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1 | INTRODUCTION

Ecologists and evolutionary biologists increasingly use complex hier-
archical models to answer novel questions of theoretical and practi-
cal importance (e.g. Conn et al., 2018; Hooten & Hobbs, 2015; Kéry
& Royle, 2016, 2021; Kéry & Schaub, 2012). For example, 52% of 50
recently published papers in 2021 in the journal Nature Ecology and
Evolution use a hierarchical model to analyse their data (Table S1).
Examples of hierarchical models include generalized linear mixed
models (GLMMs, Bolker et al., 2009), latent state models with some
observation process (e.g. occupancy models MacKenzie et al., 2002;
Tyre et al., 2003) and mixture models (Kéry & Schaub, 2012). Several
factors have contributed to the increased application of hierarchical
models in ecology and evolutionary biology (e.g. Bolker et al., 2009;
Kéry & Royle, 2016, 2021; Kéry & Schaub, 2012). First, with greater
access to community science data, open-source datasets, genomic
data and long-term ecological research (e.g. Dryad®, GenBank®,
TreeBASE®), biologists can ask bigger and more complicated ques-
tions, which typically lead to the use of more complicated modelling
methods. Second, more biologists are learning to use flexible pro-
gramming languages that facilitate writing tailored complex hierar-
chical models (e.g. BUGS Sturtz et al., 2005, JAGS Plummer, 2003,
stan Carpenter et al., 2017, package LMe4 Bates et al., 2015, machine
learning methods Joseph, 2020). Lastly, policy and conservation
decision-makers are increasingly relying on the insights from com-
plex datasets to guide their actions (Runting et al., 2020).

However, when practitioners fit custom-built hierarchical mod-
els, their methods are often largely untested (e.g. Conn et al., 2018;
Hooten & Hobbs, 2015). As the complexity of hierarchical models
increases, it becomes increasingly difficult to intuitively understand
the assumptions, uncertainty and potential biases of the specified
model. For example, a recent paper published in Science used a hier-
archical statistical model to examine the effects of climate change on
bumble bee occupancy (Soroye et al., 2020), and a follow-up study
using data simulations showed that the hierarchical model used was
not robust to violations of model assumptions (Guzman et al., 2021).
Although such cases may seem rare, it is likely more common than
appreciated. To determine how often biologists are validating the re-
sults of the hierarchical models they use to analyse data, we reviewed
50 recently published papers in 2021 in the journal Nature Ecology
& Evolution, and we found that the majority of published papers that
used hierarchical models did not report any validation of the models
(5 of the 26 papers checked the diagnostics and fit of hierarchical
models; 19%; Table S1). Similarly, in the journal Ecology, only 25% of
articles routinely report model diagnostics (Conn et al., 2018). Even
more rarely do biologists report an evaluation of the soundness
of their code or the reliability of their novel statistical models (i.e.
are the statistical models unbiased? how robust are the models to

violations in assumptions? Brown et al., 2018; Link et al., 2018). One
reason for this lack of quantitative rigour is the absence of standard
guidelines that would make it easy for biologists to evaluate their
statistical models (Barraquand et al., 2014; Conn et al., 2018).

The goal of this paper is to lay out a framework for validation when
complex hierarchical models are used. By validation, we mean, ‘are
the estimates we generate from a statistical model providing sound
inferences (i.e. can we generalize the results)?’ Thus, validation in-
cludes everything from whether code is correct, to whether param-
eters are identifiable and estimates unbiased, to whether our model
can be robustly applied when assumptions are violated or new data
are collected. In the real world, however, we rarely know true values
of ecological parameters of interest (e.g. Kéry & Schaub, 2012); thus, in
most cases, our ability to test and validate statistical methods relies on
simulating datasets where truth is set and known by the user (e.g. Kéry
& Royle, 2016; Kéry & Schaub, 2012). Simulated data provide an op-
portunity to compare different properties of our statistical estimators
to the true parameter values used to generate them and to evaluate
model behaviour or performance. To determine how often biologists
simulate data, we reviewed 50 recently published papers in 2021 in
the journal Methods Ecology & Evolution (Table S2), and we found that
78% of the papers that proposed a new estimation technique, package
or model used simulations or generated data in some capacity (18 of
23 papers). However, even in this journal the approaches used by au-
thors varied greatly. For example, only five of the 23 papers included
a basic demonstration that code can recover realistic estimates for a
dataset with known parameters. Similarly, only nine of the 23 papers
included simulations that demonstrate the statistical properties of an
approach (i.e. quantifying accuracy, precision, bias and coverage of
the estimator). As demonstrated by our review of papers published in
Nature Ecology & Evolution, validation is even less common in journals
not focused on methods development, despite most applications of
complex hierarchical models using novel methods.

While simulation studies are a natural tool for understanding and
validating the statistical properties of a method, model or analysis,
there is no clear standard for when ecologists can use simulation
studies, and which simulation studies are useful in different scenar-
ios (e.g. Olivetti et al., 2021; Rossman et al., 2016; Smith et al., 2021,
Tingley et al., 2020). Therefore, in this paper, we provide a guide to
simulation studies for biologists. Specifically, we present a taxonomy
of simulation study types based on the intended inference, with two
broad divisions: (1) study-specific simulations (i.e. studies focused on
a particular ecological system, such as an analysis of an ecological
dataset aimed at answering a scientific question relevant to that
ecological system) and (2) general property simulations (i.e. studies fo-
cused on methods and guidelines for adoption in future studies). We
provide general guidelines on what questions each simulation study
can help answer, and we encourage authors to at a minimum include
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an easily implementable basic validation simulation whenever novel
statistical models are used. In an effort to facilitate the implemen-
tation of these methods, we provide a running example throughout
the text with fully reproducible code in R (R Core Team, 2021) and
Nimble (de Valpine et al., 2017, 2022a, 2022b). This running example
takes advantage of a common hierarchical model in ecology—the oc-
cupancy model (MacKenzie et al., 2002; Tyre et al., 2003)—in which
the ecological process is decomposed from the sampling process.
We suggest that new statistical models be accompanied by data
simulations to avoid erroneous conclusions and to avoid the use of
biased models in policy and decision-making, just as it has become
standard practice that field studies are accompanied by laboratory

experiments to validate conclusions (Kéry & Royle, 2016).

