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ABSTRACT: The exact expressions for the dipole, quadrupole, and octupoles of a collection of 
N point charges involve summations of corresponding tensors over the N sites weighted by their 
charge magnitudes. When the point charges are atoms (in a molecule) the N-site formula is an 
approximation, and one must integrate over the electron density to recover the exact multipoles. 
In the present work we revisit the N(N+1)/2-site point charge density model of Hall [Chem. Phys. 
Lett. 6, 501, 1973] for the purpose of fitting ab initio derived multipole moment hypersurfaces 
using permutationally invariant polynomials (PIP). We examine new approaches in PIP-fitting 
procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, 
QMS, OMS and PTS, respectively) for a non-polar CCl4 and a polar CHCl3 and show that 
compared to the primitive N-site model the N(N+1)/2-site model appreciably improves the relative 
RMSE of the DMS and does much more substantially so, by an order of magnitude, for the 
corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential 
energies up to 18000 cm-1 above the global minima, generated by molecular dynamics simulations 
at the DFT B3LYP/aug-cc-pVDZ level of theory. 
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Graphical Abstract 
 

Molecular dipole, quadrupole and octupole tensor surfaces are 
fitted to ab initio data via the internuclear distances and 
permutationally invariant polynomials (PIP). It is shown that the 
conventional approach of expressing the multipoles using the N 
atomic sites (Model N1) is dramatically improved by the N(N-
1)/2 internuclear barycenters added as point charges (Model N2) 
while using them in the fitting procedure. The root mean square 
errors (RMSE) are reduced by an order of magnitude.  
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1. INTRODUCTION 

 Molecular multipole moments are known to play a crucial role in describing intermolecular 

interactions in the gas and liquid phase.[1-3] The multipoles, typically up to the quadrupole and 

octupole, and in some cases higher moments, form the basis of non-bonding interactions in such 

molecular mechanics models as AMOEBA,[4,5] SIBFA (Sum of Interactions Between Fragments 

Ab initio computed),[6-8] GMM (the Gaussian Multipole Model),[9] and others[10-18]. The first order 

multipole moment (the permanent dipole) and its polarizability are key components in simulations 

of infrared and, respectively, Raman spectra of molecules, liquids and solids.[19,20] In recent 

applications, use of both the dipole and quadrupole moments was demonstrated in direct molecule-

field coupled simulations of vibrational spectra of biological macromolecules.[21] 

 Computational models for the dipole moment vector and occasionally its polarizability 

tensor, of various degrees of approximation exist for a range of systems,[9,22-25] being most 

prominent for water.[4,5,14,15,26-31] More advanced methodologies, such as those based on 

polynomial functions fitted to ab initio data, bring up a family of alternative approaches.[32-37] 

Representation of the molecular dipole moment and polarizability tensor, as global functions of 

nuclear coordinates fitted to an extensive set of high quality ab initio data is a rather challenging 

task; however, recent developments in the permutationally invariant polynomial (PIP) theory have 

produced some major new advances.[32-36,38-40] In a related manner, machine leaning techniques, in 

particular those based on artificial neural networks (ANN),[41] have shown themselves to be 

competitive in accurate representation of multipole moments and dipole polarizability tensor 

trained on ab initio derived data.[13-16,42,43] The latter approaches, i.e. the collective family of 

PIP/ANN, are particularly relevant to the present study as we aim to express the multipoles as 
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global functions of internal nuclear coordinates, as have previously been done in the fitting of 

global potential energy surfaces (PES).[36,44-46] 

 We note that in addition to a high-quality description of the dipole moment, it is essential 

for centrosymmetric, tetrahedral and other highly symmetric molecules to also have a high quality 

description of the quadrupole and octupole moments in the same manner due to their prominent 

contribution to the electrostatic energy. For instance, the respective dipole-quadrupole and 

quadrupole-quadrupole energy terms decay as d-4 and d-5 with the intermolecular separation 

distance d.  Furthermore, the dipole polarizability is responsible for the induction and dispersion 

forces, such as the dipole-induced-dipole and induced-dipole-induced-dipole interactions.[47] 

These phenomena have previously been studied by various ANN methods.[13-16] Presently, 

however, we wish to also incorporate invariance with respect to cyclic permutations of any number 

of like nuclei since it is crucial for a physically correct description of chemical properties. Yet 

despite these important characteristics, we have not encountered reports of high-quality global 

quadrupole and higher rank multipole fits using the PIP approach. This apparent lack of research 

in the computational field adds to the motivation of the present study, in which we will attempt to 

improve on the existing methods of fitting multipole moment surfaces in the hyperdimensional 

space of nuclear coordinates, specifically by combining a version of the DMA theory with the 

method of PIPs. 

 For the purposes of defining the goals of the present work, to be outlined in detail in the 

following sections, we emphasize that aside from a few earlier studies using DMA-type 

approaches,[31,48] the more recent PIP/ANN fitting models for multipole moments have so far been 

realized at the level of the ‘classical’ N-atom point charge formula, akin to the Mulliken population 

analysis.[1,49] This approach is identified here as (PIP) Model N1, i.e. a sum over the N atomic 
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centers weighted by their configuration dependent effective charges w(R). The latter are the actual 

quantities fitted by PIP/ANN model.[36,43] However, given the success of the distributed multipole 

analysis (DMA)[1] in many practical applications and other related theories[6-9,50] in describing 

electrostatic interactions and electron density distribution in complex systems that go beyond the 

‘classical’ representation, we seek to examine and apply a DMA formulation in the present work. 

To this end we explore its simplest form, namely by placing a single s-type Gaussian on each of 

the atomic sites and using the PIP approach to constructing global fits of molecular multipole 

moment surfaces based on extensive ab initio data. We note that others have recently utilized s-

type Gaussian density in polarizable force fields.[51] Understandably, the addition of the higher 

angular momentum functions, i.e. p, d, etc., on the atomic centers is expected to be important due 

to an axial distortion of electron density. It is a natural extension of a ‘minimal basis’ s-function 

approximation, and has been considered in a variety of DMA approaches in modeling of molecular 

electrostatics.[2,3] This will be a subject of future investigations in our development of the DMA-

PIP approach. 

 One may recall the original exploration of Hall of the electron density in terms of a set of 

spherical Gaussians placed on the atoms, which produces an N(N+1)/2-site point charge 

expression, identified here as (PIP) Model N2: for the dipole, quadrupole, and octupole.[52-55] 

Specifically, Model N2 consists of the N atomic sites augmented by the N(N-1)/2 non-atom sites, 

alternatively called bond centroids or barycenters[50] due to their locations being determined by the 

Gaussian exponents. As will be shown below, this model is ideally suited for the PIP representation 

since the latter uses the N(N-1)/2 internuclear distances as a basis for PIP formation.[36] The major 

practical issue to be addressed below is whether Model N2 can improve upon Model N1 in the 
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PIP fitting of the multipoles and dipole polarizability to ab initio data, that is, whether it can 

significantly reduce the fitting error in the least squares sense: the root mean square error (RMSE). 

