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ABSTRACT: The exact expressions for the dipole, quadrupole, and octupoles of a collection of
N point charges involve summations of corresponding tensors over the N sites weighted by their
charge magnitudes. When the point charges are atoms (in a molecule) the N-site formula is an
approximation, and one must integrate over the electron density to recover the exact multipoles.
In the present work we revisit the N(V+1)/2-site point charge density model of Hall [Chem. Phys.
Lett. 6, 501, 1973] for the purpose of fitting ab initio derived multipole moment hypersurfaces
using permutationally invariant polynomials (PIP). We examine new approaches in PIP-fitting
procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS,
QMS, OMS and PTS, respectively) for a non-polar CCls and a polar CHCI3 and show that
compared to the primitive N-site model the N(N+1)/2-site model appreciably improves the relative
RMSE of the DMS and does much more substantially so, by an order of magnitude, for the
corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential
energies up to 18000 cm™! above the global minima, generated by molecular dynamics simulations
at the DFT B3LYP/aug-cc-pVDZ level of theory.
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1. INTRODUCTION

Molecular multipole moments are known to play a crucial role in describing intermolecular
interactions in the gas and liquid phase.[!3] The multipoles, typically up to the quadrupole and
octupole, and in some cases higher moments, form the basis of non-bonding interactions in such
molecular mechanics models as AMOEBA, > SIBFA (Sum of Interactions Between Fragments
Ab initio computed), 81 GMM (the Gaussian Multipole Model),®! and others!!*!8]. The first order
multipole moment (the permanent dipole) and its polarizability are key components in simulations
of infrared and, respectively, Raman spectra of molecules, liquids and solids.!"”2% In recent
applications, use of both the dipole and quadrupole moments was demonstrated in direct molecule-
field coupled simulations of vibrational spectra of biological macromolecules.?!]
Computational models for the dipole moment vector and occasionally its polarizability

9,22-25

tensor, of various degrees of approximation exist for a range of systems,! I being most

prominent for water.[*>14152631 More advanced methodologies, such as those based on
polynomial functions fitted to ab initio data, bring up a family of alternative approaches.[3%37]
Representation of the molecular dipole moment and polarizability tensor, as global functions of
nuclear coordinates fitted to an extensive set of high quality ab initio data is a rather challenging
task; however, recent developments in the permutationally invariant polynomial (PIP) theory have
produced some major new advances.!32-3638-401 [n a related manner, machine leaning techniques, in
particular those based on artificial neural networks (ANN),[*!l have shown themselves to be
competitive in accurate representation of multipole moments and dipole polarizability tensor

trained on ab initio derived data.['3164243] The latter approaches, i.e. the collective family of

PIP/ANN, are particularly relevant to the present study as we aim to express the multipoles as



global functions of internal nuclear coordinates, as have previously been done in the fitting of
global potential energy surfaces (PES).[36:44-4]

We note that in addition to a high-quality description of the dipole moment, it is essential
for centrosymmetric, tetrahedral and other highly symmetric molecules to also have a high quality
description of the quadrupole and octupole moments in the same manner due to their prominent
contribution to the electrostatic energy. For instance, the respective dipole-quadrupole and
quadrupole-quadrupole energy terms decay as d* and d with the intermolecular separation
distance d. Furthermore, the dipole polarizability is responsible for the induction and dispersion
forces, such as the dipole-induced-dipole and induced-dipole-induced-dipole interactions.*7!
These phenomena have previously been studied by various ANN methods.[!3-16 Presently,
however, we wish to also incorporate invariance with respect to cyclic permutations of any number
of like nuclei since it is crucial for a physically correct description of chemical properties. Yet
despite these important characteristics, we have not encountered reports of high-quality global
quadrupole and higher rank multipole fits using the PIP approach. This apparent lack of research
in the computational field adds to the motivation of the present study, in which we will attempt to
improve on the existing methods of fitting multipole moment surfaces in the hyperdimensional
space of nuclear coordinates, specifically by combining a version of the DMA theory with the
method of PIPs.

For the purposes of defining the goals of the present work, to be outlined in detail in the
following sections, we emphasize that aside from a few earlier studies using DMA-type
approaches,*!*8 the more recent PIP/ANN fitting models for multipole moments have so far been
realized at the level of the ‘classical’ N-atom point charge formula, akin to the Mulliken population

analysis.['*°1 This approach is identified here as (PIP) Model N1, i.e. a sum over the N atomic



centers weighted by their configuration dependent effective charges w(R). The latter are the actual
quantities fitted by PIP/ANN model.2®#3] However, given the success of the distributed multipole
analysis (DMA)! in many practical applications and other related theories!**->%! in describing
electrostatic interactions and electron density distribution in complex systems that go beyond the
‘classical’ representation, we seek to examine and apply a DMA formulation in the present work.
To this end we explore its simplest form, namely by placing a single s-type Gaussian on each of
the atomic sites and using the PIP approach to constructing global fits of molecular multipole
moment surfaces based on extensive ab initio data. We note that others have recently utilized s-
type Gaussian density in polarizable force fields.°!) Understandably, the addition of the higher
angular momentum functions, i.e. p, d, efc., on the atomic centers is expected to be important due
to an axial distortion of electron density. It is a natural extension of a ‘minimal basis’ s-function
approximation, and has been considered in a variety of DMA approaches in modeling of molecular
electrostatics.[>3! This will be a subject of future investigations in our development of the DMA-
PIP approach.

One may recall the original exploration of Hall of the electron density in terms of a set of
spherical Gaussians placed on the atoms, which produces an N(N+1)/2-site point charge
expression, identified here as (PIP) Model N2: for the dipole, quadrupole, and octupole.[>>33
Specifically, Model N2 consists of the NV atomic sites augmented by the N(N-1)/2 non-atom sites,
alternatively called bond centroids or barycenters!>” due to their locations being determined by the
Gaussian exponents. As will be shown below, this model is ideally suited for the PIP representation
since the latter uses the N(N-1)/2 internuclear distances as a basis for PIP formation.[*$! The major

practical issue to be addressed below is whether Model N2 can improve upon Model N1 in the



PIP fitting of the multipoles and dipole polarizability to ab initio data, that is, whether it can
significantly reduce the fitting error in the least squares sense: the root mean square error (RMSE).