2 | USES OF DATA SIMULATION STUDIES
IN ECOLOGY AND EVOLUTIONARY
BIOLOGY

Simulation studies are valuable for a wide range of analyses conducted
using a wide range of statistical frameworks. Frequentist, Bayesian
and optimization-based machine learning approaches all lend them-
selves equally well to simulation studies (Muff et al., 2020; Weber
et al., 2021). Similarly, simulation studies are valuable when inference
is conducted analytically (i.e. when using an analytic maximum likeli-
hood estimator and analytic asymptotic confidence intervals) or nu-
merically (i.e. when using numerical optimization Kendall et al., 1997;
Kendall & Nichols, 1995; Mackenzie & Royle, 2005).

It is important to clearly identify the goal of any simulation study
and to identify the statistics of interest that will help address this goal
(see Table 1 for a list of common goals of simulations studies; Kéry
& Royle, 2016). The basic steps of conducting any simulation study
are to (1) simulate one to many unique datasets using a data gener-
ating model (referred to as M), (2) estimate the desired parameters
(or other statistics) using the statistical model of interest (referred
to as A) and (3) summarize the performance of those estimates using
Monte Carlo methods (see Box 1 for a more detailed algorithm).
Monte Carlo approaches are those which rely on random variables
simulated from a distribution, instead of the theoretical proper-
ties of the distribution itself (see Rizzo, 2019 for an introduction).
Two very common uses of Monte Carlo methods are Markov Chain
Monte Carlo (MCMC) methods used primarily in Bayesian statistical
analysis (Gelman et al., 1995) to draw samples from a posterior distri-
bution, and simulation studies, which we focus on here. A simulation
study is simply the process of drawing samples from a distribution of
a desired statistic, and using those samples to understand the statis-
tical properties, like bias and variance, of a statistic (a function of the
random samples). The questions which can be addressed by a given
simulation study depend heavily on (1) the way random samples are
drawn and (2) the statistics, or quantities, of interest. In this paper,
we outline a classification of simulation studies, and provide an illus-
tration of many common types of simulation studies.

The first classification of simulation studies, which we refer to as
study-specific simulations, are methods appropriate when the goal is
to validate the analysis of a dataset already in hand and the interpre-

tation of the ecological results of the analysis in the context of the

TABLE 1 Summary table of the taxonomy of simulation studies used to understand and validate statistical models. Under each category,
there are three types of simulation studies. For each type of simulation study, we summarize the types of questions that each aid in

answering alongside the goals of the simulation

When to use this simulation study?

Type of simulation

Category study Questions to answer

Basic validation

Goal

Study-specific

simulations simulation

Determining statistical
properties

Assessing
goodness-of-fit

Simulation-based
study design

General property
simulations

Assessing statistical
robustness

Comparing the efficacy
of different
approaches

Are the parameters identifiable? Is this model
computationally feasible?

What are the basic statistical properties of my
model under a standard set of conditions?
How does the approach perform with respect
to parameter accuracy, bias, precision and
coverage? What are the computational
requirements/time of running the model?

Does my model sufficiently and accurately
explain my data?

How many samples will be needed to generate
quality estimates? What is the optimal
allocation of samples? Where and when do |
collect samples?

What are the properties of the estimator across
different parameter spaces? Can the approach
be applied to different conditions?

What happens when data violate model
assumptions? How do different approaches
perform under non-optimal conditions?

Explore and verify identifiability of model
parameters, given available data

Understand statistical properties of an
algorithm output

Understand if the estimator can sufficiently
reproduce the observed data

Understand sampling design requirements
for robust inference

Understand model performance under a
wide array of parameter conditions

Understand model performance when
assumptions are violated
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BOX 1 General framework for data simulations

The general procedure for a simulation study can be defined by three steps (Figure B1.1).

(1) Simulation Simulated 2) Model Fittin Algorithm 3) Monte Carlo
Data Outputs Analysis of Outputs
k =< K k
Ye~ My, X) AWy, My, X) > 01
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v

FIGURE B1.1 Graphicalillustration of the steps of a simulation study. These steps are described in detail in this box. [Correction
added on 14 December 2022, after first online publication: Figure B1.1 has been revised].

(1) Simulation. To simulate data, the user specifies a probabilistic model M, for simulation, parameters p_ of that model and inde-
pendent variables X_. The ability to vary the model, parameters and independent variables determine the types of inferences that
can be made from a simulation study. Thus, it is common for simulation studies to consider a range of simulation settings. We denote

the kth simulated dataset as y!

Sk), with the ‘s’ subscript denoting that this is a ‘simulated’ dataset, and the ‘(k)’ superscript denoting the

replicate number, with ‘k’ ranging from 1 to K, the total number of simulations.

(2) Model Fitting. The goal of most simulation studies is to understand the distributional properties of a ‘statistic’, which is often
an estimate of a parameter or a summary of a set of data. We assume an algorithm, A, is applied to a simulated dataset y_ and returns a
set of statistics or outputs O,, and the user has a lot of flexibility in defining the algorithm, A. Note that the algorithm is not always the
statistical model, Mf, and the statistical model often matches the data generating model. The statistics or algorithm outputs of interest
may be an estimate ﬁ of a parameter, the width or coverage of a credible interval or a p value or test statistic associated with a parameter.

(3) Monte Carlo Analysis. In most cases, many datasets will be simulated and analysed, and we summarize these results. To ac-
complish this, after simulating data {ygl), y?, ...,y¥ land calculating the statistics of interest{ 0,0, ... 0% |, the distributional
properties of O | M, p,, X, are explored by use of the samples {0(1)‘0(2)’ O<K)} from this distribution. Exploring or estimating
properties of a distribution using random samples from that distribution is referred to as a ‘Monte Carlo’ analysis. For example, the
mean of the statistics E(O| M;,p;,X;) could be approximated using the sample mean, E(O| M,,p,,X;) ~ 1/K ¥ 0.

