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Among the multiple antiviral defense mechanisms found in
prokaryotes, CRISPR-Cas systems stand out as the only known
RNA-programmed pathways for detecting and destroying bac-
teriophages and plasmids. Class 1 CRISPR-Cas systems, the
most widespread and diverse of these adaptive immune systems,
use an RNA-guided multiprotein complex to find foreign
nucleic acids and trigger their destruction. In this review, we
describe how these multisubunit complexes target and cleave
DNA and RNA and how regulatory molecules control their
activities. We also highlight similarities to and differences from
Class 2 CRISPR-Cas systems, which use a single-protein effec-
tor, as well as other types of bacterial and eukaryotic immune
systems. We summarize current applications of the Class 1
CRISPR-Cas systems for DNA/RNA modification, control of
gene expression, and nucleic acid detection.

All cells must defend against infection by harmful genetic
elements, like viruses or transposons. Prokaryotes use a multi-
tude of different strategies to combat their viruses, which are
called phages. These include, but are not limited to, adsorption
and injection blocking, abortive infection, toxin-antitoxin,
restriction-modification, and CRISPR-Cas (clustered regularly
interspaced short palindromic repeats—CRISPR-associated)
systems (1). CRISPR-Cas loci constitute the only known adapt-
ive immune system in bacteria and archaea. They typically
include an array of repeat sequences (CRISPRs) with interven-
ing “spacers,” matching sequences of DNA or RNA from
viruses or other mobile genetic elements, and a set of genes
encoding Cas proteins (Fig. 1A). Transcription across the
CRISPR array produces a precursor crRNA (pre-crRNA) that is
processed by nucleases into small, noncoding CRISPR RNAs
(crRNAs) (Fig. 1B). Each crRNA molecule assembles with one
or more Cas proteins into an effector complex that binds
crRNA-complementary regions in foreign DNA or RNA (Fig. 1,
C-E). The effector complex then triggers degradation of the
targeted DNA or RNA using either an intrinsic nuclease activity
or a separate nuclease in trans (Fig. 1, A and C-E).

CRISPR-Cas systems have been classified into two groups
comprising three types each (Class 1 includes Types I, III, and
IV; Class 2 includes Types I1, V, and VI) (2). Class 1 systems use
multisubunit complexes that contain multiple different Cas
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proteins, whereas Class 2 effectors contain only a single protein
(Fig. 1, C-E) (2). To date, much attention has focused on the
mechanism of Class 2 effectors, such as Cas9, Casl2, and
Casl13, given their practical applications in genome editing and
manipulation (3, 4). Class 1 systems, although less well-studied,
are far more abundant in nature, comprising about 90% of
CRISPR-Cas systems in bacteria and archaea (2, 5, 6). They are
also present across diverse bacterial and archaeal phyla and
likely evolved earlier than Class 2 systems (2). Class 1 CRISPR-
Cas systems harbor a number of different enzymatic activities,
including cleavage of dsDNA, ssDNA, and RNA, and synthesis
of a second messenger molecule, cyclic oligoadenylate (cOA).
These functions could be harnessed for genome or transcrip-
tome manipulation and control of cellular outcomes. Here, we
review the interference mechanisms of effector complexes
from Class 1 systems and their regulation, focusing on new
paradigms of adaptive immunity from recent studies of Type I
and III systems, and emerging applications of these systems in
genome and transcriptome engineering.

Class 1 surveillance complex architecture and crRNA
biogenesis

Surveillance complex architecture and activity

Class 1 systems use RNA-guided surveillance complexes that
are composed of multiple different subunits assembled around
a single crRNA molecule (2). Type I systems are the most abun-
dant, and they include nine different subtypes (I-A to I-E, I-
F1, I-F2, I-F3, and I-G) (2). Structures of Type I “Cascade”
(CRISPR-associated complex for antiviral defense) complexes
show that they adopt a seahorse-like architecture (7). They typ-
ically contain a single copy of Cas8, the large subunit, and Cas5
at the 5" end of the crRNA (“foot”), a helical “backbone” fila-
ment composed of Cas7 subunits that assembles along the
crRNA spacer region, a “belly” filament composed of Casll
subunits, and a Cas6 subunit that binds to the 3’ end of the
crRNA (“head”) and caps the backbone (Fig. 1C) (8—-10). Struc-
tural studies of Type III effector complexes, “Csm” (Cas sub-
type Mtube; subtypes III-A/D/E/F) and “Cmr” (Cas module
RAMP; subtypes III-B/C), indicate that they adopt a similar
architecture but have a more extended, wormlike shape (11—
13). Type III complexes also include Cas10 as the large subunit,
instead of Cas8 (Fig. 1D). Although Casl0 and Cas8 occupy
similar positions in the complex, they are highly divergent by
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Figure 1. Effector complex architecture and crRNA biogenesis in Class 1 CRISPR-Cas systems. A, Cas protein composition of Class 1 effector complexes
and their associated nuclease effectors. Subunits that are analogous between the different types are shown with the same color. Type lll- and IV-specific
names for Cas7, Cas5, Cas6, and Cas11 subunits are also shown below the canonical subunit names. B, biogenesis of Class 1 crRNAs. Transcription across a
CRISPR array (repeat sequences are shown as gray diamonds, and unique spacers are shown as dark and light blue rectangles) leads to production of a pre-
crBNA transcript that is then cleaved by Cas6 into individual guide molecules. Each crRNA has a 5’-tag that is derived from the repeat sequence. Individual
guides are then directly incorporated into Type | and IV complexes or trimmed at their 3" end by host nucleases before assembly with Type Ill effector subunits.
C, architecture and enzymatic activities of the Type | crRNA-guided effector complex, Cascade. Subunits are shown with the same color scheme as in A. The
crRNA is shown with the same color scheme as in B. D, as in C but for the Type Il effector complex, Csm (subtypes Ill-A/D/E/F) or Cmr (subtypes llIl-B/C). Subunits
unique to Type lll systems (Cas10 and either Csm5 or Cmr1/6) are labeled. E, as in C but for the Type IV effector complex. The subunit unique to the Type IV sys-
tem (Csf1) is labeled. Type IV complexes contain a crRNA assembled with Cas7, Cas6, and Csf1, but their enzymatic activity, precise stoichiometry, and structure

are not yet known.

