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Abstract

We present molecular dynamics (MD), polarizability driven MD (a-DMD) and pump-probe
simulations of Raman spectra of the protonated nitrogen dimer N4H', and some of its
isotopologues, using the coupled-cluster single double triple CCSD(T)-F12b/aug-cc-pVTZ based
potential energy surface in permutationally invariant polynomials (PIP) due to Yu ef al. [J. Phys.
Chem. A 119, 11623, (2015)] and a corresponding PIP-derived CCSD(T)/aug-cc-pVTZ-tr (N:spd,
H:sp) polarizability tensor surface (PTS), the latter reported here for the first time. To represent
the PTS in terms of a PIP basis, we utilize a recently described formulation for computing the
polarizability using a many-body expansion in the orders of dipole-dipole interactions while
generating a training set using a novel approach based on linear regression for potential energy
distributions. The MD/a-DMD simulations reveal: (i) a strong Raman activity at 260 and 2400
cm!, corresponding to the symmetric N—N---H bend and symmetric N—N stretch modes,
respectively; (ii) a very broad spectral region in 500-2000 cm! range assignable to the parallel
N---H*---N proton transfer overtone, and (iii) the presence of a Fermi-like resonance in the Raman
spectrum near 2400 cm between the X N—N stretch fundamental and the IT, overtone
corresponding to perpendicular N---H"---N proton transfer.
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I. INTRODUCTION

Fermi resonances! appear both in IR and Raman spectra of a wide variety of systems, such as
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CO,,>7 protonated water clusters,*!* asymmetric proton bound dimers,'#!¢ or amines.!”!® Since
the IR and Raman spectroscopies provide information about the presence or absence of specific
functional groups, they are widely used to identify structures of compounds.! For a vibrational
mode to be IR active, there must be change in the dipole moment; Raman spectroscopy depends
on change in the polarizability of a molecule. For linear centrosymmetric molecules, Raman and
IR are mutually exclusive; therefore, Raman spectroscopy is considered to be complementary to
IR spectroscopy. As such, Raman spectra can provide additional information on symmetric

fundamental vibrations and anharmonic features such as combination bands and overtones that are

IR inactive.!?

Quantum chemical studies have routinely been used to interpret experimentally measured
vibrational spectra. The standard approach based on the quantum mechanical double-harmonic
approximation (quadratic potential and linear dipole/polarizability)?® is generally considered

inadequate for non-rigid systems, e.g., when large amplitude non-harmonic proton motion is

d,21-35

involve which is the subject of the present work. Alternatively, molecular dynamics (MD)

simulations and quantum variational calculations of vibrational structure traditionally serve as

high-end solutions to the non-harmonicity problem.*® Apart from the daunting task of running

15,30,37

direct molecular dynamics simulations or solving large-scale secular equations by means of

direct vibrational configuration interaction (VCI) approaches,®*

surface fitting using
permutationally invariant polynomials (PIPs), often in conjunction with machine learning

methods, is a major alternative approach that has produced remarkable results for a variety of

applications.**** In many other applications, the PIP fitting tools have also been used for



generating accurate potential energy surfaces (PESs),* dipole moment surfaces (DMSs),*” and
polarizability tensor surfaces (PTSs).*** Developing such surfaces by fitting an analytic
(parameterized) polynomial function to a set of ab initio data is now possible for small, moderate,
and as recently was reported fairly large polyatomic molecules.?!#%4347-51 Fyrthermore, user-
friendly software that produces both the energy and its gradient in the form of FO0 subroutines,
called the Monomial-Symmetrization-Approach (MSA),>? is now available for automatic and
completely generic PIP fitting to a set of user-generated ab initio data points. Our calculations,

described below, are partly based on the MSA software.

In our recent series of publications, we have described the spectra of linear centrosymmetric
N-containing proton-bound complexes!>3 NoH"---OC and N4sH" that are relevant to the interstellar
clouds.?>33-3 Since the nitrogen forms hydrogen bonds, N-H (a single bond) and N---H (a hydrogen
bond) vibrations show up in the spectra as distinct features. Verdes et al. were first to report a high-
resolution IR spectrum of the NsH* ion and confirmed its linear centrosymmetric geometry.** The
spectral feature at 2352 cm’! was assigned to the asymmetric N—N stretch vibration.>* It was
concluded that the potential energy surface of N4H" is strongly anharmonic with respect to the
parallel proton stretching motion. Their reduced-dimensionality 2D and 3D quantum mechanical
models predicted the parallel H vibration (Z;; mode in the D, point group) to be at 875 and 783
cm’!, respectively. On the other hand, the simple harmonic approximation yields the frequency of
159 cm™! at the highly respectable coupled-cluster single double triple CCSD(T)/aug-cc-pVTZ
level of theory.* The true potential is obviously dominated by quartic and possibly higher terms
in the parallel proton transfer motion. To address the issues stated above, Ricks et al. measured
argon-tagged infrared spectra of protonated nitrogen dimer and its deuterium isotopologue in the

700-4000 cm™! range.>® Tagging the linear centrosymmetric N4H* with an argon atom reduces the



point group symmetry to Cay where the argon weakly binds to H* perpendicularly to the NsH*
molecular axis by 836 cm™! [calculated at the CCSD(T)/aug-cc-pVTZ level of theory].3*>¢ Ricks
et al. assigned one of the more intense IR spectral features at 743 cm! to the parallel proton stretch
vibration. Another region of IR activity in the N4sH"Ar experimental spectrum at 2349 cm™! was
assigned to the N—N asymmetric stretch. Other vibrational features, such as combination bands
and overtones, were also IR active in the presence of the argon messenger atom. However, by

symmetry rules,?’ these modes are IR inactive in the N4sH" bare ion.