General considerations for simulation studies

Monte Carlo approaches are approximate approaches, and their accuracy depends on the number of simulated datasets gen-
erated (i.e. accuracy increases as the sample size increases). Often the goal of a simulation study is to estimate a property of a
distribution—for example, ‘what is the expected distribution of parameter estimates given some true value of the parameter?’. After
conducting a simulation study, along with the estimate of interest, it is possible to compute a standard error of that estimate using
the Monte Carlo samples. Following Koehler et al. (2009), the Monte Carlo standard error of Ois:

MCSE(D) =/ Var((%),

where the variance is calculated over the K outputs from the simulation. This provides a straightforward way to assess whether or not

more simulations are needed. In general, let S be the statistic of interest (i.e. the power of a test, or the upper bound of a 95% Cl of a
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parameter) which will be approximated using simulation s. An approximate 95% confidence interval of the statistic S is S+196% MCSE(?)

. As the number K of the simulation study replicates increases, the MCSE S)will converge to the standard error of the estimate S.A good

visual check of the effect of replication size K of the simulation study is a plot of MCSE(?) for increasing values of K. If the resulting plot

shows convergence of the MCSE, then it is clear that the size of the simulation study is high enough that the error in estimation is due

mostly to standard uncertainty that is associated with any estimate based on a finite dataset, and not strongly being driven by not having

enough replicates in the simulation study to effectively quantify uncertainty.

system where the data were collected (McClintock, 2021; Palencia
et al, 2021; Santos-Fernandez & Mengersen, 2021). Simulation
studies of this type can range from a basic validation of the code and
model to extensive explorations of the model properties as it relates
to analysing the specific dataset.

The second classification of simulation studies, which we refer
to as general property simulations, are methods used when deter-
mining the efficacy of applying a novel analytical approach for the
design and analysis of future studies (Bellier et al., 2016; Rossman
etal., 2016; Tingley et al., 2020; Zipkin et al., 2017). Simulations in this
category can validate model performance across a broad parameter
space, guide data collection and study design, determine how robust
an approach will be to assumption violations and provide guidance
regarding the relative performance of multiple analytical approaches.

In the following sections, we describe three types of study-
specific simulations and three types of general property simulations.
For each type of simulation, we include a worked example using
detection/non-detection data for the spatial distribution of Cape
Weavers in South Africa (Clark & Altwegg, 2019b; see Box 2 for a
description of the dataset). We provide code to reproduce all model
fitting and simulation studies discussed in the text, which can be
found in Supplement S1 (DiRenzo, Hanks, et al., 2022). In choos-
ing an example dataset we are left with the challenge of choosing
an example that easily illustrates concepts, while also meeting our
definition of a complex hierarchical model. Our example dataset
consists in its simplest form as an exercise in building a regression
model to predict the expected probability of observing a specific
type of bird at a specific location given specific survey conditions.
It also includes two types of structure typical of many hierarchi-
cal models. First, there is non-independence in the data that must
be controlled for using a random-effects structure. Second, the
true state of the system is not observable (i.e. we can only ob-
serve whether the bird is detected and not whether it is actually
present at a site) and thus it includes a latent variable that is linked
to data through an observation model. It mirrors the structure of
many other models used by ecological and evolutionary research-
ers such as those used for GLMMs (Harrison et al., 2018), phylo-
genetic analyses (Revell & Harmon, 2022), for hierarchical data
collection (Miller & Grant, 2015) or for predicting system dynamics
(Buderman et al., 2020).

Lastly, we note that in this paper we only focus on simulation
studies as a tool for understanding and validating statistical mod-
els and methods. Simulations are also a critical component of the

standard parameter estimation toolkit (e.g. bootstrap approaches to
hypothesis tests, simulation-based inference such as particle filter)
(Lahiri, 2005; Loh & Stein, 2004) and a critical tool for prediction and
forecasting (Bergmeir et al., 2018; Pagel & Schurr, 2012), neither of
which are addressed here.

3 | STUDY-SPECIFIC SIMULATIONS

Study-specific simulations studies are appropriate when the focus
of the scientific study is the analysis of a single dataset with the goal
to understand the system being studied. Below we review study-
specific simulations that accomplish three goals: (1) basic validation
simulation, (2) determining statistical properties and (3) assessing

goodness-of-fit.

3.1 | Basic validation simulation
3.1.1 | Objective

The goal of a basic validation simulation is to determine whether the
model, fitting algorithm and code can generate realistic parameter
estimates for an observed dataset (Table 1). This serves as a bare
minimum check of code and model validity (Kéry & Schaub, 2012). It
also provides a description for the data generating model M (Box 1)
that can be used to evaluate the model assumptions and be used as a
template for more extensive validation methods, such as evaluating
bias and interval coverage statistical properties. A basic validation
simulation can help confirm parameter identifiability given the avail-
able data, illuminate weaknesses in the model and fitting algorithms
for a given dataset, identify when major issues (e.g. coding errors or
model identifiability) have occurred, and provide a minimum thresh-
old of evidence that these issues are not likely to exist in a particu-
lar study. In addition, inclusion of a basic validation simulation in a
published paper facilitates a more open, transparent and reproduc-
ibility approach for the implementation of novel analytical methods.
Therefore, a basic validation can be an important contribution when
a novel model is fit or when new code is developed for a model. A
basic validation can be comprised of relatively minor computing, as
it is comprised of only fitting the statistical model twice (once for
the analysis of the observed data and once for a single simulated
dataset).
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BOX 2 Spatial occupancy modelling of Cape Weaver in South Africa

As part of the second Southern African Bird Atlas project, community scientist birders were asked to spend at least 2 h on a check-
list, recording all species they observed and the order in which they were observed. Here, we consider only the data related to the
Cape Weaver Ploceus capensis collected by this community science project, as made available by Clark and Altwegg (2019b) in Clark
and Altwegg (2019a). A total of 9356 recorded detection/non-detection observations are available for this species (Figure B2.1a,b).
Clark and Altwegg (2019b) use two principal components (PC) to summarize multiple spatial covariates, with PC1 interpretable as
a temperature-related factor (Figure B2.1c) and PC2 interpretable as a measure of climate intensity (Figure B2.1d). As a measure of
observation accuracy of each individual birder, Clark and Altwegg (2019b) used the total number of species observed by the birder
as a covariate on detection probability.

