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ABSTRACT

When existing clinical trial data suggest a promising subgroup, we must address the question of how
good the selected subgroup really is. The usual statistical inference applied to the selected subgroup,
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assuming that the subgroup is chosen independent of the data, may lead to an overly optimistic evaluation

of the selected subgroup. In this article, we address the issue of selection bias and develop a de-biasing
bootstrap inference procedure for the best selected subgroup effect. The proposed inference procedure is
model-free, easy to compute, and asymptotically sharp. We demonstrate the merit of our proposed method
by reanalyzing the MONET1 trial and show that how the subgroup is selected post hoc should play an
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important role in any statistical analysis. Supplementary materials for this article are available online.

1. Introduction

Subgroup analysis aims to uncover and confirm heterogeneity
of treatment effects within a population. In clinical trials, a
new treatment might turn out to be marginally effective with
the overall study population, but it is often the case that the
treatment appears very promising for a subgroup. For exam-
ple, isosorbide dinitrate and hydralazine hydrochloride (BiDil)
was approved by the FDA as an effective treatment for heart
fajlure for African Americans, a subgroup previously noted
to have a favorable response (see Brody and Hunt 2006). It
was recently found through subgroup analysis that lefitolimod
appears effective on patients with extensive-stage small-cell
lung cancer in two important subgroups, see the announce-
ment from MOLOGEN (2018). Sun et al. (2012) showed that
among the published randomized trials in core medical jour-
nals in 2007, 207 of them (44%) contained subgroup analysis
results.

How to evaluate the subgroup effect in view of a data-
dependent search used to find the subgroup is an interesting
statistical question with substantial impacts on the managerial
decisions and regulatory deliberations on clinical trials. The
question of statistical validity of post-hoc subgroup analysis has
become more acute as follow-up trials to confirm a promising
subgroup identified from earlier trial data failed frequently. One
example to note is the MONET1 study, a study of motesanib
plus carboplatin/paclitaxel (C/P) in patients with advanced
nonsquamous nonsmall-cell lung cancer (NSCLC). Based on
MONET], East Asian patients were found to be responsive
to the treatment (see Kubota et al. 2014). The observed effect
size of this subgroup was promising and the drug developer,
Amgen, decided to invest additional resources and designed a
new trial for this subgroup. However, the follow-up trail (AMG-
706) failed to confirm the efficacy of the treatment for the East

Asian subgroup (see Kubota et al. 2017). Therefore, we ask
a natural question whether the earlier subgroup analysis was
appropriately adjusted for.

In practice, subgroup analysis might be conducted in many
different ways, but, as in the MONET1 study, it typically con-
sists of two inter-connected steps: subgroup identification and
subgroup confirmation. In the identification step, one looks for
the best selected subgroup in the population. The candidate
subgroups might come from biological or clinical considera-
tions, expert opinions, or simply a form of data mining applied
to the available data. The confirmation step often requires a
rigorous statistical inference procedure that accounts for the
subgroup identification, and better yet, an additional clinical
trial on the identified subgroup. In this article, we focus on
statistical inference on the best selected subgroup and propose
an approximately de-biased estimate of the subgroup treatment
effect as well as a valid confidence bound.

By the best selected subgroup we refer to the subgroup
that has the highest observed (or estimated) treatment effect
among a predefined set of candidate subgroups under con-
sideration. The best subgroup may be identified through a
known subgroup identification method/algorithm. Available
methods include machine learning-based algorithms as in Lip-
kovich et al. (2011) and Su et al. (2009), or model-based
methods as in Shen and He (2015) and Fan, Song, and Lu
(2017). Whatever the case, the best selected subgroup is asso-
ciated with a set of competing subgroups, and this set must
be specified explicitly or implicitly by the subgroup identifi-
cation method. If the best subgroup is nonunique, we take
any one of them for the purpose of our analysis. After the
best subgroup is identified post hoc, one needs to decide
how good it really is and whether one should invest addi-
tional resources to conduct a clinical trial on the subpopula-

CONTACT Xinzhou Guo @xinzhoug@umich.edu @ Department of Statistics, University of Michigan, Ann Arbor, MI 48109.
@ Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

© 2020 American Statistical Association



Invest more in the selected ('best’) subgroup

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1499

Subgroup lIdentification

Figure 1. Two-step subgroup analysis.
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Figure 2. Boxplot of max(;§1 , /§2) when g1 = B, = 0and ,31, /§2 ~id N(O, 1).

tion. We refer the decision to invest more in additional clin-
ical trials as the decision of subgroup pursuit, as shown in
Figure 1.

Inference on the best selected subgroup identified from the
same data suffers from over-optimism and is likely to lead to
false discoveries, due to what we shall call subgroup selection
bias. For example, a naive approach is to simply use the esti-
mated effect size of the selected subgroup and perform statistical
inference conditional on the subgroup. To fix ideas, we consider
a toy example consisting of two prespecified subgroups with
true treatment effect sizes (e.g., log odds ratio) B; and fa,
respectively. Suppose that the estimated effect sizes are f; = 0.6
and 32 = 0.1, and that a treatment effect above 0.3 is con-
sidered statistically and clinically significant. Then, subgroup
1 would be identified as the best selected subgroup with a
significant treatment effect. To understand the over optimism
of max(,él, ﬁz), let us assume both subgroups have no treat-
ment effects, i = B> = 0, and fB; and B, are independent
and follow the standard normal distribution. Then, Figure 2
gives the boxplot of max(,él, ,éz) based on 2000 random sam-
ples. It shows clearly that max(ﬁl, 32) is an inflated estimate
of max(Bi, f2) in this case. In fact simple calculations show
E[max(ﬁl, 32)] ~ 0.6. It means that even under this very unfa-
vorable situation for subgroup pursuit where both subgroups
have no treatment effects, we can still observe the best subgroup
effect size of 0.6 on average. Therefore, the naive approach is very
risky for subgroup pursuit. To make a better-informed decision,
an appropriate adjustment to the subgroup selection bias is
needed.

