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Abstract
1.	 Tracking technologies have widely expanded our understanding of bird migra-

tion routes, destinations and underlying strategies. However, determining the 
entire trajectory of small birds equipped with lightweight geolocators remains a 
challenge.

2.	 We develop a highly optimized hidden Markov model (HMM) for reconstructing 
bird trajectories. The observation model is defined by pressure and, optionally, 
light measurements, while the movement model incorporates wind data to con-
strain consecutive positions based on realistic airspeeds. To reduce the compu-
tational costs associated with a large state space, we prune the HMM states and 
transitions based on flight and observation constraints to efficiently model the 
entire trajectory.

3.	 The approach presented is based on a mathematically exact procedure and is fast 
to compute. We demonstrate how to compute (1) the most likely trajectory, (2) 
the marginal probability map of each stationary period, (3) simulated trajectories 
and (4) the wind conditions (wind support/drift) encountered by the bird during 
each migratory flight.

4.	 We construct a version of an HMM optimized for reconstructing a bird's migra-
tion trajectory based on lightweight geolocator data. To render this approach eas-
ily accessible to researchers, we designed a dedicated R package GeoPressureR 
(https://rapha​elnus​sbaum​er.com/GeoPr​essur​eR/).
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1  |  INTRODUC TION

Tracking technologies constitute an essential tool to better un-
derstand animal migratory movements and behaviour (Bridge 
et al., 2011; Kays et al., 2015). Indeed, by providing frequent infor-
mation about an animal's position, they allow researchers to study 
the factors influencing the migratory route used (e.g. Briedis, Bauer, 
et al., 2020; Thorup et al., 2017). In addition, tracking a single indi-
vidual during its full journey can reveal space–time interactions as 
well as cumulative effects over time (e.g. McKinnon et al., 2015).

Tagging small animals (<50 g) comes with strict requirements 
on the weight of the tracking device, limiting the type of technol-
ogy used to lightweight devices. These devices are particularly 
suited to smaller bird species but can also be used more broadly on 
larger species in cases where satellite transmitters cannot be set. 
The two main technologies currently allowing to precisely position 
small birds include archival GPS (e.g. Hallworth & Marra, 2015) and 
automatic telemetry (e.g. Taylor et al., 2017). However, these only 
provide a limited number of position estimates. Beyond these two 
technologies, lightweight geolocators can provide regular positions 
with larger uncertainty by measuring environmental variables for 
which the spatiotemporal variation is known. Among these, light-
level geolocators are the oldest and most widespread technology 
(Wilson et al., 1992), along with devices measuring sea-surface tem-
perature used mostly for marine wildlife (e.g. Nielsen et al., 2006). 
More recently, location estimates based on atmospheric pressure 
sensors have been shown to provide positions with higher precision 
(Nussbaumer et al., 2023). This offers promising research avenues 
as pressure information becomes increasingly available with the 
use of multi-sensor geolocators (Bäckman, Andersson, Alerstam, 
et al., 2017; Bäckman, Andersson, Pedersen, et al., 2017; Dhanjal-
Adams et al.,  2018; Liechti et al.,  2018; Sjöberg et al.,  2018). Yet, 
both light- and pressure-based location estimates suffer from large 
uncertainty, particularly during the short stopovers that constitute 
critical steps in the migration trajectory.

Trajectory estimation from imperfect position data is a well-
known problem in the animal movement literature and is typically 
modelled as a state-space model (SSM; e.g. Jonsen et al.,  2013; 
Patterson et al., 2008), where the animal's position Xt is defined as 
a Markov model called a process or movement model P

(
Xt|Xt−1

)

. The model considers that X is unknown but is related to an ob-
served variable Y (e.g. light, pressure, or temperature measurements) 
through an observation model P

(
Yt|Xt

)
. SSMs for light-level geolo-

cators and sea-surface temperature have been mostly developed in 
marine biology and solved with a Kalman filter (Nielsen et al., 2006; 
Sibert et al., 2003) or an unscented Kalman filter (Lam et al., 2008; 
Nielsen & Sibert, 2007). However, when the SSM is strongly non-
linear (e.g. with pressure geopositioning), a Kalman filter cannot be 
used and more computationally demanding Bayesian methods such 
as Markov Chain Monte Carlo (MCMC; Jonsen et al., 2005; Sumner 
et al., 2009) or particle filtering (Rakhimberdiev et al., 2015; Royer 
et al.,  2005) must be employed. Such methods have been used 
successfully for reconstructing the trajectory of small birds using 

lightweight geolocation (e.g. Lisovski et al.,  2020). However, their 
implementation can be challenging due to the complexity of choos-
ing the type of Monte Carlo method, configuring the run (e.g. step 
size) and checking convergence. In this paper, we consider only the 
problem of estimating bird trajectories given the observations under 
a fixed process model. For the related problem of performing infer-
ence jointly over trajectories and unknown parameters of a process 
model, efficient routines for trajectory estimation can be nested 
within a larger inference procedure, for example, using MCMC.