amino acid sequence and play different roles in target interfer-
ence (2). Another notable difference between Type I and III
complexes is that Type III complexes lack Cas6, instead
employing specialized Cas7-like subunits (Csm5 in Type III-A
and Cmrl and Cmr6 in Type III-B) to bind the 3’ end of the
crRNA (Fig. 1D) (11-14). Type IV CRISPR-Cas complexes,
which include three subtypes (IV-A to IV-C), have a unique
large subunit, Csfl, as well as subunits homologous to Cas7,
Cas6, and Cas5 (Fig. 1E) (15, 16). The subunit assembly and
architecture of Type IV complexes is not clear, as structures of
the entire complex have not yet been determined.

14474 J Biol. Chem. (2020) 295(42) 14473-14487

Homology between Cas7, Cas6, and Cas5 and the similarity
of complex architectures across Class 1 systems point to a com-
mon evolutionary origin for these effector complexes. Both
Type I and III systems also have Casll, known as the “small
subunit.” Cas11 proteins do not share significant sequence sim-
ilarity across types, but they exhibit structural homology and
occupy analogous positions in Type I and III complexes (Fig. 1,
Cand D) (2,7, 17). The divergence of large subunits, Cas10 and
Cas8, on the other hand, suggests that they may be under
greater evolutionary pressure from phage counterdefense strat-
egies. This is consistent with the roles that Cas8 and Cas10 play
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in activating and regulating immunity, which we will discuss in
subsequent sections of this review.

Several subtypes of Type I CRISPR-Cas also lack genes
encoding for the large and/or small subunits (2). In these sys-
tems, other subunits typically take over the functional roles and
positions of Cas8 and/or Casl11 in the complex. For example, in
the Type [-F2 system from Shewanella putrefaciens, Cas5 and
Cas7 substitute for the lack of Cas8 and Casll, respectively
(18). In addition, many Class 1 complexes include fusions of
subunits into a single protein (2). The newly identified Type III-
E locus lacks the large subunit, Cas10, and encodes a predicted
fusion of Cas7 with Casll (2). Whether one of the subunits
replaces Casl0, or if this system has a novel function compared
with other Type III systems, is not known. Future biochemical
and structural studies of diverse Type I and III variants will
likely uncover unexpected functional and structural versatility
of Class 1 CRISPR-Cas complexes and identify minimal com-
plexes that could be more easily expressed and assembled in
heterologous systems for genome engineering.

Class 1 CRISPR-Cas systems also encode for effector nucle-
ases and/or helicases that cooperate with the surveillance com-
plex for RNA-guided immunity (Fig. 1A). The Type I Cascade
has no intrinsic enzymatic activity and relies on recruitment of
Cas3, a helicase-nuclease, to degrade dsDNA in trans (Fig. 1A)
(19, 20). Type III CRISPR-Cas Csm/Cmr possess intrinsic
DNase and RNase activities but also synthesize a second mes-
senger, cOA, which binds and stimulates RNA cleavage by
Csm6/Csx1, a separate nuclease effector (Fig. 14) (21). Type IV
systems are associated with Csf4, a DinG family helicase (Fig.
1A) (2). Csf4 is required for in vivo plasmid interference by
Type IV systems, but its role in the process is unclear (22).
These “partner” enzymes illustrate how a common RNA-
guided surveillance complex architecture can be adapted to
perform diverse functions.

crRNA biogenesis

In contrast to the CRISPR-Cas9 effector, which requires
both a crRNA and a tracrRNA (trans-acting crRNA) for activ-
ity, all Class 1 complexes contain only a single crRNA molecule
(2, 23). Processing of the crRNA in Class 1 systems typically
requires the Cas6 RNase, which cuts pre-crRNA transcripts
into individual crRNA molecules containing a repeat-derived
5'-tag, a spacer region, and a 3'-stem loop hairpin (Fig. 1B). In
Type I and IV systems, the crRNA retains the 3’ hairpin struc-
ture (Fig. 1B) (15, 16). In Type III systems, host nucleases trim
the 3’ end to variable lengths corresponding to the number of
Cas7 subunits in the complex (Fig. 1B) (24-27). Genetic and
biochemical studies of a Type III-A system from Staphylococ-
cus epidermidis suggest that Csm5, the subunit that caps the
Cas7 helical filament, recruits polynucleotide phosphorylase
(PNP), to trim the exposed 3" end of the crRNA (28, 29). How-
ever, deletion of the pnp gene did not result in complete loss of
mature, trimmed crRNAs, suggesting that other host RNases
may also contribute to processing (29). A recent study also
showed that a Type III-Bv system, which lacks Cas6, uses a host
RNase E enzyme for crRNA maturation (30). This highlights
the importance of studying different subtypes to understand
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how Class 1 crRNAs are specifically assembled with Cas pro-
teins into RNA-guided effector complexes. Understanding the
minimal requirements for guide maturation and complex as-
sembly would also facilitate introduction of these complexes
into eukaryotic cells for DNA and RNA detection and editing.

Class 1 CRISPR-Cas interference

Type I and III CRISPR-Cas systems together comprise the
most abundant types of CRISPR-Cas systems and encompass
diverse subtypes (2, 5). In this section, we review recent advan-
ces in our mechanistic understanding of nucleic acid targeting
by Type I and III surveillance complexes and their modes of
regulation.