 To test our supposition of the role of the barycenters in the PIP representation we consider 

two systems with sufficiently diffuse and structured electron densities while having appreciably 

dissimilar spatial symmetries, namely, an isotropic non-polar CCl4 with no permanent (static) 

dipole and quadrupole, and secondly a highly anisotropic and polar CHCl3. These molecules are 

known to readily form liquids at room temperature, in pure and mixed compositions, and are used 

as organic solvents. They have been subjects of numerous investigations, some of which examined 

the dynamics of C-Cl/C-H stretch using 2D-Raman spectroscopy.[56,57] More recently, hydrogen 

bonding was studied in CHCl3 dimers at the level of the GMM theory employing the DMA 

approach.[9] 

 In the work presented here, we calculate and fit the aforementioned systems’ multipoles up 

to the octupole moment, along with their dipole polarizabilities employing the N1 and N2 models 

via a conventional PIP representation.[36] We then present a series of extensive error analyses, 

compare performances of the two models and discuss the effect of the PIP order on the quality of 

the fits. 

 

2. THEORETICAL METHODS 

2.1 Hall’s point charge model 

 The charge density of an N-atom molecule at point r in the laboratory frame can be 

approximated in terms of functions 𝜑!(𝐫), centered at the N atomic sites k,[2,3] 

																																								𝜌(𝐫) =(𝜌!!!
!!!

𝜑!(𝐫)𝜑!!(𝐫)																																															(1) 
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where 𝜌!!! are elements of the density matrix. Using a basis consisting of N primitive normalized 

spherical Gaussian functions 𝜑!(𝐫) = (𝜁!" 𝜋"⁄ )# $⁄ 𝑒&'"|𝒓&𝒓"|#/+ (others have used Slater-type 

Gaussian contractions[9]) and substituting for the product of two Gaussians another Gaussian, the 

latter centered at 𝐫!!! = (𝜁!𝐫! + 𝜁!!𝐫!!) (𝜁! + 𝜁!!)⁄  with the exponent 𝜁!!! = 𝜁! + 𝜁!!, the 

resultant density is a sum of the N(N+1)/2 spherical Gaussians at the centers 𝐫!!!. 

 For the purposes of present calculations, we find it informative to express the moments 

using the exact density 𝜌(𝐫) by separating them into the sum of the “classical”, e.g., from the point 

charge model, and overlap originating “quantum” contributions. Namely, we have for the total 

charge, 

																																			𝑍 = (𝜌! 	
!

+ 2 ( 𝜌!!!𝑆!!!
!,!!

																																													(2𝑎) 

the dipole moment, 

																																				𝛍 =(𝜌!𝐫!
!

+ 2 ( 𝜌!!!𝑆!!!𝐫!!!
!,!!

																																	(2𝑏) 

the traceless quadrupole moment tensor, 

							𝐐 =(𝜌!(3𝐫!𝐫!- − 𝑟!+𝟏)
!

+ 2 ( 𝜌!!!𝑆!!!(3𝐫!!!𝐫!!!
- − 𝑟!!!

+ 𝟏)
!,!!

								(2𝑐) 

and the symmetry unique elements of the octupole moment tensor, 

						Ω... =(𝜌!𝑥! =𝑥!+ +
3
2𝜁!

>
!

+ 2 ( 𝜌!!!𝑆!!!𝑥!!! =𝑥!!!
+ +

3
2𝜁!!!

>
!,!!

						(2𝑑) 
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1
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																								Ω./0 =(𝜌!𝑥!𝑦!𝑧!
!

+ 2 ( 𝜌!!!𝑆!!!𝑥!!!𝑦!!!𝑧!!!
!,!!

											(2𝑓) 

where the Gaussian overlap ⟨𝜑!|𝜑!!⟩ is 

																							𝑆!!! = =
4𝜁!𝜁!!

(𝜁! + 𝜁!!)+
>
"
$
𝑒𝑥𝑝 H−

𝜁!𝜁!!
𝜁! + 𝜁!!

|𝐫! − 𝐫!!|+I															(2𝑔) 

and 𝜁!!! = (𝜁! + 𝜁!!) 2⁄ . The leading terms in Eq. (2a-f) may be interpreted as originating from 

the sum of the N ‘classical’ point charges 𝜌! over the atomic centers k. The second terms, on the 

other hand, are purely quantum in nature due to the wavefunction overlap factors 𝑆!!!, which 

decay to zero at large k-k’ separations. However, they do behave physically in exactly the same 

manner as the classical terms by being sums over point charges 𝜌!!! located at the N(N-1)/2 

interatomic distance barycenters 𝐫!!!. 

 To facilitate calculation of the electrostatic potential and its derivatives, Hall originally 

proposed an approximation to Eq. 1 that has the form, 

																																				𝜌1233(𝐫) =(𝜌!!!
!!!

𝑆!!!𝛿(𝐫 − 𝐫!!!)																																						(3) 

The products 𝜌!!!𝑆!!!, which are key elements in the Mulliken population analysis, can formally 

be interpreted as point charges 𝑍!!!. Hall first showed that the approximate Eq. 3 conserves the 

total charge and the dipole moment of the exact density. The form of Eq. 3 also happens to conserve 

the traceless quadrupole moment. The model deviates from the exact formula for the octupole 

moment, namely for the normal (unadjusted) 𝑂... and 𝑂.// elements, as can be seen in Eqs. 2d, 

2e. Others have shown that conversion of the octupole (and higher moments) to a traceless form 

is straightforward, although presently we consider the normal octupole definition.[9] 

 The utility of Hall’s approximation in conjunction with the PIP representation becomes 

more apparent when one examines the dipole polarizability. By one definition, the dipole 



 8 

polarizability of a molecule is a 3𝑁 × 3𝑁 relay matrix 𝐆 interconnecting the induced atomic 

dipoles caused by an external electric field,[58,59] 

																																																																	𝐆 = (𝐀&# + 𝐓)&#																																									(4)	

In the above, A is a diagonal matrix with the isotropic atomic polarizabilities ak as its elements, 

and T is an 𝑁 × 𝑁 tensor with each element being a 3 × 3 Cartesian block connecting a pair of 

atoms k, k’ via the dipole field, 

																																																										(𝐓!!!)45 =
𝛿45
𝑟!!!
" − 3

𝑟4𝑟5
𝑟!!!
6 																																				(5) 

where ri, rj, are the Cartesian components x, y, z of the rkk’ vector. The matrix G is related to the 

actual 3 × 3 polarizability matrix a by summing over all atom sites (the 3 × 3 blocks) 𝑘, 𝑘7, 

																																																																α45 = ([𝐆!!!]45

8

!9!!
																																									(6) 

With the present interpretation of Eqs. 4-6 being strictly limited to the N atomic sites k, k’, i.e. the 

natural sources of (induced) dipoles, it is particularly intriguing in the present PIP approach to 

evoke Hall’s model to extend the currently used polarizability theory to a super atomic 

representation with k, k’=1,..., N(N+1)/2 with the elements 𝜌!!! as the sources of polarizable 

electron density. Details of this approach are described in the Supplementary Information (SI). For 

completeness, we note that Stone[47] and others[60] have proposed more advanced theories of 

polarizability representation beyond the classic Applequist model,[58] yet it is presently unclear if 

they can be applied for PIP fitting in a conventional linear regression way. 