Whenever the SSM can be discretized in space and time 
(e.g. Pedersen et al.,  2011), it becomes a hidden Markov model 
(Rabiner, 1989). In such cases, the positions can be estimated exactly 
and efficiently with the forward–backward algorithm, also known as 
a two-pass recursive algorithm (Rabiner, 1989; Scott, 2002; Zucchini 
et al., 2017), and the mostly likely trajectory can be found with the 
Viterbi algorithm (Viterbi, 2006). These algorithms have been used 
in animal movement literature (Leos-Barajas & Michelot,  2018; 
McClintock et al., 2020; Patterson et al., 2016) but have rarely been 
applied to geolocator data (e.g. Bindoff et al., 2018). A major chal-
lenge in estimating the trajectory of a bird with this approach is the 
memory requirements to store the probabilities of every possible 
transition between pairs of locations using a data structure known 
as the trellis graph (e.g. Rabiner, 1989).

Using pressure data from the geolocator, the trajectory of the 
bird can be efficiently modelled as an hidden Markov model (HMM) 
because bird trajectories can be discretized in a limited number of 
periods (time) and grid cells (space). Unlike marine wildlife, most 
birds migrate by alternating active migratory flight with periods 
of residency (stationary periods), where their position can be as-
sumed fixed at the precision level provided by light and pressure 
geopositioning (~10 km). In addition, identifying the exact duration 
of flights (using activity data or pressure) can inform the movement 
model of the SSM by constraining the distance between consec-
utive positions, assuming a distribution of ground speeds (e.g. 
Briedis, Beran, et al., 2020). In this context, wind data have recently 
been shown to considerably improve position estimates because 
of the strong influence of wind on a bird's ground speed (Werfeli 
et al., 2022).

In this study, we present a framework to reconstruct the tra-
jectory of a bird based on pressure (and optionally light) data cap-
tured by geolocators. In this approach, we model the trajectory 
as a discrete SSM (or HMM) and optimize the trellis graph of the 
HMM, where nodes correspond to the position of the bird at a sta-
tionary period and edges represent transitions from one position to 
the next. We first explain how to efficiently build this trellis graph 
(Section 2.2) and then demonstrate how the graph can be used to 
(1) identify the trajectory that maximizes the overall probability 
with the Viterbi algorithm (Section  2.3.1), (2) compute a marginal 
probability map of the bird's location at each stationary period 
using the forward–backward algorithm (Section 2.3.2) and (3) sim-
ulate possible trajectories with the sequential simulation algorithm 
(Section 2.3.3). Finally, we show how wind support and drift can be 
computed for each flight of the trajectory (Section 2.4).
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This method is available as an R package, called GeoPressureR 
(https://rapha​elnus​sbaum​er.com/GeoPr​essur​eR/), including a user 
manual, GeoPressureManual (https://rapha​elnus​sbaum​er.com/GeoPr​
essur​eManu​al/) and an introductory code, GeoPressureTemplate 
(https://rapha​elnus​sbaum​er.com/GeoPr​essur​eTemp​late/).

2  |  MATERIAL S AND METHODS

2.1  |  Data

To illustrate how this method is implemented, we use a geolocator 
dataset consisting of 16 tracks from nine species covering a variety 
of migration distances and speeds. The dataset and its basic process-
ing are described in full detail in Nussbaumer et al. (2023) and briefly 
recalled below.

First, the accelerometer and pressure data of each track are used 
to identify (1) stationary periods where the bird is assumed to be 
at a fixed location (~1–10  km scale) and (2) the time of departure 
and arrival for all flights. Then, using pressure data, we determine 
the likelihood map (i.e.  the probability of observing the pressure 
measurements conditional to the position of the bird) on a discrete 
map of 0.25° (~27 km) resolution for each stationary period and each 
bird. Finally, we estimate the likelihood map from light data on the 
same map size and resolution as pressure. Knowing that pressure 
and light data are independent, the observation model is defined by 
the product of the pressure and light likelihood maps. If no light data 
are available, the methodology can be applied using the pressure 
likelihood map alone.

