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Abstract 
We present molecular dynamics (MD), polarizability driven MD (a-DMD) and pump-probe 
simulations of Raman spectra of the protonated nitrogen dimer N4H+, and some of its 
isotopologues, using the coupled-cluster single double triple CCSD(T)-F12b/aug-cc-pVTZ based 
potential energy surface in permutationally invariant polynomials (PIP) due to Yu et al. [J. Phys. 
Chem. A 119, 11623, (2015)] and a corresponding PIP-derived CCSD(T)/aug-cc-pVTZ-tr (N:spd, 
H:sp) polarizability tensor surface (PTS), the latter reported here for the first time. To represent 
the PTS in terms of a PIP basis, we utilize a recently described formulation for computing the 
polarizability using a many-body expansion in the orders of dipole-dipole interactions while 
generating a training set using a novel approach based on linear regression for potential energy 
distributions. The MD/a-DMD simulations reveal: (i) a strong Raman activity at 260 and 2400 
cm-1, corresponding to the symmetric N−N⋯H bend and symmetric N−N stretch modes, 
respectively; (ii) a very broad spectral region in 500-2000 cm-1 range assignable to the parallel 
N⋯H+⋯N proton transfer overtone, and (iii) the presence of a Fermi-like resonance in the Raman 
spectrum near 2400 cm-1 between the Σ!" N−N stretch fundamental and the Pu overtone 
corresponding to perpendicular N⋯H+⋯N proton transfer. 
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I. INTRODUCTION 

Fermi resonances1 appear both in IR and Raman spectra of a wide variety of systems, such as 

CO2,2-7 protonated water clusters,8-13  asymmetric proton bound dimers,14-16 or amines.17,18 Since 

the IR and Raman spectroscopies provide information about the presence or absence of specific 

functional groups, they are widely used to identify structures of compounds.19 For a vibrational 

mode to be IR active, there must be change in the dipole moment; Raman spectroscopy depends 

on change in the polarizability of a molecule. For linear centrosymmetric molecules, Raman and 

IR are mutually exclusive; therefore, Raman spectroscopy is considered to be complementary to 

IR spectroscopy. As such, Raman spectra can provide additional information on symmetric 

fundamental vibrations and anharmonic features such as combination bands and overtones that are 

IR inactive.19 

Quantum chemical studies have routinely been used to interpret experimentally measured 

vibrational spectra. The standard approach based on the quantum mechanical double-harmonic 

approximation (quadratic potential and linear dipole/polarizability)20 is generally considered 

inadequate for non-rigid systems, e.g., when large amplitude non-harmonic proton motion is 

involved,21-35 which is the subject of the present work. Alternatively, molecular dynamics (MD) 

simulations and quantum variational calculations of vibrational structure traditionally serve as 

high-end solutions to the non-harmonicity problem.36 Apart from the daunting task of running 

direct molecular dynamics simulations15,30,37 or solving large-scale secular equations by means of 

direct vibrational configuration interaction (VCI) approaches,38,39 surface fitting using 

permutationally invariant polynomials (PIPs), often in conjunction with machine learning 

methods, is a major alternative approach that has produced remarkable results for a variety of 

applications.40-46 In many other applications, the PIP fitting tools have also been used for 
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generating accurate potential energy surfaces (PESs),40 dipole moment surfaces (DMSs),47 and 

polarizability tensor surfaces (PTSs).48,49 Developing such surfaces by fitting an analytic 

(parameterized) polynomial function to a set of ab initio data is now possible for small, moderate, 

and as recently was reported fairly large polyatomic molecules.31,40,43,47-51 Furthermore, user-

friendly software that produces both the energy and its gradient in the form of F90 subroutines, 

called the Monomial-Symmetrization-Approach (MSA),52 is now available for automatic and 

completely generic PIP fitting to a set of user-generated ab initio data points. Our calculations, 

described below, are partly based on the MSA software. 

In our recent series of publications, we have described the spectra of linear centrosymmetric 

N-containing proton-bound complexes15,30 N2H+⋯OC and N4H+ that are relevant to the interstellar 

clouds.35,53-55 Since the nitrogen forms hydrogen bonds, N-H (a single bond) and N⋯H (a hydrogen 

bond) vibrations show up in the spectra as distinct features. Verdes et al. were first to report a high-

resolution IR spectrum of the N4H+ ion and confirmed its linear centrosymmetric geometry.34 The 

spectral feature at 2352 cm-1 was assigned to the asymmetric N−N stretch vibration.34 It was 

concluded that the potential energy surface of N4H+ is strongly anharmonic with respect to the 

parallel proton stretching motion. Their reduced-dimensionality 2D and 3D quantum mechanical 

models predicted the parallel H+ vibration (Σ#" mode in the 𝐷$% point group) to be at 875 and 783 

cm-1, respectively. On the other hand, the simple harmonic approximation yields the frequency of 

159 cm-1 at the highly respectable coupled-cluster single double triple CCSD(T)/aug-cc-pVTZ 

level of theory.35 The true potential is obviously dominated by quartic and possibly higher terms 

in the parallel proton transfer motion. To address the issues stated above, Ricks et al. measured 

argon-tagged infrared spectra of protonated nitrogen dimer and its deuterium isotopologue in the 

700-4000 cm-1 range.56 Tagging the linear centrosymmetric N4H+ with an argon atom reduces the 
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point group symmetry to C2v where the argon weakly binds to H+ perpendicularly to the N4H+ 

molecular axis by 836 cm-1 [calculated at the CCSD(T)/aug-cc-pVTZ level of theory].30,56 Ricks 

et al.  assigned one of the more intense IR spectral features at 743 cm-1 to the parallel proton stretch 

vibration. Another region of IR activity in the N4H+∙Ar experimental spectrum at 2349 cm-1 was 

assigned to the N−N asymmetric stretch. Other vibrational features, such as combination bands 

and overtones, were also IR active in the presence of the argon messenger atom. However, by 

symmetry rules,20 these modes are IR inactive in the N4H+ bare ion. 

Vibrational SCF and CI (VSCF/VCI) quantum studies using five-mode coupling31 based on 

semiglobal and highly accurate analytical representations of the potential energy surface (PES) 

and dipole moment surface (DMS), presently referred to as N4H+_PES and N4H+_DMS, at the 

CCSD(T)-F12b/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels of theory, respectively, were found 

to be in good agreement with the experimental IR measurements.56 Another study of N4H+/N4D+ 

by Liao et al. using p-H2 and n-D2 matrix isolation IR absorption spectroscopy57 in conjunction 

with discrete-variable representation (DVR) calculations on a reduced dimensionality derived 

PES, albeit at a lower level of electronic structure theory (CCSD/aug-cc-pVDZ), and its associated 

DMS using a four-mode coupling scheme (the N2⋯H+⋯N2 symmetric stretch, the asymmetric 

“parallel proton transfer” N⋯H+⋯N stretch and two N⋯H+⋯N bending “perpendicular proton 

transfer” modes) provided very useful spectral assignments. However, some of the low-frequency 

N−N⋯H bending modes and the high-frequency N−N stretch modes were notably overestimated 

compared to the experimental measurements.56,57 The above calculations suggest that 

dimensionality of the N4H+ vibrational Hamiltonian (the full dimension is 10) and the quality of 

the PES, i.e. the treatment of electron correlation, are very important for this system, thus presently 

we are highly motivated to use MD simulations, in full 3N Cartesian dimensions, using the best 
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available analytical representation of surface N4H+_PES. With this work, we build up on our 

recent N4H+ theoretical study,30 where we examined the argon tag effects on the IR vibrational 

spectra using direct ab initio MD at the MP2/aug-cc-pVDZ level of theory. In that work, we also 

carried out driven molecular dynamics (DMD) simulations on the bare N4H+ ion using the PES 

and DMS surfaces and identified multiple anharmonic spectral features, which were in good 

agreement with quantum studies31 and experimental measurements.56,57 

 We briefly remind that DMD has been shown to be capable of identifying fundamentals, 

combination bands, overtones, and their anharmonic shifts, even though it is based on classical 

trajectories.15,30,37,58,59 Recently, we have expanded applicability of the DMD method to 

description of Raman spectra.49,58 As with the dipole-driven MD method (µ-DMD), Raman active 

transitions beyond the usual fundamentals can be detected with the polarizability-driven MD 

method  

(a-DMD) by scanning or gauging over the driving frequency.58 DMD’s facility of 

assignment48,49,58 can greatly improve analysis of low-frequency vibrations that are difficult to 

calculate accurately using the quantum approaches without using a high-mode 

representation,26,37,57 as well as symmetric vibrations that are IR inactive, while Raman active. 

Furthermore, developing PTS in analytical form, as shown by various groups,42,43,48,60 circumvents 

the highly computationally demanding evaluation of polarizability, and its gradient, “on the fly” 

during direct MD simulations.  

In the present work we describe an approach to construct analytical Cartesian representation 

of the PTS in terms of PIPs to be referred as N4H+_PTS. We further present a method for 

generating a training set of ab initio data points obtained from MD simulations at an electronic 

structure level comparable to the existing PES and DMS. We explore DMD’s capabilities to assign 



 

 6 

Raman spectra beyond the harmonic limit (overtones and combination bands). Most importantly, 

we describe a Fermi resonance between symmetric N−N stretch fundamental mode and an 

overtone of an asymmetric N⋯H+⋯N bend fundamental mode of the symmetry and use isotopic 

substitutions and elements of 2D spectroscopy61,62 to examine the origins of the resonance. 