In this article, we propose a resampling-based method to
address subgroup selection bias. To be specific, we develop a
bias-reduced estimator and a valid one-sided confidence bound
on the selected subgroup effect size as measured by log-odds
ratio, for instance. Even though the standard bootstrap method
does not estimate the bias correctly, we use the bootstrap to
learn about the bias and develop an appropriate procedure for

subgroup pursuit

Subgroup Confirmation

bias correction. Our proposed method is model-free, easy to
compute and provides asymptotically sharp inference.

Subgroup selection bias is quite well-recognized in sub-
group analysis as a fundamental challenge for inference on the
selected subgroup effect (see, e.g., Magnusson and Turnbull
2013; Thomas and Bornkamp 2017). Some attempts have been
made to address the issue. Fuentes, Casella, and Wells (2018)
and Hall and Miller (2010) proposed valid inference based
on simultaneous controls so the resulting inference procedures
tend to be conservative. Some ad hoc methods to correct for
the bias have been suggested in Rosenkranz (2016) and Stallard,
Todd, and Whitehead (2008), among others, but those meth-
ods lack theoretical justifications. Bornkamp et al. (2017) and
Woody and Scott (2018) considered Bayesian inference, which
is clearly model-dependent. As far as we know, model-free and
asymptotically sharp inference on the best selected subgroup has
been lacking, and the purpose of our work is to bridge this gap
and help users make a better-informed decision on subgroup
pursuit.

The remainder of this article is organized as follows. In
Section 2, we propose a bootstrap-based confidence bound and
a bias-reduced estimator for the best selected subgroup effect
when the subgroups are predefined. In Section 3, we generalize
the proposed inference procedure to accommodate subgroups
that are identified post hoc. In Section 4, we analyze synthetic
data that mimic the MONET] study to show how the proposed
method can make a better-informed decision on subgroup pur-
suit in such a case study. In Section 5, we study the finite
sample performance of the proposed method by simulation. In
Section 6, we give a summary of our work with some concluding
remarks.

2. Inference With Predefined Subgroups

In this section, we focus on a relatively simple scenario in sub-
group analysis where a small number of candidate subgroups are
predefined. We propose bootstrap-based asymptotically sharp
inference and a bias-reduced estimator on the effect size of the
best selected subgroup.

2.1. Problem Setting

We consider the problem of k (possibly overlapped) subgroups
with g and ; as the effect size and the observed effect size of the
ith subgroup, respectively, for i = 1,..., k. The subgroups are
usually defined by baseline characteristics of the subjects. We
assume k is a fixed constant, but the total sample size for the
trial is n. We also assume that the data include n; subjects in
the ith subgroup, and ZLI n; > n, where equality occurs only
when the k subgroups are mutually exclusive. In any subsequent
asymptotic analysis, we assume that n;/n is bounded away from
0 and 1, as the sample size n increases. At this point, we leave
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the specification of the treatment effect to each individual study.
It could be a log odds ratio, log hazard ratio, or a simple mean
or a regression coefficient, with f; estimated from a sample of
n; subjects. Without loss of generality, we assume that a larger
value of B; means a better treatment effect.

Let [k] = {L,...,k} be the index set. Two quantities of
interest in the subgroup analysis are

1. the best selected subgroup effect: B, where s =

argmax; y Bis
2. the best subgroup effect: Bnax = maxierig fi.

Note that Bmax is a fixed parameter, whereas f; is the true
effect size of the selected subgroup. One may debate which
quantity should be used for subgroup pursuit decisions, and our
proposed inference method works for both quantities. We will
start from inference on Bpax and show that the same procedure
works for inferring on .

In the cases with k = 2 and when f;, i = 1,2, are jointly nor-
mally distributed, the statistic ﬁmax = MmaXje[k] ,31- has a skew-
normal distribution (see Nadarajah and Kotz 2008). However,
the skew-normal distribution has unknown parameters, and if
those parameters are replaced by their best possible estimates
with root-n rate of convergence, any inference based on the
estimated skew-normal distribution does not lead to valid infer-
ence. Of course, the problem does not become less challenging
when k > 2, which calls for a new inferential method to be
developed.

2.2. Proposed Method

We propose the following bootstrap-based method to construct
alower confidence limit for B, for any k > 2. The method has
atuning parameter r € (0,0.5), and uses the estimated subgroup
effects ﬂ, and their maximum value ,Bmax

Suppose that the data consist of independent observations
{Dj, Zj} from j = 1,...,n subjects, where D; represents treat-
ment and outcome measures, and Z; C [k] indicates which
subgroup or subgroups subject j belongs to. We may use the
bootstrap sample {D]’.“,Z;‘},j = 1,...,n, by drawing n sub-
jects with replacements. The subgroup treatment effects for the
bootstrapped sample are then denoted by /§1* fori = 1,...,k
Depending on the specific model being used to calculate the
treatment effects, other bootstrap methods might be used,
so long as some bootstrap consistency results are satisfied as
specified in the next subsection. With the bootstrap samples
at hand, the proposed method proceeds with the following
algorithm.