To test our supposition of the role of the barycenters in the PIP representation we consider
two systems with sufficiently diffuse and structured electron densities while having appreciably
dissimilar spatial symmetries, namely, an isotropic non-polar CCls with no permanent (static)
dipole and quadrupole, and secondly a highly anisotropic and polar CHCls. These molecules are
known to readily form liquids at room temperature, in pure and mixed compositions, and are used
as organic solvents. They have been subjects of numerous investigations, some of which examined
the dynamics of C-Cl/C-H stretch using 2D-Raman spectroscopy.°®>7! More recently, hydrogen
bonding was studied in CHCl; dimers at the level of the GMM theory employing the DMA
approach.l’]

In the work presented here, we calculate and fit the aforementioned systems’ multipoles up
to the octupole moment, along with their dipole polarizabilities employing the N1 and N2 models
via a conventional PIP representation.’®! We then present a series of extensive error analyses,
compare performances of the two models and discuss the effect of the PIP order on the quality of

the fits.

2. THEORETICAL METHODS
2.1 Hall’s point charge model
The charge density of an N-atom molecule at point r in the laboratory frame can be

approximated in terms of functions ¢y (r), centered at the N atomic sites £,

P = ) P 9Dy (1) &
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where p,,;’ are elements of the density matrix. Using a basis consisting of N primitive normalized

spherical Gaussian functions @ (r) = (¢3/n3)/*e~kIr=Til*/2 (others have used Slater-type
Gaussian contractions!®’) and substituting for the product of two Gaussians another Gaussian, the
latter centered at ry,r = ({xtx + {p'Tyr)/ (i + {4r) with the exponent (. = { + {;r, the
resultant density is a sum of the N(N+1)/2 spherical Gaussians at the centers Iy ’.

For the purposes of present calculations, we find it informative to express the moments
using the exact density p(r) by separating them into the sum of the “classical”, e.g., from the point
charge model, and overlap originating “quantum” contributions. Namely, we have for the total

charge,
Z= Zpk +2 Z Prk'Skk! (2a)
k<k’
the dipole moment,
n= Z PiTi + 2 Z Pk’ Skk'Tiek! (2b)
k<k’
the traceless quadrupole moment tensor,
Q= Z Pk (3Tt — g 1) + 2 Z pkk'skk'(Srkk'r]Zk’ - rkzk'l) (2c)
k k<k’

and the symmetry unique elements of the octupole moment tensor,

3
Qoxx Zpkxk <xk Z(k) + 2 Z Pk’ Skk' Xkk! ( X! T ZCkk’) (2d)

1 1
Qyyy = Zpkxk (3’1% + 27 ) Z Pk’ Sk Xrk! (ykk' + 27 ,) (2e)
k k kk

k<k'



Qyyz = Z PrXiYiZi + 2 Z Pk’ Skk' Xk’ Yik' Zxk! (21)
k

k<k'

where the Gaussian overlap (@ |@,’) is

3
_ 40l \* _ il _

and (' = (Cx + {x7)/2. The leading terms in Eq. (2a-f) may be interpreted as originating from
the sum of the N ‘classical’ point charges p; over the atomic centers k. The second terms, on the
other hand, are purely quantum in nature due to the wavefunction overlap factors Sy, which
decay to zero at large k-k’ separations. However, they do behave physically in exactly the same
manner as the classical terms by being sums over point charges p,,’ located at the N(N-1)/2
interatomic distance barycenters .

To facilitate calculation of the electrostatic potential and its derivatives, Hall originally

proposed an approximation to Eq. 1 that has the form,

Pran(T) = Z Pri’ Sk’ 6(X — Tpper) 3)

kk'

The products py,'Skx’, Which are key elements in the Mulliken population analysis, can formally
be interpreted as point charges Z, ;. Hall first showed that the approximate Eq. 3 conserves the
total charge and the dipole moment of the exact density. The form of Eq. 3 also happens to conserve
the traceless quadrupole moment. The model deviates from the exact formula for the octupole
moment, namely for the normal (unadjusted) Oy, and Oy, elements, as can be seen in Egs. 2d,
2e. Others have shown that conversion of the octupole (and higher moments) to a traceless form
is straightforward, although presently we consider the normal octupole definition.”!

The utility of Hall’s approximation in conjunction with the PIP representation becomes

more apparent when one examines the dipole polarizability. By one definition, the dipole



polarizability of a molecule is a 3N X 3N relay matrix G interconnecting the induced atomic
dipoles caused by an external electric field,[%>°]

G=(A1+1T)1? (4)

In the above, A is a diagonal matrix with the isotropic atomic polarizabilities a as its elements,

and T is an N X N tensor with each element being a 3 X 3 Cartesian block connecting a pair of

atoms &, k’ via the dipole field,

6i' nr;
(Tkk')ij ==L -3+ (5)
T'kgk/ Tksk/

where r;, r;, are the Cartesian components x, y, z of the riu- vector. The matrix G is related to the

actual 3 X 3 polarizability matrix a by summing over all atom sites (the 3 X 3 blocks) k, k',

N

ajj = Z [Grrr]ij (6)
k#k'

With the present interpretation of Eqs. 4-6 being strictly limited to the N atomic sites &, &, i.e. the
natural sources of (induced) dipoles, it is particularly intriguing in the present PIP approach to
evoke Hall’s model to extend the currently used polarizability theory to a super atomic
representation with k, k'=1,..., N(N+1)/2 with the elements p;;’ as the sources of polarizable
electron density. Details of this approach are described in the Supplementary Information (SI). For
completeness, we note that Stone!*’! and others!®! have proposed more advanced theories of
polarizability representation beyond the classic Applequist model,’® yet it is presently unclear if
they can be applied for PIP fitting in a conventional linear regression way.

