minor
monotone; that is, that scramble number can only decrease or remain unchanged when taking
a topological minor. This is an important step in using topological minors to study scramble
numbers.
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Lemma 2.8 ([7, Proposition 4.5]). If H is a subgraph of G, sn(H) ≤ sn(G).

We remark that the same result does not hold if G′ is a minor of G; that is, it is possible for
scramble number to increase when an edge is contracted [7, Example 4.4].

Lemma 2.9 ([7, Proposition 4.6]). If H is obtained from G by smoothing vertices, sn(H) = sn(G).

We can now provide a result on topological minors.

Corollary 2.10. If H is a topological minor of G, then sn(H) ≤ sn(G).

Proof. If H is a topological minor of G, then there exists a subgraph G′ of G such that H is
obtained from G′ by smoothing vertices. By Lemma 2.9, we have sn(H) = sn(G′), and by Lemma
2.8, we have sn(G′) ≤ sn(G). Thus sn(H) ≤ sn(G).

It follows that if we can find the scramble number of a topological minor of G, we have also
found a lower bound on the scramble number of G itself. This process provides the underlying
structure for proving Theorem 1.1 in Section 3.

The final topic we recall from a previous paper is the screewidth of a graph, introduced in [3].
Given a graph G, a tree-cut decomposition is a pair (T,X ) such that T is a tree and X is a set of
subsets Xb of V (G), one for each b ∈ V (T ), such that

•

⋃

b∈V (T ) Xb = V (G), and

• Xb1 ∩Xb2 = ∅ for b1 6= b2.

That is, X forms a near partition of V (G), which is a partition with empty sets allowed. For
clarity, we will refer to the vertices and edges of T as nodes and links, respectively, reserving the
terms vertices and edges for G.

For l ∈ E(T ), deleting l from T partitions the vertices of V (T ), and thus the vertices of V (G),
into two sets. The (link) adhesion of l, denoted adh(l), is the set of edges in E(G) with one
endpoint in each of the two sets. Similarly, for b ∈ V (T ) not a leaf, deleting b from V (T ) partitions
the set V (T ) − b, and thus the set V (G) − Xb, into at least two subsets. The (node) adhesion of
b, denoted adh(b), is the set of edges in E(G) connecting two vertices in these different sets.

These adhesions admit an intuitive description. Given a tree-cut decomposition of a graph G,
draw G in a thickened copy of T so that a vertex v ∈ V (G) is within the node b ∈ T such that
v ∈ Xb; and so that an edge connecting u, v ∈ V (G) is drawn along the unique path from b1 to b2
in T , where u ∈ Xb1 and v ∈ Xb2 . The adhesion of a link l is then the number of edges from E(G)
drawn passing through l; and the adhesion of a node b is the number of edges from E(G) passing
through b with neither endpoint in Xb.

The width of the tree-cut decomposition T = (T,X ) is defined to be the maximum of the
following numbers:

• maxl∈E(T ) |adh(l)|;

• maxb∈V (T ) |adh(b)|+ |Xb|.

Finally, the screewidth of a graph G, denoted scw(G), is the minimum possible width of a tree-cut
decomposition of G.

Theorem 2.11 (Theorem 1.1 in [3]). For any graph G, we have sn(G) ≤ scw(G).

K4 P3;3

C3;2,2,1
LL6

Figure 5: Tree-cut decompositions of width 3
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K4 − e

P3;3 − e C3;2,2,1 − e1
C3;2,2,1 − e2

LL6 − e1 LL6 − e2

Figure 6: Tree-cut decompositions of width 2

Example 2.12. Figure 5 illustrates a tree-cut decomposition for each of four graphs; the width of
each decomposition is 3, so every graph G in the figure satisfies scw(G) ≤ 3. From Example 2.4,
we already had that each graph satisfied sn(G) ≥ 3, which combined with Theorem 2.11 gives us
that sn(G) = scw(G) = 3 for all four graphs G.