For the movement model, we rely on an external database of 
windspeed (ERA-5 pressure level dataset Hersbach et al.,  2018a). 
Windspeed is used to refine the likelihood of the transition between 
each stationary period (see Section 2.2.5 for more details).

2.2  |  Building the trellis graph

We model the trajectory of a single bird with an HMM by discretiz-
ing the positions X0, … ,Xn of the bird in n + 1 stationary periods and 
relating these positions to the observations Y0, … ,Yn of pressure 
(and optionally light) via the SSM

The initial distribution P
(
X0

)
 has little impact because the initial 

observation P
(
Y0|X0

)
 strongly constrains inferences about X0, for ex-

ample, by encoding the known location of initial capture and tagging. 
As such, we assume P

(
X0

)
 to have a uniform distribution over space. 

The transition probabilities P
(
Xk|Xk−1

)
 will vary with time due to the 

different flight durations and the effect of wind. The possible positions 
in space are discretized according to the resolution of the likelihood 
map (0.25°). Note that we do not model additional state variables (e.g. 

behaviour). Building the full HMM of the trajectory would require 
computing and storing the transition probabilities between every pair 
of locations for each consecutive pair of stationary periods, a total of 
(
nlat nlon

)2
n values. This is computationally feasible only for small grids 

as it would require both significant computational effort and large 
memory.

Many positions on the grid are unlikely according to the obser-
vation model, and most transitions are unlikely according to the 
movement model. Thus, some minor simplifications can dramatically 
reduce the number of transitions. In such cases, it becomes more 
convenient to represent the HMM via its trellis graph, where the 
nodes represent the possible position of the bird at each station-
ary period and the edges correspond to the transition of the bird 
from one node to the next (e.g. Rabiner, 1989). The probability of the 
observation model can be conveniently encoded at the node level, 
while the probability of the movement model can be associated with 
edges.

The computational feasibility of constructing such a graph still 
relies on careful considerations. To maximize computational effi-
ciency and minimize memory requirements, we follow a five-step 
process to create the graph. The aim of the first two steps is to re-
duce the number of nodes and thereby avoid computing excessively 
numerous transitions. Once only likely nodes remain, we compute 
the edges and prune the graph with computationally demanding 
operations (e.g. windspeed; steps 3–5). The steps are explained in 
detail below and illustrated in Figure 1.

2.2.1  |  Step 1: Constructing the nodes with the 
observation model

We keep all the nodes of the graph up to the 99th percentile of the 
likelihood maps of the observation model. These nodes correspond 
to the coloured pixels of the likelihood map of pressure and light 
data in Figure 1b. If the first and/or last stationary periods are known 
(equipment/retrieval site), they are assigned a probability of 1 at 
their known location and 0 everywhere else.

2.2.2  |  Step 2: Pruning nodes with the 
movement model

We compute the maximum flight distance possible between each 
stationary period D(k, k + 1) using the flight duration estimated from 
pressure data (see Section  2.1) and a ground speed threshold of 
150 km/h. This threshold allows for exceptionally high speeds as the 
95th percentile of ground speed for small migratory birds is below 
90 km/h (Liechti & Bruderer, 1995). Nodes that are too far from any 
other nodes from either the previous or the following stationary pe-
riod are pruned.

For computational feasibility, it is critical to perform this prun-
ing without doing a full pairwise comparison among all nodes. 
More specifically, let mk (mk < nlatnlon) be the number of active (i.e. 