II. COMPUTATIONAL METHODS 

A. The polarizability tensor surface (PTS) 

We begin by developing a new PTS for N4H+. As is known, dipole polarizability of a collection of 

N atoms may be expressed using the point-dipole model of Applequist et al.63 

																																α&' =)[(𝐀() + 𝐓)()]*&,,'

-

*,,

																														(1) 

where p, q are atom labels with respective Cartesian components i, j.; A is a diagonal 3N square 

matrix of configuration-dependent isotropic atomic polarizabilities, and T is the dipole field tensor 

(see below). To avoid the well-documented numerical instabilities associated with inverting the 

matrix in Eq. 1 and to allow representation of α&' using polynomials in internal coordinates, it was 

recently suggested that Eq. 1 be written as a weighted sum of many-body interactions as, 

																																														α&' = )𝜆.α&'
(.)

.1)

																																					(2) 

where 𝜆. are geometry dependent weights or correction factors, and α&'
(.) are configuration 

dependent n-body polarizability tensors, starting at the diagonal one-body term.48 The above form 

is a direct result of approximating the inverse in Eq. 1 using the power series (𝐀() + 𝐓)() ≅ 𝐀 −

𝜆2𝐀𝐓𝐀 + 𝜆3𝐀𝐓𝐀𝐓𝐀 −⋯ , where T is the perturbation. For 𝜆. = 1, Eq. 2 is an exact power series 

expansion of the polarizability tensor, Eq. 1, in the limit of weakly interacting atomic dipoles (𝐓 →
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0).64 The introduction of 𝜆. ≠ 1 was intended48 to regulate the behavior of α&' in the regions of 

configurational space with short interatomic distances where polarizability given by Eq. 1 is 

otherwise discontinuous.63,65,66 The individual terms are the one-body, which is the isotropic dipole 

induction at each atom directly due to the electric field, 

																																											α&'
()) = 𝛿&'𝜆))α*

*

																																					(3𝑎) 

the two-body term, which is mutual dipole induction at p(q) due to the induced dipole at q(p) 

																																						α&'
(2) = −𝜆2)α*α,𝑇*,

&'

*4,

																															(3𝑏) 

the three-body term, which is dipole induction at p due to the induced dipole at s induced by q (a 

p-s-q induction chain) or dipole induction at p due to the induced dipole at s induced by p itself (a 

p-s-p induction chain), 

																								α&'
(3) = 𝜆3)α*α,

*,,

) α5
5(4*,,)

) 𝑇*5&6𝑇5,
6'

617,8,9

								(3𝑐) 

the four-body term, correspondingly all possible p-s-s’-q, p-s-s’-p, p-q-s’-q, p-q-s’-p, p-q-p-q 

induction chains, 

α&'
(:) = −𝜆:)α*α,

*,,

) α5α5!
5(4*)
5!(4,,5)

) 𝑇*5&6𝑇55!
66!𝑇5!,

6!'

617,8,9
6!17,8,9

												(3𝑑) 

etc., with the p, q, s, s’ summations running over the N atoms. We presently stop at the four-body 

limit and discuss its contribution to the full expression. The matrices Tpq are 3×3 dipole field 

tensors, 

																																			@𝐓*,A&' =
𝛿&'
𝑟*,3

− 3
𝑟&𝑟'
𝑟*,;

																																			(4) 
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with rpq being the magnitude of the p-q interatomic distance vector with the space-fixed Cartesian 

components i, j = x, y, z; and Tpp=0. The isotropic atomic polarizabilities α* and the correction 

factors are both parameterized functions of molecular geometry r, 

																α*(𝐫) = α*
(<) + ) 𝑐=

>!"?𝑢*,=@A {𝑦BC}
D#

=1)

																												(5𝑎) 

															𝜆.(𝐫) = 1 + ) 𝑐.,=
(E) 𝑢=FA{𝑦BC}

D$

=1)

																																				(5b) 

where 𝑢*,=@A  and 𝑢=FA are covariant and invariant polynomials,40 respectively, in internuclear 

distances that assure that the total polarizability α&' does not change upon permutation of any pair 

of like nuclei. The α*
(<) are free atom “permanent” polarizabilities, and 𝜆)(𝐫) ≡ 1. The linear 

expansion coefficients for the atomic polarizabilities 𝑐=
(!") are the same for atoms within the same 

nuclear group gp. The variables 𝑦BC are functions of the internuclear distance 𝑟BC. In the present 

work we have used the 𝑦 = 𝑟() form. In short, Eq. 2 represents the 3N-6 dimensional PTS, in 

analogy to the well-established descriptors for the potential energy and dipole moment surfaces, 

PES and DMS, respectively. 

 While the conventional PIPs have been well described in the literature in the applications 

to PES fitting,52 their covariant counterparts appearing in DMS fitting (and presently in PTS 

fitting) are less common and are generally not uniquely defined. Here we use a standard scheme 

to generate the 𝑢*,=@A  polynomials in Eq. 5a using symmetrized linear combinations of products of 

the internuclear distance functions (monomials), as follows, 

																																								𝑢*,=@A =)𝑏*,=,'𝑦)2
B%,'𝑦)3

C%,'⋯𝑦(-())-
9%,'

	

'

																									(6) 
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Equation 6 renders the m-th covariant PIP of the power 0 < 𝑎=,' + 𝑏=,' +⋯+ 𝑧=,' ≤ MAX 

describing atom p, where MAX is the maximal power of the PIP representation. The binary 

coefficient, or phase factor, 𝑏*,=,' = ±1 takes on one of these two values and is a function of the 

monomial index j. It is the only element responsible for covariance between a pair of identical 

nuclei p and q. That is, without symmetrization, or equivalently with 𝑏*,=,' = +1 for all j in the 

summation, Eq. 6 is reduced to a conventional PIP. A properly chosen phase assignment ensures 

covariance of 𝑢*,=@A , meaning that a permutation of two identical nuclei, e.g., p and q, leaves the 

electron density unchanged but results in a corresponding exchange of α* and α, so that the overall 

polarizability tensor is invariant under the said permutation. A complete procedure for 

determination of 𝑏*,=,' is described in the supplementary material. 

 

B. Optimization of the training set using NVE trial sets 

Presently, for fitting of the PTS, and in the future applications in general, our motivation is to 

construct a training set of configurations such that the distribution of their potential energies is as 

close to uniform as possible. In other words, the general requirement is that all configurations with 

potential energies up to some maximal value Vmax be equally represented in the set. Our approach 

is to first generate a few trial sets using NVE ensembles, i.e., classical MD trajectories of same 

size, and then to “contract” them into a single set, while maximizing the criterion of the potential 

energy uniformity, as stated above, 

																																																																						𝑔(𝑉) =)𝑏&𝑓&(𝑉)
&

																																																							(7) 

That is, the contracted set g(V) is a linear combination of the trial NVE sets fi(V) with the 

coefficients chosen to make g(V) uniform. The total energies of each of the trial sets are selected 
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according to an exponential cooling schedule. The coefficients {bi} in Eq. 7 are solved using a 

linear regression. This procedure is described in detail in the supplementary material, and here, we 

show the final result for N4H+ on [0,6200] cm-1, up to the dissociation limit of N2H+ + N2 fragments 

for N4H+_PES, using five trial NVE sets with the total energies 388, 755, 1550, 3100 and 6200 

cm-1. The NVE trajectories were propagated using the N4H+_PES potential for 100 ps each with 

a time step of 1fs. From them, we constructed an optimized training set of 10 000 points, illustrated 

in Figure 1. Given the five trial NVE sets, the curve is the best uniform distribution in the least-

squares sense. Up to ~4200 cm-1 the potential energies are nearly equally represented, while a 

smooth tapering of the tail occurs between 4500 and 6200 cm-1. We then used the optimized 

training set configurations to calculate the polarizability tensors needed for Raman scattering 

analysis. 

 

Figure 1. An optimized training set of length M=10 000 sourced from five trial NVE sets, each of 

length N=100001 configurations, for N4H+ calculated at the N4H+_PES level of theory. See 

supplementary material for all definitions and contraction procedure. 

 

C. Calculation of Raman spectra from MD simulations 

Calculation of Raman spectra involves decomposition of the full polarizability tensor into a 

spherical part αX ≡ (α77 + α88 + α99) 3⁄  and a traceless anisotropic part 𝛽&' ≡ α&' − 𝛿&'αX, for 

i,j=x,y,z. The respective polarized and depolarized components of the Raman spectrum are then 

given by67 
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																																						𝐼HIJ(𝜔) =
1
𝜋^ 𝑑𝑡

$

<

𝑒(&KL〈αX(0)αX(𝑡)〉																																											(8𝑎) 

																																𝐼MNHIJ(𝜔) =
1
𝜋^ 𝑑𝑡

$

<

𝑒(&KL 〈 ) 𝛽&'(0)𝛽&'(𝑡)
&,'17,8,9

〉																							(8𝑏) 

The brackets <...> involve the averaging over both the initial positions and momenta and over time 

by employing a signal window.30,68,69 Additionally, we use the depolarization ratio20,67                  

𝜌 = 3𝐼MNHIJ @4𝐼MNHIJ + 30𝐼HIJA⁄  as a tool to help identify weak resonances. 