A major effort of the present investigation is thus to evaluate the quantum contribution,
stemming from the atomic orbital overlaps to the quality of the PIP fits of molecular tensor
properties. Explicit dependence of the overlap values and barycenter point positions on the

Gaussian exponents may further be used to tune the accuracy of the fit by mimicking the exact



electron density, that is, by placing diffuse Gaussians at the more electronegative atomic sites, e.g.

C and CI atoms, and compact Gaussians at the hydrogens. These effects are explored below.

1
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Scheme 1. Details of transformation of a nuclear configuration X into an identical configuration
X as a result of a permutation of the identical nuclei 2 and 3. The two-sided arrows indicate the
elements being transformed upon the permutation. The black dots mark the barycenters. In this

example, nucleus 1 is of one kind (white), and nuclei 2, 3 and 4 are of another kind (green).

2.2 A PIP representation

In a first principles calculation the density matrix elements are determined by minimizing
the total electronic energy at a nuclear configuration R. Presently, however, we follow the example
of the preceding work*®) and introduce an explicit nuclear-configuration-dependence into the
elements of the density matrix using a PIP ansatz. From now on the collective coordinate R is
assumed to be a set of 3N Cartesian coordinates completely determining the molecular geometry.
For compactness, let us consider the atomic charge densities corresponding to a particular nuclear

group class, in this case the chlorines in CCls,



L
pe(R) = p¥ + 0 (R) ) e (R) @
i=1

where p,(co) is the permanent charge (polarizability) on atom k, c¢2*™ is a single set of linear

expansion coefficients expressing all the atomic charges (polarizabilities) in the given group (Cl);
Uy ; 1s the i-th PIP of the total power 0 < m; < M describing atom £. It is expressed in the usual
N(N-1)/2 internuclear distances employing a permutationally symmetrized sum of monomial
products. The latter products are determined by cycling over all possible permutations .J within the
like nucleus groups, that is, 1! 4! permutations for CCls and 1! 1! 3! permutations for CHCIs,

J
Pij 4ij Zjj
u,(R) = Z biijViy Vis '”y(Nj—l)N ®)
j=1

Specifically for the atom pair (k, k") our choice for the internuclear distance function is a Morse

. 14 i,j
variable, y, ;{

= ex'p(—pl-’jdkk//do) where d,» = |ry — /| and d, is a constant; and so on for
all the other unique atom pairs. The integer powers satisfy the relation p; ; + q; ; + -+ + z;; = m;.
All combinations of a given integer set, which satisfy the like atom permutational symmetry rules,
are considered for each m;. For a chosen maximal polynomial power M this determines the PIP

basis size L.3¢]
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Figure 1. Distributions (not normalized) of potential energies of the four NVE trajectories
fitfatfstfa with energies E1=18225, E>=6075, E3=2025, E&~675 cm!' for CCls and E1=20000,
E>=12891, E3=4297, E+~1432 ¢cm™ CHCI3, and the corresponding pruned sets g(¥), calculated at
the B3LYP/aug-cc-pVDZ level. The primitive sets fi(}) contain 10000 configurations each (40000
configurations in total), while the pruned set g(V) contains ~1000 configurations, i. e., the
respective numbers of points selected from the primitive NVE sets are: 714, 195, 76, 16 for CCla,
and 606, 191, 151, 52 for CHCls.

The phase factors by ; ; = +1 for atom & in the monomial j of polynomial i are determined
based on the number of times, Fi, the integer £ shows up in the numeral sequence of the atom pairs
(1,2)(1,3)...(N-1,N) that have only non-zero powers among p; j, q; j, -.., Z; j. For example, in the
monomial y2,Vi3y9,V3s we have F1=2, F»=2, F5=1, F4=0, Fs=1. If Fy is greater than a certain
threshold F*, then we set by ; j; = —1, otherwise by ; ; = 1. F™* depends critically on the number of

non-zero powers in each monomial. (A complete procedure for its determination is described in

the SI.) The above-described phase assignment ensures covariance of u; ;(R), meaning that a
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permutation of two identical nuclei, e.g. 1 and 2, results in a corresponding exchange of p; and p,
so that the overall tensor is invariant under the said permutation.

Finally, the quantity o), introduced in Eq. 7 is a damping operator acting on an N-1 subset
of internuclear distances contained in R’. It must be invariant under a permutation of an identical
pair k’ and k"', but must be covariant with respect to a permutation of an identical pair k and k'
and at the same time must decay to zero as atom £ is removed to infinity away from the other N-1
atoms. A simple, although not unique choice, fulfilling these requirements is g (R") = Y¥rox Vier'-
This damping function is a new feature in Eq. (7) since in all formulations published previously it
was assumed to be unity, and the actual decay of p, (R) to p,(co) in the removed-atom-4-limit was
not strictly enforced.

To represent the N(N-1)/2 off-atom (barycenter) point charges, we use an expression

similar to Eq. (7) for a particular pair class, e.g., the C-Cl pairs in CCla,

L
Prr' (R) = P,({(;)' + i’ (R) Z Clpalrukk’,i(R) 9)
i=1

) _

Here, for the multipoles we set p,, =

0 and o,/ (R") = 1. For the polarizability we use a
somewhat different ansatz, as described in the SI. Additionally, the pair polynomials must
transform properly upon like nuclei permutations. For instance, a permutation of like nuclei 1 and
2 must result in p;, < p,; and simultaneously in p;; < pyx for k=3, ..., N; and so on for all other
permutations of this sort. This may be achieved with little effort by constructing pair-polynomials

using direct products of the singles phases, as below,

]
Pij_dij Zjj
U ;(R) = Z bk.i,jbk'.i.jy12}y13] "'y(Nj—l)N (10)
j=1
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(An illustration of this is provided in Scheme 1.) The coefficients ¢2*°™ and clp air (fori=1,L) of
each of the symmetry-unique species, i.e. for CCls they are C, Cl, C-Cl, CI-Cl thus 4L in total and
for CHCl; they are C, H, Cl, C-H, C-CI, H-CI, CI-Cl thus 7L in total, are determined by formulating
and solving a linear least squares problem. In this work we use linear regression by means of the
singular value decomposition treatment/%!) as implemented in the DGESVD subroutine of the Intel

Math Kernel Library.[®?! This procedure was done by us previously in similar applications.*’]

Table 1. The total number of expansion coefficients for the various types of linear regression
problems and the PIP order M. The number in parentheses is the size of the corresponding PIP

basis L.

