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REAL-TTIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19
MORTALITY

GRAHAM C. GIBSON, NICHOLAS G. REICH, DANIEL SHELDON

ABSTRACT

The COVID-19 pandemic emerged in late December 2019. In the first six months of
the global outbreak, the US reported more cases and deaths than any other country in
the world. Effective modeling of the course of the pandemic can help assist with public
health resource planning, intervention efforts, and vaccine clinical trials. However, build-
ing applied forecasting models presents unique challenges during a pandemic. First, case
data available to models in real-time represent a non-stationary fraction of the true case
incidence due to changes in available diagnostic tests and test-seeking behavior. Second,
interventions varied across time and geography leading to large changes in transmissibility
over the course of the pandemic. We propose a mechanistic Bayesian model (MechBayes)
that builds upon the classic compartmental susceptible-exposed-infected-recovered (SEIR)
model to operationalize COVID-19 forecasting in real time. This framework includes non-
parametric modeling of varying transmission rates, non-parametric modeling of case and
death discrepancies due to testing and reporting issues, and a joint observation likelihood
on new case counts and new deaths; it is implemented in a probabilistic programming lan-
guage to automate the use of Bayesian reasoning for quantifying uncertainty in probabilistic
forecasts. The model has been used to submit forecasts to the US Centers for Disease Con-
trol, through the COVID-19 Forecast Hub. We examine the performance relative to a
baseline model as well as alternate models submitted to the Forecast Hub. Additionally,

we include an ablation test of our extensions to the classic SEIR model. We demonstrate a
1
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significant gain in both point and probabilistic forecast scoring measures using MechBayes
when compared to a baseline model and show that MechBayes ranks as one of the top 2
models out of 10 submitted to the COVID-19 Forecast Hub. Finally, we demonstrate that

MechBayes performs significantly better than the classical SEIR model.

1. INTRODUCTION

The emergence of COVID-19 in early 2020 led to the largest pandemic in over a century.
Understanding the future trajectory of the pandemic can help decision-makers prepare
for and consequently diminish the impact in terms of healthcare and economic burden.
Forecasts of incident and cumulative deaths due to COVID-19 help in resource allocation
and re-opening strategies [1]. Forecasts provide important data to decision-makers and the
general public and can improve situational awareness of current trends and how they will
likely evolve in coming weeks.

Infectious disease forecasting, at the time horizon of up to 4 weeks in the future, has
benefited public health decision makers during annual influenza outbreaks [2, 3]. However,
many forecasts of endemic, seasonal diseases, such as influenza, rely on ample historical
data to look for patterns that can be projected forward into the future. In an emerging
pandemic situation, models must be able to fit to limited data.

With limited historical data, mechanistic models are a natural framework for modeling
and forecasting COVID-19. These directly model the transmission of the disease through
the population and can be fit to public health surveillance data with relatively few param-
eters.

Our work is based on compartmental models, which are classical mechanistic models for
disease transmission that were first introduced by Kermack and McKendrick [4]. These
assume that, at any given time, each individual is in one of a mutually exclusive set of com-
partments, typically either the susceptible, exposed, infected, or recovered compartment.

A model is specified by setting the rates of flow of individuals between compartments.
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While these models have been used since their inception in the early 20th century, the
COVID-19 pandemic represents a unique opportunity to explore their forecasting proper-
ties in real-time at local, national, and global scales, for an emerging pathogen that, unlike
influenza, does not have years of data on which models can train.

We develop a mechanstic Bayesian model (“MechBayes”) that tailors compartmental
models to the operational needs of making one- to four-week ahead forecasts of incident
deaths for COVID-19. Since the primary goal is to parsimoniously forecast an observ-
able quantity, identifying internal parameters of the model, many of which are poorly
determined or not identifiable from the available data [5], is not an explicit focus or prereg-
uisite of our work. We distinguish this set-up from longer-term scenario projection models,
which require well identified epidemiological parameters that can be set to counterfactual
values under different scenarios, such as an increase or decrease in intervention levels [6, 7].
Scenario projection models are often based on similar foundations, but require different
adaptations than those needed for real-time forecasting.

MechBayes is tailored to the particular needs and data availability of COVID-19. The
compartmental model jointly models infections and deaths and uses records of both incident
cases and deaths—the two most widely available COVID-19 surveillance measurements—
for model fitting. MechBayes includes components to model changes over time in both the
dynamics and the detection of COVID-19. In particular, transmission rates have changed
significantly due to the addition and removal of control measures such as social distancing,
lockdown, and mask use, while infection reporting rates have changed due to significant
changes in the availability of diagnostic testing.

Recent forecasting efforts have recognized the need for probabilistic forecasting, with
statements about uncertainty of the forecast relaying important public health information

[8]. We adopt a Bayesian approach, which is naturally suited to quantifying uncertainty
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in parameters and forecasted quantities. MechBayes is implemeted in the NumPyro prob-
abilistic programming language [9], which automates the complex task of designing a pos-
terior sampling algorithm. NumPyro uses the JAX Python library [10] to automatically
compute the partial derivatives needed for sampling via Hamiltonian Monte Carlo [11],
and to compile model code for highly efficient computations. JAX includes a differentiable
solver for ordinary differential equations (ODEs) [12], which allows us to embed ODE-based
compartmental models into the full probabilistic model with relative ease. We are not aware
of prior work that use numerical simulation of ODE-based compartmental models within
a fully Bayesian framework, though there are other approaches to adapt compartmental
models for Bayesian analysis [13]. The ability to build a modular probabilistic model with
complex components and automatically obtain efficient inference procedures is a testament
to recent advances in algorithms and software packages largely driven by applications in
artificial intelligence and deep learning.