(a) Number of Observation Events (b) Empirical Percent Observed (c)PC1

(d) PC2 (e) Estimated Occupancy Prob. (f) Estimated Spatial Random Effect

[SIENEN)

03 ? O -1

20 25 30

FIGURE B2.1 Summary of the Cape Weaver dataset from South Africa: (a) Depicts the number of observation events per
location. (b) Shows the empirical percent observed. (c) Shows the spatial mapping of principal component PC1, and (d) shows the
spatial mapping of principal component PC2. (e) Shows the estimated occupancy probability of the Cape Weaver across South
Africa using our spatial occupancy model (Equations (1)-(5)), and (f) shows the estimated spatial random effect across South Africa.
[Correction added on 14 December 2022, after first online publication: Figure B2.1 has been revised)].

In the following, we give a brief ecological description of the model and its structure. The goal of the model is to estimate the
probability the Cape Weaver occurs at a given location across the study area. The model we describe will include two hierarchical
components, each of which add greater structure and complexity as compared to a standard logistic regression analysis. First, the
probability of observing a Cape Weaver during a survey is a function of not only whether the species is present, but also whether it is
detected given it does occur at the location. To account for this, a nested model is used to estimate the probability of observing the
species as a function of both whether it is present and whether it is detected given it is present. Second, we want to account for spa-
tial dependency among observations and this is done by including a spatial random effect. However, as noted in the text, accounting
for spatial dependency in an unbiased manner is a non-trivial problem.

To fit data, we considered a spatial occupancy model for this dataset, with binary observations y,; being the ith observation at
spatial location s. As noted, above, the probability y; = 1 depends both on whether the Cape Weaver is present and whether it is

observed. Therefore, we model the probability of detecting a bird during a survey as:
ys ~ Bern(z, «py), (1)
where z, = 1if Cape Weaver occupies the sth spatial location and z; = Oiif not (i.e. z is the latent true occupancy), and p,; is the probability

of detection for the ith observation at location s. We model detection probability using a probit regression model and as a function of

observer experience, with
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(D_l (psi) =Qp + alwo(si)' (2)

where w,; is the total number of species observed in the second South African Bird Atlas project by the observer o who made the ith
observation at spatial location s (see Clark & Altwegg, 2019b for additional explanation). The second component of the probability of ob-
serving a bird is whether it is actually present at the location, which also happens to be the variable we are most interested in estimating.

This probability is latent, and can be modelled using a probit regression model where:

z,~Bern(uy), @3)

CI)“l (us) = ﬂl + ﬂZXIS + ﬁ3x25 + 1, (4)

where x,, and x,, are the first two principal components described above (Figure B2.1c,d). Spatial autocorrelation in occupancy is modelled
by a spatial random effect 5,, which we model using a basis function approach (Cressie et al., 2022) with basis vectors constructed from
the first M eigenvectors of the inverse of an Intrinsic Conditional Auto-Regressive (ICAR) precision matrix. This differs slightly from Clark
and Altwegg (2019b), who used similar eigenvectors, but first removed some correlation between the spatial random effect and the fixed
effects.

M
'15=Zm=1 7mvm’7m~N(O?ai)’ (5)

wherev,, is the mth eigenvector and afn is the corresponding mth eigenvalue. All regression parameters are assigned diffuse (variance = 100)
zero-mean Gaussian priors.

We specified diffuse Gaussian priors on all regression parameters, and diffuse half-normal priors on all variance parameters, and fit this
BHM using MCMC. All computing was done using the NIMBLE R-package (de Valpine et al., 2017, 2022a, 2022b). We ran the MCMC

sampler for 20,000 iterations and removed the first 10% of the chain as burn-in. The posterior mean occupancy probabilities are shown in

Figure B2.1e, and the estimated spatial random effect is shown in Figure B2.1f.

3.1.2 | Simulation settings

A basic validation simulation consists of first fitting the statistical
model, A, used for the scientific analysis using the observed data (y*
and X*) to generate parameter estimates (p*; Kéry & Schaub, 2012).
Then, the parameter estimates are used to simulate a single new
dataset from the simulation distribution, such as y, ~ M(pA*,X*). This
simulated dataset is the same size as the observed data and uses the
same covariates, spatial locations and settings (X*) as the observed

data.

3.1.3 | Model fitting

The same statistical model used for the original fit, A, is then fit to
this simulated dataset (Kéry & Schaub, 2012). The parameter esti-
mates, confidence or credible intervals, and other model diagnostics
are checked to make sure that the results are reasonable given the
parameter values. For example, do most parameter estimate include
the true value in the 95% CI? or, are credible interval widths nar-
row enough to suggest that there is sufficient power to estimate a

parameter? etc.