DNA targeting and regulation by type | CRISPR-Cas
systems

Type I CRISPR-Cas systems target homologous regions of
dsDNA in phages or plasmids for degradation (2). The overall
mechanism of targeting involves two major steps—recognition
of a complementary target in foreign DNA by the surveillance
complex and cleavage of the target by Cas3, a protein with an
SF2 (Superfamily 2) helicase and HD (histidine-aspartate) nu-
clease domain, that is recruited in trans (31-33). Target recog-
nition requires complementarity between the crRNA and the
target, as well as the presence of a protospacer-adjacent motif
(PAM), which allows the host to avoid self-immunity (34).

RNA-guided DNA binding and cleavage by type | CRISPR-Cas
systems

During an infection, the Type I complex first scans the viral
genome for the PAM, a 2-5-bp motif flanking the target
sequence (Fig. 24) (34). Because the PAM is not present in the
repeat sequences flanking the CRISPR spacers, this protects
the host’'s own DNA from being targeted for degradation (35).
The mechanism of PAM recognition has been most well-stud-
ied for the Type I-E Cascade complex from Escherichia coli,
which recognizes a trinucleotide 5’-A-(T/C/A)-G-3' (36). The
PAM is recognized in a double-stranded form through minor
groove contacts with a lysine finger, glutamine wedge, and gly-
cine loop in Cas8 (also known as Csel in Type I-E systems)
(36). Local bending of the DNA combined with insertion of the
wedge motif into the DNA duplex following the PAM initiates
DNA unwinding (36, 37). Wedge and loop motifs are function-
ally and structurally conserved across different Type I systems,
but sequence variability enables recognition of distinct PAM
sequences (36—39). Some Type I complexes have also evolved
to use other subunits for PAM recognition. The Type I-F2 com-
plex, which lacks Cas8, uses Cas5 to recognize a 5'-GG-3' PAM
through major groove interactions (18). Studies of different
Type I variants will likely reveal further diversity in the mecha-
nisms and protein motifs used to recognize PAM sequences.
This information could be used to engineer more flexible PAM
recognition or nearly PAM-less variants of Type I effector com-
plexes for genome engineering, similar to those that have been
developed for Cas9 (40, 41).
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bound target site. 3, integration of the transposon’s DNA cargo (pink lines) occurs ~49 bp downstream of the DNA target. In all panels, individual Cas proteins

are colored as in Fig. 1, but with colors muted for greater clarity of the nucleic acid strands.

Once DNA unwinding initiates at the PAM, crRNA hybrid-
ization with the target strand of DNA leads to displacement of
the nontarget DNA strand, forming a three-stranded nucleic
acid structure known as an R-loop (Fig. 24) (42, 43). Structural,
biochemical, and single-molecule experiments on purified
Type I complexes have led to a detailed understanding of R-
loop formation. Complementarity at a seed region (positions
1-5 and 7-8 following the PAM) is required for target binding
and interference (37, 44). In the Thermobifida fusca Type I-E
Cascade, binding of the PAM first leads to bending of DNA and
unwinding of an ~11-nucleotide “seed loop” intermediate (37).
Further base-pairing along the crRNA then expands the seed
loop into a full R-loop, which is then locked in place by interac-

14476 J Biol. Chem. (2020) 295(42) 14473-14487

tions with Cas7 and/or Casl1 (37, 45). In Type I-E Cascade,
positively charged residues on the surface of Cas8 and Cas5
guide the displaced nontarget strand away from target strand
toward the back of the Cas11 subunits, where it is locked (Fig.
2A) (18, 36—38). In Type I-F2 complexes, which lack Cas11 and
Cas8, the nontarget strand winds through a positively charged
“trench” formed by Cas5 and Cas7 subunits (18, 37). The Cas7
“backbone” and Casll “belly” filaments are also involved in
“locking” the target DNA once it hybridizes with the crRNA
(18, 37, 38). Single-molecule studies indicate that R-loop for-
mation serves as a step for rejecting off-target DNA, as mis-
matches between the crRNA and the target increase the likeli-
hood of R-loop collapse before it reaches the locked state (45).
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Bacterial RNA polymerases, which unwind DNA without
energy input, also bend the path of the DNA duplex, suggesting
that this may be a conserved mechanism to facilitate DNA
unwinding (46, 47). Studies of DNA unwinding and R-loop sta-
bilization in subtypes of Type I systems may reveal further simi-
larities with other protein families that unwind or bend DNA,
including helicases, RNA polymerases, transcription factors,
and RecA.

Formation of the R-loop induces a conformational change in
the complex that enables recruitment of Cas3, a helicase-nucle-
ase protein that is required for target DNA degradation (Fig.
2A) (19, 20, 48). Current evidence supports a model in which
Cas3 nicks the DNA at the R-loop, loads onto the ssDNA, and
processively unwinds and degrades DNA in a unidirectional
and ATP-dependent manner (Fig. 24) (19, 33, 49). Structures
of T. fusca Cascade bound to a DNA target and Cas3 revealed
that a protruding “bubble” in the nontarget strand of the R-
loop is required for Cas3 to nick the DNA (Fig. 24) (50). Cas-
cade bound to a partial R-loop lacking the protruding bubble
could recruit Cas3, but it did not induce DNA cleavage by Cas3
(50, 51). Single-molecule FRET and bulk fluorescence experi-
ments indicate that after ssDNA loading, Cas3 first stays associ-
ated with Cascade and cleaves ssDNA by a “reeling” mecha-
nism; in this model, Cas3 uses its SF2 helicase domain to
repeatedly pull in and present ssDNA to its HD nuclease do-
main for cleavage (Fig. 2A4) (52-54). Previous studies also
showed that Cas3 can break free of Cascade and translocate on
its own, but no evidence of DNA degradation during transloca-
tion was observed (Fig. 24) (53). Thus, it is unclear whether
Cas3 would degrade DNA during translocation. In addition,
whereas structural and biochemical studies have shed light on
how Cas3 degrades the nontarget strand, how it nicks and
degrades the target strand of DNA is less well-understood. One
possibility is that once the nontarget strand has been degraded,
the exposed ssDNA of the target strand would become a sub-
strate for a second Cas3 molecule to nick and degrade.

