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1 | INTRODUCTION

Tracking technologies constitute an essential tool to better un-
derstand animal migratory movements and behaviour (Bridge
et al.,, 2011; Kays et al., 2015). Indeed, by providing frequent infor-
mation about an animal's position, they allow researchers to study
the factors influencing the migratory route used (e.g. Briedis, Bauer,
et al., 2020; Thorup et al., 2017). In addition, tracking a single indi-
vidual during its full journey can reveal space-time interactions as
well as cumulative effects over time (e.g. McKinnon et al., 2015).

Tagging small animals (<50g) comes with strict requirements
on the weight of the tracking device, limiting the type of technol-
ogy used to lightweight devices. These devices are particularly
suited to smaller bird species but can also be used more broadly on
larger species in cases where satellite transmitters cannot be set.
The two main technologies currently allowing to precisely position
small birds include archival GPS (e.g. Hallworth & Marra, 2015) and
automatic telemetry (e.g. Taylor et al., 2017). However, these only
provide a limited number of position estimates. Beyond these two
technologies, lightweight geolocators can provide regular positions
with larger uncertainty by measuring environmental variables for
which the spatiotemporal variation is known. Among these, light-
level geolocators are the oldest and most widespread technology
(Wilson et al., 1992), along with devices measuring sea-surface tem-
perature used mostly for marine wildlife (e.g. Nielsen et al., 2006).
More recently, location estimates based on atmospheric pressure
sensors have been shown to provide positions with higher precision
(Nussbaumer et al., 2023). This offers promising research avenues
as pressure information becomes increasingly available with the
use of multi-sensor geolocators (Biackman, Andersson, Alerstam,
et al., 2017; Backman, Andersson, Pedersen, et al., 2017; Dhanjal-
Adams et al., 2018; Liechti et al., 2018; Sj6berg et al., 2018). Yet,
both light- and pressure-based location estimates suffer from large
uncertainty, particularly during the short stopovers that constitute
critical steps in the migration trajectory.

Trajectory estimation from imperfect position data is a well-
known problem in the animal movement literature and is typically
modelled as a state-space model (SSM; e.g. Jonsen et al., 2013;
Patterson et al., 2008), where the animal's position X, is defined as
a Markov model called a process or movement model P(X|X,_)
. The model considers that X is unknown but is related to an ob-
served variable Y (e.g. light, pressure, or temperature measurements)
through an observation model P(leXr). SSMs for light-level geolo-
cators and sea-surface temperature have been mostly developed in
marine biology and solved with a Kalman filter (Nielsen et al., 2006;
Sibert et al., 2003) or an unscented Kalman filter (Lam et al., 2008;
Nielsen & Sibert, 2007). However, when the SSM is strongly non-
linear (e.g. with pressure geopositioning), a Kalman filter cannot be
used and more computationally demanding Bayesian methods such
as Markov Chain Monte Carlo (MCMC; Jonsen et al., 2005; Sumner
et al., 2009) or particle filtering (Rakhimberdiev et al., 2015; Royer
et al., 2005) must be employed. Such methods have been used
successfully for reconstructing the trajectory of small birds using

lightweight geolocation (e.g. Lisovski et al., 2020). However, their
implementation can be challenging due to the complexity of choos-
ing the type of Monte Carlo method, configuring the run (e.g. step
size) and checking convergence. In this paper, we consider only the
problem of estimating bird trajectories given the observations under
a fixed process model. For the related problem of performing infer-
ence jointly over trajectories and unknown parameters of a process
model, efficient routines for trajectory estimation can be nested
within a larger inference procedure, for example, using MCMC.

Whenever the SSM can be discretized in space and time
(e.g. Pedersen et al., 2011), it becomes a hidden Markov model
(Rabiner, 1989). In such cases, the positions can be estimated exactly
and efficiently with the forward-backward algorithm, also known as
a two-pass recursive algorithm (Rabiner, 1989; Scott, 2002; Zucchini
et al., 2017), and the mostly likely trajectory can be found with the
Viterbi algorithm (Viterbi, 2006). These algorithms have been used
in animal movement literature (Leos-Barajas & Michelot, 2018;
McClintock et al., 2020; Patterson et al., 2016) but have rarely been
applied to geolocator data (e.g. Bindoff et al., 2018). A major chal-
lenge in estimating the trajectory of a bird with this approach is the
memory requirements to store the probabilities of every possible
transition between pairs of locations using a data structure known
as the trellis graph (e.g. Rabiner, 1989).