3.1.4 | Example

Here, we perform a basic validation simulation of a spatial occu-
pancy model that is fit to the Cape Weaver dataset (Box 2). First, we
fit the spatial occupancy model described in Box 2 (Equations (1)-
(5)) to the observations of Cape Weavers, and our model parameter
estimates (specifically the posterior means) are shown graphically
in Figure 1a as vertical dashed grey lines. For brevity and high-
lighting interesting results, we only display parameters g, and 5
in Figure 1. These two parameters capture the relationship be-
tween local climate and the presence of the Cape Weaver. These
parameters are both interesting as they capture important eco-
logical relationships and because they have a high degree of spatial
structure, which as we explain below is relevant to our ability to
estimate parameters. Full results are found in Appendix Figure Al.
After fitting the statistical model to the observation data, we simu-
lated data based on the parameter estimates from the field data
to perform a basic validation. Note that simulating data presented
a specific challenge in our case, which was to capture the spatial
random process estimated in our model. As our spatial occupancy
model includes a latent spatial random effect, our simulation was

done hierarchically by:
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FIGURE 1 Simulation study results. Panel (a) shows the density plots of the posterior distributions of model estimated parameters from

a simulated dataset demonstrating a basic validation simulation. The vertical dashed grey line represents the model parameter estimates

when fitting the Cape Weaver dataset using a spatial occupancy model. Results suggest that the spatial occupancy model may have difficulty
recovering parameter g,. Panel (b) shows the 95% Cls of the posterior distributions of g, and g5 for the first 20 of the simulated datasets under
the spatial and nonspatial models. The point ranges highlighted in red show simulation runs that do not overlap with the true parameter value,
which is represented by the horizontal vertical line. Point ranges in black represent simulation runs that do overlap with the true parameter
value. Results suggest that g, suffers from identifiability due to spatial confounding. Panel (c) shows a power analysis for recovering estimates
of B, and f5. The results show that 5 requires more independent samples than g, for consistent estimation. Panel (d) shows the results of a
simulation study with model misspecification. Point ranges in red and black represent those that did not and that did overlap with the true
parameter value, respectively. We simulated data with observer heterogeneity in the detection process and analysed the data using a model
that assumes homogeneity in detection. Results show that ignoring heterogenous detection probabilities can lead to bias in the estimates of

B, and B, as shown by the lack of overlap between the 95% Cls of the posterior distributions of g, and g5 with the true parameter value (grey
dashed vertical line). Panel (e) is a comparison of models with different numbers of spatial basis functions. We find that inference on g, and g5 is
relatively stable when more than 100 basis functions are used. [Correction added on 14 December 2022, after first online publication: Figure 1

has been revised].

1. Simulating the parameters in the spatial random effect
Ym NN(Ow‘f,Zy.) and then creating the simulated spatial random
effect with s = Zme1 YmVim,

2. Using this spatial random effect and the existing covariates, we
simulated first true spatial occupancy (z) and then observations of
detection/non-detection. These simulations used Equations (1)-
(5) in Box 2 with all « and g parameters being set to their poste-
rior means from our statistical model fit using a spatial occupancy

model to the Cape Weaver dataset.

These specifications create a simulated dataset with the exact
same scientific settings as our observed data. We then completed
the loop by fitting our spatial occupancy model to this new simulated
data, using the same MCMC algorithm used to fit the model to the
observed detection/non-detection data.

Density plots of the posterior distribution of model parameters,
given the simulated data, are shown in Figure 1a, with full results
in Appendix Figure Ala-f. The posterior distributions for most

model parameter estimates overlapped the value used to simulate
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the data. This is what we hope to see with a basic validation, that
our model fit to simulated data generates results that are consistent
with the parameters used to simulate that data. However, the pos-
terior distribution for g, does not overlap the value used to simu-
late the data, suggesting that the spatial occupancy model may have
difficulty in estimating this parameter. This basic validation has no
replication, so it is not immediately clear if the results we see are
indicative of something systematically wrong with our analysis (i.e.
non-identifiability of parameters, an error in our code), or just an ex-
treme resulting from normal sampling variation. Comparing the true
occupancy probabilities used to simulate datasets with the corre-
sponding values estimated by the statistical model indicates that we
are able to estimate the parameters used to generate the simulated
data reasonably well (Figure A1f). Given these results, our basic val-
idation study indicates that we may have some difficulty with the
identifiability of g,, given the available data. Note our use of the term
‘indicates’ in describing these results. Confirming the fit and identi-
fiability of the statistical model for the simulated datasets entails
simulating more than a single dataset, as shown in the next section.
By completing the basic validation, we have greatly increased the
likelihood of identifying major coding errors, issues of identifiability,
model misspecification and potential power issues. The next sec-
tions outline how that inference can be strengthened using a more
comprehensive approach to estimate the distribution of outcomes
expected for an estimation approach and to identify whether real-
world data used to fit the model are consistent with the assumed

distributions underlying our approach.

3.2 | Determining statistical properties
3.2.1 | Objective

A more robust exploration would help determine the full statistical
properties of an estimation approach, such as when there are con-
cerns of parameter identifiability, the behaviour of model parameters
(e.g. estimating bias, accuracy and precision) or when there are ques-
tions about whether interval coverage is well calibrated (Table 1). To
do this, we would use a full simulation study. A ‘full simulation study’
means that 100s to 1000s of simulations are performed, and Monte
Carlo methods can be used to understand estimator properties of
the simulated datasets, which ought to resemble the observed data-
set in hand (e.g. DiRenzo, Miller, et al., 2022; Rossman et al., 2016;
Tingley et al., 2020).

When evaluating statistical properties, there are several metrics
of potential interest: accuracy, precision, bias and coverage. Each
metric has lots of ways of being calculated. Here, we present defi-
nitions and a couple of ways to calculate each metric. Accuracy an-
swers the question ‘how close are model estimates to true values?’
and can be quantified multiple ways. For example, accuracy can be
calculated as the mean error by taking the absolute difference be-
tween the model estimate and truth. Alternatively, accuracy can be
calculated using mean squared error (MSE) methods, giving greater

weight to big differences when assessing performance. Precision an-
swers the question ‘how large is the 95% credible interval?’. Again,
multiple measures of precision exist, including calculating Cl width
(1) by subtracting the lower 95% Cl estimate from the upper 95%
Cl estimate or (2) by estimating standard error of an estimate. Bias
answers the question ‘what are patterns of parameter over- versus
under- estimation?’ For simulation methods, bias can be estimated
by subtracting the average model estimate across many simulated
datasets from the true parameter value. Lastly, coverage answers
the question ‘how often does the true parameter value fall within
the range of the 95% CI?’, and it can be obtained by calculating the
proportion of simulations where the true value fell within the 95%
Cl of the model estimate.