 A major effort of the present investigation is thus to evaluate the quantum contribution, 

stemming from the atomic orbital overlaps to the quality of the PIP fits of molecular tensor 

properties. Explicit dependence of the overlap values and barycenter point positions on the 

Gaussian exponents may further be used to tune the accuracy of the fit by mimicking the exact 
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electron density, that is, by placing diffuse Gaussians at the more electronegative atomic sites, e.g. 

C and Cl atoms, and compact Gaussians at the hydrogens. These effects are explored below. 

 

 

Scheme 1. Details of transformation of a nuclear configuration X into an identical configuration 

X’ as a result of a permutation of the identical nuclei 2 and 3. The two-sided arrows indicate the 

elements being transformed upon the permutation. The black dots mark the barycenters. In this 

example, nucleus 1 is of one kind (white), and nuclei 2, 3 and 4 are of another kind (green). 

 

2.2 A PIP representation 

 In a first principles calculation the density matrix elements are determined by minimizing 

the total electronic energy at a nuclear configuration R. Presently, however, we follow the example 

of the preceding work[36] and introduce an explicit nuclear-configuration-dependence into the 

elements of the density matrix using a PIP ansatz. From now on the collective coordinate R is 

assumed to be a set of 3N Cartesian coordinates completely determining the molecular geometry. 

For compactness, let us consider the atomic charge densities corresponding to a particular nuclear 

group class, in this case the chlorines in CCl4, 
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																																											𝜌!(𝐑) = 𝜌!
(;) + 𝜎!(𝐑′)(𝑐42=>?𝑢!,4(𝐑)

A

4B#

																							(7) 

where 𝜌!
(;) is the permanent charge (polarizability) on atom k, 𝑐42=>? is a single set of linear 

expansion coefficients expressing all the atomic charges (polarizabilities) in the given group (Cl); 

𝑢!,4 is the i-th PIP of the total power 0 < 𝑚4 ≤ 𝑀 describing atom k. It is expressed in the usual 

N(N-1)/2 internuclear distances employing a permutationally symmetrized sum of monomial 

products. The latter products are determined by cycling over all possible permutations J within the 

like nucleus groups, that is, 1! 4! permutations for CCl4 and 1! 1! 3! permutations for CHCl3, 

																																								𝑢!,4(𝐑) =(𝑏!,4,5𝑦#+
C$,&𝑦#"

D$,&⋯𝑦(8&#)8
0$,&

E

5B#

																													(8) 

Specifically for the atom pair (𝑘, 𝑘7) our choice for the internuclear distance function is a Morse 

variable, 𝑦!!!
C$,& = 𝑒𝑥𝑝(−𝑝4,5𝑑!!! 𝑑;⁄ ) where 𝑑!!! = |𝐫! − 𝐫!!| and 𝑑; is a constant; and so on for 

all the other unique atom pairs. The integer powers satisfy the relation 𝑝4,5 + 𝑞4,5 +⋯+ 𝑧4,5 = 𝑚4. 

All combinations of a given integer set, which satisfy the like atom permutational symmetry rules, 

are considered for each 𝑚4. For a chosen maximal polynomial power M this determines the PIP 

basis size L.[36] 
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Figure 1. Distributions (not normalized) of potential energies of the four NVE trajectories 

f1+f2+f3+f4 with energies E1=18225, E2=6075, E3=2025, E4=675 cm-1 for CCl4 and E1=20000, 

E2=12891, E3=4297, E4=1432 cm-1 CHCl3, and the corresponding pruned sets g(V), calculated at 

the B3LYP/aug-cc-pVDZ level. The primitive sets fi(V) contain 10000 configurations each (40000 

configurations in total), while the pruned set g(V) contains ~1000 configurations, i. e., the 

respective numbers of points selected from the primitive NVE sets are: 714, 195, 76, 16 for CCl4, 

and 606, 191, 151, 52 for CHCl3. 

 

 The phase factors 𝑏!,4,5 = ±1 for atom k in the monomial j of polynomial i are determined 

based on the number of times, Fk, the integer k shows up in the numeral sequence of the atom pairs 

(1,2)(1,3)...(N-1,N) that have only non-zero powers among 𝑝4,5, 𝑞4,5, ..., 𝑧4,5. For example, in the 

monomial 𝑦#++ 𝑦#"# 𝑦+$; 𝑦+6"  we have F1=2, F2=2, F3=1, F4=0, F5=1. If Fk is greater than a certain 

threshold F*, then we set 𝑏!,4,5 = −1, otherwise 𝑏!,4,5 = 1. F* depends critically on the number of 

non-zero powers in each monomial. (A complete procedure for its determination is described in 

the SI.) The above-described phase assignment ensures covariance of 𝑢!,4(𝐑), meaning that a 
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permutation of two identical nuclei, e.g. 1 and 2, results in a corresponding exchange of 𝜌# and 𝜌+ 

so that the overall tensor is invariant under the said permutation. 

 Finally, the quantity 𝜎! introduced in Eq. 7 is a damping operator acting on an N-1 subset 

of internuclear distances contained in 𝐑7. It must be invariant under a permutation of an identical 

pair 𝑘7 and 𝑘77, but must be covariant with respect to a permutation of an identical pair 𝑘 and 𝑘7 

and at the same time must decay to zero as atom k is removed to infinity away from the other N-1 

atoms. A simple, although not unique choice, fulfilling these requirements is 𝜎!(𝐑7) = ∑ 𝑦!!!
8
!!9! . 

This damping function is a new feature in Eq. (7) since in all formulations published previously it 

was assumed to be unity, and the actual decay of 𝜌!(𝐑) to 𝜌!
(;) in the removed-atom-k-limit was 

not strictly enforced. 

 To represent the N(N-1)/2 off-atom (barycenter) point charges, we use an expression 

similar to Eq. (7) for a particular pair class, e.g., the C-Cl pairs in CCl4, 

																																											𝜌!!!(𝐑) = 𝜌!!!
(;) + 𝜎!!!(𝐑′)(𝑐4

F2GH𝑢!!!,4(𝐑)
A

4B#

																															(9) 

Here, for the multipoles we set 𝜌!!!
(;) = 0 and 𝜎!!!(𝐑7) = 1. For the polarizability we use a 

somewhat different ansatz, as described in the SI. Additionally, the pair polynomials must 

transform properly upon like nuclei permutations. For instance, a permutation of like nuclei 1 and 

2 must result in 𝜌#+ ↔ 𝜌+# and simultaneously in 𝜌#! ↔ 𝜌+! for k = 3, ..., N; and so on for all other 

permutations of this sort. This may be achieved with little effort by constructing pair-polynomials 

using direct products of the singles phases, as below, 

																																											𝑢!!!,4(𝐑) =(𝑏!,4,5𝑏!!,4,5𝑦#+
C$,&𝑦#"

D$,&⋯𝑦(8&#)8
0$,&

E

5B#

																												(10) 
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(An illustration of this is provided in Scheme 1.) The coefficients 𝑐42=>? and 𝑐4
F2GH (for i = 1, L) of 

each of the symmetry-unique species, i.e. for CCl4 they are C, Cl, C-Cl, Cl-Cl thus 4L in total and 

for CHCl3 they are C, H, Cl, C-H, C-Cl, H-Cl, Cl-Cl thus 7L in total, are determined by formulating 

and solving a linear least squares problem. In this work we use linear regression by means of the 

singular value decomposition treatment[61] as implemented in the DGESVD subroutine of the Intel 

Math Kernel Library.[62] This procedure was done by us previously in similar applications.[39] 

 

Table 1. The total number of expansion coefficients for the various types of linear regression 

problems and the PIP order M. The number in parentheses is the size of the corresponding PIP 

basis L. 