Model N1 Model N2
M=3 M=4 M=3 M=4
CCls (1,Q,2) 58 (29) 164 (82) 116 (29) 328 (82)
CCls () 203 (29) 574 (82) 261 (29) 738 (82)
CHCI3 (1,Q,Q) 222 (74) 690 (230) 518 (74) 1610 (230)
CHCl; (o) 592 (74) 1840 (230) 888 (74) 2760 (230)

3. RESULTS AND DISCUSSION
3.1 Generation of training data for CCly and CHCI;3

In recent works we proposed an approach to constructing well balanced training sets by
pruning NVE trajectories.[®*] Briefly, our motivation is to generate a training set of configurations
such that the distribution of their potential energies is as close to uniform as possible. In other

words, the general requirement is that all configurations with potential energies up to some

13



maximal value V. be equally represented in the set. In the present work, the same strategy is
used. We start with setting a high total energy level E1, e.g., a multiple of the harmonic ZPVE, and
apply an exponential cooling schedule to bring it down to a low energy level E, in several steps.
The high energy level describes the quantum vibrationally accessible range of the potential, while
the low energy level describes the classically relevant range. The energies E,...,E,1 in between
form a smooth connection of the two ranges. Following this initial step, we run NVE trajectories,
with energies and forces computed on the fly, at each of the E; total energies with zero total angular
momentum using the B3LYP functional®* with aug-cc-pVDZ basis set.[%] As was noted by us
recently in applications involving PIP fitting of polarizability tensors*®3° and discussed by others

(66671 augmenting orbital basis sets with diffuse functions plays a very

in different contexts,
important role in polarizability calculations. In the SI we provide the equilibrium geometries
(Tables S1, S2), multipole and polarizability tensors (Tables S3, S4, S5) and vibrational
frequencies (Table S6). All electronic structure calculations were carried out using the Gaussian!®®!
and MOLPROI® software packages.

At this level of theory, for CCls, the ZPVE is 2025 cm™! and the first dissociation limit,
CClz + Clp, is 25172 ¢cm™! above the global minimum. This allows us to start with £; = 9ZPVE =
18225 cm™! and cool to E» =3ZPVE = 6075 cm’!, E3 = ZPVE = 2025 cm™ and E4 = ZPVE/3 = 675
cm’!. For CHCl;, the ZPVE is 4297 cm™! and the dissociation energy into CCl, + HClis 19473 cm-
!, Applying the same cooling schedule creates E1 = 38673 cm™!, E> = 12891 cm™!, E3 =4297 cm’!,
E4 = 1432 cm’!. However, the trajectory with the energy E| produced fragmentation into CCl, +
HCI within 2 ps. Lowering the total energy to 30000 cm™ and then to 25000 cm™ also led to

dissociation. We finally pinned E; = 20000 cm™ as approximately the highest energy

corresponding to a non-fragmenting NVE trajectory.
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Following this procedure for each system, we ran 4 NVE trajectories for 10 ps with a 1 fs
time step, generating a total of 40000 “primitive” configurations. Then, based on this initial step,
we contract the primitive configurations into a single set while maximizing the criterion of the

potential energy uniformity as mentioned above,
n
g =) df ) (1D
j=1

That is, the contracted set g(¥) is a linear combination of the primitive NVE sets f;(V) with the
coefficients chosen to make g(¥) uniform in a least-squares sense. The coefficients d; in Eq. (10)
are solved using a linear regression.[®3] The primitive 40000 configurations for each molecule are
pruned to sets of 1000 configurations, each. These distributions are shown in Figure 1. As is
usually the case, a simple (unweighted) superposition of the primitive distributions favors the low
energy region. Pruning these sets by optimizing the coefficients in Eq. (11) yields a much more

balanced distribution.
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Table 2. The relative RMSE (%) of the dipole (i), quadrupole (Q), octupole (€2) moments and the
polarizability () of CCl4 and CHCI3 calculated using the N1 and N2 models with PIP orders M =
3 and 4. The optimized Gaussian exponents for the multipoles are {ci=0.2 bohr?, {c = 0.2 bohr
for CCls, and £ci=0.09 bohr?, e = 0.4 bohr?2, i = 0.7 bohr? for CHCls. The optimized Gaussian
exponents for CHs polarizability are {c=¢c=0.2 bohr?, and for CHCIs polarizability are
lo=Le=4u=0.1 bohr2. The polynomial range parameter is do=2.0 bohr.

Model N1 Model N2
RMSE i Q Q o u Q Q a
CClsy M=3 24 7.4 12.0 1.0 0.5 1.2 2.0 0.7
CCls M=4 0.5 59 11.2 0.9 0.1 0.3 0.8 0.6
CHCI; M=3 1.6 6.9 26.7 22 0.4 0.9 4.3 1.9
CHCI; M=4 0.5 6.2 26.6 1.9 0.1 0.2 2.6 1.7
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3.2 Fitting of the DMS, QMS, OMS for CCl; and CHCI3