3.2.2 | Simulation settings

The process for simulating data to determine statistical properties
is identical to the process of simulating data for a basic validation
above, except 100s to 1000s of unique simulated datasets are gen-
erated using the estimated parameter values (p¥ rather than the sin-
gle dataset (e.g. DiRenzo, Miller, et al., 2022; Rossman et al., 2016;
Tingley et al., 2020).

3.2.3 | Model fitting

Again, the statistical model is fit to each of the simulated datasets
(e.g. DiRenzo, Miller, et al., 2022; Rossman et al., 2016; Tingley
etal., 2020). Once all datasets are fit, Monte Carlo methods are used
to examine the frequentist properties of the 100s to 1000s of simu-

lated datasets.

3.24 | Example

Continuing the spatial occupancy model example from above, we
next conducted a full simulation study to explore the statistical
properties of model parameters. We focus again on our ability
to estimate the relationship between each of our covariates and
the probability, a Cape Weaver occurs at a location. As was sug-
gested by Clark and Altwegg (2019b), and also explored by Hanks
et al. (2015), Hodges and Reich (2010), and Paciorek (2010), and
others, parameter identifiability in spatial regression models when
the predictor variables are spatially structured (or spatially auto-
correlated) can be challenging and our basic validation suggested
that identifiability may be an issue in our case (Figure 1a). Thus, we
simulated 100 datasets from the spatial occupancy model using
the posterior means obtained for parameters when the model was
fit to the observed dataset as the ‘true’ value. We also simulated
100 datasets from the spatial occupancy model with the spatial
component set to zero. Given our suspicion that spatial struc-
ture would be an issue, this second set of simulations gave us a
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reference to test whether this was the case and to determine if the
biases we observed are in fact due to spatial non-independence.
Next, we fit the spatial occupancy model to each of these 200
simulated datasets. Figure 1b shows the 95% Cls of the posterior
distributions of g, and g5 for the first 20 of the simulated data-
sets under the spatial model and the corresponding 95% Cls for g,
and g5 estimated from the simulated datasets under the nonspatial
model. Our expectation if our estimates were unbiased and we
correctly were estimating precision was that on average 19 out of
20 times the true value would occur in the 95% CI.

When data are simulated without spatial autocorrelation, we see
that the 95% Cls are well-calibrated, with the posteriors for a5, #, and
B3 all overlapping the true parameter used for simulation a large pro-
portion of the time (93%, 96% and 98%, respectively; Figure Alj-I).
However, when the data are simulated with spatial autocorrelation,
we see that the credible intervals for g, and p; often do not overlap
the true parameter (Figure Alg-i). This simulation study illuminates
how spatial confounding, as described by Hodges and Reich (2010),
Hanks et al. (2015), Silk et al. (2020) and others, can result in bi-
ased parameter estimates, especially when covariates are spatially
smooth, as are the temperature and climate covariates associated
with f, and f5. The reason for this confounding boils down to the cor-
relation between the covariate and the spatial autocorrelation (Hanks
et al., 2015). The detection covariate associated with a, is much less
spatially smooth, as multiple different individuals (each with different
levels of the detection covariate w,) often make observations at loca-
tions close in space. We see from the simulation results that spatial
confounding is much less pronounced when covariates have less spa-
tial structure, like the detection covariate in this example.

3.3 | Goodness-of-fit assessments
3.3.1 | Obijectives

Simulation studies also have an important role in goodness-of-fit as-
sessment. Goodness-of-fit assessments are used to determine if the
statistical model applied in the analysis can generate the observed
data. In the case of goodness-to-fit assessments, the simulated data
are compared to the observed data to determine whether the data
fit model assumptions. Examples of commonly used goodness-
of-fit assessments include Bayesian posterior predictive checks
(Kéry & Schaub, 2012) and those used in the DHARMA package
(Hartig, 2020) in R for generalized mixed effects models. Note that
the focus on fit using simulations has shifted from whether the esti-
mates are reasonable given the true values of the parameters (step
3in Figure B1.1) to whether the simulated data are a reasonable ap-
proximation of our true data.

Assessing the goodness-of-fit allows biologists to answer the fol-

lowing questions:

e Can my model replicate or reproduce the patterns in my observed
data?

e Does my model do an adequate job of representing my observed
data?

Note that lack of fit does not always mean an estimator will per-
form poorly (or vice versa) in part because goodness-of-fit assess-
ments are highly dependent on sample size to identify lack of fit.
If lack of fit is identified, simulation studies can be used to deter-
mine how robust the estimator is to violation of assumptions (see

‘Assessing statistical robustness’ section below).

3.3.2 | Simulation settings

The simulation settings for the goodness-of-fit assessment are
identical to those presented above for the ‘Determining statistical
properties’ section. That is, many datasets are simulated from the
fitted model. When Bayesian approaches are used, typically simu-
lations are conducted using values from iterations of the posterior
distribution.

3.3.3 | Model fitting

For each simulated dataset, estimates of the dataset characteris-
tics (e.g. variance, frequency of zeros, measures of normality) are
calculated and the distribution of these values is compared to the

observed dataset.

3.34 | Example

The appropriate goodness-of-fit test to use for a dataset will vary
among applications. For occupancy models, a common approach
to assessing goodness of fit is to use Pearson Chi-square statistics
(MacKenzie & Bailey, 2004), X2 = 2‘45’,~(zs—ps,»)2 /ps, Where (as in
Box 2) z, is the true latent occupancy of site s, and p; is the probabil-
ity of detection at site s by observer i. This test focuses on determin-
ing whether the distribution of times a species is detected at a site
is more variable than expected, and it can help identify unexplained
variation in detection that can bias results. Previous work has shown
that too much heterogeneity among sites can lead to bias in estimat-
ing occupancy probabilities (e.g. Ferguson et al., 2015; McNew &
Handel, 2015). While in some cases, the distribution of X2 is known,
and the calculated value of X? can be compared with theoretical criti-
cal values, we instead illustrate the more general situation where the
distribution of the statistic of interest is unknown, and goodness-of-
fit assessment is carried out using Monte Carlo methods.