In fact, we can say even more about these graphs: they are minimal, with respect to the
topological minor relation, among all graphs of scramble number 3 or more. Since none has a degree
2 vertex, it suffices to show that deleting any edge will lower the scramble number. Illustrated
in Figure 6 are tree-cut decompositions of all subgraphs, up to symmetry, of these four graphs
obtained by deleting a single edge. Since each decomposition has width 2, each of these graphs H
satisfies sn(H) ≤ scw(H) ≤ 2 < 3, as desired.

3 Characterizing Graphs of Scramble number Two

We say a graph G is scramble minimal if for any proper topological minor H � G, sn(H) < sn(G).
We remark that since smoothing a vertex does not change scramble number, a graph is scramble
minimal if and only if any degree 2 node is incident to two parallel edges (preventing a smoothing),
and for every edge e ∈ E(G) we have sn(G − e) < sn(G). A graph G is k-scramble minimal if
sn(G) ≥ k and any proper topological minor H � G has sn(H) < k.

Lemma 3.1. If G is k-scramble minimal with k or more vertices, then λ(G) ≤ k.

Proof. Let G be a k-scramble minimal graph, and suppose for the sake of contradiction that
λ(G) > k. Now delete any edge e ∈ E(G) to create G′. Note that the graph G′ has λ(G′) ≥ k, and
|V (G′)| ≥ k, so by Lemma 2.6 we have that sn(G) ≥ min{λ(G), |V (G)|} ≥ min{k, k} = k. This
contradicts the k-scramble minimality of G. Therefore, if G is k-scramble minimal with k or more
vertices, λ(G) ≤ k.

Frequently in upcoming proofs it will be helpful to consider what happens to a scramble when
a vertex or edge is deleted from a graph. Because scrambles are defined to be specific to a graph,
there is a priori no way of “transferring” a scramble to a subgraph. To this end, for a scramble S
on a graph G with subgraph H, we construct S|H on H, which we refer to as the restriction of the
scramble S to H. For each egg E ∈ S, if E ∩ V (H) forms a nonempty connected subset in H, we
let E ∩ V (H) ∈ S|H . Using this definition, we can extract the following result.

Proposition 3.2. Let S be a scramble of order at least 2 on a graph G, let e ∈ E(G) be an edge
such that H = G− e is connected, and let S ′ = S|H . Then, ||S ′|| ≥ ||S|| − 1.

Proof. Note that S ′ must contain at least one egg; if deleting e had disconnected every egg in
S, then ||S|| ≤ h(S) = 1. Now, we claim that e(S ′) ≥ e(S) − 1. If all eggs in S ′ overlap, then
e(S ′) = ∞ and the claim holds. Otherwise, choose an egg-cut T of size e(S ′) for S ′ on H. Then
T ∪ {e} is an egg-cut for S on G, separating the same pair of eggs as T did. Thus we have
e(S ′) ≥ e(S)− 1.

Now let S′ be a minimum hitting set of S ′. Letting u denote an endpoint of e, note that S′∪{u}
forms a hitting set of S, since any egg of S that is not hit by S′ must have contained the edge e,
and thus can be hit by the vertex u. Therefore, we have found a hitting set of S of size h(S ′) + 1,
so h(S ′) ≥ h(S)− 1. It follows that ||S ′|| ≥ ||S|| − 1.
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Corollary 3.3. If H = G− e for some non-bridge edge e ∈ E(G), then

sn(G)− 1 ≤ sn(H) ≤ sn(G).

Proof. Since H is a subgraph of G, we have by Lemma 2.8 that sn(H) ≤ sn(G). Let S be a
scramble on G with ||S|| = sn(G), and let S ′ = S|H . By Proposition 3.2, we have ||S ′|| ≥ ||S|| − 1,
and so sn(H) ≥ sn(G)− 1, as desired.

Corollary 3.4. Let k ≥ 2. If G is k-scramble minimal, then sn(G) = k.

Proof. By definition, if G is k-scramble minimal, sn(G) ≥ k and for any proper topological minor
H we have sn(H) < k. Since sn(G) ≥ 2, G contains some edge such that H = G− e is connected.
By the previous corollary, sn(G) − 1 ≤ sn(H) ≤ k − 1. Combined with sn(G) ≥ k, it follows that
sn(G) = k.