To fit the dipole, quadrupole, octupole moment surfaces (DMS, QMS, OMS respectively),
and additionally the polarizability tensor surface (PTS) which is necessarily required for
constructing intermolecular induction forces, we used the 3rd and 4th order PIPs with L = 29 and
82 terms for CCls and L = 74 and 230 terms for CHCl3, excluding the constant term, as mentioned
previously in Section 2.2. For each of the multipoles we fit the unique tensor elements: 3 for the
dipole, 6 for the quadrupole/polarizability, 10 for the octupole, to their respective datasets. Briefly,
for the PIP order M =4, (Model N1) for the multipoles, and incidentally for the PTS representation,
requires 164 linear variables for CCls and 690 linear variables for CHCls; by the same token,
Model N2 requires 328 linear variables for CCls and 1610 linear variables for CHCls. The full
dimensions are reported in Table 1.
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Figure 2. Distribution of Mulliken atomic charges in the training sets for CCl4 (green histograms)

and CHCI; (blue and red histograms), calculated at the B3LYP/aug-cc-pVDZ level.
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In addition to the linear variables there is the exponential range parameter do and the
Gaussian exponents describing compactness/diffuseness of the atomic density centers. We first
optimized do by minimizing the RMSE of the PESs, recording the best fits produced by setting do
= 2 bohr for both molecules. (See Section 3.3 for details of PES fitting.) We then optimized the
octupole RMSEs by manually varying the Gaussian exponents in the 2D and 3D spaces and
following a simplex-like search, for CCl4 and CHCIs, respectively. The results for the multipole
moments and the polarizability tensor RMSEs are presented in Table 2. Presently, the relative

RMSE is defined as

DFT FIT)?2 1/2
Zin Tyi — Ty

2
X (i

RMSE (%) = 100[ (12)

where TB, T and TE'IL-T are the respective moments with Cartesian component v at configuration i.

For the dipole moment, v= x, y, z; for the quadrupole moment v= xx, xy, xz, yX, Yy, Yz, ZX, Zy,

zz; for the octupole moment v = xxx, XXy, ..., ZZZ.
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Figure 3A. Correlation diagrams of the fitted dipole moments (vertical axis) vs. the B3LYP/aug-
cc-pVDZ training data (horizontal axis), for CCls and CHCI3 using Model N1 (green dots) and
Model N2 (red dots) with PIP order M = 4. In the training sets the molecular z-axis is
approximately aligned with a CCl and the CH bonds in CCl4y and CHCI;, respectively. The
permanent CHCl; dipole moment at the equilibrium is p; = 0.44 a.u. Only a narrow range of +0.01

bohr of the dipole data is shown to better emphasize point scattering in the fits.

Optimization of the exponents produced the following values for CCls : {=0.2 bohr2 and
¢c = 0.2 bohr?, suggesting both atom types are roughly equally electronegative and that the r¢ g
barycenters are located precisely at the bond centers. For CHCl3, on the other hand, the optimized
heavy atom exponents are {ci=0.09 bohr? and ¢ = 0.4 bohr2, with the hydrogen’s exponent i =
0.7 bohr, the latter being a strong electron donor. The latter exponents point to a more diffuse, or

electronegative Cl and a more compact C. This behavior is well reflected by a visual analysis of
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Figure 2 where one observes that the average (Mulliken) charge on the chlorine transforms from
+0.25 le| in CCl4 to +0.1 |e| in CHCIs, i.e., acquiring electron density), while the Carbon atom
evolves in the opposite direction, from -0.8 to -0.4 |e| , (losing electron density). The disparity in
the CHCl; exponents places the ry ¢; barycenters much closer to H, reflecting the dynamics of the

trajectories where the light H is much more mobile than the chlorines.
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Figure 3B. Correlation diagrams of the fitted quadrupole moments (vertical axis) vs. B3LYP/aug-
cc-pVDZ training data (horizontal axis), for CCls and CHCI3 using Model N1 (green dots) and
Model N2 (red dots) with PIP order M = 4. A narrowed range of [-0.5,0.5] bohr? of the quadrupole

data is shown for a better visual perspective.

Concurrently, we observe that Model N2 clearly outperforms the traditional Model N1 for
all multipoles: by a factor of 5 for the dipole, and in the case of the quadrupole and octupole it
performs dramatically better, by factors of 20 and 14 for CCls and 31 and 10 for CHCls,
respectively, for the M = 4 PIP order. This result indicates that while Model N1 is quite suitable

for describing the dipole, which has previously been demonstrated by some of us,’%7! it is in fact
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inadequate for the quadrupole, octupole and likely higher order multipole surfaces. A more
detailed examination of the data in Table 2 further reveals that increasing the PIP basis order (i.e.
from M =3 to M = 4) has a markedly smaller effect on the RMSE than does increasing the model
level from N1 to N2 while using a bigger set of linear parameters. For instance, the RMSE of the
quadrupole moment of CCls improves from 7.4% to 5.9% by increasing the PIP basis from M =3
to M =4 (from 58 to 164 PIPs, a 183% basis increase, cf. Table 1.) At the same time, upgrading
the model from N1 to N2 reduces the RMSE to 1.2% while increasing the linear basis from 58 to
116 PIPs (a 100% basis increase). Similarly, the RMSE of the octupole moment of CHCI; is
corrected only slightly, from 26.7% to 26.6%, by using the larger PIP basis (M = 4) while at the
same time the fitting basis increases from 222 to 690 (a 211% increase). Yet, keeping M = 3 and
employing Model N2 suppresses the error down to 4.3% with an increased basis (222 to 518 PIPs,
a 133% increase). Similar observations can be made for the other instances in Table 2. In other
words, Model N2 coupled with a low order PIP basis provides a much better PIP representation
of the multipoles than does Model N1 coupled with a higher order PIP basis, and is shown to
achieve this level with substantially fewer resources. The above statistics suggests that in fitting
the multipole moment effective charges and atomic polarizabilities with PIPs, the treatment of the
electron density with a well-structured spatial model is more important than using an arbitrarily
high order PIP basis. We note however that the degree of efficiency may be different for molecules
with compact or less structured electron densities, such as electron deficient molecules and ions;
we leave this point for future investigations. For a visual inspection of the performance of the
quadrupole and octupole fits, we refer the reader to the correlation plots of individual tensor

elements in Figures 3A, 3B and 3C.
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Figure 3C. Correlation diagrams of the fitted octupole moments (vertical axis) vs. B3LYP/aug-
cc-pVDZ training data (horizontal axis), for CCls and CHCI3 using Model N1 (green dots) and
Model N2 (red dots) with PIP order M =4 (with o, B =X, y, 2)