We first calculated the chi-square statistic )/(E using posterior
mean estimates for all parameters to obtain p;. We then simulated
1000 datasets using the posterior mean estimates of all param-
eters. Each of these datasets were fit using our Bayesian MCMC
approach, and the resulting posterior means for each simulated
dataset were used to compute corresponding Chi-square statistics.
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This provides 1000 samples of the chi-square statistic under the
null hypothesis that our model is correct. The rank of )?E compared
to these values provides a Monte Carlo p-value to test the null hy-
pothesis that our model is correct. For this dataset, the Monte Carlo
p-value was 0.866, indicating that we do not have strong evidence
to reject the null hypothesis that our model is reasonable for this
data. If the p-value was small (e.g. <0.05), we would have evidence
that our model is missing something to accurately capture the vari-
ation in the observed dataset. p-values higher than 0.05 (especially
p-values much higher than 0.05) indicate that there is no strong evi-
dence that our model is missing something important. We note that,
while we are using Bayesian methods, our approach to this simula-
tion study example and calculating p-values is frequentist. We are
interested in the statistical properties of a particular statistic—the
posterior mean—and thus we are not conducting posterior predic-
tive inference (Gelman et al., 1995), but rather we are taking a fre-
quentist approach, with the statistics of interest being estimated
quantities of a Bayesian posterior distribution.

4 | GENERAL PROPERTY SIMULATIONS

In this section, we review general property simulations, which are
used when the goal is to make general recommendations regarding
the efficacy of applying a novel analytical approach for the design

and analysis of future studies.

4.1 | Simulation-based study design
41.1 | Objectives

There are many reasons to perform a simulation-based assessment
of study design. First, a biologist may want to understand how the
estimator performs across a wide range of parameter values and
sample sizes when selecting a new statistical approach to design
and analyse data for a new study (e.g. DiRenzo, Miller, et al., 2022).
This information could assist others in deciding whether to adopt a
method to analyse existing data or design new studies with the ap-
proach in mind. The second goal of simulation-based study design
falls under the category of a power analysis, with a goal of under-
standing the effect that sample size has on our power to detect
non-zero parameters when they occur, on the accuracy of model
parameter estimates or on the predictive performance of the model
(e.g. Guillera-Arroita & Lahoz-Monfort, 2012). Biologists are rou-
tinely interested in examining the effect of sample size during the
study design phase when there are concerns about being able to
collect enough observations, especially as they relate to Type | and
Il error, which occurs regularly during the early stages of an eco-
logical project when designing field studies. Lastly, biologists may
use simulation-based study design to evaluate model performance
under different study designs (e.g. Wright et al., 2022). In this case,
we can explore how varying sampling designs, such as stratified vs

random sampling design, affect the sample size to ensure against
Type | and Il error, the model estimates of parameters in terms of

accuracy and bias, and ecological inference across space and time.

4.1.2 | Simulation settings

Depending on the objectives of the simulation study, the values to be
varied when simulating datasets may include the model parameters
(p), the explanatory variables (X) or the sample sizes of the datasets
(n). Varying model parameters allows for evaluation of how the esti-
mator will perform across different ecological scenarios, while vary-
ing the distribution of the explanatory variables and the sample sizes
will provide inference about optimal study design. Typically, a finite
set of values across the range of the parameters are chosen, and
many datasets (from 100s to 1000s) are simulated at each of these
values. Alternatively, ‘space-filling’ designs can be used to sample
across many combinations of parameter values (Carnell, 2022;
DiRenzo, Miller, et al., 2022).

41.3 | Model fitting

The simulated datasets are fit to the model that the researcher plans
to use for the analysis of the observations. The chosen metric for per-
formance (e.g. root MSE as a measure of accuracy or standard error
as a measure of precision) is calculated for each simulated dataset and

summarized across the different parameter values that were varied.

41.4 | Example

In the context of our spatial occupancy model and Cape Weaver
dataset, we consider a simulation study aimed at understanding
how sample size of a spatial occupancy dataset effects estimator
performance, which can be used to inform future studies. Here,
we were interested in determining the degree to which reducing
sampling effort will affect inference from our hierarchical model.
Understanding how sample size influences our ability to estimate
parameters can guide future survey efforts to ensure that limited
monitoring resources are properly allocated. For our simulation
study, we considered simulations that included only a subset of the
observations in our Cape Weaver dataset. First, we randomly sub-
sampled N of the 9356 observations in the detection/non-detection
dataset without replacement, with N varying from 100 up to 7000.
We then simulated 100 independent occupancy datasets at each
value of N. For each simulated dataset, we fit the spatial occupancy
model and estimated the power for each parameter. We define
power as the proportion of the posterior 95% credible intervals for
each parameter that did not overlap zero and showed the same sign
(i.e. positive or negative) as the true, simulated parameter value.
The results for varying dataset sample sizes are shown in
Figure 1c and Figure Alm. We see that the effect of heterogenous
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detection (a,) and the temperature-related principal component (8,)
are estimated well with a relatively small sample size (N<1000),
while the effect of the second principal component (85) suggests that
a relatively larger sample size is needed to consistently observe an
estimate that does not include zero in the CI.

4.2 | Assessing statistical robustness
421 | Objectives

Simulation studies often focus on simulating datasets using a data
generation model that matches the statistical model (e.g. if residual
variation in the statistical model is assumed to be normally distributed,
the data generating model for the simulations will use a normal dis-
tribution). However, it is also important to understand the effect of
model misspecification, which occurs when the data generating model
does not match the model used for statistical analysis (e.g. Dennis
et al,, 2019; Dey et al., 2022; DiRenzo, Miller, et al., 2022). Examples
include cases where the dataset has extra sources of heterogeneity,
there are distributional mismatches between the statistical model
and the data generating model, or extra explanatory variables are not
included in the statistical model. The goal of this type of simulation
study is to determine how impactful such misspecifications are on
our desired scientific inference (Table 1). These simulation study ap-
proaches address misspecification by considering the case where we
define a particular form of misspecification (i.e. ignoring an important
explanatory variable). This can provide insight into what forms of mis-
specification are most impactful on the specific aims of a given study.