Anti-CRISPR inhibition of type | CRISPR-Cas effector
complexes

Several phage and prophage genomes encode for “anti-
CRISPRs,” small proteins (~50-300 amino acids) that inhibit
CRISPR-mediated immunity (55). Identification and character-
ization of anti-CRISPRs that inhibit Type I-E or I-F systems
show that they block DNA interference using diverse mecha-
nisms (55). Some anti-CRISPRs mimic duplex DNA or induce a
conformational change in Cas8 to interfere with PAM binding
(9, 38). Structural studies of Type I-F anti-CRISPRs indicate
that some can bind to the Cas7 backbone or the crRNA to pre-
vent crRNA:ssDNA base-pairing and R-loop formation (9, 38).
In addition, Type I-E and I-F anti-CRISPRs, AcrIE1 and AcrIF3,
bind and inhibit the recruitment of Cas3 by Cascade for DNA
cleavage (56-58). Structural comparison of AcrIF3 with Cas8
revealed that AcrIF3 resembles a helical bundle in Cas8 that
binds Cas3, which indicates that mimicry of host proteins could
be a common strategy for phages to evade CRISPR-Cas inter-
ference (48). Binding of the Type I-F anti-CRISPR, AcrIF9, to
the surveillance complex also induces nonspecific DNA bind-
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ing, which could sequester the complex away from its target
(59, 60). These discoveries highlight not only the diversity of
anti-CRISPRs but also the importance of PAM recognition, R-
loop formation, and DNA cleavage in Type I CRISPR-Cas im-
munity. The steps at which anti-CRISPRs inhibit Class 1 com-
plexes are analogous to steps at which anti-CRISPRs inhibit
DNA-targeting Class 2 systems, Cas9 and Casl12, illustrating a
remarkable evolutionary convergence of counterdefense strat-
egies by phages (61, 62). Further discovery and characterization
of anti-CRISPRs against other Type I subtypes could reveal new
insights into the host-virus evolutionary arms race and lead to
new strategies to control Type I CRISPR-Cas effectors for ge-
nome manipulation.

RNA-guided DNA transposition by type | CRISPR-Cas systems

Bioinformatic analyses revealed that some Type I-B and I-F
systems lacking Cas3 have been co-opted by mobile genetic ele-
ments (63). The transposons in which these systems are found
also lack a key protein involved in directing site-specific trans-
position (63). Thus, it was hypothesized that the Type I effector
in these systems used crRNAs to direct DNA insertion by the
transposase to specific sites (63). This concept was recently
demonstrated by experiments showing that a transposon-
encoded Type I-F effector complex from Vibrio cholerae can
mediate targeted insertion of cargo DNA sequences when
expressed in E. coli (Fig. 2B) (64). Biochemical and genetic
experiments indicate that the Type I-F effector specifically
interacts directly with TniQ, a transposition protein, and that
this interaction is required for RNA-guided transposition (64,
65). Cryo-EM structures also showed that the Type I-F complex
associates with a dimer of TniQ through contacts with Cas6
and a Cas7 subunit at the 3’ end of the crRNA (65). Interest-
ingly, RNA-guided transposition is sensitive to mismatches not
only in the PAM-proximal seed region, but also in a four-nucle-
otide region near the TniQ-binding site (64, 65). Further struc-
tural and biochemical studies are needed to determine how tar-
get DNA binding and unwinding leads to recruitment of the
core transposase, comprising TnsA, TnsB, and TnsC, for RNA-
guided DNA insertion (Fig. 2B). Such studies could facilitate
the targeted insertion of large DNA elements into the genomes
of microbes and eukaryotic cells without requiring homologous
recombination, which is often inefficient and only occurs in
dividing cells.

Dual DNA and RNA targeting by type IlIl CRISPR-Cas
systems

Type III CRISPR-Cas systems are the most evolutionarily an-
cient CRISPR-Cas systems and are widespread across bacteria
and archaea (66). Their effector complexes include enzymatic
domains that cleave RNA and ssDNA and that synthesize sec-
ond messenger molecules to activate antiviral nucleases in
trans (Fig. 3A). Their effector complexes coordinate a sophisti-
cated, multipronged defense against invasive genetic elements,
including DNA and RNA phages, plasmids, and jumbo phages
(67-71). They are divided into six subtypes (III-A to III-F), but
the most common are Type III-A and III-B systems (2, 5). The
study of these systems has offered insights into the evolutionary
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origins of CRISPR-Cas immunity and surprising parallels with
other prokaryotic and eukaryotic immune systems.

RNA-guided RNA cleavage by type Ill CRISPR-Cas complexes

Type III CRISPR-Cas effector complexes recognize RNA
through base-pairing interactions with their crRNAs and cleave
it using their Cas7-like subunits, Csm3 (III-A/D/E/F) or Cmr4
(III-B/C) (Fig. 3A). As in Type I complexes, the crRNA is pre-
sented by the effector complex in discontinuous segments for
base-pairing with the target nucleic acid (11-13, 72). In addi-
tion, each Csm3/Cmr4 inserts a “finger” loop into the duplex,
flipping out every 6th base pair (11-14). This closely resembles
the mechanism of ssDNA binding in the R-loops of Type I
effector complexes (10, 38). Type III effector complexes do not

14478 J Biol. Chem. (2020) 295(42) 14473-14487

have a clear seed region for RNA binding, unlike Type I Cas-
cade and other RNA-guided RNA nucleases, like Argonaute
and CRISPR-Cas13 (73, 74). Each segment of target RNA is rec-
ognized and cleaved independently by Csm3 or Cmr4; crRNA:
target mismatches or deoxynucleotide modifications that
disrupt cleavage at one site do not inhibit cleavage at other
sites (25, 75). Complete guide:target complementarity is not
required for RNA cleavage, although reduced base-pairing
results in a slower rate of cleavage (68, 76). A seed or “target
capture” motif has been reported at the 5" end of the target in
Type III-B Cmr, but truncation of this region did not entirely
inhibit RNA binding or cleavage (77, 78).