We demonstrate the success of the MechBayes by showing that forecasts submitted to
the US Centers for Disease Control via the COVID-19 Forecast Hub outperform a baseline
probabilistic forecast model [1, 14]. We additionally show that MechBayes is one of the
top performing models out of those submitted to the COVID-19 Forecast Hub. Finally, we

quantify the important features of MechBayes via an ablation study.

2. METHODS

2.1. Data. In this analysis we used confirmed case counts and deaths for the 50 US states
and the District of Columbia as reported by the Johns Hopkins University Center for
Systems Science and Engineering (JHU CSSE) [15]. The data set reports the incident
number of confirmed cases and deaths for each location at a daily frequency starting in
early 2020. As noted in [16], COVID-19 cases are under-reported, with the fraction of
all infections reported as cases for the US estimated at 20-30% [17]. The fraction of all

infections reported has also changed dramatically over the course of the epidemic [18].
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2.2. Forecast Targets. We made probabilistic forecasts for 1-4 week ahead incident and
cumulative deaths for all geographies. An individual forecast distribution is represented
by a set of 23 quantiles, Q = {.01,.05,.10,...,.90,.95,.99}, with the median (.50 quantile)
representing the point forecast. While forecasts are made at the daily scale, we aggregate
them to the weekly scale by summing incident death forecasts from the first forecasted
Sunday through the following Saturday. We evaluate only forecasts of incident deaths,
which is the primary modeled quantity; forecasts for cumulative deaths are created by

accumulating forecasted incident deaths.

2.3. Mechanistic Bayesian Model. Compartmental models have been used to effec-
tively model and forecast disease in non-pandemic situations both retrospectively and in
real-time. These include complex compartmental models for real-time influenza forecast-
ing [19, 20, 21], and a retrospective model evaluation of the 1918 influenza pandemic [22].
Compartmental models have been used for both inference and forecasting not just in res-
piratory disease but in Ebola [23], measles [24], dengue [25] and a wide variety of other
communicable diseases.

Compartmental models have also been adopted into a Bayesian framework before, includ-
ing both stochastic disease dynamics and deterministic dynamics [26, 27]. Non-parametric
transmissibility was included in a Bayesian SEIR model to study Ebola by Frasso and
Lambert [13]. Time-varying transmissibility has also been studied in the frequentist set-
ting using complex non-parametric functions [28]. Many efforts have been made to use
SEIR models in forecasting COVID-19 [29, 30, 31, 32, 33]. With the outbreak of COVID-
19, accounting for testing has become a critical element in effectively using an SEIR model
[6, 34].

The MechBayes probabilistic model consists of three parts, which together define a prob-
abilistic model for the observed incident cases and deaths with the parameters and state

variables of a compartmental model as latent variables. The core part is the mechanistic
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disease model p(z1.7,n1.7|0), which defines the distribution of the state variables z1.p and
time-varying parameters n;.7 given a vector 6 of fixed, non—time-varying, parameters. The
state variable x; is a vector that enumerates the number of individuals in each compart-
ment (susceptible, exposed, infectious, etc.) at time ¢, while 7, contains parameters of
the disease model or observation process that change over time (e.g., due to changes in
social distancing or test availability), which we model stochastically. MechBayes operates
at a daily time step. The state trajectory x1.p = (x1,...,27) concatenates state vectors
from each day, and 7.7 collects time-varying parameters in a similar fashion. MechBayes
also defines a prior distribution p(f) over fixed parameters, and an observation model
p(yi|ze, 0) for the vector y; of observed variables at time ¢ (incident cases and deaths)
given the state vector z;, time-varying parameters 7;, and fixed parameters §. Each part
of the probabilistic model is expressed by writing Python code to sample from the corre-
sponding distribution within the NumPyro probabilstic programming language [35], which
automates the construction of Markov chain Monte Carlo algorithms to sample from the
distributions p(@, x1.7, m1.7|y1.7), for inference about unobserved parameters and state vari-
ables, and p(yry1.7+k|y1.7), for forecasting (by integrating over unobserved state variables

and parameters).

2.3.1. Disease Model. The MechBayes compartmental model is illustrated in Figure 1 and
is based on the classical SEIRD framework [5]. It consists of state variables S, E, I, R, D1, Do
that indicate the number of individuals in the population that belong on a given day to
each one of the following mutually exclusive compartments: susceptible (.5), exposed (but
not yet infectious) (E), infectious (I), recovered (R), or one of two death compartments
(D; and DQ).l The death pathway is separated into two compartments to incorporate a
time-delay between infection and death that is modeled separately from the ratio between

observed cases and observed deaths, which both have prior estimates from the literature

1We will also use the state variable name as a short name for the compartment itself—for example, “the E
state”—with the correct interpretation alwaying being clear from context.
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susceptible exposed infectious

F1cure 1. Flow diagram for MechBayes. Susceptibles (S) become exposed
(E) with a rate of ;-4 (proportional to the number of infected and infection
probability times average number of contacts). Exposed individuals become
infections with a mean time of % Infectious individuals can either recover
or enter a D; compartment, reperesenting individuals who will eventually
succumb to the disease, with probability p and after a mean time of %
Individuals in D; then enter the final death compartment Do with mean
time % The distinction between D1 and Dy aids in accounting, and helps
separate out a parameter governing the time between infectiousness and
death, which is useful for model parameterization.