(1)P
(
X0, … ,Xn,Y0, … ,Yn

)
= P

(
X0

) n∏

k=1

P
(
Xk|Xk−1

) n∏

k=0

P
(
Yk|Xk

)
.
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non-pruned) nodes for stationary period k after Step 1. A naïve algo-
rithm to execute the pruning of this step would require the order of 
mkmk+1 computational steps, for example, by checking if each active 

node in stationary period k is within the maximum flight distance 
of at least one active node in stationary period k + 1. However, we 
perform the same operation in time proportional only to mk (i.e. time 

F I G U R E  1  Illustration of the creation of the graph. (a) The schematic example considers a simple trajectory from an equipment site (A0) 
to a retrieval site (K3) in three flights and two stationary periods. Nodes of different stationary periods are overlayed on the same spatial 
grid (right panel) (but distinguishable by subscript and shape). Step 1. We keep all nodes corresponding to possible positions according to 
the 99th percentile of the likelihood map. We do not illustrate the static probability map for the schematic example. Step 2. We eliminate 
nodes that are not within reach (<150 km/h) of at least one node from the previous and following stationary period. B1 is eliminated on the 
forward pass, G2 and C1 are eliminated on the backward pass. Step 3. We construct all possible transitions (red and orange lines). Step 4. 
After computing the average windspeed and airspeed for each transition, we prune edges requiring an airspeed >100 km/h (orange dotted 
line). The final graph is thus composed of the red nodes and edge. (b) An example of the application of the method using the same subset of 
stationary periods as in fig. 4 in Nussbaumer et al. (2023).
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linear in the currently active number of nodes), which enables a sig-
nificant speedup. We do this by using a fast algorithm for distance 
transformations in binary images (i.e. 0/1-valued; e.g. Kolountzakis 
& Kutulakos, 1992; Maurer et al., 2003). A distance transformation 
computes the distance between every pixel and the closest pixel 
with a ‘1’ value, which, in our setting, represents currently active 
nodes in stationary period k. The algorithm uses the Euclidian dis-
tance on the image coordinates (i.e. lat-lon). These distances in dec-
imal degrees are converted into kilometres assuming a flat-earth 
surface while accounting for the variation of distance between me-
ridians (dkm = 111 × cos(lat) × ddeg).

Using the distance transformation from the active nodes in sta-
tionary period k, we prune the active nodes for stationary period 
k + 1 requiring a flight distance higher than the maximum flight dis-
tance D(k, k + 1). This operation is repeated for all pairs of stationary 
periods going forward and then backward to ensure that all nodes 
are connected to the first and last nodes (equipment and retrieval). 
This efficient pruning relies on the specific structure of the HMM, 
in which the states are located on a regular grid, allowing them to be 
treated as a binary image.

2.2.3  |  Step 3: Computing edges with ground speed

Having identified and pruned the nodes, we now compute all edges 
between the remaining nodes. We compute the ground speed for 
each edge using the great circle distance and the duration of the 
flight.

Then, we filter the edges with the threshold of 150 km/h, which 
also removes some nodes as the flat-earth distance used in Step 
2 was approximate. Finally, we prune the graph based on the con-
straint that all nodes must be connected to both the equipment and 
retrieval nodes using the breadth-first search algorithm (Cormen 
et al., 2022).

2.2.4  |  Step 4: Computing edges with airspeed

We compute the average windspeed and airspeed of all edges 
and prune the graph based on a predefined airspeed threshold of 
100 km/h, which considers potential uncertainty in wind estimates 
as the 95th percentile of airspeed for small bird migrants is below 
75 km/h (Liechti & Bruderer, 1995).

To account for spatiotemporal change in windspeed at short tem-
poral scales (especially with altitude), we take advantage of knowing, 
for each edge of the graph, (1) the exact time of departure and arrival 
(see Section 2.1), (2) the location of departure and arrival, and (3) the 
geolocator pressure measurements during the flight, which corre-
spond to the bird's altitude.

We use the E/W and N/S windspeed components from the 
ERA5 pressure levels dataset (Hersbach et al.,  2018a), which pro-
vide hourly wind estimates at a spatial resolution of 0.25° in latitude 
and longitude at 37 different pressure levels (i.e. altitudes). We then 

proceed to build two 4D gridded linear interpolations (E/W and N/S) 
that provide an estimate of windspeed for any time, latitude, longi-
tude and pressure level.

For each edge of the graph, we estimate the average windspeed 
encountered by the bird. We construct the flight trajectory of the 
bird with discrete 4D positions (time–latitude–longitude–pressure 
level) as follows:

•	 We discretise the trajectory on an hourly basis starting on the 
hour preceding flight departure and ending on the hour following 
arrival.

•	 The latitude and longitude positions are estimated assuming a lin-
ear displacement (i.e. “as the crow flies”) between the departure 
and the arrival nodes.

•	 The pressure level positions are retrieved from the geolocator 
pressure measurements.