Using pressure data from the geolocator, the trajectory of the
bird can be efficiently modelled as an hidden Markov model (HMM)
because bird trajectories can be discretized in a limited number of
periods (time) and grid cells (space). Unlike marine wildlife, most
birds migrate by alternating active migratory flight with periods
of residency (stationary periods), where their position can be as-
sumed fixed at the precision level provided by light and pressure
geopositioning (~10 km). In addition, identifying the exact duration
of flights (using activity data or pressure) can inform the movement
model of the SSM by constraining the distance between consec-
utive positions, assuming a distribution of ground speeds (e.g.
Briedis, Beran, et al., 2020). In this context, wind data have recently
been shown to considerably improve position estimates because
of the strong influence of wind on a bird's ground speed (Werfeli
et al, 2022).

In this study, we present a framework to reconstruct the tra-
jectory of a bird based on pressure (and optionally light) data cap-
tured by geolocators. In this approach, we model the trajectory
as a discrete SSM (or HMM) and optimize the trellis graph of the
HMM, where nodes correspond to the position of the bird at a sta-
tionary period and edges represent transitions from one position to
the next. We first explain how to efficiently build this trellis graph
(Section 2.2) and then demonstrate how the graph can be used to
(1) identify the trajectory that maximizes the overall probability
with the Viterbi algorithm (Section 2.3.1), (2) compute a marginal
probability map of the bird's location at each stationary period
using the forward-backward algorithm (Section 2.3.2) and (3) sim-
ulate possible trajectories with the sequential simulation algorithm
(Section 2.3.3). Finally, we show how wind support and drift can be
computed for each flight of the trajectory (Section 2.4).
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This method is available as an R package, called GeoPressureR
(https://raphaelnussbaumer.com/GeoPressureR/), including a user
manual, GeoPressureManual (https://raphaelnussbaumer.com/GeoPr
essureManual/) and an introductory code, GeoPressureTemplate
(https://raphaelnussbaumer.com/GeoPressureTemplate/).

2 | MATERIALS AND METHODS
21 | Data

To illustrate how this method is implemented, we use a geolocator
dataset consisting of 16 tracks from nine species covering a variety
of migration distances and speeds. The dataset and its basic process-
ing are described in full detail in Nussbaumer et al. (2023) and briefly
recalled below.

First, the accelerometer and pressure data of each track are used
to identify (1) stationary periods where the bird is assumed to be
at a fixed location (~1-10 km scale) and (2) the time of departure
and arrival for all flights. Then, using pressure data, we determine
the likelihood map (i.e. the probability of observing the pressure
measurements conditional to the position of the bird) on a discrete
map of 0.25° (~27 km) resolution for each stationary period and each
bird. Finally, we estimate the likelihood map from light data on the
same map size and resolution as pressure. Knowing that pressure
and light data are independent, the observation model is defined by
the product of the pressure and light likelihood maps. If no light data
are available, the methodology can be applied using the pressure
likelihood map alone.

For the movement model, we rely on an external database of
windspeed (ERA-5 pressure level dataset Hersbach et al., 2018a).
Windspeed is used to refine the likelihood of the transition between

each stationary period (see Section 2.2.5 for more details).