We now have all of the necessary tools to characterize all graphs of scramble number two with
our list of four forbidden topological minors.

Proof of Theorem 1.1. We know by Example 2.12 that all four graphs from Figure 1 have scramble
number 3. By Corollary 2.10, we therefore have that any graph with one of them as a topological
minor has scramble number at least 3. Contrapositively, a graph of scramble at most 2 has none
of the four graphs as a topological minor.

Let G be a graph of scramble number at least 3; we must show it has one of the four graphs as a
topological minor. Without loss of generality, we will assume G is 3-scramble minimal; if it is not,
then delete edges and vertices and smooth degree 2 vertices until it is. By Corollary 3.4, sn(G) = 3.
Note that G must have at least three vertices as sn(G) = 3. We have that 1 ≤ λ(G) ≤ 3 from
Lemma 3.1. However, if λ(G) = 1, then G has a bridge. From Lemma 2.7, G has a subgraph with
the same scramble number, a contradiction to the minimality of G. Thus, λ(G) > 1. If λ(G) = 3,
then since |V (G)| ≥ 3 we may apply Corollary 2.3 to conclude that G has one of K4, P3;3, or
C3;2,2,1 as a topological minor (indeed, G must equal one of these graphs, since G is 3-scramble
minimal).

It remains to handle the case of λ(G) = 2. If λ(G) = 2, we know that there exist two edges
e1, e2 ∈ E(G) that form an edge-cut of G. We will refer to the connected graphs obtained by
deleting these edges as G1 and G2, with labels as illustrated in Figure 7. Note that a priori, it is
possible that v1 = v2, and that v3 = v4.

v1 v3

v2 v4

e1

e2

G1
G2

Figure 7: The structure of G with λ(G) = 2

Let S be a scramble on G with ||S|| = 3. As {e1, e2} forms a 2-edge cut of G, S cannot
have one egg completely contained in G1 and one egg completely contained in G2. Therefore, one
subgraph (without loss of generality, G1) does not completely contain any egg. We now argue
that v1 6= v2. Suppose for the sake of contradiction that v1 = v2. Let H be obtained from G by
deleting all vertices in G1 besides v1. Then consider the scramble S|H on H. Since no egg in S
is completely contained within G1, and as all paths from G1 to the rest of G travel through v1,
the hitting number and egg-cut number remain unchanged. Since G is minimal, it follows that
G = H. Then, v1 is a degree 2 vertex, which either contradicts the scramble minimality of G (if v1
can be smoothed), or implies that v3 = v4, so that e1 and e2 are parallel edges connecting G2 to
an isolated vertex v1. In this case S|G2

has the same order as S, and we still have a contradiction
to G being minimal. Thus we know that v1 6= v2.
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We now argue that there at least two distinct paths between v1 and v2 within G1. There must
exist at least one path between v1 and v2 within G1; otherwise λ(G) = 1, with {e1} forming an
edge-cut. If there were only one path, we could choose any edge e on that path; since {e, e1} forms
an edge-cut, we could redefine our subgraphs G1 and G2 so that G1 is smaller, and repeat. This
would eventually lead us to v1 = v2, which as we argued before is impossible. Thus there are two
distinct paths between v1 and v2, implying that the graph illustrated in Figure 8 is a topological
minor of G.

v1 v3

v2 v4

e1

e2

G2

Figure 8: A topological minor of G, which ends up equalling G

We claim that the graph H in Figure 8 has scramble number equal to 3 and therefore must
actually be G by the scramble minimality of G. Consider S|H , the scramble obtained by intersecting
the eggs of S with V (H). We remark that every egg E ∈ S remains connected when we restrict
to H: any path between two vertices in E ∩ V (H) remains a path H, unless that path used edges
from G1 to get from v1 to v2; but the edges between v1 and v2 in H can replace that portion of the
path. Any hitting set for S|H is also a hitting set for S, since every egg of S intersecting G1 must
contain v1 or v2; thus h(S|H) ≥ h(S). Now let E1, E2 ∈ S, with E′

i = Ei ∩ V (H) ∈ S|H . Suppose
for the sake of contradiction that we may disconnect H by deleting a set T with fewer than 3 edges
so that E′