Unlike in Type I effectors, the Cas7-like subunits of Type III
effector complexes (Csm3/Cmr4) are catalytically active.
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Cleavage requires a conserved Asp residue in Csm3/Cmr4 and
occurs 3’ to every flipped base, resulting in a characteristic six-
nucleotide cleavage periodicity (11-14, 72). RNA cleavage
requires a 2'-OH in the target RNA for cleavage, and the result-
ing termini of the reaction products have a 5'-OH and either a
3’-phosphate or 2',3"-cyclic phosphate (14, 79). This suggests
a metal-independent cleavage mechanism, but experiments
show that divalent metal ions are required for RNA cleavage
(24-26, 68, 77,79, 80). Atomic-resolution structures of Type III
complexes show how RNA targets are positioned prior to cleav-
age, but the use of active-site mutants or a noncleavable ssDNA
target in these structures has prevented determination of the
cleavage mechanism (12-14). Thus, structural studies of the
complex in cleavage-competent and post-cleavage states will be
required to understand the catalytic mechanism of RNA cleav-
age by Type Il effectors.

RNA-activated DNA cleavage by type Ill CRISPR-Cas effector
complexes

Biochemical experiments showed that Csm and Cmr recog-
nize and cleave complementary single-stranded RNA in vitro
(Fig. 3A) (81). However, Type III-A and III-B CRISPR-Cas sys-
tems exhibit transcription-dependent DNA targeting in vivo
(82, 83). This was a puzzle, until the discovery that recognition
of RNA allosterically activates a latent ssDNA endonuclease ac-
tivity in Cas10, the large subunit (Fig. 3A4) (26, 75, 84—86). DNA
cleavage is catalyzed by Casl0’s HD nuclease domain and
requires RNA binding but not RNA cleavage by the effector
complex (26, 75, 85-87). The HD domain cleaves random
sequences of ssDNA and generally requires transition metals
(Ni** or Mn**) for maximal activity, similar to Cas3 (26, 72,
75, 84—86). How Cas10 is activated to bind and cleave ssDNA is
not clear, as ssDNA could not be visualized in structures of
Csm/Cmr, and few conformational changes were observed in
the HD domain upon RNA binding (12, 13, 72). The identifica-
tion of Casl0 mutations that constitutively activate ssDNA
cleavage indicate that RNA binding may relieve an autoinhib-
ited state (13). Elucidation of the conformational changes and
dynamics involved in activation are needed to fully understand
how crRNA-guided RNA binding activates the Cas10 subunit
for ssDNA cleavage.

Due to the ability of Type III effector complexes to cleave
both ssDNA and RNA, it was proposed that the Type III com-
plex would co-transcriptionally bind the growing transcript
and trigger cleavage of both the RNA and the unwound ssDNA
in transcription elongation complexes (26, 75, 84, 85). How-
ever, experiments in which Csm was added to in vitro tran-
scription reactions or stalled transcription complexes indicated
that Type III-A Csm prefers to cut RNA transcripts, rather
than ssDNA (72, 88). This preference is likely because the tran-
script is more accessible than ssDNA bound by RNA polymer-
ase during transcription. This is supported by the finding that
Csm can cleave ssDNA in free R-loops that are not bound by
RNA polymerase (72). Similarly, the Cas3 nuclease in Type I
systems only nicks the ssDNA of the R-loop when it forms an
exposed loop that protrudes above the surface of Cascade (50).
Further studies are required to identify the DNA target of Type
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III CRISPR-Cas effector complexes in the cell. Potential targets
may include unbound R-loops (Fig. 34) or DNA replication
intermediates (43, 89). Type III effectors could also cleave DNA
during transcription initiation, when longer lengths of ssDNA
are exposed by RNA polymerase during a process known as
“scrunching” (90). Thus, future studies may reveal an unantici-
pated level of coordination between CRISPR-Cas immunity
and other DNA processes in the cell.

DNA cleavage is important to help clear a phage infection,
but it could also be deleterious to the host’s genomic integrity if
it persists indefinitely. Thus, Cas10 is gradually inactivated over
time by cleavage and dissociation of the RNA from the effector
complex (Fig. 34) (75, 84). Consistent with this, use of a modi-
fied, noncleavable RNA or a cleavage-deficient Csm3/Cmr4
mutant prevented inactivation of ssDNA cleavage (75, 84). In
the cell, RNA cleavage by the Csm3/Cmr4 subunits in the effec-
tor complex is likely important for turning off Cas10’s DNase
activity once viral transcripts have been cleared.

RNA-guided cOA synthesis in Type lll complexes

In addition to DNA cleavage, RNA binding also activates the
Cas10 subunit for cOA synthesis and activation of signaling
effectors (Fig. 34) (91-95). Binding of cOA to accessory nucle-
ases, Csm6 (III-A) or Csx1 (III-B), dramatically stimulates their
enzymatic activity (Fig. 34) (91, 93, 94). This leads to degrada-
tion of viral and host transcripts, induces a growth arrest in the
host cell, and promotes plasmid clearance (70, 96, 97). Target
RNA cleavage and dissociation from the crRNA-guided effec-
tor complex eventually inactivates the Palm domains of Cas10
for cOA synthesis, which would prevent persistent degradation
of host transcripts after the phage infection has been cleared
(91, 95). Genomic analyses of CRISPR-Cas loci suggest that the
ancestral function of these systems was a nucleotide-based
stress-signaling pathway, similar to the Type III cOA-signaling
pathway (98). Thus, further studies into RNA-guided cOA sig-
naling could reveal unexpected connections between RNA-
guided CRISPR-Cas immunity and other nucleotide-signaling
pathways.