[36]. For simplicity, we assume a closed population of size N. The following parameters

govern how members of the population move between compartments:

e [3;: transmission rate, which we allow to vary by time ¢;

e o: rate of transition from the exposed state E to infectious state I; i.e., 1/co is the
expected duration of the time between exposure and onset of infectiousness;

e 7: rate of transition from the infectious state I to either D; or R; i.e., 1/ is the
expected duration of the infectious period;

e p: fatality rate (i.e., probability of transitioning from I to D; as opposed to R);

e \: rate of transition from D; to Dy (i.e., the inverse of expected number of days in

Dy compartment before death)
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On a given day t, the following differential equations describe the instantaneuous changes

in each compartment with respect to the continuous time index 7 € (¢,t + 1]:
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In addition, we augment the dynamics with an extra variable C(7) to count the cumu-

lative number of individuals that enter the I compartment, with dynamics % = oF that
capture only the flow into, and not the flow out of, I. The number of individuals that first
become infectious on day ¢ is then C'(t+ 1) — C(t); we consider these individuals candidates
for being detected as confirmed cases on day t. We do not attempt to model testing delays,
or mismatches between onset of infectiousness and onset of a detectable infection.

The state vector at time ¢ is then:
Tt = (S(t)? E(t)v I(t)7 R(t)7 Dl(t)a DQ(t)v C(t))

The distribution p(x;) of the initial state 1 is described in Appendix A2. The update from
time t to time ¢ + 1 is obtained by numerically solving the ordinary differential equation
(ODE) with dynamics % given by Equation (1) for the time interval 7 € (¢, + 1], over

which the dynamics are fixed. We write this as:

dx
T¢y1 = odesolve (xt, d—)
-
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We use the ODE solver in the the Python library JAX [10], which uses the Dormand-
Prince algorithm [37], a member of the Runge-Kutta family of ODE solvers. Importantly,
JAX also supports automatic differentiation of odesolve using the adjoint method [12]
to compute partial derivatives of x;y1 with respect to both the initial value x; and all
dynamics parameters affecting %. This is a key functionality that allows us to embed
ODE dynamics within a probabilistic model for which NumPyro can perform inference
using Hamiltonian Monte Carlo [11].

In 2020, significant efforts to control the spread of COVID-19 relied on non-pharmaceutical
interventions. These included mandatory distance between individuals, closures of public
spaces, and mask wearing. To add to the complexity, these interventions were implemented
and repealed at different time points throughout the year, and the public complied with
the interventions to varying degrees [38]. In order to capture the aggregate effect of the
interventions and other behavior changes non-parametrically, we choose a flexible model
for the time-varying transmission parameter. We allow (; to vary following a Gaussian

random walk on logarithmic scale, that is:
log By ~ N (log Bi—1,05 = 0.2).

The random walk models non-stationary dynamics within the observed time period (¢
from 1 to T'). For forecasting (¢ > T'), MechBayes does not attempt to model future
behavior changes, and simply predicts that the final value of 3; will persist in to the
future. However, to avoid extreme senstivity of forecasts to one or a few data points near
the end of the time series, we average over the last 10 days instead of taking the final value,

that is, for all 7 > 1:
9
1
Bryi = 10 X;BT]’-
]:

2.3.2. Observation Model. The observed data used to fit the model is based on time series

of incident confirmed cases and deaths. The model is fit separately for each location. The
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observations on day t are yy = (Ytc, Yt,d), where y; . is the number of new cases confirmed
on day t, and y; 4 is the number of new reported deaths. We assume that y; . is a noisy
observation of C(t + 1) — C(t), the modeled number of new infections on day ¢, using the

NB2 negative binomial model for for overdispersed counts [39]:

Yt,e ™~ NBZ(Mt,Ca Ke), Ht.e = Pt (C(t +1) — C(t))'

This satisfies E[y; ] = pt,c, with the parameter p; . acting as a detection rate on the modeled
number of new infections; the parameter k. controls overdispersion, with Var(y: ) = pit.c +
ﬂc,u?’c. Note that the detection rate p; . is time-varying (see below). Similarly, we assume

that 1 4 is a noisy observation of Da(t + 1) — Da(t):

Yt.d ~ NB2(pie g, kq),  Hra = pa- (Da2(t + 1) — Da(t)).

The detection rate pg for deaths is not time-varying. The dispersion parameters k. and xq
for both cases and deaths are estimated and given a truncated normal prior distribution
with location 0.30, scale 0.15, and lower truncation limit 0.10.

We model the time-varying case detection rate as:

p1,c ~ Beta(15,35),

logit(pt,c) ~ N (logit(ps—1,c),0p, =0.2), t>1.