 Model N1 Model N2 

 M = 3 M = 4 M = 3 M = 4 

CCl4 (µ,Q,W) 58 (29) 164 (82) 116 (29) 328 (82) 

CCl4 (a) 203 (29) 574 (82) 261 (29) 738 (82) 

CHCl3 (µ,Q,W) 222 (74) 690 (230) 518 (74) 1610 (230) 

CHCl3 (a) 592 (74) 1840 (230) 888 (74) 2760 (230) 

 

 

3. RESULTS AND DISCUSSION 

3.1 Generation of training data for CCl4 and CHCl3 

 In recent works we proposed an approach to constructing well balanced training sets by 

pruning NVE trajectories.[63] Briefly, our motivation is to generate a training set of configurations 

such that the distribution of their potential energies is as close to uniform as possible. In other 

words, the general requirement is that all configurations with potential energies up to some 
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maximal value Vmax be equally represented in the set.  In the present work, the same strategy is 

used. We start with setting a high total energy level E1, e.g., a multiple of the harmonic ZPVE, and 

apply an exponential cooling schedule to bring it down to a low energy level En in several steps. 

The high energy level describes the quantum vibrationally accessible range of the potential, while 

the low energy level describes the classically relevant range. The energies E2,...,En-1 in between 

form a smooth connection of the two ranges. Following this initial step, we run NVE trajectories, 

with energies and forces computed on the fly, at each of the Ej total energies with zero total angular 

momentum using the B3LYP functional[64] with aug-cc-pVDZ basis set.[65] As was noted by us 

recently in applications involving PIP fitting of polarizability tensors[38,39] and discussed by others 

in different contexts,[66,67] augmenting orbital basis sets with diffuse functions plays a very 

important role in polarizability calculations. In the SI we provide the equilibrium geometries 

(Tables S1, S2), multipole and polarizability tensors (Tables S3, S4, S5) and vibrational 

frequencies (Table S6). All electronic structure calculations were carried out using the Gaussian[68] 

and MOLPRO[69] software packages. 

 At this level of theory, for CCl4, the ZPVE is 2025 cm-1 and the first dissociation limit, 

CCl2 + Cl2, is 25172 cm-1 above the global minimum. This allows us to start with E1 = 9ZPVE = 

18225 cm-1 and cool to E2 = 3ZPVE = 6075 cm-1, E3 = ZPVE = 2025 cm-1 and E4 = ZPVE/3 = 675 

cm-1. For CHCl3, the ZPVE is 4297 cm-1 and the dissociation energy into CCl2 + HCl is 19473 cm-

1. Applying the same cooling schedule creates E1 = 38673 cm-1, E2 = 12891 cm-1, E3 = 4297 cm-1, 

E4 = 1432 cm-1. However, the trajectory with the energy E1 produced fragmentation into CCl2 + 

HCl within 2 ps. Lowering the total energy to 30000 cm-1 and then to 25000 cm-1 also led to 

dissociation. We finally pinned E1 = 20000 cm-1 as approximately the highest energy 

corresponding to a non-fragmenting NVE trajectory. 
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 Following this procedure for each system, we ran 4 NVE trajectories for 10 ps with a 1 fs 

time step, generating a total of 40000 “primitive” configurations. Then, based on this initial step, 

we contract the primitive configurations into a single set while maximizing the criterion of the 

potential energy uniformity as mentioned above, 

																																																																						𝑔(𝑉) =(𝑑5𝑓5(𝑉)
I

5B#

																																																							(11) 

That is, the contracted set g(V) is a linear combination of the primitive NVE sets 𝑓5(𝑉) with the 

coefficients chosen to make g(V) uniform in a least-squares sense. The coefficients 𝑑5 in Eq. (10) 

are solved using a linear regression.[63] The primitive 40000 configurations for each molecule are 

pruned to sets of 1000 configurations, each. These distributions are shown in Figure 1. As is 

usually the case, a simple (unweighted) superposition of the primitive distributions favors the low 

energy region. Pruning these sets by optimizing the coefficients in Eq. (11) yields a much more 

balanced distribution. 
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Table 2. The relative RMSE (%) of the dipole (µ), quadrupole (Q), octupole (W) moments and the 

polarizability (a) of CCl4 and CHCl3 calculated using the N1 and N2 models with PIP orders M = 

3 and 4. The optimized Gaussian exponents for the multipoles are zCl=0.2 bohr-2, zC = 0.2 bohr-2 

for CCl4, and zCl=0.09 bohr-2, zC = 0.4 bohr-2, zH = 0.7 bohr-2 for CHCl3. The optimized Gaussian 

exponents for CH4 polarizability are zCl=zC=0.2 bohr-2, and for CHCl3 polarizability are 

zCl=zC=zH=0.1 bohr-2. The polynomial range parameter is d0=2.0 bohr. 

 

RMSE 

Model N1 Model N2  

µ Q W a µ Q W a 

CCl4     M=3 2.4 7.4 12.0 1.0 0.5 1.2 2.0 0.7 

CCl4     M=4 0.5 5.9 11.2 0.9 0.1 0.3 0.8 0.6 

CHCl3  M=3 1.6 6.9 26.7 2.2 0.4 0.9 4.3 1.9 

CHCl3  M=4 0.5 6.2 26.6 1.9 0.1 0.2 2.6 1.7 
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3.2 Fitting of the DMS, QMS, OMS for CCl4 and CHCl3 

 To fit the dipole, quadrupole, octupole moment surfaces (DMS, QMS, OMS respectively), 

and additionally the polarizability tensor surface (PTS) which is necessarily required for 

constructing intermolecular induction forces, we used the 3rd and 4th order PIPs with L = 29 and 

82 terms for CCl4 and L = 74 and 230 terms for CHCl3, excluding the constant term, as mentioned 

previously in Section 2.2. For each of the multipoles we fit the unique tensor elements: 3 for the 

dipole, 6 for the quadrupole/polarizability, 10 for the octupole, to their respective datasets. Briefly, 

for the PIP order M = 4, (Model N1) for the multipoles, and incidentally for the PTS representation, 

requires 164 linear variables for CCl4 and 690 linear variables for CHCl3; by the same token, 

Model N2 requires 328 linear variables for CCl4 and 1610 linear variables for CHCl3. The full 

dimensions are reported in Table 1. 