Biochemical and structural studies of Type III-A complexes
suggest the following mechanism for cOA synthesis. In addi-
tion to the HD nuclease domain, Cas10 also has two Palm
domains that form a composite active site for cOA synthesis
(12, 91, 93, 99). The catalytic motif for cOA synthesis, GGDD,
is present in only one of these domains (91, 94). Cooperative
binding of two ATP molecules by the Palm domains positions
the 3’-OH of one ATP molecule for attack of the 5'-a-phos-
phate of the second molecule to generate a 3'-5" phosphodies-
ter bond (12, 91, 93, 99). Specific recognition of ATP is medi-
ated through a network of hydrogen-bonding interactions (99).
Further reaction of this substrate with incoming ATP mole-
cules leads to extension of the oligoadenylate chain and eventu-
ally ring closure through intramolecular attack of the terminal
nucleotide’s 5'-a-P by the first nucleotide’s 3'-OH (Fig. 34, bot-
tom inset) (91, 99). Release of the cyclic oligoadenylates occurs
through a channel formed by Casl0 and Csm4 (99). The
lengths of the cOA species range from 3 to 6 AMP molecules
per ring (Fig. 3A, bottom inset), but how the size of the ring is
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determined is not well-understood. In addition, how exactly
RNA binding allosterically activates Cas10’s Palm domains for
cOA synthesis is also not understood.

RNA-guided cOA signaling in Type Ill CRISPR-Cas systems

Type III CRISPR-Cas loci are frequently associated with
genes encoding for Csm6 or Csx1, which contain an N-terminal
CARF (CRISPR-associated Rossman fold) “sensor” domain and
a C-terminal HEPN (higher eukaryotes and prokaryotes nucle-
otide-binding) “effector” domain (5, 100, 101). The RNase ac-
tivity of Csm6/Csx1’s HEPN domain is allosterically activated
by binding of either cOA, or cOAg4 to the CARF domains (Fig.
3A) (91, 93, 94, 102). The HEPN domains of Csm6 and Csx1 ex-
hibit a base cleavage preference that varies by ortholog, with
most cleaving adjacent to either purines or cytosines (91, 97,
100, 103). Structures of Csm6 and Csx1 reveal that they typi-
cally form dimers, but some orthologs also exhibit the ability to
form higher-order oligomers (101, 102, 104, 105). Binding of
cOA does not appear to induce large conformational changes
in their HEPN active sites, suggesting that conformational acti-
vation may involve subtle changes or transient sampling of an
activated state (102, 104).

In addition to Csm6 and Csx1, several DNases fused to
CARF domains also respond to cOA molecules. For example,
binding of cOA; to NucC, an enzyme whose gene is associated
with Type III CRISPR-Cas loci and other prokaryotic defense
modules, activates it for dsSDNA cleavage (106). A recent study
also identified canl (CRISPR-associated nuclease 1) in a ge-
nome with a Type III-A CRISPR-Cas system (107). Binding of
cOA, to Canl activates it for nicking at random sequences of
dsDNA (107). These cOA-activated nucleases may promote
immunity by triggering degradation of viral DNA during
replication or induce host death before the phage can repli-
cate and infect other cells. Bioinformatic studies have also
identified additional CARF domain proteins with trans-
membrane or other nuclease domains (108, 109). Further
characterization of cOA-regulated effectors is needed to
determine the full effects of cOA signaling by Type III sys-
tems in cells.

Nonspecific RNA or DNA degradation by nucleases can have
deleterious effects on the host cell. Thus, cells have evolved
dedicated enzymes called “ring nucleases” that degrade cOA
and switch off the signaling pathway (110) (Fig. 3B). Ring nucle-
ases degrade cOA, or cOAg using a catalytically active CARF
domain (Fig. 3B) (110). Some Csm6/Csx1 orthologs also harbor
an intrinsic ring nuclease activity in their CARF domains that
leads to slow self-inactivation over time (Fig. 3B) (102, 105,
111). Cleavage proceeds in two steps, with the first step gener-
ating a linear oligoadenylate with a 2',3'-cyclic phosphate, fol-
lowed by a second step in which it is split into two halves (Fig.
3B) (102, 105, 110). Several Csm6 orthologs are still activated
by linear A, or Ag with 2',3"-cyclic phosphates at their 3’ ter-
mini, suggesting that the second cleavage event is crucial for
complete inactivation (94). Interestingly, anti-CRISPR proteins
that inactivate Type III CRISPR-Cas systems are either highly
active ring nucleases (e.g AcrllI-1) or proteins that bind Cas10
and inhibit its cyclic oligoadenylate activity (e.g. AcrIIIB1) (112,
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113). This highlights the importance of the cOA signaling path-
way in bacterial immunity. How the opposing activities of
Csm6/Csx1 and ring nucleases are effectively coordinated to
mount a defense against phages is still not well-understood. In
vitro kinetic studies of substrate binding and cleavage by the
effector complex and its associated nucleases have been
used to model the dynamics of Type III CRISPR-Cas immu-
nity in cells and illustrate the distinct effects that host and
viral ring nucleases have on immunity (114). Further studies
that measure actual cellular concentrations of cOA and
both host and viral transcript levels during an infection will
reveal whether these kinetic models accurately describe how
the Type III cOA signaling pathway protects cells from
invaders.