2.2 | Building the trellis graph

We model the trajectory of a single bird with an HMM by discretiz-
ing the positions Xj, ..., X, of the bird inn + 1 stationary periods and
relating these positions to the observations Yy, ...
(and optionally light) via the SSM

,Y, of pressure

n n
P(Xkl Xk—l)

k=1 k=0

P(Xor o s X You - s Ya) = P(Xo) P(Yl X)- (1)

The initial distribution P(X,) has little impact because the initial
observation P(Yy| X, ) strongly constrains inferences about X, for ex-
ample, by encoding the known location of initial capture and tagging.
As such, we assume P(Xo) to have a uniform distribution over space.
The transition probabilities P(X, | X,_4) will vary with time due to the
different flight durations and the effect of wind. The possible positions
in space are discretized according to the resolution of the likelihood
map (0.25°). Note that we do not model additional state variables (e.g.

behaviour). Building the full HMM of the trajectory would require
computing and storing the transition probabilities between every pair
of locations for each consecutive pair of stationary periods, a total of
(Mt n,a,,)zn values. This is computationally feasible only for small grids
as it would require both significant computational effort and large
memory.

Many positions on the grid are unlikely according to the obser-
vation model, and most transitions are unlikely according to the
movement model. Thus, some minor simplifications can dramatically
reduce the number of transitions. In such cases, it becomes more
convenient to represent the HMM via its trellis graph, where the
nodes represent the possible position of the bird at each station-
ary period and the edges correspond to the transition of the bird
from one node to the next (e.g. Rabiner, 1989). The probability of the
observation model can be conveniently encoded at the node level,
while the probability of the movement model can be associated with
edges.

The computational feasibility of constructing such a graph still
relies on careful considerations. To maximize computational effi-
ciency and minimize memory requirements, we follow a five-step
process to create the graph. The aim of the first two steps is to re-
duce the number of nodes and thereby avoid computing excessively
numerous transitions. Once only likely nodes remain, we compute
the edges and prune the graph with computationally demanding
operations (e.g. windspeed; steps 3-5). The steps are explained in

detail below and illustrated in Figure 1.

2.2.1 | Step 1: Constructing the nodes with the
observation model

We keep all the nodes of the graph up to the 99th percentile of the
likelihood maps of the observation model. These nodes correspond
to the coloured pixels of the likelihood map of pressure and light
datain Figure 1b. If the first and/or last stationary periods are known
(equipment/retrieval site), they are assigned a probability of 1 at

their known location and O everywhere else.

2.2.2 | Step 2: Pruning nodes with the
movement model

We compute the maximum flight distance possible between each
stationary period D(k, k + 1) using the flight duration estimated from
pressure data (see Section 2.1) and a ground speed threshold of
150km/h. This threshold allows for exceptionally high speeds as the
95th percentile of ground speed for small migratory birds is below
90km/h (Liechti & Bruderer, 1995). Nodes that are too far from any
other nodes from either the previous or the following stationary pe-
riod are pruned.

For computational feasibility, it is critical to perform this prun-
ing without doing a full pairwise comparison among all nodes.
More specifically, let m, (m, < nj;hy,,) be the number of active (i.e.
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Graph construction

Nodes © and edges «® remaining after...
O © @ Step 1: Nodes included within the 99% uncertainty of the likelihood map.
© @ Step 2: Nodes within reach (<150km/h) to at least one node in the previous/next sta. period.
«* © @ Step 3: Compute edges groundspeed (<150km/h).
«* @ Step 4: Compute edges windspeed and airspeed. Filter airspeed (<100km/h) and trim.

(a) Schematic example

& - ® - ® - ® A |

Equipment Stopover 1 Stopover 2 Retrieval

] G
B ©

%?7°

Edges: ,-* Groundspeed <150km . Airspeed <100km

A

@ @

lattitude

longitude

(b) Application to Great Reed Warbler(18IC)

19-Aug 20-Aug - 24-Aug
o
©
15
=
3
2
=3 °
© a
E 5
T 3
3
< g 5
= EN<
7}
= z
- g
g
8
5
o
ill:
14
. o
<
o
)
wn
[ |
o :
1} 5 ©
° 5 &
o > &
2 2 B
H
s
E -
e q
2 o
§ (7]
2 [