1 is in one component and E′
2 is in the other. Since λ(G) = 2, we know λ(H) = 2 as well,

so |T | = 2. Note that deleting the two edges connecting v1 and v2 does not disconnect the graph;
nor does deleting one of those edges and any other edge e (otherwise {e} would be an edge-cut
of size 1). Thus T ⊂ E(G2) ∪ {e1, e2}. By the structure of our graphs, it follows that T is also
an egg-cut for E1 and E2, contradicting e(S) ≥ 3. Thus e(S|H) ≥ 3, and we have ||S|H || ≥ 3. It
follows that 3 ≤ sn(H) ≤ sn(G) = 3, so sn(H) = 3. As G is 3-scramble minimal, we have G = H.

Now, since G is 3-scramble minimal, deleting any edge decreases the scramble number of G to
two. Consider G′, the subgraph of G obtained by deleting one of the edges connecting v1 and v2.
No eggs of S are disconnected by this, so S|G′ consists of the same eggs as S. Since this scramble
has the same hitting number, we know that S|G′ must have an egg-cut of size at most two, since
sn(G′) ≤ 2. The graph G does not have an egg-cut of size two, so the deleted edge must have been
part of a minimal egg-cut of size 3 in G; it follows that the other edge from v1 to v2 is part of
the egg-cut in G′. So, this remaining parallel edge is part of this cut in G, as well as some edge
in G2, which must form a bridge of G2. Let this third egg-cut edge in G2 be named e3. Now we
can refine G2 into two subgraphs, GA as the subgraph between e1 and e3 and GB as the subgraph
between e2 and e3. This structure is illustrated in Figure 9.

Since {v1v2, v1v2, e3} is an egg-cut, say separating the eggs E1 and E2, we claim without loss
of generality that E1 contains the edge e1 and E2 contains the edge e2. If this were not the
case, the parallel edges in G1 could be replaced with one of e1 or e2, creating an egg-cut of size
two for S, which is impossible as |S| ≥ 3. The eggs E1 and E2 do not intersect, so we know
V (E1) ⊂ V (GA) ∪ {v1} and E2 ⊂ V (GB) ∪ {v2}.

We now remark that no egg in S can be contained in V (GA), as {e1, e3} would form an egg
cut separating it from E2; and similarly no egg can be contained in GB . We have already assumed
that no egg can be contained in V (G1) = {v1, v2}. Thus every egg contains at least one of e1, e2,
and e3. We note that some egg contains e3 without intersecting e1 or e2: otherwise {v3, v4} would
be a hitting set of size two. It follows that v3 6= v5, and v4 6= v6. We now claim that there must
exist two distinct (but not necessarily edge-disjoint) paths between v3 and v5 in GA. Suppose not,
so that there exists a unique path connecting them. If some egg F1 containing e1 and some egg F3

containing e3 don’t intersect, then e2 together with some edge on that path forms an egg-cut of
size two. If every pair of such eggs intersects, then they must all intersect at a common vertex v of
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v1

v3

v2

v4
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v5
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e3

Figure 9: Further structure of G

that path. Since every other egg must contain the edge e2, we have that {v, v2} is a hitting set of
size 2, a contradiction. Thus there are two distinct paths from v3 to v5 in GA, and by symmetry
two distinct paths from v4 to v6 in GB . This leads to G containing LL6 as a topological minor,
illustrated below. (In fact, since sn(LL6) = 3 and G is 3-scramble minimal, we can conclude that
G = LL6.)

v1

v3

v2

v4

e1

e2

v5

v6

e3

Figure 10: A topological minor of G, which ends up equalling G

Thus in all cases, our 3-scramble minimal graph G contains (in fact, is equal to) one of the four
claimed topological minors. This completes the proof.