Algorithm 1 Lower confidence limit for Bmax

1: Fori=1,...,ksetd; = (1 — n”0'5)(/§max — ,Bi);
2 forb=1,...,Bdo
3. For bootstrap sample b; calculate the subgroup effect sizes

B, and then Ty = /n(maxieq) (B, + di) — Bmax)s
4: end for
5. Let ¢y = quantile(T},1 — «). The level 1 — o lower

confidence limit is Bmax — o /+/7.

2.3. Asymptotic Validity

Just as ,f?max = MmaXje[k] ﬁi is a biased estimator of SBmax, the
bootstrap estimate S} =~ = max;y B for each bootstrap
sample is not centered at Bumax- The proposed method makes
an adjustment to each subgroup effect estimate in the bootstrap
sample by the amount d;, which measures how far the ith sub-
group is from the best selected subgroup based on the estimated
subgroup effect sizes. The amount of adjustment is greater if A;
is further away from Bmay, and this adjustment enables T; to
correct the subgroup selection bias while the usual bootstrap
method fails. The modified bootstrap estimate of Syax is

ﬂmax,modlﬁed - maX(;B + d)

To establish the validity of the proposed method, we require
asymptotic normality of the subgroup effect estimates as well as
their bootstrap estimates at each subgroup. We use P and P* to
denote the probability under the sampling distribution and the
bootstrap-induced distribution, respectively.

Assumption 1.1 (Asymptotic normality). ﬁ(,@l - B1, ,32 —
Bas .. .» Bx — Br) is asymptotically normal.

Assumptzon 1.2 (Bootstrap consistency). /n(Bf — ﬁl,ﬁz
,32, B ﬂk) is bootstrap consistent, that is, conditional
on the data, the asymptotic distribution of \/n(8; — ,31, By —
Bas. .. B — B) is the same as the limiting distribution in
Assumption 1.1. in probability.

In typical parametric and semiparametric models, Assump-
tion 1.1 is satisfied for a wide range of estimators f;. Assump-
tion 1.2 is satisfied for most smooth estimators, including the
parameter estimates from the proportional hazard models (see
Efron and Tibshirani 1994). Our main result is given as follows.

Theorem 1. Under Assumptions 1.1 and 1.2, and for any 0 <
r < 0.5, we have,

sup | P* (V1B modified — Pmax) < X)

X€ER

— P(v/(Brmax

— Bmax) <X)| = 0
as n — 09, in probability w.r.t. P.

Theorem 1 confirms that the proposed inference for Bmax is
asymptotically sharp in the sense that the proposed confidence
bound in Algorithm 1 will achieve the exact nominal level as
the sample size goes to infinite under very mild assumptions,
which distinguishes the proposed inference from conservative
methods. The following corollary facilitates inference on ;.

Corollary 1. Under Assumptions 1.1 and 1.2, and for any 0 <
r < 0.5, we have

sup |P>’< (\/ﬁ(ﬂ:‘lax,modiﬁed - ,éma)c) <x)

x€eR

— P(v/1(Bmax — Bs) < %)| — 0,

as n — 00, in probability w.r.t P.



Corollary 1 indicates that the proposed bootstrap-based con-
fidence interval for Smax can also serve as an asymptotically
sharp prediction interval for ;. Therefore, we can use the same
procedure to infer on the best and the best selected subgroup
effect in subgroup pursuit, without having to choose which
quantity to focus on. The remaining issue with the proposed
method is the tuning parameter r. In theory, it can be any
positive value less than 1/2 but we defer the discussion on the
practical choices of the tuning parameter to Section 2.5.

2.4. Bias-Reduced Estimator

Following the results in Theorem 1, we propose a bias-reduced
estimator for Sy, and a biased-reduced predictor for ;. From
Lemma 2.1 in Appendix A.1 of the supplementary materials,
we see that under regularity conditions, E[/(Bmax — Bmax)]
is asymptotically equivalent to E[max;cy ﬁ(,éi — Bi)] where
H = {i: Bi = Bmax}- Therefore, there is a bias E[,émax— Brmax] in
the order of O(1/4/n) when the number of the best subgroups
is greater than 1 (e.g., 1 = B in the case of two subgroups),
because E[max;cy ﬁ(ﬁi — Bi)] converges to the mean of an
asymmetric distribution (e.g., skew normal in the case of K = 2
as studied in Nadarajah and Kotz (2008)). To be more specific,
the bias is nonnegligible for inference if the size of H, |H]|, is
greater than 1.

We propose a bias-reduced estimator ,émax,reduced as follows.

ﬁmax,reduced = Brmax — E* [ﬂ:;lax,modiﬁed — Bmaxl,

where E* denotes the expectation under the bootstrap distribu-
tion. For a rigorous justification, we need the following two mild
assumptions.