FIGURE 1 |lllustration of the creation of the graph. (a) The schematic example considers a simple trajectory from an equipment site (A)
to a retrieval site (K;) in three flights and two stationary periods. Nodes of different stationary periods are overlayed on the same spatial
grid (right panel) (but distinguishable by subscript and shape). Step 1. We keep all nodes corresponding to possible positions according to
the 99th percentile of the likelihood map. We do not illustrate the static probability map for the schematic example. Step 2. We eliminate
nodes that are not within reach (<150km/h) of at least one node from the previous and following stationary period. B, is eliminated on the
forward pass, G, and C, are eliminated on the backward pass. Step 3. We construct all possible transitions (red and orange lines). Step 4.
After computing the average windspeed and airspeed for each transition, we prune edges requiring an airspeed >100km/h (orange dotted
line). The final graph is thus composed of the red nodes and edge. (b) An example of the application of the method using the same subset of
stationary periods as in fig. 4 in Nussbaumer et al. (2023).

non-pruned) nodes for stationary period k after Step 1. A naive algo- node in stationary period k is within the maximum flight distance
rithm to execute the pruning of this step would require the order of of at least one active node in stationary period k + 1. However, we
m,m, 1 computational steps, for example, by checking if each active perform the same operation in time proportional only to m (i.e. time
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linear in the currently active number of nodes), which enables a sig-
nificant speedup. We do this by using a fast algorithm for distance
transformations in binary images (i.e. 0/1-valued; e.g. Kolountzakis
& Kutulakos, 1992; Maurer et al., 2003). A distance transformation
computes the distance between every pixel and the closest pixel
with a ‘1’ value, which, in our setting, represents currently active
nodes in stationary period k. The algorithm uses the Euclidian dis-
tance on the image coordinates (i.e. lat-lon). These distances in dec-
imal degrees are converted into kilometres assuming a flat-earth
surface while accounting for the variation of distance between me-
ridians (dy, = 111 x cos(lat) X de).

Using the distance transformation from the active nodes in sta-
tionary period k, we prune the active nodes for stationary period
k + 1 requiring a flight distance higher than the maximum flight dis-
tance D(k, k + 1). This operation is repeated for all pairs of stationary
periods going forward and then backward to ensure that all nodes
are connected to the first and last nodes (equipment and retrieval).
This efficient pruning relies on the specific structure of the HMM,
in which the states are located on a regular grid, allowing them to be

treated as a binary image.

2.2.3 | Step 3: Computing edges with ground speed

Having identified and pruned the nodes, we now compute all edges
between the remaining nodes. We compute the ground speed for
each edge using the great circle distance and the duration of the
flight.

Then, we filter the edges with the threshold of 150km/h, which
also removes some nodes as the flat-earth distance used in Step
2 was approximate. Finally, we prune the graph based on the con-
straint that all nodes must be connected to both the equipment and
retrieval nodes using the breadth-first search algorithm (Cormen
etal., 2022).

2.24 | Step4: Computing edges with airspeed

We compute the average windspeed and airspeed of all edges
and prune the graph based on a predefined airspeed threshold of
100km/h, which considers potential uncertainty in wind estimates
as the 95th percentile of airspeed for small bird migrants is below
75km/h (Liechti & Bruderer, 1995).

To account for spatiotemporal change in windspeed at short tem-
poral scales (especially with altitude), we take advantage of knowing,
for each edge of the graph, (1) the exact time of departure and arrival
(see Section 2.1), (2) the location of departure and arrival, and (3) the
geolocator pressure measurements during the flight, which corre-
spond to the bird's altitude.

We use the E/W and N/S windspeed components from the
ERAS pressure levels dataset (Hersbach et al., 2018a), which pro-
vide hourly wind estimates at a spatial resolution of 0.25° in latitude
and longitude at 37 different pressure levels (i.e. altitudes). We then

proceed to build two 4D gridded linear interpolations (E/W and N/S)
that provide an estimate of windspeed for any time, latitude, longi-
tude and pressure level.

For each edge of the graph, we estimate the average windspeed
encountered by the bird. We construct the flight trajectory of the
bird with discrete 4D positions (time-latitude-longitude-pressure

level) as follows:

o We discretise the trajectory on an hourly basis starting on the
hour preceding flight departure and ending on the hour following
arrival.

e The latitude and longitude positions are estimated assuming a lin-
ear displacement (i.e. “as the crow flies”) between the departure
and the arrival nodes.

e The pressure level positions are retrieved from the geolocator

pressure measurements.