4 Scrambles of Higher Orders

In this section we build families of graphs to prove that no finite forbidden topological minor
characterization exists for Sm, the set of graphs of scramble number at most m, when m ≥ 3. Our
first lemma gives us a family of scramble minimal graphs with even scramble number.

Lemma 4.1. Let k ≥ 2 and n ≥ 2k, and let Cn;k denote the cycle graph on n vertices, where each
edge has k parallel copies. Then Cn;k is 2k-scramble minimal.

Proof. Let S denote the scramble whose eggs are the vertices of Cn;k. This scramble has order
min{|V (Cn;k)|, λ(Cn;k)} = min{n, 2k} = 2k, so sn(Cn;k) ≥ 2k. See the left of Figure 11.

To see that Cn;k is 2k-scramble minimal, we must show that any proper topological minor
of Cn;k has scramble number at most 2k − 1. Since k ≥ 2, there are no degree 2 nodes. Thus
it suffices to show that deleting any edge gives a graph with scramble number at most 2k − 1.
Let v1, . . . , vn denote the vertices of Cn;k, ordered cyclically. By the symmetry of Cn;k, we may
consider H = Cn;k−e, where e is an edge connecting v1 and vn. Construct a tree-cut decomposition
T = (T,X ) of H with T = Pn, the path graph on n vertices, with nodes b1, . . . , bn and Xbi = {vi}
for all i. See the right of Figure 11 for an example. The adhesion of the ith link consists of 2k − 1
edges, namely the k − 1 connecting v1 with vn together with the k edges connecting vi and vi+1.

9



Each node similarly has adhesion size k − 1, and the size of each Xb is 1. Thus w(T ) = 2k − 1, so
sn(H) ≤ scw(H) ≤ 2k − 1. We conclude that Cn;k is 2k-scramble minimal.

Figure 11: The graph C8;3 with a scramble of order 6, and a tree-cut decomposition of C8;3 − e of
width 5

Our next lemma gives us a family of scramble-minimal graphs with odd scramble number.

Lemma 4.2. Let k ≥ 2 and n ≥ 3k, and let C̃n;k denote a cycle graph on n vertices where 2k
consecutive edges have k + 1 parallel copies (say from v1 through v2k+1), and all others have k.
Then C̃n;k is (2k + 1)-scramble minimal.

Proof. Consider the scramble

S = {{v2}, . . . , {v2k+1}, {v2k+2, . . . , vn, v1}}.

An example of this scramble is illustrated in Figure 12. Since the eggs are disjoint, we have
h(S) = 2k+ 1. For an egg-cut, at least two collections of parallel edges must be deleted, as this is
necessary to disconnect the graph. However, no two bundles of k edges can be deleted to disconnect
two eggs; while one bundle of k edges and another bundle of k + 1 can. Thus e(S) = 2k + 1, and
so sn(C̃n;k) ≥ ||S|| = min{n− k + 1, 2k + 1} = 2k + 1.

e1

e2

Figure 12: The graph C̃8;2 with a scramble of order 5, and tree-cut decompositions of C̃8;2 − e1
and C̃8;2 − e2, both of width 4

To see that C̃n;k is (2k+1)-scramble minimal, we first note that since k ≥ 2, there are no degree
2 nodes. Thus it suffices to show that deleting any edge yields a graph with scramble number at
most 2k. First we deal with the case where the deleted edge e1 is from a bundle of k edges, say
between vi and vi+1 where 2k + 2 ≤ i ≤ n. We construct a tree-cut decomposition similar to that
from the proof of Lemma 4.1, except with the nodes in the path corresponding to vi+1, vi+2, . . . , vi,
ordered cyclically. Then every (non-leaf) node and every link has as part of its adhesion the k− 1
edges connecting vi and vi+1. See the middle of Figure 12 for an example. The nodes have no
other adhesion (and correspond to sets of size 1), and every link has either k or k + 1 more edges
in its adhesion. Thus sn(C̃n;k − e1) ≤ scw(C̃n;k − e1) ≤ 2k.