Assumption 2.1 (2nd moment bound). limsup,_, E[ﬁ(ﬁi —
B> < oo, fori=1,...,k

Assumption 2.2 (2nd bootstrap moment). limsup,_, . E*[v/n
(B — Bi)1? < oo, in probability, fori = 1,..., k.

Theorem 2. Under Assumptions 1.1, 1.2, 2.1, and 2.2, and for
any 0 < r < 0.5, we have

E*[V/n(B e modified — Pmax)] = EIV/N(Binax — Bmax) ]| — 0
as n — 00, in probability w.r.t P.
Theorem 2 confirms that we can use the bootstrap to approx-
imate the bias, E[/(Bmax — Bmax)], and asymptotically the

accuracy of the approximation is op(1/4/n), even when |H| > 1.
Under a slightly stronger bootstrap 2nd moment condition

Assumption 2.3. limsup,,_, E{E*[ﬁ(ﬁf‘ - Bi)]z} < 00, for
i=1,...,k

We can have the following result.

Corollary 2. Under Assumptions 1.1, 1.2, 2.1, and 2.3, and for
any 0 < r < 0.5, we have
|E(E* [V/1(Bh iy modified — Pmax)]} — EIV1(Bmax — Bmax)|

— 0, as n— oo.
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Corollary 2 implies the following comparisons between Bmax
and Bmax,reduced in terms of bias. If there is only one best sub-
group (|H| = 1), the biases of ,3max and ﬁmax,reduced are both
0(1/+/n). However, it there is more than one best subgroup
(|Hl > 1), the bias of Bmax is O(1/+/n) while the bias of
Brmax,reduced is reduced to 0(1/\/ﬁ)

2.5. Choice of the Tuning Parameter

A small value of the tuning parameter r tends to preserve
the coverage probability better in finite samples at the cost of
possibly conservative confidence bounds. We suggest a data-
adaptive cross-validated choice of r to help practitioners. The
basic idea is to choose r to minimize the mean square error
between Bmax,reduced(”) and Bmax. To make this possible without
knowing the true value of Bmax, We provide an approximation to
the mean square error that can be computed from the data, and
use cross-validation to choose the tuning parameter.

Let A = {r1,..., 1} denote a set of possible tuning parame-
ters in the range of (0,0.5) with r; < -+ < 1y, and m is a finite
integer. The following algorithm can be used to choose r € A.

Algorithm 2 Cross-validated choice of tuning parameter

1: Randomly partition the data into v (approximately) equal-
sized subsamples;

2 forl=1,...,mdo

3 forj=1,...,vdo

4: Basic setup: use the jth subsample as the reference data
and the rest as the training data;

5 Bias-reduced estimator: use the training data to

obtain the bias-reduced estimator of the best subgroup,
Bmax,reduced ,(r1), with r; as the tuning parameter;
6: fori=1,...,kdo
7: Calculations on the reference data: use the reference
data to estimate the effect size of the ith subgroup, f; >
and its standard error &; j;

8: Evaluation of accuracy: calculate h;j(r) =
(,émax,reduced,j(rl) - Bi,j)z - 6'5]4;

9: end for

10: end for

11: end for

12: The  tuning  parameter is chosen to  be

argminy (minegg[ Y1) oy (m) /7).

. . =V
To motivate the use of min;ey [Z§=1 hij(r;)/v] as an approx-
imate objective function for cross-validation, we state the fol-

lowing result.

Theorem 3. Under the assumptions of Corollary 2 and given the
set A, there exists an integer, Ny, such that for any n > N, and
r € A, we have

E[Bmaxreduced, 1 (1) — ,Bmax]2 = g[ll{]l E[Bmaxreduced, 1 (1) — ,Bi]z-

Theorem 3 implies that minimizing the mean square error
of the bias-reduced estimator is asymptotically equivalent to
minimizing minjefk) E[ Bmax,reduced,1 (1) — Bi1? as a function of
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r € A. The inclusion of 61.?]- in the calculation of h; () in Step 8

of the above algorithm is to account for the variation in f; j used
there.

3. Inference With Post-Hoc Identified Subgroups

In this section, we consider the cases where the best subgroup is
post-hoc identified by searching over many (possibly infinitely
many) subgroups. To be more specific, let {S(c) : ¢ € D} denote
the family of subgroups, where S(c) is a subgroup indexed by
¢ € Dand D is a compact set in a Euclidean space. Let B(c)
and ,é (¢) represent the effect size and the estimated effect size of
subgroup S(c), respectively.

To distinguish from the best subgroup effect size defined in
the previous section, we use ymax = sup..p f(c) as the best sub-
group effect and y; as the best selected subgroup effect, which
is the true effect size of the subgroup that has the highest A(c)
among ¢ € D. We further assume the best selected subgroup is
achievable; that is, max.cp B(c) exists almost surely.

3.1. Asymptotically Sharp Inference

We generalize the inference procedure for the predefined sub-
groups in Section 2.2 to the following algorithm, where Pmax =
SUP,cp ,3(c), and B*(c), ¢ € D, are the estimated effect sizes of
the subgroups for a bootstrap sample. As before, we take the
tuning parameter as any value r € (0,1/2).