The Beta distribution on the case detection rate at time ¢ = 1 (corresponding to early March
in our operational model) satisfies E[p.] = 0.3, with 90% probability of falling between 0.22
and 0.38. Preliminary experiments suggested that the detection rate is poorly determined

2

by data and short-term forecasts are not sensitive to this parameter.” We therefore use

a moderately strong prior centered at 30%, as suggested by the literature [40]. We then

21t primarily impacts inferences about the true number of infections in the population; forecasts are therefore
expected to be more sensitive to this parameter as herd immunity is approached.
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allow the detection rate to vary over time following a Gaussian random walk on the log-
odds scale, as shown above. This is meant to loosely model changes in diagnostic testing
over time; in practice, it provides flexibility in the model that likely captures other changes
in the relationship between reported cases and deaths over time, such as changes in the
fatality ratio of the population infected at a given time.

For deaths, we place a strong prior on the reporting rate: p; ~ Beta(90,10). This
satisfies E[pg] = 0.9 with 90% probability between 0.89 and 0.92. That is, we assume that
deaths due to COVID-19 are most often correctly reported [41]. As with the absolute value

of the case detection rate, short-term forecasts are not very sensitive to this parameter.

2.3.3. Epidemiological Model Parameters. We use relatively informative priors for epidemi-
ological parameters, such as 7, o, p, A, and initial compartment values. The details are
described in the Appendix Al. However, the identifiability of model parameters in com-
partmental models where the data consists only of a time series of incident cases and deaths
presents a problem for uninformative priors [5]. MechBayes allows for a time-varying re-
productive number through the random walk on (;, while maintaining strong priors on

other epidemiological parameters.

2.3.4. Implementation. The components described so far lead to the full probability model

T
PO, ez, w1y, yrr) = p(O)p(zrr, morl0) [ [ p(yelze, ne, 0)
i=1

where 7, = (B4, pic) are time-varying parameters (contact-rate and case detection rate)
and

9 - [0—777p7)\7pd7/<’67"<‘:d7SlallaElaDl,laDQ,laRl]

is the vector containing all other parameters.
Each model component is implemented in NumPyro [9]. We then use NumPyro’s im-

plementation of the No-U-Turn Sampler [42] (a variant of Hamiltonian Monte Carlo [11])
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to draw samples from the posterior distribution p(é,n1.7, z1.7|y1.7) given an observation
sequence y1.7 (for model diagnostics), and to sample from the distribution p(yri1.74%|y1.7)
to make forecasts of future reported cases and deaths.

We draw 1000 warm-up sample and then 1000 posterior samples of model parameters.
We also monitor the number of effective samples produced by HMC to ensure it is large

enough to reflect accurate exploration of the posterior [43].

2.4. Operational Forecasts. On May 10, 2020, we began submitting incident and cu-
mulative death forecasts on a weekly basis to the US Centers for Disease Control (CDC)
through the COVID-19 Forecast Hub consortium [14].> Each week, we submitted 1-4 week
ahead forecasts for the 50 US states and Washington, D.C., and later added forecasts for
the US national-level and US territories. All forecasts used daily data up to and including
the Sunday before the Monday submission. The “1 week ahead” forecast corresponds to
the week ending on the following Saturday, the “2 week ahead” forecast to the week ending
on the second following Saturday and so on. The model remained remained stable from
May 10 until the time of writing, with only minor changes, e.g., to prior distributions.
Over time, we developed a quality-assurance process to tune our model and detect
and troubleshoot suspicious forecasts. We regularly monitored the performance of our
recent forecasts in terms of mean absolute error and calibration of prediction intervals as
measured by the probability integral transform [44]. We used these metrics and diagnostic
plots to compare submitted forecasts to alternate models to tune parameters. This led us
to introduce a resampling procedure to mitigate too-large prediction intervals (on May 17,
2020) and to slight changes to prior distributions (on September 6 and October 20, 2020).
Suspicious forecast were primarily caused by data reporting issues. It was relatively
common for a state to report a large backlog of cases or deaths on one day due to changes

in reporting practices or to correct previous errors. As an extreme example, New Jersey

3For two weeks prior to May 10, we submitted forecasts of cumulative deaths only while the model was
under active development and lacked several of the main components described here.
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(NJ) reported nearly 1,600 daily deaths on June 25, 2020 when it began the practice
of including deaths from probable COVID-19 cases in its totals. Similarly, Texas (TX)
removed 3,000 confirmed cases on July 7, 2020 when it determined that cases detected
by antigen testing should not be reported. Changes of smaller magnitude were extremely
common. Because MechBayes includes a flexible model of time-varying transmission, it
interprets large changes in cases or deaths as evidence of significantly increased or decreased
transmission, which leads to unrealistic forecasts.

Our quality-assurance process involved viewing diagnostic plots of each forecast together
with the recent time series of incident deaths and cases to identify forecasts that were
unduly influenced by data reporting issues. We also checked the JHU CSSE website [15]
for notifications of reporting issues that might not be obvious in diagnostic plots. After
identifying a potential problem, we searched for documented evidence of a reporting issue.
These were usually reported on state department of health websites or by local news outlets.
If we could identify a reporting issue, we distributed the excess number of incident cases or
deaths evenly over some time window selected using our best judgment based on available
information.

We made a small number of other interventions. Some states do not report data on
Saturdays or Sundays; we modified the data to omit such observations instead of treating
them as zeros. Starting in October, we sometimes omitted weekend observations even if
they were nonzero to mitigate the influence of low values that are due only to the weekly
reporting cycle. In a small handful of cases, the inference routine failed to converge or
diagnostics showed signs of numerical instability; in those cases, we adjusted the prior

distributions slightly and reran the model to overcome the problem.