Regulation of Type Ill Cas10 by tag:anti-tag pairing

All immune systems must distinguish between self versus
nonself. Antisense transcription across the CRISPR array pro-
duces RNA molecules that are complementary to the crRNA
(115, 116). To prevent these antisense transcripts from trigger-
ing autoimmunity, complementarity between the 5'-tag of the
crRNA and the “anti-tag” sequence flanking the 3’ end of the
target RNA inhibits Cas10’s enzymatic activities (Fig. 3C) (26,
69, 91). In Type III-A systems, base-pairing between positions
—2to —5 in the crRNA 5'-tag (+1 is the first nucleotide of the
spacer region) and the corresponding positions in the anti-tag
is crucial for recognition of self RNA (Fig. 3C) (12, 13, 69, 84,
91). In the Type III-B system from Thermotoga maritima, inhi-
bition is similarly mediated by tag:anti-tag complementarity
but is additionally enhanced by the presence of a guanine oppo-
site position —1 in the crRNA tag (117). How this guanine pro-
motes Cas10 inhibition is unclear. The Type III-B CRISPR-Cas
system from Pyrococcus furiosus also recognizes a “proto-
spacer-flanking sequence” in the first three nucleotides flanking
the 3" end of the target (opposite positions —1 to —3 of the
crRNA) to license ssDNA cleavage and cOA synthesis by Cas10
(85, 118). It is unclear how the protospacer-flanking sequence
is recognized by the P. furiosus Cmr and whether tag:anti-tag
complementarity still plays a role. Further analysis of how Type
III complexes bind different anti-tag sequences will advance
our understanding of how RNA binding regulates both ssDNA
cleavage and cOA signaling by Cas10. Interestingly, the inhibi-
tion of Type III complexes by complementarity between the
crRNA 5'-tag and the anti-tag has also been reported in an
RNA-targeting Class 2 system, Type VI Cas13 (119). Thus, fur-
ther insights into self versus nonself discrimination by Type III
systems could reveal concepts that apply to other RNA-guided
RNA nucleases.

Comparison of type Ill CRISPR-Cas systems with other
nucleotide-based immune systems in bacteria and eukaryotes

Recent studies show that Type III CRISPR-Cas systems are
not the only bacterial immune systems that use cyclic nucleo-
tides for signaling. For instance, a cyclic GMP-AMP synthase
(cGAS)-like enzyme in a bacterial defense module synthesizes a
cyclic GMP-AMP in response to phage infection, which leads
to membrane degradation by a phospholipase and cell death
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(120). A recent study also reported that a cGAS/DncV-like
nucleotidyltransferase (CD-NTase) could synthesize cOAsg,
which in turn could bind and activate NucC, a DNA nuclease
(121). Thus, insights into the cOA signaling pathway in Type
III CRISPR-Cas systems may reveal concepts that are broadly
applicable to other cyclic nucleotide—based antiphage signaling
systems in prokaryotes.

The Type III cOA signaling pathway also bears similarities to
the oligoadenylate synthase (OAS)-RNase L and cGAS-stimu-
lator of interferon genes (STING) pathways in eukaryotes
(122). OAS-RNase L constitutes a eukaryotic innate immune
system, in which sensing of viral dsSRNA activates OAS to syn-
thesize 2',5'-linked oligoadenylates. These oligoadenylates in
turn bind and activate RNase L to cleave viral transcripts. Like
Csm6, RNase L also has a HEPN domain that catalyzes RNA
cleavage. In the cGAS-STING pathway, cytosolic DNA acti-
vates the cGAS enzyme to synthesize a cyclic GMP-AMP,
which binds to the STING receptor and ultimately activates
transcription of antiviral genes. Thus, studies of the cOA sig-
naling pathway in Type III systems may reveal evolutionary
connections between bacterial adaptive immunity and eukary-
otic innate immunity.

Editing and applications of Class 1 CRISPR-Cas effectors

Although Class 1 systems are less widely used than Class 2
systems in genome editing, they are emerging as tools for ge-
nome and transcriptome manipulation in both microbial and
eukaryotic cells (Fig. 4, A-C). In bacteria, targeting of Type I
CRISPR-Cas effectors to DNA sequences in the absence of
Cas3 or with a Cas3-inhibiting anti-CRISPR leads to transcrip-
tional repression (Fig. 4A4) (56, 123). Transcriptional inhibition
is strongest when guide RNAs target the promoter rather than
the ORF, similar to dCas9, a cleavage-deficient mutant of Cas9
engineered to repress transcription in cells (123, 124). Fusion
of a transcriptional activator or repressor domain to Type I
CRISPR-Cas complex subunits also enables the complex to
modulate gene expression in plant or mammalian cells,
illustrating its utility across different kingdoms (Fig. 4A)
(125, 126).

Type I systems have also been introduced into various
cell types for DNA modification (127-130). Introduction of the
Type I effector complex and the Cas3 helicase-nuclease into
mammalian cells results in long-range chromosomal deletions
in DNA (Fig. 4A) (127-129). These deletions are unidirectional,
consistent with biochemical studies of Cas3 degradation. Type
I-E effectors fused to the Fokl nuclease can also be pro-
grammed with a pair of guide RNAs to induce dsDNA breaks,
triggering both small deletions and templated repair in mam-
malian cells (Fig. 44) (129). Endogenous Type I systems
have been harnessed for faster genome manipulation of the
archaeon, Sulfolobus islandicus (130). Lastly, transposase-asso-
ciated Type I-F systems have been shown to specifically insert
synthetic “cargo” DNA up to 10 kb in length in E. coli with
high fidelity, and thus holds promise as a technique to
knock-in genes without requiring homologous recombina-
tion (Fig. 4A) (64). Indeed, recent preprints have reported
the use of transposase-associated Type I-F systems for tar-
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geted insertion of antibiotic resistance genes in members of
a microbial community and multiplexed gene insertion in
several medically and industrially important bacterial spe-
cies (131, 132).