 In total, 20 trajectories were generated randomly for isotopologues 14N4H+, 14N4D+ and 

15N4H+. The starting point was the global minimum structure (Table S5) optimized on the 

analytical N4H+_PES trained on CCSD(T)-F12b/aug-cc-pVTZ data, and randomly selected 

velocities. Each trajectory was propagated as an NVE ensemble corresponding to the temperature 

of 200 K, up to 50 ps using the velocity-Verlet integrator.70 Calculations of convergence tests 

showed that larger Dt time steps, e.g., 0.5 fs, resulted in appreciable peak position errors in the 

high-frequency end of the spectra, and much better results were obtained with a time step of  

Dt=0.2 fs. Furthermore, to better describe peak intensity in those high-frequency regions, as has 

been done previously,69 the classically derived spectral functions Ipol (Eq. 8a) and Idepol (Eq. 8b) 

were additionally scaled by the quantum mechanical frequency-dependent factor k(ω)=ω/[1-exp(-

ω/kBT)], where kB is the Boltzmann constant.71 

2.4 The a-DMD equations of motion 

The equations of motion adapted presently for the DMD are 

    												𝐫̇ = 𝐩 𝑚⁄ 																																																																						(9𝑎) 

    											𝐩̇ = −∇𝑉(𝐫) + 𝐟(𝐫, 𝑡)																																																	(9𝑏) 
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where m are atomic masses, p and r are the 3N Cartesian momenta and coordinates, respectively, 

and V(r) is the molecular interaction potential. The time-dependent driving force is f(r,t), and its 

component with respect to Cartesian “k” on atom “a”, omitting the non-resonant sum-frequency 

terms, is given by58 

																						𝑓B,6(𝐫, 𝑡) = −
𝜀<2

2 )m𝑃&𝑆' cos(𝜔𝑡) +
𝑃&𝑃' + 𝑆&𝑆'

2 s
&'

𝜕𝛼&'(𝐫)
𝜕𝑟B,6

																						(10) 

where e0 is the field strength, Pi and Sj are the normalized incident and Stokes scattered light vector 

components, respectively, in the laboratory frame where i, j = x, y, z. The first term in the square 

brackets corresponds to vibrational energy absorption at the Stokes frequency shift w, and the 

second term is responsible for rotational scattering, i.e., the molecule may be rotationally excited 

by the field. Note that the rotational scattering term does not depend explicitly on time but 

resonates with the molecular vibrational motion as a perturbation to the potential energy via the 

field-polarizability interaction. In the calculations below, we examine both the parallel scattering 

regime, i.e., P = S, and the perpendicular scattering regime where 𝐏 ∙ 𝐒 = 0, since the dynamical 

differences between the two can help identify difficult cases, such as overtones. 

Atomic coordinates, forces, dipoles, polarizabilities, and total energies, dipole, and 

polarizability derivatives were collected along each trajectory to identify and assign Raman active 

frequencies. The average absorbed energy monitored along the trajectory indicates Raman activity 

and is defined as a time integral of the unperturbed molecular Hamiltonian H0 

𝐼ODO(𝜔) = 	
1
𝑡 ^ 𝐻<(𝐪(𝑡P), 𝐩(𝑡P); 𝜔)

L

<
𝑑𝑡P																																																	(11) 

 
For inactive modes, the average absorbed energy is small and oscillatory, while increases rapidly 

at Raman resonances.58 
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 Raman mode assignment is done similar to what we have done previously for the IR of 

N4H+.30 The symmetry coordinates, si were analyzed (see supplementary material information for 

the definition of si and additional information) and plotted as functions of time for the resonant 

trajectories. In addition, we also monitor averaged symmetrized displacements defined as a time 

integral of the difference of symmetry coordinates from their equilibrium values to better 

identify dominant vibrational motion, 

																											Δ𝑠&(𝑡) = })
L ∫ [𝑠&(𝑡

P) − 𝑠&(0)]2
L
< 𝑑𝑡P																																																										(12) 

 
 
III. RESULTS AND DISCUSSION 
 

A. Molecular polarizability benchmark study 
 
Here we describe the comparative analysis of the quantum mechanical methodologies in 

calculating the polarizability tensor a done with MP2, CCSD, and CCSD(T) methods with several 

basis sets: aug-cc-pVDZ (AVDZ), d-aug-cc-pVDZ (d-AVDZ), and cc-pVTZ (VTZ), and aug-cc-

pVTZ excluding d functions on hydrogen and f functions on nitrogen atoms, respectively (AVTZ-

tr), aug-cc-pVTZ (AVTZ), and d-aug-cc-pVTZ (d-AVTZ), respectively. We report atomic and 

molecular polarizabilities in Å3 units and corresponding percent errors with the respect to the 

available experiment,67,72 and high-level theoretical calculations73 (Tables I and Tables S1-S4). All 

molecular polarizabilities were evaluated at the equilibrium geometries optimized at the 

CCSD(T)/AVTZ level of theory and C2v symmetry transition state30 of N4H+. The best results 

relative to the corresponding benchmark values of N4H+, N2H+, N2 and N(4S) and considering the 

central processing unit (CPU) times required for a single point calculation were obtained with 

CCSD(T) and a truncated AVTZ-tr basis set. Such basis set reduction yields relatively small 

percent errors ~ 3% for N and less than 1% for N2, N2H+, and N4H+.  Also, for N4H+ the computer 
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times are manageable for generating the necessary data points (Table S4). Thus, we use this level 

of theory to calculate the polarizability values for the 10,000 training set points with the 

CCSD(T)74,75 as implemented in MOLPRO.76 

 
 
TABLE I. Benchmark calculations of the fragments, and a comparison of N4H+ non-zero 
polarizability tensor componentsa calculated at the ab initio CCSD(T)/AVTZ-tr level of theory and 
the analytical N4H+_PTS. 
 

Atom/Molecule axx (Å3) ayy (Å3) azz (Å3) aiso (Å3) aaniso (Å3) 

Ab initio      

N 1.062 1.062 1.062 1.062 0.000 

N2 1.514 1.514 2.225 1.751 0.712 

N2H+ 1.151 1.151 2.085 1.462 0.934 

N4H+ min, D¥h 2.434 2.434 5.536 3.468 3.102 

N4H+ TS, C2v 2.516 3.143 4.317 3.325 1.583 

N4H+_PTS       

N4H+ min, D¥h 2.431 2.431 5.353 3.466 3.104 

N4H+ TS, C2v 2.427 3.333 4.290 3.350 1.613 
         a See Tables S1-S4 for additional information.  

 

B. Fitting of the PTS 

 Presently, we use a PIP of order 5 to fit the PTS. The unknown coefficients {cm} of Eq. 5 

are searched for by a large-scale L-BFGS minimization procedure77 applied to a least-squares 

functional with the starting point of a non-interacting system of atoms {cm = 0}. For large training 

sets we find it necessary to improve the performance of this approach by evaluating the least-

squares function along with its gradient using shared-memory parallelization, as described in the 

SI. 
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 We take the permanent atomic polarizabilities αQ
(<) = 1.0617 Å3 calculated for N(4S) at 

the CCSD(T)/aug-cc-pVTZ(N:spd, H:sp) level of theory and αR
(<) = 0 for H+. The total number of 

variables for the α&'
(3) and α&'

(:)representations are 832 and 1040. Using the non-linear optimization 

procedure, the final converged RMSE are 0.0387 Å3 (0.85%) and 0.0239 Å3 (0.53%) for the three-

body and four-body polarizability representations, respectively. 

 

 

Figure 2. Correlation plot of the fourth order PTS fit using the training set of 10 000 points for (a) 

the diagonal elements and (b) for the off-diagonal elements of the (3×3) polarizability tensor. The 

RMSE of the fit is 0.024 Å3 or ~0.53%. 
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 As can be seen, the correction to the three-body representation made at the α&'
(:) 

representation is ~37%, a valuable improvement considering only a marginal increase in the 

computational complexity. To note, the number of operations is O(27N3) in α&'
(3) and O(54N4) in 

α&'
(:) for the number of atoms N = 5. This result suggests that the four-body representation is quite 

suitable for small gas phase systems, similar to the one considered in the present case. In Figure 2 

we show correlation plots of the training set points fitted with the α&'
(:) representation. The 

uniformity of data spread around the target line (the diagonal) points to the more-or-less equal 

goodness of the fit for all the configurations on the broad energy range of [0,6200] cm-1. 

 
 

Figure 3.  MD Raman spectra of 14N4H+ at 200 K. The polarized Ipol (top panel, Eq. 8a), 
depolarized Idepol (middle panel, Eq. 8b) components, and the depolarization ratio r (bottom panel) 
were calculated using the analytical N4H+_PES and the presently fitted N4H+_PTS surfaces. The 
harmonic frequencies are shown as red sticks. 
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C. The MD simulations 

In the calculated spectra we identified the fundamentals (Figs. 3 and S5) and the broad region of 

the non-harmonic features (Figure 3 and Figure 4), roughly between 500 and 2000 cm-1 for the 

three isotopologues, that are complementary to the IR spectra studied previously using 

theoretical30,31 and experimental methods56,57 Tables S9-S11 in the supplementary material 

summarize the vibrational frequencies and point group symmetries obtained from a normal mode 

analysis. In addition, we present the Raman intensities calculated at the MP2/AVTZ level of theory 

as implemented in Gaussian.78 

 The N4H+ complex has three Raman active symmetric fundamental modes, namely, the 

N−N⋯H bend (n5, Pg), N2⋯H+⋯N2 stretch (n2, Σ!"), and N−N stretch (n1, Σ!"), with the frequency 

labels (ni) adopted from the experiment56 and our previous work.30  The corresponding harmonic 

frequencies on N4H+_PES are 264, 436, and 2412 cm-1 (Table S9), respectively. The MD 

spectrum calculated at 200 K shows two dominant peaks appearing on both the polarized and 

depolarized signals (Figure 3) and the peaks are assigned to n5 at 260 cm-1 and n1 at 2420 cm-1., 

respectively. There is a weak peak in the polarized spectrum between 300 and 400 cm-1 that may 

be loosely assigned to the totally symmetric n2. Concurrently, the depolarization ratio curve clearly 

indicates a sharp drop near 345 cm-1, suggesting the presence of a highly symmetric mode which 

we think is the  N2⋯H+⋯N2 stretch vibration, n2. High level VCI/VSCF calculations using 

MULTIMODE, 5MR level of treatment31 predicted several modes, in particular, n5 = 260 cm-1 and 

a pair of two strongly mixed states with the energies 2335/2376 cm-1, where one state is n1 although 

with some minor ambiguity of assignment. We partially reproduced these calculations using a 

lower level of theory: 3MR on a CCSD(T)/AVDZ surface in a direct MOLPRO 

implementation.38,39,76 We found two highly mixed states of Σ!" vibrational symmetry at 2268 cm-



 

 18 

1 and 2340 cm-1, with the corresponding eigenvectors for state-1: 19% |100000>(n1) + 44% 

|000002>(2n6), and for state-2:  50% |100000>(n1). This result appears to agree with the previously 

reported ones and suggests a presence of a strongly mixed and nearly resonant pair of a 

fundamental and an overtone. Aiding this issue to some degree, the IR experimental study by Ricks 

et al56 made an indirect assignment of these IR-inactive modes by matching fundamentals and 

combination bands while assuming additivity of fundamentals, resulting in 240 cm-1 for n5 and 

2228 cm-1 for n1. 