2.5. Experimental Setup. We conducted two different evaluations. First, we evaluated
the forecasts made in real time and submitted to the CDC via the COVID-19 Forecast Hub

to assess the quality of MechBayes as an operational forecast model. Second, we conducted
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an ablation study that compared retrospective forecasts made using different versions of

MechBayes to assess the importance of different model components on forecast accuracy.

2.5.1. Baseline Forecast FEvaluation. We evaluated all 1-4 week ahead incident death fore-
casts submitted to the CDC between May 10, 2020 and October 18, 2020 for the 50 US
states and Washington, D.C.* We computed the absolute error (AE) for point forecast and
examined the distributions of absolute errors for different locations, forecast horizons, and
dates. We used mean absolute error (MAE) as a summary metric. In addition, to evaluate
the uncertainty calibration of our probabilistic forecasts, we measured the empirical cov-
erage rates of the prediction intervals obtained from the forecasted quantiles by measuring
the fraction of actual observed values that fell within different prediction intervals.

We compared the performance of MechBayes to the performance of the COVID-19 Fore-
cast Hub baseline model described by Ray et. al [1] and used a random effects regression
model to assess the statistical significance of absolute error differences between the two

models; see Appendix 6.1.

2.5.2. Forecast Hub Alternate Model Comparison. To evaluate the relative performance of
MechBayes against other models submitted to the Forecast Hub, we chose the 10 models
(including MechBayes) that have been submitting forecasts from June 21, 2020 to October
18, 2020 for incident deaths across all 50 states and D.C.. These criteria balance including
as many models as possible, including ones that have performed well in other analyses,
while also having a large number of locations and dates for which all of the models made
forecasts. For each of the models, we examined the distribution of absolute error of all
point forecasts, as well as summary metrics such as the mean and median absolute error.
We include this analysis to demonstrate that for a particular common subset of locations

and dates, MechBayes is a top performing model. A comprehensive evaluation of Forecast

“We submitted forecasts for US territories and the US as a whole starting after May 10, but omit these
from evaluation to allow for the largest number of evaluation dates where forecasts were made across a
consistent set of regions.
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Hub models by Cramer et al [45] examines multiple performance metrics and addresses
the problem of comparing models that make forecasts for different sets of locations and
dates, and also finds that MechBayes is one of the top two models among those submitting

forecasts from May 17, 2020 to October 26, 2020.

2.5.3. Ablation Test. We also performed a retrospective evaluation to demonstrate the
improvement in accuracy due to addition of different model components. We define the

following three variants of MechBayes:

e MECHBAYES FULL is the full MechBayes model as submitted to the Forecast Hub
and described in the previous sections, including observations of both reported cases
and deaths and a time-varying random-walk model for the case detection rate p; ..

e MECHBAYES FIXED-DETECTION is the same as MechBayes full but with the time-
varying detection rate p; . replaced by a constant detection rate p..

e MECHBAYES FIXED-DETECTION DEATH-ONLY is the same as MechBayes Fixed-
Detection but with observations only on incident deaths (the forecasted quantity),
and not on cases. This model is included to assess the value of using incident cases

as evidence to help forecast incident deaths.

Other than the changes described above, all model components, data handling, and
fitting procedures were identical. Note that we did not include a model without time-
varying transmissibility. Such a model is unable to adequately fit the observed data;
previous COVID-19 modeling has clearly established that time-varying transmissibility is

an essential model component [6, 28, 33, 46].

3. RESuULTS

3.1. Model Fitting and Inference. MechBayes captures signal in the observed data,
even in the presence of highly variable incident death reporting, and produces forecasts

and prediction intervals that track the data well (Fig. 2A). The model infers a relationship
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interval of the time-varying ratio between cases and deaths parameter (py ).

between the logarithm of incident deaths and time that is nearly linear over short time
periods but with slopes that change over time at somewhat discrete time points (Fig. 2B),

highlighting the exponential growth (or decline) over short time periods that is a hallmark
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of compartmental models, but also the fact that these dynamics vary over longer time
periods.

The inferred value of the time-varying contact rate parameter ; (Fig. 2C) is closely
tied to the observed rate of change of incident deaths (and cases, not shown), especially
as observed on a logarithmic scale: (; is high across all four example states in mid-March
when incident deaths grew rapidly, then falls as the growth rate of incident deaths declines
during and after the initial wave, with subsequent changes that can be matched to specific
events in the states, e.g., increases in 3; associated with second waves in Texas, California,
and Florida during the summer, and a slow increase in f; in New York associated with
an eventual increase in deaths in the fall. In all four states, the inferred value of time-
varying case detection rate p; . increases significantly from the start of the pandemic (Fig.
2D). In practice, this parameter likely functions to model any changes over time in the
ratio of observed cases to observed deaths. One reason for such a change is increased
diagnostic testing; another reason is a decrease in the overall infection-fatality ratio (e.g.,
due to changes in the age distribution of patients and improved treatments). Both changes
would lead to a larger number of observed cases for the same number of deaths, and likely
occurred in conjunction, leading the model to significantly increase its estimate of p; . over
time. It is apparent that MechBayes also uses p; . to absorb some reporting anomalies, as
seen in Texas: a string of both abnormally high and low numbers of incident deaths were

reported in late summer, which correspond to the model inferring a temporary decrease in

Ptc.
3.2. Real-time Forecast Results.