Windspeed significantly contributes to the displacement of the
bird and can vary considerably within a flight. We, therefore, correct
the horizontal position of the bird to assume a constant airspeed
rather than a constant ground speed which would correspond to
equally spaced hourly positions. We use an approximate two-step
approach.

In the first step, we initialize the position assuming a con-
stant ground speed G and query the corresponding hourly
windspeed w;. We can then compute the average airspeed of
the flight with A=G - % Z? w;. Then, the hourly ground speed
can be estimated with g; = A+ w;. Finally, we adjust the hourly
position based on the hourly ground speed. In the second step,
the hourly windspeeds w; are now queried at the adjusted posi-
tions and used to compute the average windspeed of the flight
W= % ZI" w;. We can compute the average airspeed of the total
flight as A=G - W. All these operations are performed with
vectorial speed (lat-lon) and the trapezoidal rule is used in the
weighting of the average to account for the exact time of depar-
ture and arrival.

Finally, we prune the graph similarly to the previous step, this
time based on an airspeed threshold of 100km/h.

2.2.5 | Step 5: Computing the transition
probabilities

In the final step, we compute the transition probability P(th thl) (i.e.
movement model) for each edge from the airspeed. We define a par-
ametric function converting the average airspeed into a probability
using flight energetics and considering that a bird is more likely to fly
at an airspeed resulting in lower energy consumption. More specifi-
cally, we empirically define the probability proportional to the cubic

inverse of the mechanical power of flight P, of the airspeed v,,

3
1
Pmech(max(va (Xk—l_)xk)'vﬁm))> ’ (2)

P(Xe =%l Xy =%_1 ) <
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where v, (x,_y = X, ) is the airspeed computed in step 4 for the edge
of the transition from the node x,_, to the node x,. The mechanical
power is computed with FlightMAT (Nussbaumer, 2022) following
Pennycuick (2008), and taking into account each species' mass, wing-
span and wing area from Tobias et al. (2022). We additionally impose a
minimum apparent airspeed of v;,,=5 km/h, which allows for birds to
perform short exploratory flights (e.g. Mills et al., 2011; Schmaljohann
etal., 2011).

2.3 | Trajectory outcomes

Using the constructed graph, we derive the following three

outcomes.

2.3.1 | Most likely trajectory

While the mean or median positions of each stationary period are
commonly used to illustrate a single trajectory, they do not ad-
equately represent the connectivity between stationary periods,
even more so when the probability map is multi-modal. Instead, we
suggest using the most likely trajectory, corresponding to the trajec-
tory maximizing the joint probability,
argxmé?f(n P(Xo=Xp» s Xy =X Yo =Yor -, Y0 =Yn ).

Within graph theory, the shortest path problem is a well-known
computational task seeking to identify the path characterized by the
smallest sum of weights of all its edges. The most likely trajectory is
equivalent to the shortest path when the weights of the edges are
defined as the negative log of the probability. Using this formulation,
we compute the most likely trajectory using the shortest path search
with Dijkstra's algorithm (Dijkstra, 1959). This operation produces the
same result as the Viterbi algorithm for finding the single best state
sequence in an HMM (Rabiner, 1989; Viterbi, 2006).

2.3.2 | Marginal probability maps

We take advantage of the compact sparse graph to compute the
marginal probability map of each stationary period, which is repre-
sented by the distribution P(X,| Y, ...
use the forward-backward algorithm (e.g. Rabiner, 1989; Zucchini

,Y,) for each time step t. We

et al., 2017), which is a special case of the sum-product algorithm
(e.g. Ross, 2019) tailored to HMMs.