 The broad and weak intensity super band spanning 500-2000 cm-1 in the N4H+ Raman 

spectrum contains only one fundamental mode, n6, which is Raman inactive. The band is thus 

interpreted as a dense superposition of non-harmonic features such as symmetry allowed 

combination bands and overtones of any of the seven fundamentals listed in Table S9. For instance, 

any combination of the gerade modes and any even-valued combination of the ungerade modes 

will be Raman active. 

 

 
 

Figure 4.  The Raman MD spectra (showing the total intensity) for 14N4H+,14N4D+, and 15N4H+ at 

200 K calculated with analytical N4H+_PES and the presently fitted N4H+_PTS. 
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Targeted application of isotopic substitution provided additional insights. We constructed 

14N/15N and H/D isotopic analogs of N4H+ and repeated the MD simulations. The calculations 

reveal that the broad spectral feature is massively red shifted upon the H/D substitution, as can be 

seen in Figure 4. The 14N/15N isotopic shift revealed the most substantial changes in the symmetric 

N−N stretch being redshifted by ~90 cm-1, the symmetric N2⋯H+⋯N2 stretch redshifted by ~15 

cm-1, and the symmetric N−N⋯H bend redshifted by ~9 cm-1. The broad band remained virtually 

unaffected by the heavy nitrogen; therefore, it is presently attributed to vibrations dominated by 

the proton motion. (See the supplementary material for more details on the isotope spectra.) 

 

D. a-DMD simulations of Raman activity 

 Here we discuss mode assignment and the nature of non-harmonic spectral features 

identified in the MD Raman spectrum. Each DMD trajectory was propagated at a scanned 

frequency 𝜔. up to 10 ps with a 0.2 fs time step. We used the frequency resolution of ∆𝜔.= 25 

cm-1. The starting point was always the global minimum structure optimized on the analytical 

N4H+_PES (Table S5) and zero velocities. The electric field strength is tuned to elicit appreciable 

absorption of energy at a given frequency range, i.e., some of the low frequency modes required a 

stronger field. An a-DMD spectrum is generated at the 𝜔. points from the averaged absorbed 

energies (Eq. 11) collected at the end of each of the driven trajectories.  

 First, we calibrate the field strength by examining the rate of energy absorption using a 

strongly Raman active mode as a reference. Several values of the field strength were tested, from 

100 to 500 mV/bohr, and Figure 5 shows a well-behaved and clearly identifiable set of resonances 

in the high frequency symmetric N−N stretch range between 2200 and 2600 cm-1 with isotopic 

shifts upon 14N/15N and H/D substitutions and with field strength of 350 mV/bohr. The maximum 
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peak position is 2400 cm-1 for 14N4H+ and 14N4D+, and 2325 cm-1 for 15N4H+ isotope, which are 

near their harmonic values (Tables S9-S11). One can see that the total absorbed energy (IDMD) at 

the end of the driving is roughly equal to the frequency of the vibrational resonance and well below 

the N2H+ + N2 dissociation limit of ~6000 cm-1.30 This serves as a ‘rule-of-thumb’ for identifying 

true resonances while helping distinguish them from spurious ones. 

 

 

Figure 5.  The parallel scattering a-DMD spectrum of 14N4H+,14N4D+ and 15N4H+ in the high 

frequency range calculated with the analytical N4H+_PES and the presently fitted N4H+_PTS. 

The electric field strength is 350 mV/bohrs with the initial orientation along the molecular axis. 

 

 We proceed by investigating a possible Fermi resonance in the Raman regime between the 

gerade symmetric N−N stretch (n1) and the ungerade N⋯H+⋯N bend overtone (2n6). This 

overtone was identified, but not discussed, as a Fermi-like resonance in the previous experimental 

study56 and the VSCF/VCI quantum vibrational study.31 Yet, these two transitions, n1 and 2n6, are 

nearly degenerate in 14N4H+.  The corresponding harmonic values on the analytical N4H+_PES 

are 2412 cm-1 and 2 ×	1223 cm-1, (Table S9), respectively, with a gap of only 34 cm-1 and are 

easily resolvable by the 10 ps DMD trajectories employed presently.  Driving the polarizability at 
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the peak of the n1 DMD absorption, 2400 cm-1, in a parallel scattering regime yields a highly 

suggestive interplay of intermodal energy transfer. Strong evidence of a Fermi resonance, in our 

interpretation of the DMD dynamics, is seen in Figure 6 (the black curve) and Figures S6-S8 as 

large N−N stretch displacements in the early stages of the driving 0-7 ps. The energy and the Ds1 

coordinate (the gerade N−N stretch, n1) are excited immediately at the onset of the electric field 

indicating a resonant absorption, while the coordinates characteristic of the n6 mode, namely, Ds7 

and Ds9, are weakly excited or are unexcited at all. Their amplitudes remain small and only begin 

to sharply increase at the later stage of the trajectory, near the 7 ps mark, indicative of an onset of 

a second resonance. At exactly the same time the Ds1 coordinate has stopped being excited, seen 

in Figure 6 as the flattening of the curve.  In other words, after 7 ps of electric field exposure, the 

vibrational energy absorption in the n1 fundamental mode has been saturated, while simultaneously 

the n6 mode overtone, described primarily by Ds7, has begun to absorb energy resulting in what 

we call a bi-modal excitation. That the energy is being continuously absorbed, as opposed to being 

oscillatory and partially released back to the field due to detuning, is suggested by the smoothly 

increasing absorbed energy curve. There is a question of whether the overtone absorption at 7 ps 

arises due to mode n6 directly interacting with the field (the direct absorption pathway) or via an 

efficient two-step mechanism: field => n1 => 2n6 (the resonant vibrational energy transfer “VET” 

pathway). In either case, beginning at the 7 ps mark both the v1 fundamental and the 2v6 overtone 

are excited and are interacting or exchanging energy, a signature of a Fermi resonance in the 

classical regime. 
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Figure 6. The average absorbed energy (top panel, Eq. 11) and averaged symmetrized 

displacements (Eq. 12) of the n1 fundamental (Ds1, middle panel) and the 2n6 overtone (Ds7, bottom 

panel) along each of the a-DMD trajectories driven at the corresponding symmetric N≡N stretch 

frequencies of 14N4H+ (2400 cm-1), 14N4D+ (2400 cm-1) and 15N4H+ (2324 cm-1).  The strength of 

the electric field was 350 mV/bohr in a parallel scattering regime. 

 

 Verifying the direct overtone absorption pathway, we scanned the frequencies slightly to 

the blue of the fundamental n1 peak, that is, in the 2400 and 2450 cm-1 range using the same field 

parameters: 350 mV/bohr in a parallel scattering regime. No resonances were identified in this 

case or with the stronger field, 700 mV/bohr. Switching to a perpendicular scattering regime, i.e., 

with P along the molecule axis and with S perpendicular to it, we identified a single peak at ~2420 

cm-1 using the stronger field, 700 mV/bohr (Figure S10). Coordinate analysis revealed weakly 

excited stretching coordinates, ~0.05 Å, in the early stages 0-5 ps, followed by a sharp increase in 
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this frequency, which can only be the 2n6 overtone (Figure S11). Since it appears to scatter at 2420 

cm-1 only in the perpendicular direction, the 2400 cm-1 parallel scattering trajectory described 

above must likely involve the VET n1/2n6 coupling pathway. From this we can also deduce that 

the level splitting should be of the order of ~20 cm-1. 

 Nevertheless, it is instructive to test the VET hypothesis explicitly. To this end we 

employed elements of two-dimensional “pump-probe” spectroscopy. Using the 2400 cm-1 a-DMD 

trajectory as a pump acting to excite n1 up to ~7 ps, the time necessary to active the transition to 

2n6, we ‘turn on’ the probe by switching off the electric field and recording (probing) the resulting 

dynamics. A probe duration of 2 ps was sufficient to observe a decay of the Ds1 coordinate (the n1 

fundamental) accompanied by rapid excitation occurring in the Ds7 coordinate (the 2n6 overtone). 

These curves are shown in Figure S12. There is a clear indication of a rather fast vibrational energy 

flow from the excited fundamental to the overtone. Fitting an exponential decay formula to the 

fundamental mode coordinate: ∆𝑠)(𝑡) = 𝐴 exp(− 𝑡 𝜏⁄ ) + 𝐵 yielded a value of t = 466 fs for the 

lifetime (see Figure S12). If we assume a resonant energy level scheme and apply the golden rule 

treatment to this process, the lifetime can be used to find the Fermi resonance’s coupling matrix 

element as 𝑉 = áℏ 2𝜋𝜌(𝐸)𝜏⁄ . The density of states can be approximated as the number of final 

states N = 4, (Π# × Π# = 2Σ! + ∆!), divided by the total energy absorbed by the trajectory E = 

1500 cm-1, as seen at the 7 ps mark of Figure 6, treating all other states below E as unavailable. 