3.2.1. Baseline Comparison. MechBayes had lower absolute error than the baseline model
in all quantiles of the error distribution except for the maximum (Fig. 3A). The gap
in performance (as measured by absolute error) increased as the magnitude of the error

increased up until the 0.99 quantile of the error distribution. Above the 0.99 quantile
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absolute error is lower than the baseline error at every quantile except the
largest. B Quantile-quantile plot of absolute error distribution zoomed in
to errors less than 200 deaths. There are more significant improvements rel-
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Quantile-quantile plot of absolute error distribution for MechBayes (y-axis)
vs. alternate models (x-axis) submitted to the Forecast Hub. Each point
represents the absolute error for a combination of location, forecast date,
and target. D Mean, median and 0.95 quantile of the absolute error distri-
bution for MechBayes (y-axis) and alternate models (x-axis). MechBayes
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model.
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of error distribution MechBayes still performed better for all but one quantile, however,
the gap in performance closed. MechBayes also had a lower absolute error at the central
tendency of the absolute error distribution (as measured by mean or median) (Fig. 3B).

Overall, MechBayes had an MAE of 32.85 deaths, when averaging over all regions, fore-
cast dates, and targets. The baseline model had an MAE of 47.06 deaths. The prediction
intervals at the 95% level covered the truth 94.8% of the time for MechBayes, compared
to 89.2% for the baseline model over all targets, regions, and forecast dates.

MechBayes had similar or lower MAE than the baseline for most states and targets (Figs.
4A,4C). In particular, for the locations with the highest total death counts (NY, TX, CA,
FL) [15], MechBayes uniformly outperformed the baseline with the only exception being
Florida (FL) for the 4 week ahead target. When absolute errors were small, both models
performed similarly.

MechBayes improved uniformly over the baseline model for every target (Fig. 4C); p
< 0.01, see Appendix 6.1), with MechBayes MAE ranging from 21.73-45.48 for 1-4 week
ahead and baseline model MAE ranging from 30.60-63.01 for 1-4 week ahead, averaged
over all forecast dates. The mean absolute error increased as horizon increased, which
is to be expected. The distribution of errors by forecast date for a given target showed
significant variability, suggesting that different targets were easier to predict on certain
forecast dates, again reflecting the change in forecast difficulty throughout epidemic.

MechBayes had lower MAE by forecast date (averaged over locations and targets) than
the baseline for 21 out of 23 forecast weeks (Fig. 4B). The largest increase in incident
deaths during the evaluation period (May 11, 2020 through October 18, 2020) occurred
in early July 2020. MechBayes significantly outperformed the baseline model during these
weeks. However, in weeks with a small increase or a decrease in incident deaths, the MAEs
were much closer. This suggests again that MechBayes performs well during periods of

more rapid change in incident deaths.
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MechBayes prediction intervals contained the truth with at least the predicted probabil-
ity (Fig. 4D), but were somewhat conservative: the empirical probability of containing the

truth was nearly exact for the 95% interval, and higher than predicted for smaller intervals.

3.2.2. Alternate Model Comparison. MechBayes had a lower absolute error in nearly all
quantiles of the error distribution for 8 out of the 9 alternate models submitted to the
Forecast Hub (Fig. 3C). MechBayes was in the top 3 out of the 10 models based on mean,
median, and the 0.95 quantile of the absolute error distribution (Fig. 3D). Specifically,
YYG-ParamSearch (lowest MAE) had an MAE of 31.42, OliverWyman-Navigator had an
MAE of 33.41 and MechBayes had an MAE of 35.40. MechBayes performed worse relative
to other models for its top three error values, and had the second-largest maximum error
out of the 10 models.

The median of the error distribution for all models was clustered around 15 deaths, with
little separation between models. The mean absolute error was clustered around 40 deaths
with slightly more separation between models. The 0.95 quantile of the error distribution

at around 175 deaths began to show more significant separation between models (Fig. 3D).

3.3. Ablation Test Results. MECHBAYES FULL produced consistently better point fore-
casts than MECHBAYES FIXED-DETECTION DEATH-ONLY or MECHBAYES FIXED-DETECTION
(Fig. 5A). When averaged over all targets, locations and forecast dates MECHBAYES FULL
had an MAE of 27.85, MECHBAYES FIXED-DETECTION DEATH-ONLY had an MAE of
37.5, and MECHBAYES FIXED-DETECTION had an MAE of 134.69. At every quantile
level, the error of MECHBAYES FIXED-DETECTION was significantly larger than that of
MECHBAYES FIXED-DETECTION DEATH-ONLY, which suggests that using deaths as ev-
idence is only beneficial in conjunction with flexibility allowed by the time-varying ratio
between cases and deaths (p;.). However, the interval coverage performance shows that
MECHBAYES FIXED-DETECTION was closer to the nominal coverage than MECHBAYES

FIXED-DETECTION DEATH-ONLY (Fig. 5B). Both MECHBAYES FuLL and MECHBAYES
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FIGURE 5. A Absolute error quantiles of MECHBAYES FULL (y-axis)
against the reduced models, MECHBAYES FIXED-DETECTION DEATH-
ONLY and MECHBAYES FIXED-DETECTION. MECHBAYES FULL uniformly
improves over MECHBAYES FIXED-DETECTION and improves in all but the
maximum quantile over MECHBAYES FIXED-DETECTION DEATH-ONLY. B
Percent of observations (y-axis) falling within the prediction interval at the
given confidence level (x-axis). MECHBAYES FIXED DETECTION seems to
be closest to the nominal level of coverage, suggesting that adding the un-
certainty in the ratio between observed cases and observed deaths made
the model slightly under-confident. In contrast, using only observations on
deaths significantly compromised model uncertainty.