We briefly explain how the forward-backward algorithm is ap-
plied in our case. For convenience, we group the transition probabil-
ities P(X,| X;_4 ) into a transition matrix T, (m x m), and all observation
likelihoods P(Y, = y;| X; = x;) for all values of x,and for the observed
value of y, into the diagonal matrix O, (m x m). Using the Chapman-
Kolmogorov equation, we define the forward probability vector f,
and backward probability vector by(m x 1) recursively,

fo=fi_1(TOk)
bk—l = (Tkok)bk

@)

Starting with the forward probability vector f] = P7O,, which has
entries of the form P(Xy = xo)P(Yo = Yol Xo = Xo) for each starting
location x, and the vector b, = 1, (all ones, m x 1), we can write the

forward and backward probability vectors as

T _ T

f, =f, 7,0, ... T;0; @
bt = Tt+10t+1 Tnonbn

The final vector u, (mx1) has entries of the form

P(X: = x| Yo, ...

each location. It is computed as the probability vector proportional to

,Y,,) corresponding to the marginal probabilities for

the element-wise product (denoted o) of the forward and backward

probability vectors:
Hy o froby. (5)

Following the same reasoning as the forward-backward algorithm,
the marginal probability matrix M;_4 ; (m x m)of each transition (also called
a pairwise marginal), which has entries P(X,_y = X,_1,X; = X;| Yo, ..., Y,)
can be computed as

M,_y, xdiag(f,_;) T,O.diag(b). 6)
2.3.3 | Random trajectories generator

To compute quantities relying on the entire trajectory such as the
total distance flown or the average airspeed, it is most convenient
to generate multiple possible trajectories and compute aggregated
quantities on each one.

We use the forward filtering backward sampling (e.g. Carter &
Kohn, 1994) to generate a possible trajectory x = (xo, e Xy ) using

the following steps:

1. Fix the known position of retrieval x,, or if unknown, sample
from u,.
2. For each stationary period k < n, in a backward order,

1. Sample a position x, given x,,, from the probability vector
proportional to fyo1, T, where the operator 1, is used to
extract the row of T, corresponding to x,,,. The forward vec-

tor f, is assumed to be already computed from Section 2.3.2.

2.4 | Wind analysis

The resulting position estimates are precise and accurate enough in
relation to the spatial variation of wind to allow for studying wind con-
ditions during flight. As ground speed, windspeed and airspeed have
already been computed for each edge of the graph, we can easily ex-
tract and summarize their distributions from the randomly simulated
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trajectories (Section 2.3.3). In addition to ground speed, airspeed and
windspeed, we compute the distribution of wind support and drift by
calculating the windspeed projection along each individual flight's ori-
entation (wind support) and perpendicular to it (drift).

We qualitatively assess the relationship between each flight in
terms of distance and orientation, as well as the direction and magni-
tude of wind. In addition, we characterize the overall effect of wind
on the full trajectory by integrating the ground speed, windspeed,
airspeed, wind support and drift over all flight durations to quantify

the total displacement caused by each one.

3 | RESULTS
3.1 | Trajectory outcomes

The most likely trajectory, the marginal probability maps, and the
simulated trajectories are illustrated in Figure 2 for six individu-
als of different species. Figures for all 16 tracks are available in
Supporting Information 1 and https://doi.org/10.6084/m9.figsh

are.21731888. The probability map of each stationary period
shows an irregular shape (i.e. not ellipsoidal) due to the pressure
threshold and land mask (e.g. stopover in Italy for 18IC). The un-
certainty is generally significantly smaller for long stationary pe-
riods (e.g. stopover in northern Tunisia for 18IC). The most likely
trajectory connects each stationary period by finding the optimal
compromise between generally minimizing the flight distance while
preserving the stopover location in the most likely area. The most
likely trajectory is expected to produce a realistic full trajectory,
which is not guaranteed by alternatives such as using the average
or median position of the marginal probability at each stationary
period. The simulations, on the other hand, are useful to illustrate
all the possible trajectories that the bird might have taken and thus

visually represent the uncertainty in the overall trajectory.

3.2 | Wind analysis

Using the high-resolution trajectories produced, we can quantify

the speed and direction of wind experienced during each flight.