Thus, writing 𝜌(𝐸) = 𝑁 𝐸⁄  gives an upper bound for the coupling matrix element V = 26 cm-1. 

The high-quality quantum mechanical calculations of Yu et al.31 give the level splitting dE = 41 

cm-1 or equivalently V = dE / 2 = 20 cm-1, assuming a two-level interaction picture. This pump-

probe derived estimate appears to agree well with the quantum result and the DMD calculated peak 

difference described above. 
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As a control simulation of the presence of the Fermi resonance, we employ isotopic 

substitution, namely, for the isotopic substituted species 14N4D+ and 15N4H+ such a mode mixing 

along with an energy transfer interplay is not seen as taking place (Figs. 6, and S9 red and green 

curves, respectively).  In the 14N4D+ case, the symmetric N−N stretch fundamental is virtually 

unchanged while the N-N-D bend overtone is expected to be at 2  ×	893 = 1786 cm-1 (the harmonic 

values, Table S9), a ~600 cm-1 gap. In the 15N4H+ case, the symmetric N−N stretch is isotopically 

shifted to 2330 cm-1 and 2n6 = 2 ×	1220 = 2440 cm-1 (the harmonic values, Table S10) a 110 cm-

1 gap. If we drive these systems at their respective n1 fundamental frequency, corrected for 

anharmonicity by performing several exploratory drives, we see evidence of regular uni-modal 

excitation profiles. That is, the respective Ds1 coordinates corresponding to n1 in both 

isotopologues, 15N4H+ and 14N4D+ are increasing relatively smoothly, without indication of an 

abrupt change. Meanwhile, the bend coordinates Ds5-s10 are unexcited and the complementary 

stretch coordinates (Ds2-s4) are slightly excited very early but remain stationary for the duration of 

the driven trajectories. These calculations strongly suggest that the n1/2n6 resonance is absent in 

the two isotopologues. 

As a final remark, we note that our a-DMD simulations do in fact reveal the Raman active 

overtone of the asymmetric N⋯H+⋯N stretch (n4) identified in the MD spectrum (Figure 4) as 

part of the broad spectral feature between 500-2000 cm-1 that shifts upon H/D isotopic substitution. 

We remind that in our previous N4H+ work30 on assigning the IR spectrum using µ-DMD we 

identified the N⋯H+⋯N asymmetric stretch fundamental at 775 cm-1.  The high level VSCF/VCI 

calculations31 predicted it at 758 cm-1. Attempting to find a characteristic resonance in the 500-

2000 cm-1 feature of the Raman spectrum, we drive near the center of the broad band, which 

happens to roughly correspond to 2v4 at 2 × 775 = 1550 cm-1. It is known that due to the very 
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small intensity of the band one must use a much stronger electric field to incite an inherently weak 

overtone transition, as we observed previously in related applications.15,30 A 700 mV/bohr value 

proved to be sufficient. Figure 7 summarizes this calculation. We note an early bump in the 

absorbed energy accompanied by a similar bump in the N⋯H+⋯N displacement Ds4. It is followed 

by the fast and monotonically increasing Ds4 with the other S symmetry displacements, Ds1-s3, 

remaining smaller by an order of magnitude. The angular displacements are virtually zero 

suggesting that the P symmetry modes are not being excited. Only after ~13 ps of field exposure 

when the 2n4 overtone has clearly been excited, do the other modes begin to follow as all other 

possible combination bands begin to respond to the field. This result, in conjunction with our 

isotope-derived conclusions stated above, provides solid evidence that the 500 and 2000 cm-1 

region is dominated by the parallel-proton-transfer bands. Based on VSCF/VCI calculations31 and 

symmetry rules,19 we expect additional N4H+ Raman active combination bands and overtones 

between 500-2000 cm-1, e.g.  n4+n7, n2+n5, n6+ n7, and 2n2 . 
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Figure 7. The average absorbed energy (top panel) and averaged symmetrized stretch 
displacements, Ds1-4 (middle panel), and averaged symmetrized bend displacements, Ds5-10 
(bottom panel), (Eq. 12) along the parallel scattering a-DMD trajectory for the asymmetric 
N⋯H+⋯N stretch overtone 2n4 of N4H+ driven at 1550 cm-1. The intensity of the electric field is 
700 mV/bohr.  
 

IV. CONCLUSIONS 

We have presented new calculations of the Raman spectra of the linear centrosymmetric N4H+ ion 
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body representation, with the relative RMSE of 0.53%, is quite suitable for N4H+. Future 

developments related to PTS fitting are currently being investigated in our ongoing work on linear 

parameterization of PTS and associated developments on tensor parameterization approaches 

using linear regression techniques. 

 We have also described a new approach for generating training sets, for fitting PTS, DMS 

and PTS, by superposing and pruning (or contracting) trial sets obtained from NVE trajectories so 

that the distribution of potential energy points is as close to uniform as possible. This new approach 

allows to take the strategy of first using a low-level method for the generation of the extended 

NVE trial sets, e.g., at a DFT level, and then using the contracted set configurations to calculate 

the energy, gradient, polarizability, and its gradient at a higher level of theory, e.g., MP2 or 

CCSD(T). 

 The extensive MD and polarizability-driven (a-DMD) simulations reveal several major 

features in the Raman spectrum: 

 (i) A strong Raman activity at 260 cm-1 and at 2400 cm-1 corresponding to the symmetric 

fundamental N−N⋯H bend (Pu) and symmetric fundamental N−N stretch (Σ!") modes, 

respectively. Weaker activity was identified at 345 cm-1 and assigned to the fundamental 

symmetric N2⋯H+⋯N2 (Σ!") stretch vibration. These assignments are in close agreement with the 

experiment. 

 (ii) A very broad Raman active region on 500-2000 cm-1 assignable as a dense 

superposition of non-harmonic features involving proton transfer motion, such as symmetry 

allowed combinations (n4+n7, n2+n5, and n6+ n7) and overtones (2n2 and 2n4). The calculations 

suggest that this region is dominated by parallel proton transfer bands, such as one identified as 

the overtone of the N⋯H+⋯N asymmetric stretch Σ#" fundamental of 775 cm-1.  
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 (iii) Existence of a Fermi-like resonance in the Raman spectrum near 2400 cm-1 between 

one quantum of the Σ!" N−N stretch and two quanta of the Pu fundamental, corresponding to the 

perpendicular N⋯H+⋯N proton transfer. This resonance was interrogated in detail by two 

unrelated calculations, (1) differentiating the parallel and perpendicular Raman scattering regimes, 

which located, respectively, the fundamental excitation at 2400 cm-1 and the overtone excitation 

at 2420 cm-1, suggesting the interaction of the order of 20 cm-1; and (2) by setting up a two-

dimensional (pump-probe) “experiment” which showed fairly efficient energy transfer from the 

excited fundamental to the overtone with the transition lifetime of 466 fs, corresponding to the 

(upper bound of) Fermi interaction matrix element of ~26 cm-1. Both above estimates are in good 

agreement with the previously reported high-level VSCF/VCI calculations.  

 

SUPPLEMENTARY MATERIAL 
 
 See supplementary material for additional information on formation of a training set by 

pruning trial data, least-square optimization procedure, N4H+ optimized geometry, harmonic 

frequencies, IR and Raman intensities, molecular polarizability data, MD spectra, driven molecular 

dynamics coordinate analysis, a covariant symmetrization scheme, and details of the polarizability 

tensor. 
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S.1 Formation of a training set by pruning extensive trial data 

Our present task is to generate as diverse and global a set of geometries as possible using only 

classical trajectories. To this end, we may invoke the ergodicity hypothesis and propagate a “very 

long” NVE trajectory of energy Etot and then select every n-th geometry to generate an arguably 

high-quality training set for PES/DMS/PTS fitting. Even if assuming the entire coordinate space 

has been visited by the trajectory, such a set would necessarily sample significantly more 

geometries with the higher potential energies, centered about ~Etot/2, and “neglect” many of those 

with the lower potential energies. (One is referred to the classical harmonic oscillator.) The regions 

near the low energy stationary points, which contain chemically important structures, may be 

severely underrepresented in this set. To amend this, one may add to the training set a trajectory 

propagated for the same total time, but with a lower total energy, e.g., Etot/2. Yet, simply combining 

these two sets from the two trajectories will put substantially more weight on the structures with 

the potential energies near the Etot/4 region than on all other regions, making a combined set better 

than the original but still poorly balanced, and so on. 

 Below, we propose a pruning method to approximately eliminate these types of imbalances 

and make equal representation of configurations by the potential energy, i.e., assign appropriate 

weights to configurations in a consistent and simple manner. This prescription achieves equal 

representation of the points regardless of the energy of the configuration. 

 For a set of trial potential energy distributions {fi(V)} derived from microcanonical 

trajectories of different total energies, here assumed ergodic for the sake of argument, numbered i 

= 1, 2, ... each of length N time steps, we seek such coefficients in the “pruned” distribution 
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where a is a constant to be determined by the g(V) normalization requirement (see below), and 

where M << N is the size of the pruned set. This condition ensures that g(V) is as close to a uniform, 

or a top-hat, distribution as possible by assigning approximately equal weights to the 
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configurations with the potential energies on [0, Vmax]. One may interpret g(V) as a quasi-canonical 

ensemble depending on the nature of the mixing coefficients as functions of the total energy; this 

will be examined below. 