Algorithm 3 Lower confidence limit for ymax
1: Forc e D, letd(c) = (1 — 1" %%) (Pmax — B(0));
2. forb=1,...,Bdo
3:  For bootstrap sample b; calculate effect sizes 8 (c) for c €
D, and then Tj = /n(sup p(B; (¢) + d(€)) — Pmax)s
end for
: Let ¢, = quantile(T, 1 — «), the level o lower confidence
limit is Pmax — o /+/7.

oo

The bootstrap procedure is based on the modified bootstrap
estimator, V:;lax,mo dified = SUPep(B*(c)+d(c)), where d(c) does

not depend on the bootstrap sample. The justification of the
above procedure needs the following assumptions.

Assumption 4.1 (Asymptotically Gaussian process). /n(B(-) —
B()) =9 G() in loo(D), where G(-) is a Gaussian process with
continuous sample path in probability.

Assumption 4.2 (Bootstrap consistency). /n(B*(-) — B(~)) —d
G(+) in Io (D) in probability.

Assumption 4.3 (Continuous mapping). ¢ — B(c) is a continu-
ous mapping in D.

Theorem 4. Under Assumptions 4.1-4.3 and for any 0 < r <
0.5, we have as n — 00,

sup |P*(‘/Z(V:1ax,modiﬁed - ?ma.x) =X
xeR

- P(\/Z(),}max — Ymax) < X)| > 0
in probability w.r.t P.

Theorem 4 implies that the proposed inference is asymptot-
ically sharp. Except the continuous path assumptions for 8(c)
and for G(c), the assumptions required here are the stochastic
process version of Assumptions 1.1 and 1.2. If the (bootstrap)
estimated effect size can be written in a form of an empirical
process, then, Assumptions 4.1 and 4.2 can be often verified by
the use of the Donsker class (see Van Der Vaart and Wellner
1996). In other words, these assumptions can be expected to
hold in many applications.

Similar to Section 2.4, we can have a bias-reduced estimator
of Ymax as

J;max,reduced = Ymax — E*[y;;ax,modiﬁed — Pmax]-

3.2. Selected Subgroup Inference

Previously in the case of predefined subgroups, the inference
procedure in Section 2.2 works for both Bmay and fs. This is
true because as the sample size goes to infinity, the probability
that we select the best subgroup converges to one, which implies
V1(Bs — Bmax) —> 0 in probability. However, the almost sure
selection cannot be expected for post-hoc identified subgroups
in general and we have to take a critical look how we can infer
on ys.

From the proof of Theorem 4, we see that, asymptotically, the
one-sided confidence interval for ymay is actually based on the
one-sided confidence band for B(c) on ¢ € K, where K = {c :
B(c) = sup,.p B(d)} is the set of ¢ values corresponding to the
best subgroup effect. More specifically, the critical value, ¢y is
the 1 — o quantile of sup, . G(c) asymptotically. In this sense,
we call the interval estimates constructed in Section 3.1 locally
simultaneous confidence intervals, in contrasts to any inference
based on a (globally) simultaneous confidence band of S(c) for
all ¢ € D. Because K C D, the resulting inference is more
efficient than the methods based on simultaneous confidence
bands such as that of Fuentes, Casella, and Wells (2018).

Furthermore, although y; may not equal ymax with probabil-
ity one, it falls into a local neighborhood of K, which shrinks
to K as sample size increases. This enables us to establish the
following result, analogous to Corollary 1 for f.

Theorem 5. Under the assumptions of Theorem 4, we have, as
n— 00,

sup |P *(\/E(yr;klax,modiﬁed — Pmax) < X)

xeR
_P(N/Z();max —¥s) <x)|—>0
in probability w.r.t P.
4, Example

In this section, we demonstrate the merit of our proposed
method by reanalyzing the failed MONET1 trial. With our
proposed method, we can provide an appropriate guidance on
subgroup pursuit decisions based on the initial MONET1 trial
data.

The purpose of the phase Il of MONET1 trial was to confirm
the efficacy of an experimental treatment of motesanib plus



carboplatin/ paclitaxel (C/P) in patients with advanced non-
squamous nonsmall-cell lung cancer (NSCLC). The trial failed
to confirm the overall efficacy, but the East Asian subgroup was
found to be highly promising, as reported in Kubota et al. (2014).
The MONETT1 study reported the hazard ratio, where a hazard
ratio of less than 1 is in favor of the treatment. To make this
convention consistent with the general treatment earlier in the
article, one may simply equate §; in this article to the negative
log-hazard ratio.

The MONET]1 trial data showed that for the East Asian
subgroup the treatment has the hazard ratio of HR = 0.669 and
p-value = 0.0223, as reported in Kubota et al. (2014). Predefined
subgroups were used in the identification of this subgroup, but
we could not find any information on how many and which can-
didate subgroups were actually considered. The earlier investi-
gation and the existing literature did not pay attention to this
question, and consequently ignored the subgroup selection bias
in the analysis.

Because the original data from the MONET1 trial were
proprietary, we turn to synthetic data that share many of the
same characteristics as the MONET1 trial for the case study.
To that end, we consider the situations where the number of
candidate subgroups ranges from 2 to 16 based on binary coding
of some or all of the following variables in the data: East Asian
patient, stage IIIB, received radiotherapy, male, age greater than
65, never smoked, ECOG PS status 0, and adenocarcinoma
histology. If the first indicator variable of East Asian patient is
used, we have two candidate subgroups only (East Asian vs.
the others). If each of the eight indicator variables are used, we
have a total of 16 subgroups, and they are clearly overlapping.
Suppose that the best subgroup is selected from the candidates
based on the estimated hazard ratios.