FIXED-DETECTION prediction intervals contained the truth with approximately the cor-
rect probability; however, MECHBAYES FIXED-DETECTION DEATH-ONLY intervals were

too small and contained the truth significantly less frequently than expected.

4. DISCUSSION

MechBayes is a fully Bayesian compartmental model capable of accounting for varying
transmission rates, observations on both cases and deaths, and a time-varying ratio of cases
to deaths. MechBayes produced consistently accurate real-time forecasts over the course of

23 evaluation weeks, and was ranked as one of the top 2 of 10 models on median and mean


https://doi.org/10.1101/2020.12.22.20248736
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.22.20248736; this version posted December 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY 23

absolute error. Our experiments led us to the following conclusions about the performance

of this model and the underlying methodology.

e MechBayes is accurate when compared to a baseline model. MechBayes
had lower absolute error than the baseline model in almost all quantiles of the error
distribution (Fig. 3). The performance gain was higher when predicting deaths was
difficult (in the upper quantiles of the absolute error distribution) because deaths
were changing rapidly. This is true across target, week, and region breakdown. Er-
ror is significantly lower for 1-4 week ahead predictions, with larger improvements
at longer horizons. Additionally, the biggest gains in performance occur in regions
with the largest incident death counts (Fig. 4A), such as Texas (TX), California
(CA), New York (NY), New Jersey (NJ) and Florida (FL) [15]. Finally, MechBayes
performance gain was highest in forecast weeks with the large absolute error (Fig.
4B). This leads us to conclude that MechBayes is better than the baseline model
when it really counts: in regions where deaths were high and in weeks that were
difficult to predict because of rapidly changing incident deaths.

e MechBayes is accurate when compared to the alternate models submit-
ted to the Forecast Hub. MechBayes ranked second out of eleven models in
terms of mean and median of the absolute error distribution (Fig. 3D). While
MechBayes is one of the top performing models submitted to the Forecast Hub, its
largest errors are higher than alternate models (Fig. 3D). The same mechansims—
the underlying exponential growth intrinsic to compartmental models and the flex-
ible, time-varying transmission—that allow MechBayes to accurately model the
pandemic in many situations also make its forecasts highly sensitive to errors esti-
mating the current rate of exponential growth. For example, the four-week forecast

for Florida (FL) on July 25, 2020 was too high by 2861 deaths due to MechBayes
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estimating a high exponential growth based on recent trends and possible report-
ing issues, when the eventual growth rate over the next four weeks was much more
modest.

e MechBayes is probabilistically well-calibrated. The MechBayes 95% pre-
diction interval contains the truth 94.6% of the time (Fig. 4D). MechBayes is
conservative for smaller intervals. As a Bayesian model, MechBayes is able to rea-
son effectively about uncertainty in the epidemiological model parameters, state
variables, and observation noise given the evidence and translate this into appro-
priately calibrated forecast uncertainty.

e Adding case data when predicting deaths is helpful but only when ac-
counting for time-varying relationship between observed cases and deaths.
Allowing for a time-varying ratio between cases and deaths is a key feature for lower
MAE (Fig. 5A). MECHBAYES FULL both incorporates incident cases as evidence
and allows for a flexible deviation between cases and deaths, which makes the model
consistently more accurate than a model that does not account for cases at all
(MECHBAYES FIXED-DETECTION DEATH-ONLY) and a model that does account
for cases but fixes the detection probability (MECHBAYES FIXED-DETECTION).
Including cases without properly accounting for factors that yield a changing ra-
tio between observed cases and observed deaths over time hurts performance over

leaving out observations on cases all together.

We have seen that MechBayes is a powerful Bayesian compartmental model that can
capture the real-world complexities of forecasting during a pandemic. MechBayes’ disease
model is a classical compartmental model, which has good inductive bias for a novel epi-
demic. MechBayes is fully Bayesian, which allows for a balance between model structure,
evidence through observations on cases and deaths, and uncertainty. The implementation

in the NumPyro probabilistic programming language allowed for rapid model development
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and experimentation. Finally, a reasonable investment of effort in validation prevented
model pathologies due to data quality issues.

While we chose an exponential random walk on (; there are many other choices for
flexible non-parametric modeling of transmissibility. Further work might consider a spline
model, Gaussian process, or a semi-parametric model capable of taking intervention dates
as covariates. Additionally, as more COVID-19 data streams come online, more observation
models on compartments can be added to MechBayes and fit using the same framework.
Other methods of expressing compartmental models (e.g. the renewal framework in [33])
may lead to more efficient and flexible implementations. Modeling more characteristics of
the surveillance system (such as weekly reporting) may also improve forecast performance.