 Variation with respect to ci yields the unique solution 

 

																																																												𝐜 = 	α
𝑀𝑁
𝑉"#$

𝐒() :
1
⋮
1
< 																																																											𝑆. 3𝑎 

or 

																																																											𝑐! = α
𝑀𝑁
𝑉"#$

'[𝐒()]!*
*

																																																							𝑆. 3𝑏 

 

where the elements of the overlap matrix S are 
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We define the pruned set to be of size 
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with all trial distributions by construction containing the same number of points N, 
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or 

																																																												α =
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Therefore, the coefficient of set “i” in the pruned set is 
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independent of the energy cutoff parameter Vmax and the grid on which fi(V) is defined. The number 

of points taken from set “i” is simply 
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while the normalization condition for the “pruned” set “i” holds true 
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Finally, the frequency of pruned points (sampling intervals) in each trial set is 
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which is to say, we pick every 𝜈!-th point from each of the corresponding trial sets “i” to build the 

pruned set of size M that will best resemble a uniform distribution of potential energy points on 

[0, Vmax]. Note that the relative weights, defined by the ratios ci/cj, formally depend only on the 

overlap matrix, i.e., the shapes of the trial distributions. However, a certain amount of noise in the 

pruned distribution will be present due to a somewhat arbitrary way of selecting the Mi points 

using formula S.10. Still, for large values of M and N the amount of noise is expected to be 

insignificant, and a greater number of trial sets will produce a better fit to a uniform distribution. 
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And since most computing facilities and workstations are equipped with multiple processors, 

propagation of several NVE trajectories can be easily carried out in parallel without consuming 

excessive wall-clock time. 

 

 
Figure S1. A five-trial-set contraction scheme of length N=100001 (each set), of N4H+ calculated 
at the N4H+_PES level of theory, to a pruned set of size M=10000 using the (a=1, b=2, Emax=6200 
cm-1)  schedule. The pruning intervals are 15, 60, 96, 273 and 283 for the E1, E2, E3, E4 and E5 trial 
sets, respectively. Note the difference in the shapes of the Simple Sum (unpruned) set and the 
Optimized Sum (pruned) set. 
 

 Our approach to trial set generation is based on partitioning the total energy of the system 

in reference to the harmonic ZPE, a dissociation limit or some key transition state, with the NVE 

trajectory total energies selected according to the schedule, 
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where the choice of (a, b, Emax) is guided by particular goals of the fit and system’s properties. For 

example, (a=1, b=2, Emax=1/2 ZPE) is expected to produce a trial distribution suitable for most 
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MD applications at low/room temperature, while (a=3, b=1.5, Emax=3/2 ZPE) yields a set suitable 

for both high temperature MD and quantum vibrational calculations, and so on. Figure S1 

illustrates this approach with four trial sets of 5001 points each to make a pruned set of 1000 

optimally selected points. Unlike the highly imbalanced Simple Sum distribution, the pruned 

distribution has a well-defined top-hat shape. 

 

 
Figure S2. Trial set mixing coefficients (open circles) appearing in Eq. S.1 and given by Eq. S.7. 
The total energies (inverted) are those seen in Figure S1. The red line is an exponential fit to these 
points of the form c(E-1) = c(∞) exp(1/(TE-1)), with the characteristic temperature T = 2200 cm-1. 
 

 Analysis of the mixing coefficients ci, which are related to the pruned points per set Mi, 

suggests an increasing exponential function with the total energy of the microcanonical trial 

ensembles. Or, in other words, the nature of the pruned ensemble g(V) may be interpreted as an 

“inverse” Boltzmann distribution where the lower energy trial NVE ensembles make exponentially 

smaller contribution to the pruned ensemble. This is exposed in Figure S2 on the distributions 

presented in Figure S1. 

 

S.2 Atomic and molecular polarizability benchmark study 

The benchmark study for molecular polarizabilities (Eq. S.12) of N (4S) atom and N2, N2H+, N4H+ 

molecules was carried out using the MOLPRO program. The polarizabilities were calculated 

numerically by the differentiation with the respect to the electric field. MP2, CCSD, and CCSD(T) 

methods were tested with various basis sets. All polarizabilities for N2, N2H+, N4H+ were evaluated 
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at the CCSD(T)/aug-cc-pVTZ optimized geometries and compared to the to the available 

experiment1,2 and high-level theoretical calculations.3 In the N4H+ case, we used the reference 

point at the CCSD(T)/d-aug-cc-pVTZ level of theory. Computer times were reported for the single 

point molecular polarizability calculation on a single processor (Table S4). 

αN = 𝛼+,- = (α$$ + α.. + α//) 3⁄ 																																																																																																			(𝑆. 12𝑎) 

𝛼01+,- =
1
√2

ST𝛼$$ − 𝛼..U
% + T𝛼.. − 𝛼//U

% + (𝛼// − 𝛼$$)% + 6T𝛼$.% + 𝛼$/% + 𝛼./% UV
) %⁄

	(𝑆. 12𝑏) 
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Table S1: Error analysis for the N (4S) atomic polarizabilities. 
 

Method a/ Å3 % error 

MP2/AVDZ 1.009 8.243 

MP2/dAVDZ 1.073 2.436 

MP2/VTZ 0.720 34.519 

MP2/AVTZ-tr 1.052 4.374 

MP2/AVTZ 1.055 4.061 

MP2/dAVTZ 1.068 2.914 

CCSD/AVDZ 1.008 8.336 

CCSD-dAVDZ 1.075 2.259 

CCSD/VTZ 0.724 34.214 

CCSD/AVTZ-tr 1.054 4.159 

CCSD/AVTZ 1.063 3.400 

CCSD/dAVTZ 1.076 2.198 

CCSD(T)/AVDZ 1.013 7.881 

CCSD(T)/dAVDZ 1.082 1.611 

CCSD(T)/VTZ 0.723 34.285 

CCSD(T)/AVTZ-tr 1.062 3.476 

CCSD(T)/AVTZ 1.070 2.771 

CCSD(T)/dAVTZ 1.084 1.485 

CCSD(T)/AVQZ 1.081 1.723 

CCSD(T)/AV5Z 1.080 1.795 

Experiment1 1.100 0.000 
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Table S2: Error analysis for the N2 molecular polarizabilities. 
 
Method axx,yy / Å3  azz/ Å3 𝛼W/ Å3 % error 

MP2/AVDZ 1.475 2.135 1.695 3.701 

MP2/dAVDZ 1.506 2.153 1.722 2.184 

MP2/VTZ 1.105 2.005 1.405 20.159 

MP2/AVTZ-tr 1.494 2.139 1.709 2.878 

MP2/AVTZ 1.505 2.136 1.715 2.534 

MP2/dAVTZ 1.510 2.141 1.720 2.248 

CCSD/AVDZ 1.481 2.199 1.720 2.266 

CCSD-dAVDZ 1.511 2.218 1.747 0.743 

CCSD/VTZ 1.102 2.081 1.428 18.858 

CCSD/AVTZ-tr 1.496 2.202 1.731 1.627 

CCSD/AVTZ 1.502 2.197 1.734 1.492 

CCSD/dAVTZ 1.507 2.201 1.738 1.240 

CCSD(T)/AVDZ 1.497 2.224 1.739 1.200 

CCSD(T)/dAVDZ 1.529 2.243 1.767 0.381 

CCSD(T)/VTZ 1.107 2.092 1.436 18.437 

CCSD(T)/AVTZ-tr 1.514 2.225 1.751 0.524 

CCSD(T)/AVTZ 1.520 2.218 1.753 0.408 

CCSD(T)/dAVTZ 1.525 2.222 1.758 0.130 

Experiment2 1.450 2.380 1.760 0.000 
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Table S3: Error analysis for the N2H+ molecular polarizabilities. 
 
Method axx,yy / Å3 azz/ Å3 𝛼W/ Å3 % error 

MP2/AVDZ 1.147 2.020 1.438 1.017 

MP2/dAVDZ 1.153 2.025 1.444 0.610 

MP2/VTZ 0.985 2.007 1.326 8.746 

MP2/AVTZ-tr 1.144 2.016 1.435 1.249 

MP2/AVTZ 1.153 2.017 1.441 0.788 

MP2/dAVTZ 1.149 2.018 1.438 0.997 

CCSD/AVDZ 1.150 2.076 1.458 0.392 

CCSD-dAVDZ 1.155 2.081 1.464 0.780 

CCSD/VTZ 0.984 2.067 1.345 7.408 

CCSD/AVTZ-tr 1.144 2.073 1.454 0.068 

CCSD/AVTZ 1.153 2.073 1.459 0.457 

CCSD/dAVTZ 1.148 2.073 1.456 0.228 

CCSD(T)/AVDZ 1.156 2.090 1.468 1.027 

CCSD(T)/dAVDZ 1.162 2.096 1.474 1.436 

CCSD(T)/VTZ 0.988 2.077 1.351 7.024 

CCSD(T)/AVTZ-tr 1.151 2.085 1.462 0.643 

CCSD(T)/AVTZ 1.160 2.084 1.466 1.041 

CCSD(T)/dAVTZ 1.155 2.084 1.465 0.815 

CCSD(T)/AV5Z3 1.148 2.061 1.453 0.000 
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Table S4: Error analysis for the N4H+ molecular polarizabilities and computer times per single 
processor. 
 