Windspeed significantly contributes to the displacement of the 
bird and can vary considerably within a flight. We, therefore, correct 
the horizontal position of the bird to assume a constant airspeed 
rather than a constant ground speed which would correspond to 
equally spaced hourly positions. We use an approximate two-step 
approach.

In the first step, we initialize the position assuming a con-
stant ground speed G and query the corresponding hourly 
windspeed wi. We can then compute the average airspeed of 
the flight with A = G −

1

n

∑n

i
wi. Then, the hourly ground speed 

can be estimated with gi = A + wi. Finally, we adjust the hourly 
position based on the hourly ground speed. In the second step, 
the hourly windspeeds wi are now queried at the adjusted posi-
tions and used to compute the average windspeed of the flight 
W =

1

n

∑n

i
wi. We can compute the average airspeed of the total 

flight as A = G −W . All these operations are performed with 
vectorial speed (lat-lon) and the trapezoidal rule is used in the 
weighting of the average to account for the exact time of depar-
ture and arrival.

Finally, we prune the graph similarly to the previous step, this 
time based on an airspeed threshold of 100 km/h.

2.2.5  |  Step 5: Computing the transition 
probabilities

In the final step, we compute the transition probability P
(
Xt|Xt−1

)
 (i.e. 

movement model) for each edge from the airspeed. We define a par-
ametric function converting the average airspeed into a probability 
using flight energetics and considering that a bird is more likely to fly 
at an airspeed resulting in lower energy consumption. More specifi-
cally, we empirically define the probability proportional to the cubic 
inverse of the mechanical power of flight Pmech of the airspeed va,

(2)
P
(
Xk =xk|Xk−1=xk−1

)
∝

(
1

Pmech

(
max

(
va
(
xk−1→xk

)
, vlim

))

)3

,
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 where va
(
xk−1 → xk

)
 is the airspeed computed in step 4 for the edge 

of the transition from the node xk−1 to the node xk . The mechanical 
power is computed with FlightMAT (Nussbaumer,  2022) following 
Pennycuick (2008), and taking into account each species' mass, wing-
span and wing area from Tobias et al. (2022). We additionally impose a 
minimum apparent airspeed of vlim= 5 km/h, which allows for birds to 
perform short exploratory flights (e.g. Mills et al., 2011; Schmaljohann 
et al., 2011).

2.3  |  Trajectory outcomes

Using the constructed graph, we derive the following three 
outcomes.

2.3.1  |  Most likely trajectory

While the mean or median positions of each stationary period are 
commonly used to illustrate a single trajectory, they do not ad-
equately represent the connectivity between stationary periods, 
even more so when the probability map is multi-modal. Instead, we 
suggest using the most likely trajectory, corresponding to the trajec-
tory maximizing the joint probability,

Within graph theory, the shortest path problem is a well-known 
computational task seeking to identify the path characterized by the 
smallest sum of weights of all its edges. The most likely trajectory is 
equivalent to the shortest path when the weights of the edges are 
defined as the negative log of the probability. Using this formulation, 
we compute the most likely trajectory using the shortest path search 
with Dijkstra's algorithm (Dijkstra, 1959). This operation produces the 
same result as the Viterbi algorithm for finding the single best state 
sequence in an HMM (Rabiner, 1989; Viterbi, 2006).

2.3.2  |  Marginal probability maps

We take advantage of the compact sparse graph to compute the 
marginal probability map of each stationary period, which is repre-
sented by the distribution P

(
Xt|Y0, … ,Yn

)
 for each time step t. We 

use the forward–backward algorithm (e.g. Rabiner,  1989; Zucchini 
et al., 2017), which is a special case of the sum-product algorithm 
(e.g. Ross, 2019) tailored to HMMs.

We briefly explain how the forward–backward algorithm is ap-
plied in our case. For convenience, we group the transition probabil-
ities P

(
Xt|Xt−1

)
 into a transition matrix T t (m × m), and all observation 

likelihoods P
(
Yt = yt|Xt = xt

)
 for all values of xtand for the observed 

value of yt into the diagonal matrix Ot (m × m). Using the Chapman–
Kolmogorov equation, we define the forward probability vector fk 
and backward probability vector bk(m × 1) recursively,

Starting with the forward probability vector fT
0
= P

T

0
Oo, which has 

entries of the form P
(
X0 = x0

)
P
(
Y0 = y0|X0 = x0

)
 for each starting 

location x0, and the vector bn = 1, (all ones, m × 1), we can write the 
forward and backward probability vectors as