 

Figure 2. Distribution of Mulliken atomic charges in the training sets for CCl4 (green histograms) 

and CHCl3 (blue and red histograms), calculated at the B3LYP/aug-cc-pVDZ level. 
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 In addition to the linear variables there is the exponential range parameter d0 and the 

Gaussian exponents describing compactness/diffuseness of the atomic density centers. We first 

optimized d0 by minimizing the RMSE of the PESs, recording the best fits produced by setting d0 

= 2 bohr for both molecules. (See Section 3.3 for details of PES fitting.) We then optimized the 

octupole RMSEs by manually varying the Gaussian exponents in the 2D and 3D spaces and 

following a simplex-like search, for CCl4 and CHCl3, respectively. The results for the multipole 

moments and the polarizability tensor RMSEs are presented in Table 2. Presently, the relative 

RMSE is defined as 

																										𝑅𝑀𝑆𝐸(%) = 100 n
∑ ∑ o𝜏J,4KLM − 𝜏J,4LNMq

+
J4

∑ ∑ o𝜏J,4KLMq
+

J4

r
# +⁄

																															(12) 

where 𝜏J,4KLM and 𝜏J,4LNM are the respective moments with Cartesian component n  at configuration i. 

For the dipole moment, n = x, y, z; for the quadrupole moment n = xx, xy, xz, yx, yy, yz, zx, zy, 

zz; for the octupole moment n = xxx, xxy, ..., zzz. 
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Figure 3A. Correlation diagrams of the fitted dipole moments (vertical axis) vs. the B3LYP/aug-

cc-pVDZ training data (horizontal axis), for CCl4 and CHCl3 using Model  N1 (green dots) and 

Model N2 (red dots) with PIP order M = 4. In the training sets the molecular z-axis is 

approximately aligned with a CCl and the CH bonds in CCl4 and CHCl3, respectively. The 

permanent CHCl3 dipole moment at the equilibrium is µz = 0.44 a.u. Only a narrow range of ±0.01 

bohr of the dipole data is shown to better emphasize point scattering in the fits. 

 

 Optimization of the exponents produced the following values for CCl4 : zCl=0.2 bohr-2 and 

zC = 0.2 bohr-2, suggesting both atom types are roughly equally electronegative and that the 𝐫O,O3 

barycenters are located precisely at the bond centers. For CHCl3, on the other hand, the optimized 

heavy atom exponents are zCl=0.09 bohr-2 and zC = 0.4 bohr-2, with the hydrogen’s exponent zH = 

0.7 bohr-2, the latter being a strong electron donor. The latter exponents point to a more diffuse, or 

electronegative Cl and a more compact C. This behavior is well reflected by a visual analysis of 
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Figure 2 where one observes that the average (Mulliken) charge on the chlorine transforms from 

+0.25 |e| in CCl4 to +0.1 |e| in CHCl3, i.e., acquiring electron density), while the Carbon atom 

evolves in the opposite direction, from -0.8 to -0.4 |e| , (losing electron density). The disparity in 

the CHCl3 exponents places the 𝐫1,O3 barycenters much closer to H, reflecting the dynamics of the 

trajectories where the light H is much more mobile than the chlorines. 

 

 

Figure 3B. Correlation diagrams of the fitted quadrupole moments (vertical axis) vs. B3LYP/aug-

cc-pVDZ training data (horizontal axis), for CCl4 and CHCl3 using Model N1 (green dots) and 

Model N2 (red dots) with PIP order M = 4. A narrowed range of [-0.5,0.5] bohr2 of the quadrupole 

data is shown for a better visual perspective. 

 

 Concurrently, we observe that Model N2 clearly outperforms the traditional Model N1 for 

all multipoles: by a factor of 5 for the dipole, and in the case of the quadrupole and octupole it 

performs dramatically better, by factors of 20 and 14 for CCl4 and 31 and 10 for CHCl3, 

respectively, for the M = 4 PIP order. This result indicates that while Model N1 is quite suitable 

for describing the dipole, which has previously been demonstrated by some of us,[70,71] it is in fact 
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inadequate for the quadrupole, octupole and likely higher order multipole surfaces. A more 

detailed examination of the data in Table 2 further reveals that increasing the PIP basis order (i.e. 

from M = 3 to M = 4) has a markedly smaller effect on the RMSE than does increasing the model 

level from N1 to N2 while using a bigger set of linear parameters. For instance, the RMSE of the 

quadrupole moment of CCl4 improves from 7.4% to 5.9% by increasing the PIP basis from M = 3 

to M = 4 (from 58 to 164 PIPs, a 183% basis increase, cf. Table 1.) At the same time, upgrading 

the model from N1 to N2 reduces the RMSE to 1.2% while increasing the linear basis from 58 to 

116 PIPs (a 100% basis increase). Similarly, the RMSE of the octupole moment of CHCl3 is 

corrected only slightly, from 26.7% to 26.6%, by using the larger PIP basis (M = 4) while at the 

same time the fitting basis increases from 222 to 690 (a 211% increase). Yet, keeping M = 3 and 

employing Model N2 suppresses the error down to 4.3% with an increased basis (222 to 518 PIPs, 

a 133% increase). Similar observations can be made for the other instances in Table 2. In other 

words, Model N2 coupled with a low order PIP basis provides a much better PIP representation 

of the multipoles than does Model N1 coupled with a higher order PIP basis, and is shown to 

achieve this level with substantially fewer resources. The above statistics suggests that in fitting 

the multipole moment effective charges and atomic polarizabilities with PIPs, the treatment of the 

electron density with a well-structured spatial model is more important than using an arbitrarily 

high order PIP basis. We note however that the degree of efficiency may be different for molecules 

with compact or less structured electron densities, such as electron deficient molecules and ions; 

we leave this point for future investigations. For a visual inspection of the performance of the 

quadrupole and octupole fits, we refer the reader to the correlation plots of individual tensor 

elements in Figures 3A, 3B and 3C. 
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Figure 3C. Correlation diagrams of the fitted octupole moments (vertical axis) vs. B3LYP/aug-

cc-pVDZ training data (horizontal axis), for CCl4 and CHCl3 using Model N1 (green dots) and 

Model N2 (red dots) with PIP order M = 4 (with a, b = x, y, z) 

 

 As a separate but related exercise, it is instructive to examine the quality of representation 

of the total molecular charge. We note that for each of the fitted multipoles we do constrain the 

total charge to its true molecular value, Z = 0 for both molecules, by least-squares fitting of Eq. 