Now we handle the case where the deleted edge e2 came from a bundle of k + 1 nodes, say
between vi and vi+1 where 1 ≤ i ≤ 2k + 1; by the symmetry of the graph, we may assume
k + 1 ≤ i ≤ 2k + 1. Construct a tree-cut decomposition with T = Pn−i+1 on nodes b1, . . . , bn−2

where Xb1 = {v1, . . . , vi}, Xb2 = {vi+1, . . . , v2k+2}, and Xbj = {v2k+j} for 3 ≤ j ≤ n− 2k. See the
right of Figure 12 for an example. By our choice of i, |Xb1 | ≤ 2k, and as bi is a leaf node it has
no adhesion. Similarly, |Xb2 | ≤ k, and its adhesion consists of the k edges connecting v1 and vn.
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Every other bi has |Xbi | = 1, with the non-leaves having the same adhesion of k edges. Finally,
every link has size k + k = 2k. Thus sn(C̃n;k − e2) ≤ scw(C̃n;k − e2) ≤ 2k. We conclude that C̃n;k

is (2k + 1)-scramble minimal.

We are ready to prove that Sm, the set of all connected graphs of scramble number at most
m, admits a characterization by a finite list of forbidden topological minors if and only if m ≤ 2.

Proof of Theorem 1.2. Note that S1 is precisely the set of trees. A connected graph is a tree if
and only if it does not contain a cycle as a subgraph if and only if it does not have as a topological
minor the graph P2;2, consisting of a pair of vertices connected by a pair of edges. Thus S1

admits a characterization by a finite list of forbidden topological minors. We also have such a
characterization for S2 given by Theorem 1.1.

Now let m ≥ 3. Any complete list of forbidden topological minors for Sm must include all
(m + 1)-scramble minimal graphs. By Lemmas 4.1 and 4.2, there are infinitely many (m + 1)-
scramble minimal graphs, namely Cn;(m+1)/2 for m+ 1 even and C̃n,b(m+1)/2c for m+ 1 odd, as n
varies above the prescribed minimum. Thus there can exist no characterization of Sm by a finite
list of forbidden topological minors.

Although we have shown that there exists no finite list of forbidden topological minors for Sm

with m ≥ 3, we might still hope for some nice characterization. For instance, perhaps we could
classify all (m + 1)-scramble minimal graphs as nicely described infinite families, with a finite
collection of special cases. Another possibility comes from generalizing the notion of a topological
minor, an approach we detail here.

Let u be a vertex in a graph G adjacent to exactly two other vertices, say v by m edges and w
by n edges. A multi-smoothing at u removes u from the graph and adds min{m,n} edges between v
and w. We say that a graph H is a multi-topological minor of a graph G if it can be obtained from
G by deleting vertices and edges and performing multi-smoothings. For example, the graph Cn;k

is a multi-topological minor of Cn+1;k, obtained by performing a multi-smoothing at any vertex.

Proposition 4.3. If H is a multi-topological minor of G, then sn(H) ≤ sn(G).

Proof. It suffices to assume that H can be obtained from G by multi-smoothing a single vertex, say
u with adjacent vertices v (connected by m edges) and w (connected by n edges). After smoothing
u, the number of edges between v and w has increased by min{m,n}. Let e′ be one such edge.

Now, let S ′ be some scramble on H. We will define the scramble S on G as follows. For each
egg E′

i ∈ S ′, include Ei ∈ S, where

Ei =

{

E′
i if v /∈ E′

i

E′
i ∪ {u} if v ∈ E′

i.
(1)

Consider a minimal hitting set K for S. If u /∈ K, then K must also be a hitting set for S ′. If
u ∈ K, then K ′ = (K ∪ {v})− {u} is a hitting set for S ′. It follows that h(S ′) ≤ h(S).

Now consider a set A ⊆ V (G) such that A and Ac both contain eggs of S, and let A′ = A∩V (H).
Without loss of generality, u /∈ A. It follows that A′ and (A′)c both contain eggs of S ′ in H. Then,
we have the three possible situations, illustrated in Figure 13. We could have v, w ∈ A, one of
v or w in A, or both v, w /∈ A. We claim that in passing from G to H, the number of edges in
our egg-cut could only decrease. If v, w ∈ A, then we lose m + n; if v ∈ A and w /∈ A we lose
m−min{m,n} (and similar if w ∈ A and v /∈ A); and if v, w /∈ A we lose no edges. Thus for any
egg-cut for S, there is an egg-cut with at most that many edges for S ′, meaning e(S ′) ≤ e(S).