Assuming the subgroups are homogeneous and no treatment
effect exists in any subgroup, we generate the synthetic data
with the estimated survival function and censoring distribution
based on Figure 1.A in Kubota et al. (2014). Additional details
for the generation of the synthetic data are given in the Appendix
of the supplementary materials.

Now, we have a data-generating model, which enables us to
generate a lot of datasets. To mimic MONET1, we focus on one
realization with which the East Asian subgroup is selected as
the best subgroup among the subgroups we consider and the
estimated effect size and p-value of the East Asian subgroup
are similar to those reported in Kubota et al. (2014). Table 1
shows the estimated effect size and p-value of the East Asian
subgroup from MONET1 reported in Kubota et al. (2014) and
the synthetic dataset we use.

With this synthetic dataset, we apply the proposed infer-
ence procedure and compare it with the naive method which
assumes that the subgroup of East Asians is not selected from
the same data (see Table 2). With the naive method for the
East Asian subgroup, the hazard ratio of 0.663 is statistically

Table 1. Comparison of hazard ratio and p-value of the best selected subgroup, the
East Asian subgroup, between MONET1 study and the synthetic data.

Hazard ratio p-value
Synthetic data 0.663 0.019
MONET1 0.669 0.022

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1503

Table 2. The bias-reduced estimate and the 95% upper bound of the hazard ratio
of the best selected subgroup (r = 0.03).

No. of subgroups 2 4 8 10 16 Naive
Upper bound 0.894 0.947 1.012 1.013 1.024 0.883
Hazard ratio 0.711 0.747 0.781 0.790 0.818 0.663
.rj - © Upper Bound
£ Hazard Ratio
_ —_———
1730 1721 1712 73 naive

r

Figure 3. Impact of r: the bias-reduced estimate and the 95% upper bound of the
hazard ratio of the best selected subgroup in the case of k = 8. The tuning param-
eter marked with red color indicates the value chosen by the adaptive procedure.

significant. From Table 2, we note that if only two predefined
subgroups are considered in the subgroup selection, the 95%
upper confidence limit on the hazard ratio is below 1.0, and the
subgroup treatment effect is still significant. However, if eight
or more candidate subgroups are considered in the selection
process, the 95% upper confidence limit on the hazard ratio
exceeds 1, implying that the selected subgroup effect is no longer
significant. If that is how the East Asian subgroup was identified,
our analysis would reach a different conclusion from that of
Kubota et al. (2014). Ignoring how the East Asian subgroup was
identified would disallow us to evaluate statistical evidence for
the selected subgroup.

To see how sensitive the results would be as we choose
different values for the tuning parameter r, we refer to Figure 3.
When k = 8 candidate subgroups were considered, any value of
r < 1/12 or the proposed adaptive method led to the conclusion
that the selected subgroup effect is statistically insignificant. As
r gets larger, the result would be closer to the naive method, but
over a reasonable range of choices for r around the proposed
adaptive method we are comforted by the evidence of stability
in the analysis.

5. Simulation Study

In this section, we use Monte Carlo simulations to evaluate the
finite-sample performance of the proposed method in terms of
bias and coverage probabilities. We focus on censored outcomes
where the treatment effect is measured by the log hazard ratio
from the proportional hazard model. In Sections 5.1 and 5.2,
we evaluate the empirical coverage and bias for the predefined
subgroups and the post-hoc identified subgroups, respectively.
In Section 5.3, we compare the empirical coverage based on the
synthetic data generating model used in Section 4.



1504 X.GUO AND X. HE

5.1. Simulation With Predefined Subgroups

To start with, we consider a simple setting consisting of two
predefined subgroups. Let D denote the treatment indicator,
and random samples of size n = 400 are generated from the
proportional hazard model with the hazard function A(t) =
Lo(t)ePP for subgroup i = 1,2, respectively, where Ao (t) is the
baseline hazard function of Weibull(1, 1), and the parameters
Bi are to be specified. The subjects fall into one of the two
subgroups with probability 0.5, and the treatment assignment
is also random with equal probability. The response generated
from the above model is then censored randomly from the right
by a censoring variable C, where log(C) follows the uniform
distribution on (—1.25, 1.00). The censoring rate is about 40%
across different choices of B; considered in this study.

In the comparison, we include what we call the naive method,
with which we simply select the better subgroup from f; and
proceed as if the subgroup were selected independent of the
data. The performance of the naive method versus the proposed
method is affected by the distance between subgroup effects,
|81 — B2l In the study, we fix the effect of subgroup 1 by
setting 81 = 0 while varying the value of 8, in [0, 0.5]. We use
2000 Monte Carlo samples in evaluating the empirical coverage
and average distance from the true value for the 95% lower
confidence bound for the selected subgroup effect, B, defined
in Section 2.1, as well as the empirical bias; see Tables 3, 4, and
5, respectively.