The final vector �t (m × 1) has entries of the form 
P
(
Xt = xt|Y0, … ,Yn

)
 corresponding to the marginal probabilities for 

each location. It is computed as the probability vector proportional to 
the element-wise product (denoted ◦) of the forward and backward 
probability vectors:

Following the same reasoning as the forward–backward algorithm, 
the marginal probability matrix Mt−1,t (m × m) of each transition (also called 
a pairwise marginal), which has entries P

(
Xt−1 = xt−1,Xt = xt|Y0, … ,Yn

)
,  

can be computed as

2.3.3  |  Random trajectories generator

To compute quantities relying on the entire trajectory such as the 
total distance flown or the average airspeed, it is most convenient 
to generate multiple possible trajectories and compute aggregated 
quantities on each one.

We use the forward filtering backward sampling (e.g. Carter & 
Kohn, 1994) to generate a possible trajectory x =

(
x0, … , xn

)
 using 

the following steps:

1.	 Fix the known position of retrieval xn, or if unknown, sample 
from �n.

2.	 For each stationary period k < n, in a backward order,

1.	 Sample a position xk given xk+1 from the probability vector 
proportional to fk ◦1xk+1

Tk, where the operator 1xk+1
 is used to 

extract the row of Tk corresponding to xk+1. The forward vec-
tor fk is assumed to be already computed from Section  2.3.2.

2.4  |  Wind analysis

The resulting position estimates are precise and accurate enough in 
relation to the spatial variation of wind to allow for studying wind con-
ditions during flight. As ground speed, windspeed and airspeed have 
already been computed for each edge of the graph, we can easily ex-
tract and summarize their distributions from the randomly simulated 

arg max
x0,… ,xn

P
(
X0 = x0, … ,Xn = xn,Y0 = y0, … ,Yn = yn

)
.

(3)
f
T

k
= f

T

k−1

(
TkOk

)

bk−1=
(
TkOk

)
bk

(4)
f
T

t
= f

T

0
T1O1 … T tOt

bt =T t+1Ot+1 … TnOnbn

,

(5)�t ∝ ft◦bt .

(6)Mt−1,t ∝diag
(
ft−1

)
T tOtdiag

(
bt

)
.
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trajectories (Section 2.3.3). In addition to ground speed, airspeed and 
windspeed, we compute the distribution of wind support and drift by 
calculating the windspeed projection along each individual flight's ori-
entation (wind support) and perpendicular to it (drift).

We qualitatively assess the relationship between each flight in 
terms of distance and orientation, as well as the direction and magni-
tude of wind. In addition, we characterize the overall effect of wind 
on the full trajectory by integrating the ground speed, windspeed, 
airspeed, wind support and drift over all flight durations to quantify 
the total displacement caused by each one.

3  |  RESULTS

3.1  |  Trajectory outcomes

The most likely trajectory, the marginal probability maps, and the 
simulated trajectories are illustrated in Figure  2 for six individu-
als of different species. Figures for all 16 tracks are available in 
Supporting Information 1 and https://doi.org/10.6084/m9.figsh​

are.21731888. The probability map of each stationary period 
shows an irregular shape (i.e. not ellipsoidal) due to the pressure 
threshold and land mask (e.g. stopover in Italy for 18IC). The un-
certainty is generally significantly smaller for long stationary pe-
riods (e.g. stopover in northern Tunisia for 18IC). The most likely 
trajectory connects each stationary period by finding the optimal 
compromise between generally minimizing the flight distance while 
preserving the stopover location in the most likely area. The most 
likely trajectory is expected to produce a realistic full trajectory, 
which is not guaranteed by alternatives such as using the average 
or median position of the marginal probability at each stationary 
period. The simulations, on the other hand, are useful to illustrate 
all the possible trajectories that the bird might have taken and thus 
visually represent the uncertainty in the overall trajectory.

3.2  |  Wind analysis

Using the high-resolution trajectories produced, we can quantify 
the speed and direction of wind experienced during each flight. 