It follows that ||S ′|| ≤ ||S||, implying that sn(H) ≤ sn(G), as desired.

Since scramble number is multi-topological minor monotone, we could hope for a finite forbidden
multi-topological minor characterization of Sm for m ≥ 3. For instance, for m + 1 even and n ≥
2(m+ 1), the graphs Cn,(m+1)/2 all have C2(m+1),(m+1)/2 as a multi-topological minor. Moreover,
C2(m+1),(m+1)/2 is minimal among graphs of scramble number 2(m+1) with respect to the multi-
topological minor relation: performing any multi-smoothing would decrease the number of vertices
to 2m + 1, bringing the scramble number down. For m + 1 odd, the graph C̃2(m+1)+1;b(m+1)/2c

plays a similar role. An interesting direction for future work would be to determine if this multi-
topological minor relation could lead to finite characterizations of Sm.
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Figure 13: Possible relations of u, v, w to an egg-cut during a multi-smoothing

5 Applications

In this section we present several applications of Theorem 1.1.
The first result we present is on a variant of scramble number. We say that a scramble S on a

graph G is disjoint if Ei ∩ Ej = ∅ for all distinct eggs Ei, Ej ∈ S. The disjoint scramble number
of a graph G, denoted dsn(G), is the maximum possible order a disjoint scramble on G. Note that
every disjoint scramble on a graph G is also a scramble on a graph G, so dsn(G) ≤ sn(G). In
practice, disjoint scrambles are easier to work with, since the computation of h(S) is immediate
(in particular, it equals the number of eggs). As we will see in the following example, we may have
dsn(G) 6= sn(G).

Example 5.1. Consider the wheel graph W5, consisting of a cycle on 5 vertices together with a
vertex connected to all other vertices (pictured on the left in Figure 14). We claim that sn(W5) = 4.
Pictured in the middle of Figure 14 is a tree-cut decomposition of W5 of width 4, so sn(G) ≤
scw(G) ≤ 4. For the lower bound, we consider the 2-uniform scramble E2 on W5, whose eggs are
all sets of the form {u, v} with u 6= v and W5[u, v] connected (that is, with uv ∈ E(W5)). By [2,
Theorem 3.1], we have

||E2|| = min{λ2(W5), |V (W5)| − α(W5)},

where λ2(G) denotes the smallest number of edges necessary to disconnect a graph G into two
connected components, each with at least 2 vertices; and α(G) denotes the independence number
of G, the maximum size of a subset of V (G) with no two elements adjacent in G. Inspecting all
connected subgraphs of W5 with 2 or 3 vertices, we find λ2(W5) = 4; and we find α(W5) = 2. Thus
we have sn(W5) ≥ ||E2|| = 4, so sn(W5) = 4.

We now claim that dsn(W5) = 3. Let S be a disjoint scramble on W5. If S has three eggs or
fewer, ||S|| ≤ h(S) ≤ 3. Otherwise, S has at least four eggs. Since there are six vertices in W5,
at least two of the eggs must consist of a single vertex, meaning at least one of the eggs consists
of a single vertex of degree 3. The set of edges incident to that vertex then forms an egg-cut,
so ||S|| ≤ e(S) ≤ 3. Therefore if S is a disjoint scramble, it has order at most 3, meaning that
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Figure 14: The wheel graph W5, with a tree-cut decomposition of width 4 and a disjoint scramble
of order 3

dsn(W5) ≤ 3. There do indeed disjoint scrambles of order 3, such as the one on the right in Figure
14, so dsn(W5) = 3.

In the following proposition we demonstrate precisely when it is possible for scramble number
and disjoint scramble number to be distinct.