4.2.2 | Simulation settings

Data are simulated using a data generating model that does not
match the structure of the statistical model used for the scientific
analysis. In most cases, these data are compared to data from a data
generating model that matches the statistical model as a baseline for
comparison. Similarly, it is possible to vary parameter values in the
simulations (see ‘Simulation-based study design’ section) to deter-
mine how the study design affects the robustness of the estimator.

4.2.3 | Model fitting

The model fitting procedure is the same as the one described in the
‘Simulation-based study design’ section above.

424 | Example

To illustrate how a simulation study can help understand the ef-

fects of model misspecification, we conducted a simulation study
to explore the effect that ignoring heterogeneity in detection

probabilities has on estimating the occupancy parameters using our
spatial occupancy model applied to the Cape Weaver dataset. We
simulated 100 datasets from our fitted model but where we also in-
cluded heterogeneity in detection probabilities for each observer.
We then fit our spatial occupancy model to this simulated data that
assumed homogeneous detection probabilities (i.e. all observers had
equal probability of observing a species when present).

Figure 1d shows the posterior 95% credible intervals for 20 such
simulated datasets. In the figure, we see that the credible intervals
for most simulated datasets do not overlap the true value used for
simulation, indicating that the model does a poor job of recovering
true parameter values when we ignore heterogeneity in detection
probability. This result highlights the importance of testing for de-
tection heterogeneity using goodness-of-fit methods (see Section 3
‘Study-specific simulation studies’) and for models that address het-

erogeneity when it occurs.

4.3 | Comparing the efficacy of different
modelling approaches

4.3.1 | Objectives

In many cases, multiple modelling approaches will be available to
estimate parameters of interest, and simulations as a tool can be
used to compare the efficacy and robustness of the different mod-
elling approaches. Here, a common goal is to compare a proposed
approach with an existing approach (i.e. a more simplified version of
a model) for estimating parameters or testing hypotheses (Table 1).
Often, this is in conjunction with studying the effects of model mis-
specification (see ‘Assessing statistical robustness’ above), as we are
considering comparing existing approaches to a novel approach that

models more complexity.

4.3.2 | Simulation settings

The user can set the simulation settings to compare the efficacy of
different modelling approaches to match the most important out-
comes of the planned study. For example, simulation settings can
follow those of the section ‘Determining statistical properties’ if
interest is in a single set of parameters, ‘Simulation-based study
design’ if interest is in performance across different parameters, or
‘Assessing statistical robustness’ if interest is in determining whether

one approach is more robust to violations.

4.3.3 | Model fitting

For each dataset that is simulated, the data are analysed using mul-
tiple statistical models (e.g. DiRenzo, Miller, et al., 2022). Results
across simulated datasets are summarized for each statistical model
and their output is compared. The comparison among statistical
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models is dependent on the practitioner and their needs. Widely
used measures of model performance include: MSE (where the
mean square difference between truth and a point estimate are
calculated), mean square predictive error (where the mean square
predictive difference between truth at an unobserved point and the
statistical estimate at the unobserved point are calculated) and cov-
erage (where a ‘1’ is assigned if the 95% ClI covers the true value and
‘0’ if it does not).

434 | Example

In our case study of the Cape Weaver dataset, we have focused on
a single specific model to account for spatial autocorrelation in the
data. To this point, we modelled spatial autocorrelation in occupancy
probabilities using a zero-mean Gaussian spatial random effect
with an intrinsic conditional autoregressive (ICAR) precision matrix
(Box 2). There are many ways to model spatial correlation and even
within the method we chose, the settings can be varied. We now
consider different spatial models for our dataset, to see how perfor-
mance varies based on our choice of statistical model. As is common
in the spatial statistical literature, we considered a basis function ap-
proximation to this spatial random effect (Cressie et al., 2022) with
basis functions being the first m eigenvectors of the inverse of the
ICAR precision matrix. These m basis vectors capture the most pos-
sible variation in the spatial random effect using only m vectors. For
our initial data analysis, we chose m= 100 basis vectors (shown in
the vertical line in Figure 1e). This choice was based on a comparison
of the results from a varying set of basis vectors. We let m vary from
2 to 500 and fit the model.

Figure 1e shows the posterior mean and 95% credible intervals
for different model parameters as a function of m. As m increases,
the computational complexity of the model increases and the time
to fitincreases as well (see Appendix Figure Alt). These figures show
that when m< 50, the posteriors for multiple parameters are very
different than for larger values of m, but when m> 75, the posteriors
are all reasonably similar. This simulation study shows that our ap-
proximate approach to modelling spatial autocorrelation by keeping
only m eigenvectors provides a good approximation to the full model

when m> 75.

5 | CONCLUSIONS

We delineate the uses and purposes of simulation studies to under-
stand and validate hierarchical models. In doing so, we propose a
new status quo for reporting of the properties of new and complex
statistical models, as well as when applying them to routinely used
statistical models. We encourage all studies that use a novel esti-
mation procedure—whether it be an extension of existing methods,
development of new code or employing a new procedure for fitting
the model—to include at least a basic validation simulation. This
step will help avoid many potential pitfalls in fitting a new model

(e.g. error in coding, parameter identifiability issues). In addition,
the inclusion of model code increases reproducibility and trans-
parency in an age where open science in ecology and evolution-
ary biology is gaining traction (Powers & Hampton, 2019). By also
including code that simulate a dataset and fits them to a statistical
model, it will open doors to understanding the assumed data gen-
eration process underlying our statistical inferences. Simulations
have an integral role in testing the reliability and limits of statistical
inference, providing information about a statistical model's ability
to recover accurate, precise, unbiased parameter estimates (Kéry
& Royle, 2016, 2021; Kéry & Schaub, 2012). Simulations can also
help answer many common questions asked by biologists, such as
‘how many samples do | collect?’, ‘which model do | use to analyse
my data?’, ‘does my model do an adequate job of representing my
data?’. Simulations may therefore become an integral part of a bi-

ologist's tool kit.
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