As a separate but related exercise, it is instructive to examine the quality of representation
of the total molecular charge. We note that for each of the fitted multipoles we do constrain the
total charge to its true molecular value, Z = 0 for both molecules, by least-squares fitting of Eq.
(2a). This is an important property that determines translational symmetry of the multipoles, the
dipole in particular. These results are summarized in Figure 4 by plotting the charges as functions
of configuration number in the corresponding training set, arranged by increasing configuration

number from high to low potential energies. It is immediately clear that Model N1 preserves the
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total charge, to ~0.001 |e|, for both CCls and CHCI3 dipoles. Similar behavior was reported
previously by Braams and Bowman in fitting of dipole moment surfaces.[*+7>741 However, the
model completely fails to preserve the total charge to the same order of accuracy for the quadrupole
and octupole, with the average errors of ~0.1 |e| and ~1 |e|, respectively. On the other hand, Model
N2 performs remarkably well constraining the total charge for all multipoles. The biggest
deviations are observed for the high energy configurations of CHCI3 where the error occasionally

reaches ~0.1 |e|.
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Figure 4. Fits of the total molecular charge Z(R) (Eq. (2a)), where R represents a nuclear
configuration, using the two models with M = 4 and considered separately in the dipole (upper),
quadrupole (middle), octupole (lower) procedures for the CCls and CHCl; training data. The exact

molecular charge of the two systems is Z = 0.

23



The presently observed case of the PTS follows the same trend as that of the multipole
surfaces, but with a much less dramatic variation in RMSE in terms of the PIP basis and the point
charge model level. First of all, for CCl4 we see in Table 2 that the RMSE of the [M=4]@N1 level
(0.9%) is corrected only moderately by the [M=4]@N2 level to 0.6%. For CHCl; we observe that
the RMSE of the [M=4]/N1 level of 1.9% is reduced to 1.7% by application of the [M=4]/N2 level.
These are marginal improvements relative even to those of the DMS, which appears to be described
well by the standard Model N1. (For a visual examination of the fits one is referred to Figures S1,
S2 in the SI.) A possible explanation is that since the PTS is defined as the dipole polarizability, it
possesses spatial properties of the dipole moment. That is, upon application of a small external
field 6F the resultant molecular dipole moment is a sum of the permanent dipole and the induced
dipole: n(8F) = p(0) + u'™4(SF). For a uniform electric field applied arbitrarily along the space-
fixed axis z, the components of the induced dipole are proportional to the components of the
polarizability: u"4/8F, = a;,. In other words, if one were to fit W(6F) to ab initio data generated
with the applied field using the same nuclear configurations as for fitting p(0), one could recover
the PTS by simple difference of the field-applied and field-free DMSs with an RMSE comparable
to that of the DMS fit. (It is to be understood, however, that a PTS derived in this way using an
explicit electric field would not be useful as a generic standalone surface.) This marginal
improvement of PTS fit using Model N2 coupled with the fact that the computational complexity
of the model scales as O(N®) compared to O(N?) for Model N1, suggests that the classic Applequist
model (N1) is actually better suited for PTS PIP representation. The excellent performance of the
Model N1 for PTS has been tested extensively on a variety of systems, including H», H>O, Hs0,",

CHa, N4H",383%631 and is not revisited here.
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3.3 High temperature “stress test” of the multipole fits

On the other hand, testing the quality of Model M2 for the multipole surfaces is of
paramount importance in the present work. In order to rigorously test the DMS, QMS and OMS,
which were fitted to a rather small set (only 1000 configurations) of training data, we run a much
longer trajectory (100 ps) than the primitive NVE samples and set it to a high temperature, namely
2000K. Such a trajectory is expected to yield a set of configurations different from those of the
training set while sampling regions of the potential energy roughly corresponding to 6000 cm™, i.
e. sufficiently far from the equilibrium configurations, cf. Figure 1. For the purpose of running the
extensive simulation we fit the PESs of the two systems using the same training set of
configurations as for the other quantities. To fit the PESs we take a 5th order PIP resulting in 208
and 636 linear terms for CCls and CHCls, respectively, with the corresponding RMSEs of 2.8 and
1.9 cm!; Table S6 in the SI provides further evidence of the high quality of the PES fits. Thus
derived PESs contain both the energy value and its analytic gradient for a given input nuclear
configuration. For the subsequent analysis, we save the test data every 0.1 ps resulting in a total of
1000 loosely correlated configurations per system and recalculate the multipoles at the
B3LYP/aug-cc-pVDZ level. The results for the OMSs are summarized in Figure 5. Analysis of the
DMS and QMS as well as the potential energy and nuclear configuration distributions are provided

in the SI in Figures S3A, S3B, S4A, S4B and S5A, S5B.
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Figure 5. Test of the CCls and CHCl3 octupole moment Model N2 PIP representations against
B3LYP/aug-cc-pVDZ data (DFT) using an extensive MD simulation at 2000K. The ten unique
octupole components at each time step are shown as black dots. The trajectories were propagated

on the respective PESs.

For a better emphasis of the error we find it useful to plot the ratio of the individual
components of the difference tensor to the norm of the test data tensor calculated along the
trajectory, i.e. for the octupole moment the quantity AQ,p,/|QPFT| is examined, taking the
Frobenius norm of the tensor.l”>! Visual inspection of the octupole errors, for instance, shows that
they stay uniform along the trajectory and roughly within the bounds of the test set errors, 0.8%
for CCls and 2.6% for CHCI3 (cf. Table 2). Similar behavior can be described for the quadrupole
and dipole errors, shown in Figures S5A, S5B of the SI. These observations point to two important
qualities, (7) the training data is not overfitted by Model N2 despite the additional fitted charge
sites situated at the N(N-1)/2 additional barycenters since for a generic (A1)n1(A2)n2...(A2)ns
molecule the number of symmetry unique pair-species is bound on [A(A-1)/2, A(A+1)/2] where A4
is the number of atom classes (4 = 2 for CCls, A =3 for CHCls), and (i7) the fits show an excellent

degree of fidelity considering that only 1000 configurations were used to train the model. In other
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words, the Model N2 multipole surfaces developed in the present work appear to be suitable for a
wide range of MD simulations from low to high temperatures, as well as for constructing well-
balanced, polarizable electrostatic force fields for non-covalently bound systems relevant for

simulation of liquids, in the spirit of recent works of Handley et al.l1>:1¢]