Through real-time and retrospective evaluation, we demonstrated the success of Mech-
Bayes in forecasting COVID-19 both in terms of point and probabilistic forecasts. The
model is able to improve over the baseline model as well as reduced forms of MechBayes,
and is ranked in the top two models out of the 10 considered that submitted forecasts to the
Forecast Hub since May, 2020. While future pandemics may be unavoidable, MechBayes is
a flexible framework that can be adapted to the unique challenges of pandemic forecasting

efforts.

5. ACKNOWLEDGMENTS

We would like to thank Evan Ray for many productive conversations during the develop-
ment of MechBayes. This material is based upon work supported by the National Science
Foundation under Grant No. 1749854. This work has been supported by the National
Institutes of General Medical Sciences (R35GM119582). The content is solely the respon-
sibility of the authors and does not necessarily represent the official views of NIGMS or

the National Institutes of Health.


https://doi.org/10.1101/2020.12.22.20248736
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.22.20248736; this version posted December 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

26 GRAHAM C. GIBSON, NICHOLAS G. REICH, DANIEL SHELDON

6. APPENDIX

6.1. Statistical Test for Significance. To assess the significance of absolute error dif-
ferences between MechBayes and the baseline model we use a random effects regression

model of the form,

log(MAE,,+r1n +1) = po+ Billh =i] + Biml[h = i]I[MechBayes = m] + b, + ¢

where b, ~ N(0,%2), €~ N(0,0%), h represents the 1-4 week ahead target (horizon),
m is an indicator for MechBayes, t is timezero, and r is region. We chose this model
because it explains the variation in MAE by model and horizon while allowing varying
baseline MAE values by region. Here, variation over time in MAE within a specific region
is explained by differences in model performance This leads to the following coefficient

estimates for the fixed effects using the lme4 package [47].

Estimate  Std. Error df t value  Pr(>|t|)

Bo 2.79 0.14 55.27  19.79 0
b1 -0.34 0.04 9389 -8.16 0
B2 -0.09 0.04 9389 -2.17 0.03
B3 0.03 0.04 9389 0.72 0.47
Ba 0.20 0.04 9389 4.45 0
B1,MechBayes -0.54 0.04 9389  -12.67 0
B2 MechBayes -0.31 0.04 9389 -7.34 0
B4 MechBayes -0.15 0.04 9389  -3.496 0

TABLE 1. Coefficient estimates and t-values for MAE evaluation model.
We can see that MechBayes performs statistically significantly better than
the CDC baseline model for 1-4 weeks ahead.

6.2. Seeding Epidemic. Due to the under-reporting of cases, we cannot use the observed
data to seed the epidemic. We instead allow the model to find the initial state values for all

compartments except the number of susceptible people, which we take as the population


https://doi.org/10.1101/2020.12.22.20248736
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.22.20248736; this version posted December 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license .

REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY 27

size of the geographic region minus the sum of the initial values for the other compartments
to enforce the constraint that total number of individuals in all compartments is equal
to the population size. We do this by assigning uniform probability to all initial states
where the number of people in any given compartment does not exceed 2% of the total
population. This is a highly conservative estimate for the number of infected, exposed,
dead and recovered people at the start of the epidemic which is most likely much lower
than 2% of the population.

This leads to the follow distributions for the initial number of individuals in each com-
partment, where we use the convention that the starting time is ¢ = 1 to match the

conventions of the discrete-time model in which these differential equations are embedded:
E(1) ~ Unif(0,0.02N)
I(1) ~ Unif(0,0.02N)
D;(1) ~ Unif(0,0.02N)
Dy(1) ~ Unif(0,0.02N)
R(1) ~ Unif(0,0.02N)

S(1) =N—-E(1) = I(1) = Di(1) — Da(1) = R(1)

The initial state vector is then:

1= (S(1)7 E(l)v I(1>7 R(l)v D1(1)7 D2<1)ﬂ C<1))
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6.3. Priors. We also place the following priors on the transition parameters:

o ~ T(100,100dE)

v ~ T(100,100d;)
B(0) ~T(1,dr/R)

p ~ Beta(1,99)

A ~T(10,10 - 25)

Preliminary experiments showed that the model is not highly sensitive to most of these
settings, which is consistent with the non-identifiablility of compartmental models from case
and death surveillance data [5], which can be viewed as overparameterization relative to the
available data. Our prior on rate for leaving the exposed compartment o satisfies E[o] =
1/ d E, where czE is an initial guess of the duration of the latent period. We assume d r=4.0
based on published estimates (shortened slightly to account for possible infectiousness prior
to developing symptoms [40]. Our prior on the rate for leaving the infectious compartment
~ satisfies E[y] = 1/d;, where d; is an initial guess for the duration of infectiousness. The
setting is d; = 2.0 to model the likely isolation of individuals after symptom onset [48].
Our prior on the initial transmission rate is derived from the relationship between the basic
reproductive number Ry and the length of the infectious period: Ry = By/v = Bo X d.
Therefore, we set our prior on the initial transmission rate to satisfy E[3(0)] = R/d; where
R = 3.0 is an initial guess for Ry and dr = 2.0, as described above. Our prior on the
fatality rate p satisfies E[p] = 0.01 with 95% probability of being between [0.0002, 0.0375].
Finally, our prior on the rate A at which dying patients succumb satisfies E[A] = % with
shape 10 corresponding to roughly 25 days in the D; compartment. Our observation model
required priors on the NB2 concentration parameters for both cases and deaths, both of

which were set to 0.3.
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