(2a). This is an important property that determines translational symmetry of the multipoles, the 

dipole in particular. These results are summarized in Figure 4 by plotting the charges as functions 

of configuration number in the corresponding training set, arranged by increasing configuration 

number from high to low potential energies. It is immediately clear that Model N1 preserves the 
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total charge, to ~0.001 |e|, for both CCl4 and CHCl3 dipoles. Similar behavior was reported 

previously by Braams and Bowman in fitting of dipole moment surfaces.[44,72-74] However, the 

model completely fails to preserve the total charge to the same order of accuracy for the quadrupole 

and octupole, with the average errors of ~0.1 |e| and ~1 |e|, respectively. On the other hand, Model 

N2 performs remarkably well constraining the total charge for all multipoles. The biggest 

deviations are observed for the high energy configurations of CHCl3 where the error occasionally 

reaches ~0.1 |e|. 

 

 

Figure 4. Fits of the total molecular charge Z(R) (Eq. (2a)), where R represents a nuclear 

configuration, using the two models with M = 4 and considered separately in the dipole (upper), 

quadrupole (middle), octupole (lower) procedures for the CCl4 and CHCl3 training data. The exact 

molecular charge of the two systems is Z = 0. 
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 The presently observed case of the PTS follows the same trend as that of the multipole 

surfaces, but with a much less dramatic variation in RMSE in terms of the PIP basis and the point 

charge model level. First of all, for CCl4 we see in Table 2 that the RMSE of the [M=4]@N1 level 

(0.9%) is corrected only moderately by the [M=4]@N2 level to 0.6%. For CHCl3 we observe that 

the RMSE of the [M=4]/N1 level of 1.9% is reduced to 1.7% by application of the [M=4]/N2 level. 

These are marginal improvements relative even to those of the DMS, which appears to be described 

well by the standard Model N1. (For a visual examination of the fits one is referred to Figures S1, 

S2 in the SI.) A possible explanation is that since the PTS is defined as the dipole polarizability, it 

possesses spatial properties of the dipole moment. That is, upon application of a small external 

field 𝛿𝐅 the resultant molecular dipole moment is a sum of the permanent dipole and the induced 

dipole: 𝛍(𝛿𝐅) = 𝛍(0) + 𝝁GPQ(𝛿𝐅). For a uniform electric field applied arbitrarily along the space-

fixed axis z, the components of the induced dipole are proportional to the components of the 

polarizability: 𝜇4GPQ/𝛿𝐹0 = 𝛼40. In other words, if one were to fit 𝛍(𝛿𝐅) to ab initio data generated 

with the applied field using the same nuclear configurations as for fitting 𝛍(0), one could recover 

the PTS by simple difference of the field-applied and field-free DMSs with an RMSE comparable 

to that of the DMS fit. (It is to be understood, however, that a PTS derived in this way using an 

explicit electric field would not be useful as a generic standalone surface.) This marginal 

improvement of PTS fit using Model N2 coupled with the fact that the computational complexity 

of the model scales as O(N6) compared to O(N3) for Model N1, suggests that the classic Applequist 

model (N1) is actually better suited for PTS PIP representation. The excellent performance of the 

Model N1 for PTS has been tested extensively on a variety of systems, including H2, H2O, H5O2+, 

CH4, N4H+,[38,39,63] and is not revisited here. 
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3.3 High temperature “stress test” of the multipole fits 

 On the other hand, testing the quality of Model M2 for the multipole surfaces is of 

paramount importance in the present work. In order to rigorously test the DMS, QMS and OMS, 

which were fitted to a rather small set (only 1000 configurations) of training data, we run a much 

longer trajectory (100 ps) than the primitive NVE samples and set it to a high temperature, namely 

2000K. Such a trajectory is expected to yield a set of configurations different from those of the 

training set while sampling regions of the potential energy roughly corresponding to 6000 cm-1, i. 

e. sufficiently far from the equilibrium configurations, cf. Figure 1. For the purpose of running the 

extensive simulation we fit the PESs of the two systems using the same training set of 

configurations as for the other quantities. To fit the PESs we take a 5th order PIP resulting in 208 

and 636 linear terms for CCl4 and CHCl3, respectively, with the corresponding RMSEs of 2.8 and 

1.9 cm-1; Table S6 in the SI provides further evidence of the high quality of the PES fits. Thus 

derived PESs contain both the energy value and its analytic gradient for a given input nuclear 

configuration. For the subsequent analysis, we save the test data every 0.1 ps resulting in a total of 

1000 loosely correlated configurations per system and recalculate the multipoles at the 

B3LYP/aug-cc-pVDZ level. The results for the OMSs are summarized in Figure 5. Analysis of the 

DMS and QMS as well as the potential energy and nuclear configuration distributions are provided 

in the SI in Figures S3A, S3B, S4A, S4B and S5A, S5B. 
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Figure 5. Test of the CCl4 and CHCl3 octupole moment Model N2 PIP representations against 

B3LYP/aug-cc-pVDZ data (DFT) using an extensive MD simulation at 2000K. The ten unique 

octupole components at each time step are shown as black dots. The trajectories were propagated 

on the respective PESs. 

 

 For a better emphasis of the error we find it useful to plot the ratio of the individual 

components of the difference tensor to the norm of the test data tensor calculated along the 

trajectory, i.e. for the octupole moment the quantity ∆ΩRST |𝛀KLM|⁄  is examined, taking the 

Frobenius norm of the tensor.[75] Visual inspection of the octupole errors, for instance, shows that 

they stay uniform along the trajectory and roughly within the bounds of the test set errors, 0.8% 

for CCl4 and 2.6% for CHCl3 (cf. Table 2). Similar behavior can be described for the quadrupole 

and dipole errors, shown in Figures S5A, S5B of the SI. These observations point to two important 

qualities, (i) the training data is not overfitted by Model N2 despite the additional fitted charge 

sites situated at the N(N-1)/2 additional barycenters since for a generic (A1)n1(A2)n2...(Al)nl 

molecule the number of symmetry unique pair-species is bound on [l(l-1)/2, l(l+1)/2] where l 

is the number of atom classes (l = 2 for CCl4, l = 3 for CHCl3), and (ii) the fits show an excellent 

degree of fidelity considering that only 1000 configurations were used to train the model. In other 
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words, the Model N2 multipole surfaces developed in the present work appear to be suitable for a 

wide range of MD simulations from low to high temperatures, as well as for constructing well-

balanced, polarizable electrostatic force fields for non-covalently bound systems relevant for 

simulation of liquids, in the spirit of recent works of Handley et al.[15,16] 

 

4. CONCLUSIONS 

 We have described an approach to fitting global molecular multipole moment surfaces 

using permutationally invariant polynomials in conjunction with a basic concept of the distributed 

multipole theory. The method, named Model N2 after Hall’s original treatment of an s-type 

electron density, involves placing N(N-1)/2 virtual charges (or isotropic polarizabilities) at the 

bond barycenters in addition to the N atomic sites and using them for the fitting just as is done in 

the classical N-atom charge model (Model N1). The calculations, employing CCl4 and CHCl3 as 

test cases, show a major improvement (more than an order of magnitude reduction of the RMSE) 

of Model N2 over Model N1 for the quadrupole and octupole moment surfaces, and a smaller but 

still significant improvement (about a factor of 5 reduction of the RMSE) for the dipole moment 

surface. Furthermore, unlike Model N1,  Model N2 was found to conserve the molecular charge 

for all multipoles, which is important for maintaining the translational symmetry of the dipole and 

the higher multipoles. 