4. CONCLUSIONS

We have described an approach to fitting global molecular multipole moment surfaces
using permutationally invariant polynomials in conjunction with a basic concept of the distributed
multipole theory. The method, named Model N2 after Hall’s original treatment of an s-type
electron density, involves placing N(N-1)/2 virtual charges (or isotropic polarizabilities) at the
bond barycenters in addition to the N atomic sites and using them for the fitting just as is done in
the classical N-atom charge model (Model N1). The calculations, employing CCl4 and CHCl;3 as
test cases, show a major improvement (more than an order of magnitude reduction of the RMSE)
of Model N2 over Model N1 for the quadrupole and octupole moment surfaces, and a smaller but
still significant improvement (about a factor of 5 reduction of the RMSE) for the dipole moment
surface. Furthermore, unlike Model N1, Model N2 was found to conserve the molecular charge
for all multipoles, which is important for maintaining the translational symmetry of the dipole and
the higher multipoles.

Another imperative observation, one specifically pertaining to the role of the PIP order, is
that Model N2 combined with a low-order PIP is better in the RMSE sense than Model N1
combined with a high order PIP. This finding points to some very practical computational
advantages of Model N2, namely: (i) possibility to use a lower order PIP basis without sacrificing

accuracy of the fit implies generating fewer ab initio training points to accomplish a reasonable
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quality fit. This is extremely important for calculations of large systems with high permutational
symmetry where both the generation of a PIP basis®®’! and concurrently of ab initio data are
particularly expensive; (if) since the number of linear parameters in Model N2 grows quadratically
with the number of nuclear classes A, which rarely exceeds a few units in a typical case, as opposed
to the total number of atoms, which can be high, the problem of overfitting is effectively controlled
as was demonstrated above.

We note in closing that the polarizability tensor surfaces considered here using the classic
Applequist dipole polarizability formulation show only a marginal improvement (about 50%
reduction of the RMSE) by the Model N2 level of treatment. At the same time the computational
cost involved in expressing the polarizability with Model M2 increases quite dramatically from
O(N?) to O(N®). Therefore, our present conclusion is that Model N1 appears the more favorable of

the two for polarizability fitting using PIPs.
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S1. Formulation of polarizability representation
Previously it was shown by us that G may be functionalized using PIPs by introducing nuclear
configuration R dependence into its elements, such as the isotropic atomic polarizabilities, i.e.

a, = a;(R) for an atomic site k. This was achieved by expanding Eq. 4 in a power series

(A1 +T)! = A—1,(r)ATA + 1;(r)ATATA — A, (r)ATATATA + - (S1)

with 4, (r) being introduced as configuration dependent short-range scalar correction factors that
tend to 1 at long range, with the requirement of 4; = 1. A is a diagonal matrix with elements a.
We then express the atomic polarizabilities and the correction factors using PIPs that decay to zero

at large separation,

L
2, (R) = a® + 0, (R) Z c3my, (R) (52.2)
i=1
L
@i (R) = S RYA + S (R) ) P (R) (52.)
i=1
L
A,(R) =1+ Z Cpitti (R) (52.¢)
i=1

As can be seen, in the limit of separated atoms, a; (R — 00) tends to the atomic polarizability a}({o)

for k=1, N, which is a naturally required limit. At the same time, a;,;’(R = o) = 0, due to the
(0)

vanishing of overlaps. The choice of a,, is completely arbitrary, but should reflect physical

properties of the molecule, in particular the atomic pair kk’. Several possible forms have been

considered, such as (i) a,({(;{), =1, (i) “15,?()’ = (a,(co) + a,({(,))) /2, (iii) “1(:1?’ = /a,(co)a,(ﬁ) . The best

performance was found with (iv) the ‘reduced mass’ formula, namely,
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=—+

(53)
a

which is also the formula for the exponent in the Gaussian overlap integral (cf. Eq. 2g). Back-
substitution of Eq. S2 into Eq. S1 yields a non-linear function in the expansion coefficients {c}. In
our recent paper we demonstrated that it is possible to linearize Eq. S1 with only a small penalty

in computational accuracy, as follows,

[—>o0

(A1 +T)1 = (A7 + T)~ + AA(R) + Z AL, (R)M,, (R) (54)

n=2
-1
where M,, = (— 1)”_1At/ 2 (A%)/ ZTA%)/ z)n At/ 2 AL, (r) = A,(r) — 1 and AA(R) is a correction
matrix. Relaying the above linear approximation to the 3x3 form gives the /-order Thole-linearized

(TL) polarizability tensor. In the below we have switched to cumulative p, g labels as those of

atom sites and bond barycenters, in the order of 1,...,N,...,N(N+1)/2,

N(N+1)
N(N+1)/2 N(N+1)/2 —

P (R) = Z (AL +T) ], +1 Z Ad,(R) — A, (R) Z «Pa®T;
TL 0 pq 2 q pq
p.q P¥q

N(N+1) N(N+1)
+ A4 (R) Z 0 Z aOTy T,
S;tpq
N(N+1) N(N+1)
— AL(R) Z OPO Z a@a DTy T T) + - (S5)
s(#p)
s'(#s5,q)

with Aa,(R) = a,(R) — a( ) , and the index p running over all the sites, i.e. p = 1, ..., N, ...,
N(N+1)/2. In the present calculations, as in the previous ones, we take / = 6. The Thole-modified

dipole tensors in the internuclear distances 7y, are



(ﬂh) = (7 q) 3 —3f2(1q r: (56)

Tpq rq
with 77 = T4 x, Tpq,y» Tpq,z TOr the respective i = 1, 2, 3 and
fi(ryg) =1—(a®u?/2 + au + 1)e™ % (S7a)

fa(rpg) =1 — (@3u3/6 + a*u?/2 + au + 1)e~ ™ (S7b)

- ONONIEA - -
with u = (ap ag ) Toq- The value of @ = 0.5 was used in the calculations.