F I G U R E  2  Illustration of the three outputs of this method for six birds (Great Reed Warbler 18IC; Eurasian Wryneck 22QL; Ring Ouzel 
20OE; Eurasian Hoopoe 16DM; Red-capped Robin-chat 24TA; Tawny Pipit 22BK). (1) The coloured areas indicate the marginal probability 
of positions for each stationary period, with the colour indicating the time of year and the colour intensity indicating the value of the 
probability. Note that for visual purposes, we normalized the probability map of each stationary period separately. (2) The thick white line 
with circles represents the most-likely trajectory. (3) The thin white lines represent 30 simulations of possible trajectories. Higher-resolution 
maps for all 16 tracks are available in Supporting Information 1.
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We illustrate the potential of this new approach by overlying the 
wind rose onto the most likely trajectory (Figure 3 and Supporting 
Information 2). Histograms of ground speed, windspeed and air-
speed for each flight stage are available in Supporting Information 
4. All flights generally occurred with supporting wind, and stronger 
wind support tends to be associated with longer flights and longer 
distance travelled. Northward migration (i.e. temperate spring ex-
cept for intra-African migrants) is performed in fewer and longer 
flights as birds experience stronger wind support than during south-
ward migration.

Interestingly, most detours in the trajectory can be explained 
by birds drifting while following the direction of strong supporting 
winds, such as the detour via Libya by 18IC, or the detour via west-
ern Algeria by 16DM, both during pre-breeding migration.

As illustrated above, wind can help birds reach their destina-
tion faster, but also cause lateral drift. We quantified the displace-
ment due to the wind (windspeed) and due to the bird's own power 
(airspeed) for each flight of each track (Figure  4a and Supporting 
Information 3). To illustrate the benefit of incorporating windspeed 
data in the movement model, we highlight the longest non-stop 
flight of the Great Reed Warbler (18LX), lasting 20 h and covering 
about 2700 km. This impressive groundspeed (135 km/h on average) 

is largely explained by the high windspeed of 81 km/h, resulting in a 
reasonable airspeed of 54 km/h (Figure 4a).

Summing the displacement due to wind and airspeed for all flights 
in spring and autumn separately, we can compare the influence of 
wind between season and species. Except for the Eurasian Nightjar, 
long-distance migrants tend to be more efficient at maximizing wind 
support while minimizing drift compared to short-distance migrants 
(Figure  4b). In autumn, drift tends to be larger, and wind support 
smaller, than in spring while the overall distance travelled is greater.

4  |  DISCUSSION

4.1  |  Model strengths

In this paper, we present an approach to estimate the full migra-
tory trajectory of a bird equipped with a lightweight geolocator. 
We model the trajectory as an HMM using a trellis graph, which, 
thanks to its compact format, allows us to efficiently build and 
store the full probability distribution of the trajectory. The model 
allows us to make inferences about the trajectory – such as com-
puting the most likely trajectory or marginal probability maps – in 

F I G U R E  3  Wind rose plot of the windspeed distribution for each flight of more than 3 h computed from the 1000 simulations. The 
trajectory line illustrated represents the most likely trajectory. Note that the bin height (diameter of each wind rose) is normalized for 
each flight stage. Arrows indicate post- (blue) and pre-(orange) breeding migration. Higher-resolution maps for all 16 tracks are available in 
Supporting Information 2.
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a mathematically exact manner (up to pruning of very low prob-
abilities) while keeping computational costs low (see running time 
in Supporting Information 5).

Thanks to the high precision it provides, this framework can 
incorporate all stationary periods that make up the migration tra-
jectory, even those lasting less than 12 h. The trajectory offers an 
elegant way to constrain the position of short stationary periods by 
combining the informative likelihood map (pressure and/or light) of 
long stationary periods with a realistic flight model. Information on 
the location and timing of such short stopovers can refine our under-
standing of migratory strategies and inform conservation measures 
by identifying the resting sites required by birds, even those visited 
for a short period.

In addition, the graph structure allows us to efficiently account 
for wind data to refine the possible distance covered by a bird, and 

ultimately improve the accuracy and precision of the trajectory. 
Compared to Werfeli et al.  (2022), the computation of wind is fur-
ther improved by integrating the variation of windspeed over time, 
space, and altitude encountered throughout the flight.