 Another imperative observation, one specifically pertaining to the role of the PIP order, is 

that Model N2 combined with a low-order PIP is better in the RMSE sense than Model N1 

combined with a high order PIP. This finding points to some very practical computational 

advantages of Model N2, namely: (i) possibility to use a lower order PIP basis without sacrificing 

accuracy of the fit implies generating fewer ab initio training points to accomplish a reasonable 
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quality fit. This is extremely important for calculations of large systems with high permutational 

symmetry where both the generation of a PIP basis[37] and concurrently of ab initio data are 

particularly expensive; (ii) since the number of linear parameters in Model N2 grows quadratically 

with the number of nuclear classes l, which rarely exceeds a few units in a typical case, as opposed 

to the total number of atoms, which can be high, the problem of overfitting is effectively controlled 

as was demonstrated above. 

 We note in closing that the polarizability tensor surfaces considered here using the classic 

Applequist dipole polarizability formulation show only a marginal improvement (about 50% 

reduction of the RMSE) by the Model N2 level of treatment. At the same time the computational 

cost involved in expressing the polarizability with Model M2 increases quite dramatically from 

O(N3) to O(N6). Therefore, our present conclusion is that Model N1 appears the more favorable of 

the two for polarizability fitting using PIPs. 
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S1. Formulation of polarizability representation 

Previously it was shown by us that G may be functionalized using PIPs by introducing nuclear 

configuration R dependence into its elements, such as the isotropic atomic polarizabilities, i.e. 

𝑎! ≡ 𝑎!(𝐑) for an atomic site k. This was achieved by expanding Eq. 4 in a power series 

 

(𝐀"# + 𝐓)"# ≅ 𝐀 − 𝜆$(𝐫)𝐀𝐓𝐀 + 𝜆%(𝐫)𝐀𝐓𝐀𝐓𝐀 − 𝜆&(𝐫)𝐀𝐓𝐀𝐓𝐀𝐓𝐀 +⋯					(𝑆1) 

 

with 𝜆'(𝐫) being introduced as configuration dependent short-range scalar correction factors that 

tend to 1 at long range, with the requirement of 𝜆# ≡ 1. A is a diagonal matrix with elements ak. 

We then express the atomic polarizabilities and the correction factors using PIPs that decay to zero 

at large separation, 

																																	𝛼!(𝐑) = 𝛼!
()) + 𝜎!(𝐑′)5𝑐+,-./𝑢!,+(𝐑)

1

+2#

																														(𝑆2. 𝑎) 

																											𝛼!!!(𝐑) = 𝑆!!!(𝐑)𝛼!!!
()) + 𝑆!!!(𝐑)5𝑐+

3,45𝑢!!!,+(𝐑)
1

+2#

													(𝑆2. 𝑏) 

																																																	𝜆'(𝐑) = 1 +5𝑐',+𝑢+(𝐑)
1

+2#

																																							(𝑆2. 𝑐) 

As can be seen, in the limit of separated atoms, 𝛼!(𝐑 → ∞) tends to the atomic polarizability 𝑎!
()) 

for k = 1, N, which is a naturally required limit. At the same time, 𝛼!!!(𝐑 → ∞) = 0, due to the 

vanishing of overlaps. The choice of 𝛼!!!
())  is completely arbitrary, but should reflect physical 

properties of the molecule, in particular the atomic pair kk’. Several possible forms have been 

considered, such as (i) 𝛼!!!
()) = 1, (ii) 𝛼!!!

()) = (𝛼!
()) + 𝛼!!

())) 2⁄ , (iii) 𝛼!!!
()) = ?𝛼!

())𝛼!!
()) . The best 

performance was found with (iv) the ‘reduced mass’ formula, namely, 
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1
𝛼!!!
()) ≡

1
𝛼!
()) +

1
𝛼!!
()) 																																										(𝑆3) 

which is also the formula for the exponent in the Gaussian overlap integral (cf. Eq. 2g). Back-

substitution of Eq. S2 into Eq. S1 yields a non-linear function in the expansion coefficients {c}. In 

our recent paper we demonstrated that it is possible to linearize Eq. S1 with only a small penalty 

in computational accuracy, as follows, 

							(𝐀"# + 𝐓)"# ≅ (𝐀)"# + 𝐓)"# + ∆𝐀(𝐑) + 5 ∆𝜆'(𝐑)𝐌'(𝐑)
6→8

'2$

												(𝑆4) 

where 𝐌' = (−1)'"#𝐀)
# $⁄ D𝐀)

# $⁄ 𝐓𝐀)
# $⁄ E

'"#
𝐀)
# $⁄ , ∆𝜆'(𝐫) = 𝜆'(𝐫) − 1 and ∆𝐀(𝐑) is a correction 

matrix. Relaying the above linear approximation to the 3x3 form gives the l-order Thole-linearized 

(TL) polarizability tensor. In the below we have switched to cumulative p, q labels as those of 

atom sites and bond barycenters, in the order of 1,...,N,...,N(N+1)/2, 

𝛂:;
(6)(𝐑) = 5 [(𝐀)"# + 𝐓<)"#]=,>

?(?@#)/$

=,>

+ 𝟏 5 ∆𝛼=(𝐑)
?(?@#)/$

=

− ∆𝜆$(𝐑) 5 𝛼=
())𝛼>

())𝐓=><

?(?@#)
$

=B>

+ ∆𝜆%(𝐑) 5 𝛼=
())𝛼>

())

?(?@#)
$

=,>

5 𝛼C
())𝐓=C< 𝐓C><

?(?@#)
$

CB=,>

− ∆𝜆&(𝐑) 5 𝛼=
())𝛼>

())

?(?@#)
$

=,>

5 𝛼C
())𝛼C!

())𝐓=C< 𝐓CC!
< 𝐓C!>

<

?(?@#)
$

C(B=)
C!(BC,>)

+⋯				(𝑆5) 

with ∆𝛼=(𝐑) = 𝛼=(𝐑) − 𝛼=
()), and the index p running over all the sites, i.e. p = 1, ..., N, ..., 

N(N+1)/2. In the present calculations, as in the previous ones, we take l = 6. The Thole-modified 

dipole tensors in the internuclear distances 𝑟=> are 
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																																													D𝐓=>< E+D = 𝑓#(𝑟=>)
𝛿+D
𝑟=>%

− 3𝑓$(𝑟=>)
𝑟+𝑟D
𝑟=>E

																															(𝑆6) 

with 𝑟+ = 𝑟=>,F,	𝑟=>,G , 𝑟=>,H for the respective i = 1, 2, 3 and 

																																								𝑓#D𝑟=>E = 1 − (𝑎$𝑢$ 2⁄ + 𝑎𝑢 + 1)𝑒"IJ																														(𝑆7𝑎) 

																																							𝑓$D𝑟=>E = 1 − (𝑎%𝑢% 6⁄ + 𝑎$𝑢$ 2⁄ + 𝑎𝑢 + 1)𝑒"IJ											(𝑆7𝑏) 

with 𝑢 ≡ R𝛼=
())𝛼>

())S
"# K⁄

𝑟=> . The value of a = 0.5 was used in the calculations. 