The results show clearly that the naive method falls short
in coverage probability, especially when B, — B is smaller

Table 3. Empirical coverage of the 95% lower confidence bound of Bs: two prede-
fined subgroups.

r=1/3 1/12 1/21 1/30 Naive Adaptive
Br=0 0.933 0.950 0.952 0.952 0.896 0.943
1/10 0.926 0.945 0.947 0.947 0.912 0.936
2/10 0.928 0.949 0.951 0.951 0.910 0.939
3/10 0.941 0.957 0.959 0.959 0.919 0.947
4/10 0.939 0.955 0.956 0.957 0.927 0.945
5/10 0.952 0.965 0.965 0.966 0.934 0.953

NOTE: The standard errors for all the entries are around 0.005. The columns cor-
respond to different smoothing parameters r, and the column under “adaptive”
corresponds to the data-dependent choice of r with 5 folds (v = 5).

Table 4. Average distance between the 95% lower bound and fs: two predefined
subgroups.

r=1/3 1/12 1/21 1/30 Naive Adaptive
Br=0 0.248 0.265 0.266 0.266 0.213 0.258
1/10 0.252 0.269 0.270 0.270 0.218 0.262
2/10 0.267 0.285 0.288 0.287 0.233 0.277
3/10 0.290 0311 0.313 0.314 0.258 0.302
4/10 0.301 0.326 0.328 0.329 0.273 0313
5/10 0310 0.339 0.342 0.343 0.286 0.323
Table 5. Empirical bias for Ss: two predefined subgroups.

r=1/3 1/12 1/21 1/30 Naive Adaptive
Br=0 0.028 0.008 0.007 0.006 0.107 0.018
1/10 0.024 0.002 0.000 —0.001 0.100 0.012
2/10 0.005 —0.021 —0.022 —0.023 0.077 —0.008
3/10 —0.003 —0.045 —-0.036 —0.037 0.061 —0.018
4/10 —0.018 —0.063 —0.065 —0.066 0.029 —0.042
5/10 —0.027 —0.067 —0.070 —0.071 0.022 —0.040

than 1/5, and the proposed method preserves the coverage
probability much better across a broad range of choices for
the tuning parameter r. The data-adaptive choice of the tuning
parameter performs quite well; it achieves better coverage and at
the same time the distance between the lower confidence limit
and the true value does not significantly increase on average
compared with that of the naive method. The bias-reduced
estimate reduces the bias from around 0.1 for the naive method
to around 0.01 for the proposed method. A bias of 0.1 in this
case means a roughly 10% relative bias for the hazard ratio
estimation.

Next, we evaluate the performance of the proposed method
with different numbers of candidate subgroups. Here, we
assume there are k subgroups. Following the model used earlier
with only two subgroups, the survival time is generated by the
proportional hazard model, A(¢) = ro(DePiP fori = 1,...k,
and a subject has equal probability to fall into each subgroup.
We use the same treatment assignment and the same censoring
scheme as before, but keep the total sample size n = 200k. To
assess how much the subgroup selection bias might be, we focus
on the most challenging scenario with §; = --- = ¢ = 0, and
calculate the empirical coverage and the empirical bias of the
proposed method and the naive method based on 2000 Monte
Carlo repetitions. The results are summarized in Table 6.

From Table 6, we see that the coverage probability for the
naive method drops below 0.60 when there are 10 subgroups,
and the proposed method has slightly lower coverage than the
nominal level of 0.95. The results are somewhat more sensitive
to the choice of r when the number of subgroups increases, and
smaller values of r generally work better. Table 6 also shows
that the naive method suffers from the subgroup selection bias
and the bias becomes more severe as the number of subgroups
increases, while the proposed method can reduce the bias signif-
icantly. The adaptive method for choosing the tuning parameter
r led to more under-coverage when the number of subgroups is
higher, which suggests that additional research is needed to find
a more reliable adaptive method across a wide range of problem
settings.

5.2. Proportional Hazard Model: Post-Hoc Identified Case

To continue, we consider a post-hoc identified case based on the
proportional hazard model. Let D and W denote the treatment
indicator and a continuous variable used to define the post-hoc
subgroups, respectively, and random samples of size n = 400
are generated from the proportional hazard model with the
hazard function Ao ()e? )P, where A((#) is the hazard function

Table 6. Results include “cover”: empirical coverage of the 95% lower bound, and
“bias”: empirical bias for Bs: multiple predefined subgroups.

r=1/3 1/12 1/21 1/30 Naive  Adaptive
k=2  Cover 0.929 0952 0953 0.953 0.900 0.939
Bias 0.029 0.006  0.004 0.004 0.105 0.014
6 Cover 0.891 0.941 0943  0.945 0.739 0.930
Bias 0.060 0.011 0.009 0.008 0.240 0.029
10 Cover 0.866 0.944 0949 0950 0.59%4 0.927
Bias 0.066 0.009 0.006  0.005 0.290 0.031
12 Cover 0.860 0946 0950 0950  0.543 0.925
Bias 0.062 0.003  0.001T 0.001T  0.302 0.026




Table 7. Empirical coverage of the 95% lower bound of ys: post-hoc identified case.

r=1/3 1/12 1/21 1/30 Naive
p2=0 0.947 0.961 0.962 0.962 0.872
1/10 0.960 0.972 0.972 0.972 0.879
2/10 0.958 0.966 0.967 0.967 0.890
3/10 0.959 0.969 0.970 0.970 0.895
4/10 0.962 0.968 0.968 0.968 0.906
5/10 0.964 0.972 0.973 0.973 0.901

of Weibull(1, 1), and the function b(-) is to be specified. We
assume D and W are independent, D follows Bernoulli(1, 0.5)
and W follows Unif[0, 80]. The response generated from the
above model is then censored the same as that in Section 5.1.
The censoring rate is about 40% across different choices of b(-)
considered in this study. We consider the following post-hoc
identified subgroups: S(¢) = {W < ¢}, and let B(c) denote
the subgroup effect of S(¢) for ¢ € [30,60]. From Lin and Wei
(1989), we note though given the subgroup, S(c), the event time
may not follow the proportional hazard model, (c) is still well-
defined. It is also noteworthy that S(c) is usually not equal to
b(c) but, instead, B(c) can be viewed as a weighted average of
b(-) in the range [0, c].