Method 

axx,yy / 

Å3 azz/ Å3 𝛼+,-/Å3 % error 

𝛼01+,-/Å3 % error Time/ sec 

MP2/AVDZ 2.403 5.297 3.368 2.985 2.894 6.031 34 

MP2/dAVDZ 2.433 5.306 3.391 2.330 2.873 6.710 130 

MP2/VTZ 2.026 5.216 3.089 11.016 3.191 3.619 91 

MP2/AVTZ-tr 2.414 5.287 3.372 2.881 2.873 6.707 120 

MP2/AVTZ 2.430 5.286 3.382 2.585 2.856 7.263 540 

MP2/dAVTZ 2.428 5.285 3.380 2.634 2.858 7.199 1897 

CCSD/AVDZ 2.409 5.485 3.434 1.068 3.076 0.122 578 

CCSD-dAVDZ 2.438 5.493 3.457 0.429 3.055 0.801 2017 

CCSD/VTZ 2.022 5.407 3.150 9.253 3.385 9.929 1240 

CCSD/AVTZ-tr 2.415 5.473 3.434 1.074 3.058 0.701 1935 

CCSD/AVTZ 2.427 5.463 3.439 0.932 3.035 1.424 7462 

CCSD/dAVTZ 2.424 5.462 3.437 1.001 3.038 1.356 21312 

CCSD(T)/AVDZ 2.427 5.553 3.469 0.064 3.126 1.517 1527 

CCSD(T)/dAVDZ 2.458 5.562 3.493 0.615 3.104 0.790 5730 

CCSD(T)/VTZ 2.032 5.460 3.174 8.557 3.429 11.349 4338 

CCSD(T)/AVTZ-tr 2.434 5.536 3.468 0.096 3.102 0.733 4084 

CCSD(T)/AVTZ 2.448 5.525 3.474 0.057 3.078 0.055 22115 

CCSD(T)/dAVTZ 2.445 5.524 3.472 0.000 3.079 0.000 182229 
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S.3 N4H+ geometries and corresponding polarizability tensors  

Figures and Tables below show N4H+ molecular geometries and corresponding polarizability 

tensors. 

 

 
Figure S3. N4H+ linear geometry and atom numbering. The molecular axis is along Z. 
 
 
Table S5: XYZ coordinates (Å) for the N4H+ global minimum structure optimized on the 
analytical N4H+-PES (CCSD(T)-F12b/aug-cc-pVTZ), (D¥h symmetry).  
The minimum energy is -219.03515571855 Hartree.  
 

Atom              X                       Y                        Z 
___________________________________________ 
N  0.0000000000  0.0000000000  2.3736107464 
N   0.0000000000  0.0000000000 -2.3736107464 
N   0.0000000000  0.0000000000  1.2766043851 
N   0.0000000000  0.0000000000 -1.2766043851 
H  0.0000000000  0.0000000000  0.0000000000     
____________________________________________ 
 

Table S6: Polarizability, aii data in atomic units for N4H+ evaluated using analytical N4H+_PTS at 
the optimized geometry listed in the Table S5. 

 
X                       Y                        Z 

________________________________________________ 
X            16.3665705316    0.0000000000    0.0000000000 
Y            0.0000000000     16.3665705316   0.0000000000 
Z             0.0000000000     0.0000000000    37.1473788311 
__________________________________________________ 
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Table S7: XYZ coordinates (Å) for the N4H+  global minimum structure (D¥h symmetry) 
optimized using MOLPRO at CCSD(T) /aug-cc-pVTZ level of theory. 
The minimum energy is -218.98619507 Hartree.  
 

 Atom              X                       Y                        Z 
_________________________________________________ 
N          0.0000000000        0.0000000000        2.3767595533 
N          0.0000000000        0.0000000000       -2.3767595533 
N          0.0000000000        0.0000000000        1.2758541851 
N          0.0000000000        0.0000000000       -1.2758541851 
H          0.0000000000        0.0000000000        0.0000000000 
_________________________________________________ 

 
Table S8: Polarizability, aii data in atomic units for N4H+ evaluated at the optimized geometry 
listed in the Table S7. 
 

X                       Y                   Z 
________________________________________________ 

  16.517523384    0.000000000     0.000000000 
    0.000000000   16.517523385    0.000000000 
    0.000000000    0.000000000   37.286578143 

__________________________________________________ 
 
 
 
C2v (194i) 
E=4741 cm-1 

 

D2d (554i, 554i) 
E=19887 cm-1 

 

D2h (73i, 325i, 825i) 
E=20188 cm-1 

 
 
Figure S4. CCSD(T)/aug-cc-pVTZ N4H+ transition states. Imaginary frequencies (cm-1) and 
energies relative the global minimum (cm-1) are also given. 
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S.4 Harmonic frequencies, IR, and Raman intensities for N4H+, N4D+, and MD spectra 

We run normal mode analysis at the MP2, CCSD(T) levels of theory, and analytic PES surface for 

various nitrogen and hydrogen isotopes, namely 14N4H+, 15N4H+, 14N4D+ to predict harmonic IR 

and Raman intensities and to identify 14N/15N and H/D isotopic substitution related frequency 

shifts. The corresponding Raman active harmonic frequencies on the analytical N4H+_PES for 

the N−N symmetric stretch in 14N4H+ vs. 15N4H+ (Tables S9 and S11) are 2412 and 2330 cm-1, for 

N2⋯H+⋯N2 stretch 436 and 421 cm-1, and the symmetric N-N-H bend 264 and 255 cm-1, 

respectively. Raman MD spectrum obtained using the analytical N4H+_PTS is shown on Figure 

S5. Figure 4 in the main text shows the Raman MD spectra in the range between 500-2000 cm-1. 

 
Table S9: 14N4H+ harmonic vibrational frequencies (in cm-1), IR intensities (km/mol), and 
Raman intensities (Å4/amu) calculated using optimized structure on the analytical PES, ab initio 
MP2, and CCSD(T) with aug-cc-pVTZ basis set. The frequency labels (ni) correspond to the 
experimental work4 and our previous work.5 
 
 

Symmetry 

Label 

MP2 

freq. 

MP2 

IR int. 

MP2 

Raman int. 

Analytical 

N4H+-PES 

CCSD(T) 

freq. 

CCSD(T) 

IR int. 

n7(Π3) 139 7.48 0.00 141 143 6.55 

n5 (Π4) 258 0.00 1.09 264 265 0.00 

n2 (Σ45) 438 0.00 3.84 436 438 0.00 

n4 (Σ35) 493 5170.42 0.00 99 159 5421.06 

n6  (Π3) 1227 86.36 0.00 1223 1235 86.98 

n3  (Σ35) 2212 241.51 0.00 2376 2366 270.21 

n1 (Σ45) 2246 0.00 32.33 2412 2402 0.00 
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Table S10: 14N4D+ harmonic vibrational frequencies (in cm-1), IR intensities (km/mol), and 
Raman intensities (Å4/amu) calculated using optimized structure on the analytical PES,  ab initio 
MP2 and CCSD(T) with aug-cc-pVTZ basis set. 

 
Symmetry 

Label 

MP2 

freq. 

MP2 

IR int. 

MP2 

Raman int. 

Analytical 

N4H+-PES 

CCSD(T) 

freq. 

CCSD(T) 

IR int. 

n7	( Π) 3) 136 6.65 0.00 137 140 5.81 

n5 ( Π) 4) 258 0.00 1.09 264 265 0.00 

n2 ( Σ45) ) 438 0.00 3.84 436 439 0.00 

n4 ( Σ35) ) 352 2596.84 0.00 70 114 2740.81 

n6  ( Π) 3) 896 36.21 0.00 893 905 37.16 

n3  ( Σ35) ) 2211 199.18 0.00 2376 2365 240.32 

n1 ( Σ45) ) 2247 0.00 32.33 2412 2402 0.00 
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Table S11: 15N4H+ harmonic vibrational frequencies (in cm-1), IR intensities (km/mol), and 
Raman intensities (Å4/amu) calculated using optimized structure on the analytical PES,  ab initio 
MP2 and CCSD(T) with aug-cc-pVTZ basis set.  
 

Symmetry 

Label 

MP2 

freq. 

MP2 

IR int. 

MP2 

Raman int. 

Analytical 

N4H+-PES 

CCSD(T) 
freq. 

CCSD(T) 
IR int. 

n7	( Π) 3) 134 7.03 0.00 136 138 6.17 

n5 ( Π) 4) 250 0.00 1.02 255 256 0.00 

n2 ( Σ45) ) 423 0.00 3.59 421 424 0.00 

n4 ( Σ35) ) 493 5168.68 0.00 98 160 5419.59 

n6  ( Π) 3) 1224 87.36 0.00 1220 1233 87.94 

n3  ( Σ35) ) 2137 231.57 0.00 2296 2286 256.44 

n1 ( Σ45) ) 2170.9 0.00 30.18 2330 2321 0.00 
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Figure S5. The MD spectra (the total intensity) for 14N4H+,14N4D+ and15N4H+ at 200 K calculated 

with analytical N4H+_PES and the presently fitted N4H+_PTS. 

 

S.5 Driven molecular dynamics coordinate analysis 

The following set of bond-angle coordinates (Eq. S. 13) were used in our previous work [5]. 

These symmetric internal coordinates, s were monitored along the DMD trajectories to visualize 

and assign the vibrational modes. The atom numbering is described in the Figure S3.  