Proposition 5.2. For all graphs G with sn(G) ≤ 3, we have dsn(G) = sn(G). However, for n ≥ 4,
there exists a graph G with n = sn(G) > dsn(G).

Proof. If G is a graph with sn(G) = 1, then letting v ∈ V (G) the scramble S = {{v}} has ||S|| = 1
and so dsn(G) = sn(G). If G is a graph with sn(G) = 2, G is not a tree. Thus, G contains some
cycle C. Let u and v be two distinct vertices on C, and let S = {{u}, {v}}. An egg-cut must cut
C in two places, and so e(S) ≥ 2. Additionally, as the two eggs of S are disjoint, h(S) = 2 and
thus ||S|| = 2. It follows that dsn(G) ≥ 2 and so sn(G) = dsn(G).

If sn(G) = 3, then by Theorem 1.1 we know that G contains one of the graphs from Figure 1 as
a topological minor; call that graph M . Let H be a subgraph of G that is a subdivision of M . Build
a scramble on H as follows: start with the scramble SM on M illustrated in Figure 4, and modify
the eggs to include any vertices in edges that are subdivided in passing from M to H, thereby
obtaining a scramble SH on H. The eggs have remained disjoint, and the number of edge-disjoint
paths connecting each pairs of eggs has remained unchanged, so ||SH || = ||SM || = 3. Finally, we
may consider our scramble as a scramble SG on G, and we have dsn(G) ≥ ||SG|| ≥ ||SH || = 3 (in
passing from H to G, the hitting number remains unchanged, and the egg-cut number could only
increase). Since sn(G) = 3, we have dsn(G) = 3, as desired.

Figure 15: A graph with scramble number 5 and disjoint scramble number 4

We already know that there exists a graph G with dsn(G) < sn(G) = 4, namely the wheel graph
W5 from Example 5.1. Now let n ≥ 5, and let G be the graph obtained from a complete graph
Kn+2 by deleting a cycle of length n+2; this graph is illustrated for n = 5 in Figure 15. Note that
α(G) = 2: every vertex is connected to all but two other vertices, which are connected to each other.
The minimum degree δ(G) equals n−1, which since n ≥ 5 is at least b(n+2)/2c−1 = b|V (G)|/2c−1.
This allows us to apply [4, Corollary 3.2] to deduce that sn(G) = |V (G)|−α(G) = (n+2)− 2 = n.
To see that dsn(G) < n, suppose that S is a disjoint scramble on G. If h(S) ≥ n, then at least one
of the n or more eggs has at most one vertex in it. But deleting the n − 1 edges incident to that
vertex would then give an egg-cut, meaning ||S|| ≤ n− 1. Thus dsn(G) ≤ n− 1 < n = sn(G).

We close with a result concerning the computational complexity of scramble number. It is
known that computing the scramble number of a graph is NP-hard [4]. We can ask if, for a fixed
k, there exists a polynomial-time algorithm to check whether sn(G) ≤ k. For k = 1, the answer is
yes, since there are efficient algorithms to check if a graph is a tree or not. For k = 2, Theorem
1.1 allows us to determine the answer is still yes. We first recall the following useful result.

Theorem 5.3 ([6, Theorem 1.1]). For every graph H, there is a O(|V (G)|3) time algorithm that
decides if H is a topological minor of G.
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Corollary 5.4. There is a O(|V (G)|3) time algorithm that decides whether sn(G) ≤ 2.

Proof. Let G be a graph. From Theorem 5.3 we know there is a O(|V (G)|3) time algorithm to
check if any fixed graph H is a topological minor of G. To check if G has sn(G) ≤ 2 we must
simply run this algorithm four times to check for graphs K4, P3;3, C3;2,2,1, and LL6. If G contains
one of these graphs as a topological minor, then sn(G) > 2. If G does not, then sn(G) ≤ 2.

For fixed k ≥ 3, the question is to our knowledge open.

Question 5.5. For what fixed values of k ≥ 3 does there exist a polynomial time algorithm to
determine whether sn(G) ≤ k?

We remark that for k = 3, the answer will be the same if we replace sn(G) with dsn(G) (which
may be simpler to work with).
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