In the comparison, we include what we call the naive method
where the inference on the best selected subgroup is conducted
as if the selection were independent of the data. As pointed out
in Sections 1 and 2.4, the performance of the naive method ver-
sus the proposed method is affected by whether the subgroups
are homogeneous. To change the homogeneity for post-hoc
identified subgroups, we consider a simple setting where b(w) =

. In the study, we fix 81 = 0 while varying $, in

o w=30
[0,0.5]. When B, = Bi, the post-hoc identified subgroups are
homogeneous and the subgroup selection bias is most severe. As
B2 increases, the subgroups are farther away from homogeneity,
and the best subgroup, S(30), is more distinctive from the others.
We use 2000 Monte Carlo samples in evaluating the empirical
coverage for the best selected subgroup effect, y; (see Table 7).

From Table 7, we see that for post-hoc identified subgroups,
the naive method falls short in coverage probability especially
when S, is small, and the proposed method preserves the cov-
erage probability much better across a broad range of choices
of the tuning parameter. In summary, the proposed method
provides trustable inference for the post-hoc identified case in
finite samples.

5.3. Synthetic Data Generating Model

We consider a simulation setting based on the synthetic data
generating model of MONET1 in Section 4. We focus on the
scenario of eight subgroups by the coding of the following
variables: East Asian patient, stage IIIB, received radiotherapy,
and male. We note that the negative log-hazard ratio of the
best selected subgroup, Bs, equals 0 because the synthetic data
generating model assumes that the subgroups are homogeneous
with no treatment effect. In the comparison, we include the
naive method used in Section 5.1. To make it consistent to the
convention used in MONET1, we use 2000 Monte Carlo samples
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Table 8. Empirical coverage of the 95% upper bound of the log hazard ratio of the
best selected subgroup: the synthetic data model.

r 1/3 1/9 1/30

0.950

Naive Adaptive

Coverage 0.917 0.946 0.805 0.935

in evaluating the empirical coverage of the 95% upper bound for
the log hazard ratio of the best selected subgroup in Table 8.

From Table 8, we see that the naive method is once again
unable to provide the desired confidence, but the proposed
method does well. These results explain the over-optimism in
the original study of Kubota et al. (2014); the failure of the
subgroup pursuitin MONET1 trial is not just by chance, and the
subgroup selection bias deserves accounting for in any serious
subgroup analysis.

6. Conclusions

When the best subgroup is selected from the data over a set
of candidate subgroups, naive estimation and inference for the
treatment effect on the selected subgroup that ignores the selec-
tion process leads to bias and over-optimism. The salient point
of the present article is that appropriate statistical analysis of the
selected subgroup effect size must take the selection process into
account. We propose a bias-adjusting bootstrap procedure to
infer the best selected subgroup effect. The proposed method
is model-free, easy to implement, and the resulting statistical
inference is asymptotically sharp, regardless of whether the
subgroups are predefined or identified post hoc from the data.

De-biased inference for the best selected subgroup is critical
to inform better decision making and help reduce false dis-
coveries in subgroup pursuit in clinical trials. By revisiting the
MONET1 trial and its failed follow-up trial, we show that lessons
can be learned for future subgroup analysis in clinical work and
demonstrate the merit of our proposed method. Our analysis
shows that the proposed method can appropriately adjust for
the subgroup selection bias and if eight or more subgroups were
considered as candidates in the subgroup identification stage
in the MONET1 study, we would not have found statistical
significance in the East Asian subgroup.

The proposed method aims at inference for the best selected
subgroup based on estimated treatment effects for candidate
subgroups. In practice, other considerations might be taken
into consideration in subgroup identification. The proposed
inference method would then serve as a conservative approach
to those identified subgroups.

A larger adjustment in the estimation of the subgroup treat-
ment effect is usually needed as we search over more candidate
subgroups to find the best subgroup. However, as the number
of candidate subgroups increases, there are more overlaps (and
thus statistical correlations) across subgroups, so the adjustment
size tends to level off quickly when the number of candidate sub-
groups reaches a threshold. This makes our proposed method
not so conservative, and thus practically useful, even if all pos-
sible candidate subgroups are taken into account.

Our proposed method relies on subgroup effect estimates
that are asymptotically Gaussian. In applications to observa-
tional studies where covariate-adjusted estimates are needed
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and the potential covariates are of high dimensions, we may
need to investigate further how the proposed method adapts.
We hope that the present work argues convincingly that valid
inference on post hoc identified subgroups needs to be and can
be performed effectively with appropriate de-biasing tools in
statistics.

Supplementary Materials

The supplement contains the proofs of all the theoretical results and the
data generating procedure for the synthetic dataset used in the paper.
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