 
𝑠)Ts4U = 𝑟(𝑁) − 𝑁6) + 𝑟(𝑁% − 𝑁7) 
𝑠%(s3) = 𝑟(𝑁) − 𝑁6) − 𝑟(𝑁% − 𝑁7) 
𝑠6Ts4U = 𝑟(𝐻8 − 𝑁6) + 𝑟(𝐻8 − 𝑁7) 
𝑠7(s3) = 𝑟(𝐻8 − 𝑁6) − 𝑟(𝐻8 − 𝑁7) 
𝑠8,:Tp;, 𝑥𝑧, 𝑦𝑧U = 𝑎(𝑁) − 𝑁6 − 𝐻8).,$ + 𝑎(𝑁% − 𝑁7 − 𝐻8).,$ 
𝑠<,=(p>, 𝑥𝑧, 𝑦𝑧) = 𝑎(𝑁6−𝐻8 − 𝑁7).,$ 
𝑠?,)'(p>, 𝑥𝑧, 𝑦𝑧) = 𝑎(𝑁) − 𝑁6 − 𝐻8).,$ − 𝑎(𝑁% − 𝑁7 − 𝐻8).,$       (S. 13) 
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Figure S6. Average absorbed energy (in cm-1) and symmetric internal coordinates s1-10 along the 
parallel scattering a-DMD trajectories of 14N4H+ for the symmetric N−N stretch frequency 2400 
cm-1. The electric field strength is 350 mV/bohr with the initial orientation parallel to the molecular 
axis. The Fermi resonance is confirmed by large displacements of the s5-10  coordinates from their 
equilibrium values at later stage of the trajectory, 7 ps.  
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Figure S7. Average absorbed energy (in cm-1) and symmetric internal coordinates s1-10 along the 
parallel scattering a-DMD trajectories of 14N4D+ for the symmetric N−N stretch frequency 2400 
cm-1. The electric field strength is 350 mV/bohr with the initial orientation parallel to the 
molecular axis. The Fermi resonance is absent here, due to small displacements of the s5-10  
coordinates from their equilibrium values. 
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Figure S8. Average absorbed energy (in cm-1) and symmetric internal coordinates s1-10 along the 
parallel scattering a-DMD trajectories of 15N4H+ for the symmetric N−N stretch frequency 2325 
cm-1. The electric field strength is 350 mV/bohr with the initial orientation parallel to the 
molecular axis. The Fermi resonance is absent here, due to small displacements of the s5-10  
coordinates from their equilibrium values. 
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Figure S9. The average absorbed energy (in cm-1) and averaged symmetrized displacements, Dsi 
(Eq. 12, main text) along the parallel scattering a-DMD trajectories for the symmetric N−N 
stretch frequencies 14N4H+ 2400 cm-1 (in black), 14N4D+ 2400 cm-1 (red), and 15N4H+ 2325 cm-1 
(green). The electric field strength is 350 mV/bohr with the initial orientation parallel to the 
molecular axis. 
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Figure S10. The perpendicular scattering a-DMD spectrum of 14N4H+ in the high frequency range 
calculated with the analytical N4H+_PES and the presently fitted N4H+_PTS. The electric field 
strength is 700 mV/bohr with the initial orientation perpendicular to the molecular axis. 
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Figure S11. The average absorbed energy (in cm-1) and averaged symmetrized displacements, 
Dsi (Eq. 12, main text) along the perpendicular scattering a-DMD trajectory for the asymmetric 
N⋯H+⋯N bend overtone frequency 2420 cm-1 of 14N4H+. The electric field strength is 700 
mV/bohr with the initial orientation perpendicular to the molecular axis. 
 

 

Figure S12. Probe dynamics. t = 466 fs. 
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S.6 Least-squares optimization 

 We define the least-squares function for polarizability fitting in the following way, 

																																									𝑊(𝐜) =
1
2𝐾' ' cα!*	 (𝐫A; 𝐜) − α!*BCD(𝐫A)f

%
6

!,*E)

F

AE)

																																	(𝑆. 14) 

where k runs over the total of K configurations; i, j are the polarizability tensor’s Cartesian 

components X, Y, Z. “REF” refers to reference data obtained in an electronic structure calculation, 

which may be of any level of theory, via trajectory propagation or any other comparable sampling 

methods. In this form the coefficients of all six independent tensor components are simultaneously 

optimized. This formulation is advantageous. The absolute RMS error of the fit is √𝑊, and the 

relative RMS error is defined as 

															RMS(%) = 100 k
∑ ∑ cα!*	 (𝐫A; 𝐜) − α!*BCD(𝐫A)f

%
6
!,*E)

F
AE)

∑ ∑ cα!*BCD(𝐫A)f
%

6
!,*E)

F
AE)

l

)
%

																																					(𝑆. 15) 

To carry out an actual optimization, we differentiate W with respect to c analytically and pass both 

the function and its gradient 

																		∇𝑊(𝐜) =
1
𝐾' ' cα!*	 (𝐫A; 𝐜) − α!*BCD(𝐫A)f

𝜕α!*	 (𝐫A; 𝐜)
𝜕𝐜

6

!,*E)

F

AE)

																																	(𝑆. 16) 

 

to the BFGS optimizer. With ∇𝑊 being highly non-linear, in a difficult case a typical number of 

iterations to reach a tight convergence, e.g. RMS(%) < 1, can be O(105) with CPU times measured 

in days on a single processor workstation. Obviously, this is a major bottleneck when the total 

polynomial order and size of the training set need to be increased. However, noticing that both W 

and ∇𝑊 can be calculated by partitioning the training set K into any number of independent blocks, 

we apply the usual MPI ‘send-receive’ parallelization routine to Eqs. S.14 and S.16 and nest it 

inside the main BFGS driver. With the overhead of a BFGS step being small, the parallelization is 

highly scalable, permitting us to run efficient optimizations on a 56-core CPU Intel Xeon “Gold 

6132” 2.6GHz node. 
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S.7 A covariant symmetrization scheme 

 1. determine the number of non-zero powers in a monomial: M_NZ{monomial} 

  Ex: M_NZ{𝑦)%% 𝑦)6) 𝑦)7' 𝑦)8' 𝑦%6) 𝑦%7' 𝑦%86 } = 4 

 

 2. define quantity MAX_SYM = min[N_ATOM - 1, M_NZ] 

  where N_ATOM is the number of atoms 

 

 3. define quantity MIN_SYM = M_NZ - MAX_SYM 

 

 4. compute the number of times (Fk) the atom index (k) shows up in the monomial 

  Ex: for 𝑦)%% 𝑦)6) 𝑦)7' 𝑦)8' 𝑦%6) 𝑦%7' 𝑦%86  

   F1=3, F2=3, F3=2, F4=0, F5=1 

 

 5. Compare Fk against the quantity F* = max[MAX_SYM - 1, 1]: 

  a) set by default bk = 1 

  b) if Fk > MIN_SYM; then 

   if Fk ≥ F*; then bk = -1 
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S.8 Details of the polarizability tensor 
 
XYZ coordinates in Å of configuration I. 
 
N1     0.00000000    0.00000000    1.27836800 
N2     0.00000000    0.00000000    2.37975600 
N3     0.00000000    0.00000000   -1.27836800 
N4     0.00000000    0.00000000   -2.37975600 
H5     0.00000000    0.00000000    0.00000000 
 
 ISOTROPIC POLARIZABILITIES (Ang^3) 
  1 N     1.255024     
  2 N     0.242878     
  3 N     1.255024     
  4 N     0.242878     
  5 H     0.157721     
  
#LAMBDA-2 LAMBDA-3 LAMBDA-4 
    0.295457   -0.056623    0.427348 
 
 # 1-body tensor 
      3.1535239284      0.0000000000      0.0000000000 
      0.0000000000      3.1535239284      0.0000000000 
      0.0000000000      0.0000000000      3.1535239284 
 # 2-body tensor 
     -1.5174468517      0.0000000000      0.0000000000 
      0.0000000000     -1.5174468517      0.0000000000 
      0.0000000000      0.0000000000      3.0348937034 
 # 3-body tensor 
      0.9926978062      0.0000000000      0.0000000000 
      0.0000000000      0.9926978062      0.0000000000 
      0.0000000000      0.0000000000      3.9707912249 
 # 4-body tensor 
     -0.5040854970      0.0000000000      0.0000000000 
      0.0000000000     -0.5040854970      0.0000000000 
      0.0000000000      0.0000000000      4.0326839757 
 
 POLARIZABILITY TENSOR [Ang^3] 
  
      2.4335549933      0.0000000000      0.0000000000 
      0.0000000000      2.4335549933      0.0000000000 
      0.0000000000      0.0000000000      5.5487280203 
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XYZ coordinates in Å of configuration II upon a cyclic permutation of X. 
                                                                                     
N2     0.00000000    0.00000000    2.37975600 
N3     0.00000000    0.00000000   -1.27836800 
N4     0.00000000    0.00000000   -2.37975600 
N1     0.00000000    0.00000000    1.27836800 
H5     0.00000000    0.00000000    0.00000000 
 
 ISOTROPIC POLARIZABILITIES ([Ang^3]) 
  1 N     0.242878     
  2 N     1.255024     
  3 N     0.242878     
  4 N     1.255024     
  5 H     0.157721     
  
#LAMBDA-2 LAMBDA-3 LAMBDA-4 
    0.295457   -0.056623    0.427348 
 
 # 1-body tensor 
      3.1535239284      0.0000000000      0.0000000000 
      0.0000000000      3.1535239284      0.0000000000 
      0.0000000000      0.0000000000      3.1535239284 
 # 2-body tensor 
     -1.5174468517      0.0000000000      0.0000000000 
      0.0000000000     -1.5174468517      0.0000000000 
      0.0000000000      0.0000000000      3.0348937034 
 # 3-body tensor 
      0.9926978062      0.0000000000      0.0000000000 
      0.0000000000      0.9926978062      0.0000000000 
      0.0000000000      0.0000000000      3.9707912249 
 # 4-body tensor 
     -0.5040854970      0.0000000000      0.0000000000 
      0.0000000000     -0.5040854970      0.0000000000 
      0.0000000000      0.0000000000      4.0326839757 
 
 POLARIZABILITY TENSOR [Ang^3] 
  
      2.4335549933      0.0000000000      0.0000000000 
      0.0000000000      2.4335549933      0.0000000000 
      0.0000000000      0.0000000000      5.5487280203 
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