4.2  |  Data requirements

This approach was developed and optimized for data collected from 
lightweight pressure sensors equipped on small birds. However, it 
could be applied to other datasets, under certain conditions. The 
observation model can incorporate any data that provide a position 
estimate. For instance, it can be based on light data only, possibly 
requiring a lower grid resolution. The approach can also integrate 
external information, such as field observations of the equipped 

F I G U R E  4  (a) Distance travelled by the Great Reed Warbler (18LX) propelled by wind (dotted line) and its own airspeed (continuous 
line) for each flight. The longest flight is highlighted in red to illustrate that the impressive ground speed (135 km/h) is mostly explained by 
the high windspeed (81 km/h). Similar maps for all 16 tracks are available in Supporting Information 3. (b) Illustration of the wind triangle 
of distance (rather than the usual wind triangle of speed) for spring (left) and autumn (right) migration. The total distance travelled (i.e. sum 
of all individual flights) (dot ~ ground speed) is the vectorial sum of the wind (dotted line ~ windspeed) and bird power (continuous line ~ 
airspeed). This representation allows to visually appraise the relative influence of the bird's drift (x-axis) and wind support (projection of the 
dotted line on the y-axis).
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bird or data from archival GPS or telemetry. The method does not 
require knowledge of the position at the first or last stationary pe-
riod (e.g. 22BK); however, this information can drastically reduce 
the size of the trellis graph. Additionally, the data collected by the 
device must provide the information needed to identify stationary 
periods and estimate flight duration. In the case of bird migration, 
this can be achieved using pressure measurements alone thanks to 
their high-altitude flight (e.g. Rhyne & Nussbaumer, 2022; Rime & 
Nussbaumer,  2022). Accelerometer data can be particularly help-
ful for this task because of its high temporal resolution. Wind data 
provide a facultative but significant improvement in the accuracy of 
possible flight distance. In the absence of wind data, the movement 
model (Section 2.2.5) should be replaced by a parametric equation of 
the ground speed (e.g. Briedis, Beran, et al., 2020).

Beyond birds, this approach could in theory be used to model the 
trajectory of other animals, provided they alternate between short 
periods of movement and extended periods of stationarity, where 
the animal can be assumed to remain in the same position relative 
to the grid resolution. Indeed, the modelling approach relies on the 
location of the bird being discretized in space and time over a finite 
number of stationary periods. This is typically not the case among 
most marine wildlife nor mammals.

For this approach to be applied successfully in other studies, the 
importance of high-quality labeling of pressure cannot be overstated 
(Nussbaumer et al., 2023), as a small labeling error could result in er-
roneous trajectory estimation. To avoid this, we recommend using 
the R Shiny app GeoPressureViz (https://rapha​elnus​sbaum​er.com/
GeoPr​essur​eManu​al/geopr​essur​eviz.html), which helps researchers 
to visualize the full trajectory of the bird and validate the labeling 
and overall coherence of the likelihood maps with the movement 
model.

4.3  |  Wind analysis

With precise position estimates for each stationary period and the 
high-resolution windspeed database, we can estimate the speed and 
direction of wind experienced by a bird with relatively high confi-
dence. Consequently, wind support, airspeed and wind compen-
sation can all be quantified on an individual level for small-bodied 
passerines. Our preliminary results from these 16 tracks qualita-
tively illustrate the significance of wind strength and direction in 
explaining flight distance, duration, and even the migration trajec-
tory. As the objective of this paper is to describe the method used to 
reconstruct the trajectory, we do not investigate further ecological 
research questions here.

4.4  |  GeoPressureR

Recent years have seen a growing number of studies using multi-
sensor geolocators to track small-bodied passerine migrants (e.g. 
Liechti et al., 2018; Meier et al., 2018; Sjöberg et al., 2021). To assist 

researchers in applying this method to their own study, we developed 
the R package GeoPressureR (https://rapha​elnus​sbaum​er.com/GeoPr​
essur​eR/) to (1) compute positions based on pressure (Nussbaumer 
et al., 2023), (2) build the graph and (3) compute the four outputs of 
this study. The package is accompanied by the user guide GeoPres
sureManual (https://rapha​elnus​sbaum​er.com/GeoPr​essur​eManu​al/) 
providing step-by-step explanations using the example of the Great 
Reed Warbler (18LX). Furthermore, the GitHub template repository 
GeoPressureTemplate (https://github.com/Rafnu​ss/GeoPr​essur​
eTemp​late) helps researchers kick-start their study with a pre-built 
folder structure, R code, and an automatically generated website re-
port. Together, these tools aim to make the method described above 
accessible to all researchers and applied to a wide range of species, 
including birds and bats.
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performed with the R package GeoPressureR (https://rapha​elnus​
sbaum​er.com/GeoPr​essur​eR/).
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