 It is important to note that the dimensions of the linear parameter space for the 

aforementioned polarizability are different from those of the multipole representations. Common 

for both, the atomic point charges and atomic polarizabilities for each atom and atom-pair group 

is represented by its L elements (Eq. S2). However, for the polarizability tensor there are 5 

additional ∆𝜆' (n = 2 - 6) quantities with L elements each. 

 The isotropic and anisotropic polarizability components are defined as 

																																																																					𝛼4L. =
1
3 tr

[𝛂]																																																																						(𝑆8𝑎) 

𝛼,M4L. =
1
√2

XD𝛼FF − 𝛼GGE
$ + D𝛼GG − 𝛼HHE

$ + (𝛼HH − 𝛼FF)$ + 6D𝛼FG$ + 𝛼FH$ + 𝛼GH$ EY
# $⁄

			(𝑆8𝑏) 

and they are shown in the figures below. 
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Figure S1. CCl4 polarizabilities computed with an M = 4 PIP using the two models.  

DFT = B3LYP/aug-cc-pVDZ. 

 

 

Figure S2. CHCl3 polarizabilities computed with an M = 4 PIP using the two models.  

DFT = B3LYP/aug-cc-pVDZ. 
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S2. A covariant symmetrization scheme 

 1. determine the number of non-zero powers in a monomial: M_NZ{monomial} 

  Ex: M_NZ{𝑦#$$ 𝑦#%# 𝑦#&) 𝑦#E) 𝑦$%# 𝑦$&) 𝑦$E% } = 4 

 

 2. define quantity MAX_SYM = min[N_ATOM - 1, M_NZ] 

  where N_ATOM is the number of atoms 

 

 3. define quantity MIN_SYM = M_NZ - MAX_SYM 

 

 4. compute the number of times (Fk) the atom index (k) shows up in the monomial 

  Ex: for 𝑦#$$ 𝑦#%# 𝑦#&) 𝑦#E) 𝑦$%# 𝑦$&) 𝑦$E%  

   F1=2, F2=3, F3=2, F4=0, F5=1 

 

 5. Compare Fk against the quantity F* = max[MAX_SYM - 1, 1]: 

  a) set by default bk = 1 

  b) if Fk > MIN_SYM; then 

   if Fk ≥ F*; then bk = -1 
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S3. CCl4 and CHCl3 properties at the B3LYP/aug-cc-pVDZ equilibrium geometries. 

Table S1. XYZ geometry of CCl4 in Å. 

C 0.000000 0.000000 0.000000 

Cl 1.035088 1.035088 1.035088 

Cl -1.035088 -1.035088 1.035088 

Cl -1.035088 1.035088 -1.035088 

Cl 1.035088 -1.035088 -1.035088 

 

Table S2. XYZ geometry of CHCl3 in Å. 

Cl 0.000000 1.703706 -0.084668 

Cl 1.475453 -0.851853 -0.084668 

Cl -1.475453 -0.851853 -0.084668 

H 0.000000 0.000000 1.551118 

C 0.000000 0.000000 0.461157 

 

Table S3. Elements of the dipole and quadrupole moments at the equilibrium geometry in a.u. 

calculated using DFT=B3LYP/aug-cc-pVDZ and the fitting procedure. 

 

    z xy xz yz 

DFT CCl4 0 0 0 0 

FIT CCl4 0 0 0 0 

DFT CHCl3 0.436915 -0.5347746 -0.5347746 1.0695493 

FIT CHCl3 0.43701897 -0.5347614 -0.5347614 1.0695225 
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Table S4. Polarizability tensor components at the equilibrium geometry in a.u. calculated using 

DFT=B3LYP/aug-cc-pVDZ and the fitting procedure. 

 

  
xx yy zz xy xz yz 

DFT CCl4 70.12 70.12 70.12 0.00 0.00 0.00 

FIT CCl4 70.17 70.17 70.17 0.00 0.00 0.00 

DFT CHCl3 63.09 63.09 43.74 0.00 0.00 0.00 

FIT CHCl3 63.35 63.35 43.94 0.00 0.00 0.00 

 

Table S5. Octupole moment components at the equilibrium geometry in a.u. calculated using 

DFT=B3LYP/aug-cc-pVDZ and the fitting procedure. 

 

    xxx yyy zzz xyy xxy xxz xzz yzz yyz xyz 

G16 CCl4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.376 

FIT CCl4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.378 

G16 CHCl3 0.000 5.449 4.573 0.000 -5.449 -4.160 0.000 0.000 -4.160 0.000 

FIT CHCl3 0.000 5.456 4.572 0.000 -5.456 -4.161 0.000 0.000 -4.161 0.000 
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Table S6. Vibrational frequencies in cm-1 of the PES fits and the DFT=B3LYP/aug-cc-pVDZ data. 

wn CCl4(DFT) CCl4(PES) CHCl3(DFT) CHCl3(PES) 

1 214.4 214.4 256.6 256.6 

2 214.4 214.4 256.6 256.6 

3 311.5 311.6 361.4 362.4 

4 311.5 311.6 660.8 661.1 

5 311.5 311.6 732.9 732.7 

6 451.1 451.2 732.9 732.7 

7 744.5 744.7 1206.4 1206.2 

8 744.5 744.7 1206.4 1206.2 

9 744.5 744.7 3180.6 3184.4 
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S4. Details of the test set 

 

Figure S3A. The potential energy distributions of the CCl4 test set generated with a 2000 K 

trajectory propagated on the fitted PES. 

 

 

 

 

Figure S3B. The potential energy distributions of the CHCl3 test set generated with a 2000K 

trajectory propagated on the fitted PES. 
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Figure S4A. Internuclear distance distributions of CCl4 in the test set generated with a 2000 K 

trajectory propagated on the fitted PES. The red sticks mark the equilibrium geometry values. 

 

 

 

 

Figure S4B. Internuclear distance distributions of CHCl3 in the test set generated with a 2000 K 

trajectory propagated on the fitted PES. The red sticks mark the equilibrium geometry values. 
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Figure S5A. Test of the CCl4 and CHCl3 dipole moment Model N2 PIP representation errors 

against DFT=B3LYP/aug-cc-pVDZ data using an extensive MD simulation at 2000 K. The three 

dipole components at each time step are shown as black dots. The trajectories were propagated on 

the respective PESs. 

 

 

 

Figure S5B. Test of the CCl4 and CHCl3 quadrupole moment Model N2 PIP representation errors 

against DFT=B3LYP/aug-cc-pVDZ data using an extensive MD simulation at 2000 K. The six 

unique quadrupole components at each time step are shown as black dots. The trajectories were 

propagated on the respective PESs. 
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