FIGURE 2 |Illustration of the three outputs of this method for six birds (Great Reed Warbler 181C; Eurasian Wryneck 22QL; Ring Ouzel
200E; Eurasian Hoopoe 16DM; Red-capped Robin-chat 24TA; Tawny Pipit 22BK). (1) The coloured areas indicate the marginal probability
of positions for each stationary period, with the colour indicating the time of year and the colour intensity indicating the value of the
probability. Note that for visual purposes, we normalized the probability map of each stationary period separately. (2) The thick white line
with circles represents the most-likely trajectory. (3) The thin white lines represent 30 simulations of possible trajectories. Higher-resolution

maps for all 16 tracks are available in Supporting Information 1.
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FIGURE 3 Wind rose plot of the windspeed distribution for each flight of more than 3h computed from the 1000 simulations. The
trajectory line illustrated represents the most likely trajectory. Note that the bin height (diameter of each wind rose) is normalized for
each flight stage. Arrows indicate post- (blue) and pre-(orange) breeding migration. Higher-resolution maps for all 16 tracks are available in

Supporting Information 2.

We illustrate the potential of this new approach by overlying the
wind rose onto the most likely trajectory (Figure 3 and Supporting
Information 2). Histograms of ground speed, windspeed and air-
speed for each flight stage are available in Supporting Information
4. All flights generally occurred with supporting wind, and stronger
wind support tends to be associated with longer flights and longer
distance travelled. Northward migration (i.e. temperate spring ex-
cept for intra-African migrants) is performed in fewer and longer
flights as birds experience stronger wind support than during south-
ward migration.

Interestingly, most detours in the trajectory can be explained
by birds drifting while following the direction of strong supporting
winds, such as the detour via Libya by 18IC, or the detour via west-
ern Algeria by 16DM, both during pre-breeding migration.

As illustrated above, wind can help birds reach their destina-
tion faster, but also cause lateral drift. We quantified the displace-
ment due to the wind (windspeed) and due to the bird's own power
(airspeed) for each flight of each track (Figure 4a and Supporting
Information 3). To illustrate the benefit of incorporating windspeed
data in the movement model, we highlight the longest non-stop
flight of the Great Reed Warbler (18LX), lasting 20 h and covering
about 2700km. This impressive groundspeed (135km/h on average)

is largely explained by the high windspeed of 81 km/h, resulting in a
reasonable airspeed of 54km/h (Figure 4a).

Summing the displacement due to wind and airspeed for all flights
in spring and autumn separately, we can compare the influence of
wind between season and species. Except for the Eurasian Nightjar,
long-distance migrants tend to be more efficient at maximizing wind
support while minimizing drift compared to short-distance migrants
(Figure 4b). In autumn, drift tends to be larger, and wind support
smaller, than in spring while the overall distance travelled is greater.

4 | DISCUSSION
41 | Model strengths

In this paper, we present an approach to estimate the full migra-
tory trajectory of a bird equipped with a lightweight geolocator.
We model the trajectory as an HMM using a trellis graph, which,
thanks to its compact format, allows us to efficiently build and
store the full probability distribution of the trajectory. The model
allows us to make inferences about the trajectory - such as com-
puting the most likely trajectory or marginal probability maps - in
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FIGURE 4 (a) Distance travelled by the Great Reed Warbler (18LX) propelled by wind (dotted line) and its own airspeed (continuous
line) for each flight. The longest flight is highlighted in red to illustrate that the impressive ground speed (135 km/h) is mostly explained by
the high windspeed (81 km/h). Similar maps for all 16 tracks are available in Supporting Information 3. (b) lllustration of the wind triangle

of distance (rather than the usual wind triangle of speed) for spring (left) and autumn (right) migration. The total distance travelled (i.e. sum
of all individual flights) (dot ~ ground speed) is the vectorial sum of the wind (dotted line ~ windspeed) and bird power (continuous line ~
airspeed). This representation allows to visually appraise the relative influence of the bird's drift (x-axis) and wind support (projection of the

dotted line on the y-axis).

a mathematically exact manner (up to pruning of very low prob-
abilities) while keeping computational costs low (see running time
in Supporting Information 5).

Thanks to the high precision it provides, this framework can
incorporate all stationary periods that make up the migration tra-
jectory, even those lasting less than 12 h. The trajectory offers an
elegant way to constrain the position of short stationary periods by
combining the informative likelihood map (pressure and/or light) of
long stationary periods with a realistic flight model. Information on
the location and timing of such short stopovers can refine our under-
standing of migratory strategies and inform conservation measures
by identifying the resting sites required by birds, even those visited
for a short period.