Type III CRISPR-Cas effectors have been repurposed for
RNA knockdown in archaea and in zebrafish, which lack an
RNAIi pathway (Fig. 4B) (133—-135). They have also been used to
assist in phage DNA editing (136). In addition, the cOA-regu-
lated enzyme, Csm6, has been repurposed for viral diagnostics
in conjunction with Cas13, a Type IV CRISPR-Cas effector that
is activated to cleave RNA in trans upon crRNA-guided recog-
nition of an RNA target (Fig. 4B) (103). Trans cleavage of an
RNA oligonucleotide bearing an Ag¢ at its 5" end and multiple
uridines at its 3" end by Leptotrichia wadei Cas13 leads to pro-
duction of a linear Ag with a 2",3"-cyclic phosphate, which can
bind to and activate certain Csmé6 orthologs (103). This led
to an ~3.5-fold boost in RNA detection sensitivity over
Cas13 alone (103). Further exploration of Csm6 and Csx1
orthologs from different organisms could lead to improved
kinetics and sensitivity, expanded multiplexing, and greater
thermostability of RNA diagnostic technologies. There may
also be additional opportunities for reprogramming endoge-
nous Type III systems in individual bacteria or bacterial
communities by delivery of crRNA guides. The RNA-sens-
ing function of Type III CRISPR-Cas effector complexes
coupled with nonspecific RNA degradation by Csm6 could
also be used to modify cell state (e.g. induce cell death or in-
hibit cell growth) in response to transcription of specific
genes (Fig. 4C). This may be useful in the context of antimi-
crobials or for developing disease therapeutics that target
cells with aberrant gene expression.

A major challenge for the widespread use of these systems in
eukaryotic cells has been the delivery of these large complexes
to the site of editing in cells. Several methods have now been
established for introducing Type I and III complexes into eu-
karyotic cells, including nucleofection of preformed ribonu-
cleoprotein complexes and expression from multiple DNA vec-
tors (125-129). Further discovery of minimal Type I and III
complexes and advances in RNA and protein delivery methods
will simplify delivery and facilitate the continued development
of these systems as tools for DNA and RNA manipulation in
diverse cell types.

Class 1 CRISPR-Cas effectors extend the toolbox for genome
engineering beyond the capabilities of Class 2 systems. The dis-
tinct and flexible PAM sequence requirements of Type I sys-
tems, which differ from the PAM sequences recognized by
Cas9 and Casl12, broaden the array of DNA targets that can be
recognized (34). The generation of long-range deletions by
Type I Cascade also contrasts with the smaller deletions
(“indels”) that result from Cas9 or Cas12 editing (Fig. 44) (127,
128). The multisubunit composition of Class 1 effectors would
also facilitate multiplexed fusion of domains that perform DNA
or RNA base editing, epigenetic modifications, visualization of
genomic loci or RNA sequences, and/or transcriptional regula-
tion (Fig. 4C). Transposase-associated Type I-F systems also
integrate DNA cargo with fewer off-target events than a
transposase-associated Type V (Casl2k) system (64, 132,
137). Lastly, the unique, cOA-regulated RNases of Type III
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Figure 4. Current and future applications of Class 1 systems. A, applications of Type | CRISPR-Cas effector complexes include transcriptional repression/
activation, generation of long-range genomic deletions, generation of dsDNA breaks, and insertion of large DNA fragments (left to right). Subunits are colored
as in Fig. 1. B, applications of Type Ill effectors include RNA knockdown by Csm or Cmr (left) and use of the Csm6 RNase in RNA diagnostics (right). Subunits are
colored as in Fig. 1. Cas13 is an RNA-guided RNA nuclease from the Type VI CRISPR-Cas system. Trans cleavage of an RNA substrate containing adenosines (yel-
low) and uridines (red) by Cas13 leads to release of a linear hexaadenylate with a 2',3’-cyclic phosphate (Ag>P activator). As>P can bind and stimulate Csm6
to cleave a fluorescent RNA reporter. C, future applications of Class 1 CRISPR-Cas systems. The multisubunit Type | and Ill complexes could be fused to diverse
functional domains for DNA and RNA editing. Multiple subunits per effector complex could also facilitate multiplexing. The cOA signaling pathway of Type IlI
systems could be harnessed for control of cellular states in prokaryotes or eukaryotes by coupling cOA-binding nucleases to a cOA synthetase. MTase,

methyltransferase.

systems could also be repurposed for control of cellular
growth or behavior, in response to an upstream signal gen-
erated by a cOA synthetase (Fig. 4C). Further study of Class
1 systems and their mechanism will likely continue to
broaden the array of tools available for investigation of ge-
nome and transcriptome function in cells and for in vitro
nucleic acid detection.

Summary and outlook

Class 1 CRISPR-Cas systems are the most common adaptive
immunity pathways in prokaryotes. The diverse functions and
activities of Type I and III crRNA-guided complexes and
enzymes illustrate their versatility, and recent studies highlight
their promise and development as tools for genome and tran-
scriptome manipulation. These complexes resemble each other
in subunit assembly and use a conserved mechanism for
crRNA-mediated target recognition. Type I and III systems
have evolved distinct mechanisms to recognize dsDNA and
RNA, respectively. Discrimination between self and nonself
occurs through interactions with sequences flanking their
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DNA or RNA targets; Type I Cascade recognizes a dsDNA
PAM, whereas Type III Csm/Cmr probes for noncomplemen-
tarity between an RNA anti-tag and the 5'-tag of its crRNA.
DNA recognition and R-loop formation by Type I complexes
licenses foreign DNA degradation by Cas3. In Type III systems,
RNA recognition triggers nonspecific ssDNA cleavage and ini-
tiation of a cOA signaling pathway that activates additional nu-
cleases for DNA or RNA degradation in trans. Type III systems
also include a timer for self-inactivation by slow cleavage of the
RNA target and degradation of cOA, the second messenger.
Critical steps of interference are inhibited by anti-CRISPR pro-
teins against both systems. Fundamental studies of Class 1
enzymes have enabled the application of Type I systems for
transcriptional regulation and genome editing and Type III sys-
tems for RNA degradation and diagnostics. Future studies on
Class 1 CRISPR-Cas complexes will expand our understanding
of the mechanism and evolution of prokaryotic RNA-guided
immunity and reveal unexpected connections with other cellu-
lar DNA processes, nucleotide signaling pathways, and eukary-
otic innate immunity. Such insights will also open new avenues
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for using CRISPR-Cas systems to interrogate genome and tran-
scriptome function, control gene expression, and detect DNA
or RNA for disease diagnostics.
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