It is important to note that the dimensions of the linear parameter space for the
aforementioned polarizability are different from those of the multipole representations. Common
for both, the atomic point charges and atomic polarizabilities for each atom and atom-pair group
is represented by its L elements (Eq. S2). However, for the polarizability tensor there are 5
additional A4, (n =2 - 6) quantities with L elements each.

The isotropic and anisotropic polarizability components are defined as

. 1
a'se = §tr[(x] (58a)

| " 1/2
qaniso — ﬁ [(axx _ ayy)Z n (Ofyy _ azz)z + (azz — axx)Z + 6(059%3; + a)%z + Of}z/Z)] (581?)

and they are shown in the figures below.
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S2. A covariant symmetrization scheme

1. determine the number of non-zero powers in a monomial: M_NZ{monomial}

Ex: M_NZ{yZ,y13V14Y15V33Y 9435} =4

2. define quantity MAX SYM =min[N_ATOM - 1, M_NZ]

where N_ATOM is the number of atoms

3. define quantity MIN_ SYM =M _NZ - MAX SYM

4. compute the number of times (F%) the atom index (k) shows up in the monomial

Ex: for y2,¥15V1aY15Y33Y94Y 35

F1=2, F»=3, F3=2, F4=0, F5=1

5. Compare F against the quantity F* = max[MAX SYM - 1, 1]:
a) set by default by =1
b) if Fx> MIN_SYM; then

if Fr > F*; then by = -1



83. CCly and CHCI; properties at the B3LYP/aug-cc-pVDZ equilibrium geometries.

Table S1. XYZ geometry of CCls in A.

C 0.000000 | 0.000000 | 0.000000
Cl 1.035088 | 1.035088 | 1.035088
Cl -1.035088 | -1.035088 | 1.035088
Cl -1.035088 | 1.035088 | -1.035088
Cl 1.035088 | -1.035088 | -1.035088

Table S2. XYZ geometry of CHCl; in A.

Cl 0.000000 | 1.703706 | -0.084668
Cl 1.475453 | -0.851853 | -0.084668
Cl -1.475453 | -0.851853 | -0.084668
H 0.000000 | 0.000000 | 1.551118
C 0.000000 | 0.000000 | 0.461157

Table S3. Elements of the dipole and quadrupole moments at the equilibrium geometry in a.u.

calculated using DFT=B3LYP/aug-cc-pVDZ and the fitting procedure.

z Xy Xz yz
DFT CCly 0 0 0 0
FIT CCly 0 0 0 0
DFT CHCl; 0.436915 -0.5347746 | -0.5347746 | 1.0695493
FIT CHCl; 0.43701897 | -0.5347614 | -0.5347614 | 1.0695225




Table S4. Polarizability tensor components at the equilibrium geometry in a.u. calculated using

DFT=B3LYP/aug-cc-pVDZ and the fitting procedure.

XX yy 7z Xy Xz yz
DFT | CCl4 70.12 70.12 70.12 0.00 0.00 0.00
FIT | CCly 70.17 70.17 70.17 0.00 0.00 0.00
DFT | CHCI; | 63.09 63.09 43.74 0.00 0.00 0.00
FIT | CHCL; | 63.35 63.35 43.94 0.00 0.00 0.00

Table S5. Octupole moment components at the equilibrium geometry in a.u. calculated using

DFT=B3LYP/aug-cc-pVDZ and the fitting procedure.

XXX yyy 777 Xyy XXy XXZ XZZ yzz VyZ XyZ

G16 | CCls | 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 | 8.376
FIT | CCls |0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 | 8.378
G16 | CHCl; | 0.000 | 5.449 4.573 0.000 | -5.449 | -4.160 0.000 0.000 | -4.160 | 0.000
FIT | CHCI3 | 0.000 | 5.456 4.572 0.000 | -5.456 | -4.161 0.000 0.000 | -4.161 | 0.000




Table S6. Vibrational frequencies in cm™! of the PES fits and the DFT=B3LYP/aug-cc-pVDZ data.

o, | CCI4(DFT) | CCH4(PES) | CHCI3(DFT) | CHCI3(PES)
1 214.4 214.4 256.6 256.6

2 214.4 214.4 256.6 256.6

3 311.5 311.6 361.4 362.4

4 311.5 311.6 660.8 661.1

5 311.5 311.6 732.9 732.7

6 451.1 4512 732.9 732.7

7 7445 744.7 1206.4 1206.2

8 744.5 744.7 1206.4 1206.2

9 7445 744.7 3180.6 3184.4




S84. Details of the test set
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Figure S3A. The potential energy distributions of the CCly4 test set generated with a 2000 K
trajectory propagated on the fitted PES.
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Figure S3B. The potential energy distributions of the CHCI; test set generated with a 2000K
trajectory propagated on the fitted PES.
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Figure S4A. Internuclear distance distributions of CCly in the test set generated with a 2000 K
trajectory propagated on the fitted PES. The red sticks mark the equilibrium geometry values.
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Figure S4B. Internuclear distance distributions of CHCI3 in the test set generated with a 2000 K

trajectory propagated on the fitted PES. The red sticks mark the equilibrium geometry values.
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Figure S5A. Test of the CCls and CHCl; dipole moment Model N2 PIP representation errors
against DFT=B3LYP/aug-cc-pVDZ data using an extensive MD simulation at 2000 K. The three
dipole components at each time step are shown as black dots. The trajectories were propagated on

the respective PESs.

Il ‘ Il
0 200 400 600 800
Time / ps

1000

Figure SSB. Test of the CCls and CHCI3 quadrupole moment Model N2 PIP representation errors
against DFT=B3LYP/aug-cc-pVDZ data using an extensive MD simulation at 2000 K. The six
unique quadrupole components at each time step are shown as black dots. The trajectories were

propagated on the respective PESs.
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