In addition, the graph structure allows us to efficiently account
for wind data to refine the possible distance covered by a bird, and

ultimately improve the accuracy and precision of the trajectory.
Compared to Werfeli et al. (2022), the computation of wind is fur-
ther improved by integrating the variation of windspeed over time,
space, and altitude encountered throughout the flight.

4.2 | Datarequirements

This approach was developed and optimized for data collected from
lightweight pressure sensors equipped on small birds. However, it
could be applied to other datasets, under certain conditions. The
observation model can incorporate any data that provide a position
estimate. For instance, it can be based on light data only, possibly
requiring a lower grid resolution. The approach can also integrate
external information, such as field observations of the equipped
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bird or data from archival GPS or telemetry. The method does not
require knowledge of the position at the first or last stationary pe-
riod (e.g. 22BK); however, this information can drastically reduce
the size of the trellis graph. Additionally, the data collected by the
device must provide the information needed to identify stationary
periods and estimate flight duration. In the case of bird migration,
this can be achieved using pressure measurements alone thanks to
their high-altitude flight (e.g. Rhyne & Nussbaumer, 2022; Rime &
Nussbaumer, 2022). Accelerometer data can be particularly help-
ful for this task because of its high temporal resolution. Wind data
provide a facultative but significant improvement in the accuracy of
possible flight distance. In the absence of wind data, the movement
model (Section 2.2.5) should be replaced by a parametric equation of
the ground speed (e.g. Briedis, Beran, et al., 2020).

Beyond birds, this approach could in theory be used to model the
trajectory of other animals, provided they alternate between short
periods of movement and extended periods of stationarity, where
the animal can be assumed to remain in the same position relative
to the grid resolution. Indeed, the modelling approach relies on the
location of the bird being discretized in space and time over a finite
number of stationary periods. This is typically not the case among
most marine wildlife nor mammals.

For this approach to be applied successfully in other studies, the
importance of high-quality labeling of pressure cannot be overstated
(Nussbaumer et al., 2023), as a small labeling error could result in er-
roneous trajectory estimation. To avoid this, we recommend using
the R Shiny app GeoPressureViz (https://raphaelnussbaumer.com/
GeoPressureManual/geopressureviz.html), which helps researchers
to visualize the full trajectory of the bird and validate the labeling
and overall coherence of the likelihood maps with the movement

model.

4.3 | Wind analysis

With precise position estimates for each stationary period and the
high-resolution windspeed database, we can estimate the speed and
direction of wind experienced by a bird with relatively high confi-
dence. Consequently, wind support, airspeed and wind compen-
sation can all be quantified on an individual level for small-bodied
passerines. Our preliminary results from these 16 tracks qualita-
tively illustrate the significance of wind strength and direction in
explaining flight distance, duration, and even the migration trajec-
tory. As the objective of this paper is to describe the method used to
reconstruct the trajectory, we do not investigate further ecological

research questions here.

4.4 | GeoPressureR

Recent years have seen a growing number of studies using multi-
sensor geolocators to track small-bodied passerine migrants (e.g.
Liechti et al., 2018; Meier et al., 2018; Sjoberg et al., 2021). To assist

researchersin applying this method to their own study, we developed
the R package GeoPressureR (https://raphaelnussbaumer.com/GeoPr
essureR/) to (1) compute positions based on pressure (Nussbaumer
et al., 2023), (2) build the graph and (3) compute the four outputs of
this study. The package is accompanied by the user guide GeoPres
sureManual (https://raphaelnussbaumer.com/GeoPressureManual/)
providing step-by-step explanations using the example of the Great
Reed Warbler (18LX). Furthermore, the GitHub template repository
GeoPressureTemplate (https://github.com/Rafnuss/GeoPressur
eTemplate) helps researchers kick-start their study with a pre-built
folder structure, R code, and an automatically generated website re-
port. Together, these tools aim to make the method described above
accessible to all researchers and applied to a wide range of species,

including birds and bats.
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performed with the R package GeoPressureR (https://raphaelnus

sbaumer.com/GeoPressureR/).
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