Vibrational SCF and CI (VSCF/VCI) quantum studies using five-mode coupling®! based on
semiglobal and highly accurate analytical representations of the potential energy surface (PES)
and dipole moment surface (DMS), presently referred to as N4H+ PES and N4H+ DMS, at the
CCSD(T)-F12b/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels of theory, respectively, were found
to be in good agreement with the experimental IR measurements.’® Another study of N4sH*/N4D*
by Liao et al. using p-H> and n-D> matrix isolation IR absorption spectroscopy’’ in conjunction
with discrete-variable representation (DVR) calculations on a reduced dimensionality derived
PES, albeit at a lower level of electronic structure theory (CCSD/aug-cc-pVDZ), and its associated
DMS using a four-mode coupling scheme (the Na---H™---N> symmetric stretch, the asymmetric
“parallel proton transfer” N---H"---N stretch and two N---H"---N bending “perpendicular proton
transfer” modes) provided very useful spectral assignments. However, some of the low-frequency
N—N---H bending modes and the high-frequency N—N stretch modes were notably overestimated

compared to the experimental measurements. %>’

The above calculations suggest that
dimensionality of the N4sH" vibrational Hamiltonian (the full dimension is 10) and the quality of

the PES, i.e. the treatment of electron correlation, are very important for this system, thus presently

we are highly motivated to use MD simulations, in full 3N Cartesian dimensions, using the best



available analytical representation of surface N4H+_ PES. With this work, we build up on our
recent N4H" theoretical study,’® where we examined the argon tag effects on the IR vibrational
spectra using direct ab initio MD at the MP2/aug-cc-pVDZ level of theory. In that work, we also
carried out driven molecular dynamics (DMD) simulations on the bare N4sH* ion using the PES
and DMS surfaces and identified multiple anharmonic spectral features, which were in good
agreement with quantum studies®! and experimental measurements.>®>’

We briefly remind that DMD has been shown to be capable of identifying fundamentals,
combination bands, overtones, and their anharmonic shifts, even though it is based on classical
trajectories.!>3037:3859 Recently, we have expanded applicability of the DMD method to
description of Raman spectra.*->® As with the dipole-driven MD method (z-DMD), Raman active
transitions beyond the usual fundamentals can be detected with the polarizability-driven MD
method
(a-DMD) by scanning or gauging over the driving frequency.’® DMD’s facility of
assignment*®4%38 can greatly improve analysis of low-frequency vibrations that are difficult to
calculate accurately using the quantum approaches without using a high-mode

26,37,57

representation, as well as symmetric vibrations that are IR inactive, while Raman active.

42.:43.48.60 circumvents

Furthermore, developing PTS in analytical form, as shown by various groups,
the highly computationally demanding evaluation of polarizability, and its gradient, “on the fly”
during direct MD simulations.

In the present work we describe an approach to construct analytical Cartesian representation
of the PTS in terms of PIPs to be referred as NdH+ PTS. We further present a method for

generating a training set of ab initio data points obtained from MD simulations at an electronic

structure level comparable to the existing PES and DMS. We explore DMD’s capabilities to assign



Raman spectra beyond the harmonic limit (overtones and combination bands). Most importantly,
we describe a Fermi resonance between symmetric N—N stretch fundamental mode and an
overtone of an asymmetric N---H"---N bend fundamental mode of the symmetry and use isotopic

substitutions and elements of 2D spectroscopy®!%? to examine the origins of the resonance.
II. COMPUTATIONAL METHODS

A. The polarizability tensor surface (PTS)
We begin by developing a new PTS for N4H". As is known, dipole polarizability of a collection of

N atoms may be expressed using the point-dipole model of Applequist ez al.%®

o = ;[(A—l +T) i (1)

where p, g are atom labels with respective Cartesian components i, j.; A is a diagonal 3N square
matrix of configuration-dependent isotropic atomic polarizabilities, and T is the dipole field tensor
(see below). To avoid the well-documented numerical instabilities associated with inverting the

matrix in Eq. 1 and to allow representation of «;; using polynomials in internal coordinates, it was

recently suggested that Eq. 1 be written as a weighted sum of many-body interactions as,

o = Z A )
n=1

)

where A, are geometry dependent weights or correction factors, and ag.l are configuration

dependent n-body polarizability tensors, starting at the diagonal one-body term.*® The above form
is a direct result of approximating the inverse in Eq. 1 using the power series (A™? + T)"! = A —
A,ATA + A;ATATA — ---, where T is the perturbation. For 4,, = 1, Eq. 2 is an exact power series

expansion of the polarizability tensor, Eq. 1, in the limit of weakly interacting atomic dipoles (T —



0).° The introduction of A,, # 1 was intended*® to regulate the behavior of ;; in the regions of

configurational space with short interatomic distances where polarizability given by Eq. 1 is
otherwise discontinuous.53:¢>%¢ The individual terms are the one-body, which is the isotropic dipole

induction at each atom directly due to the electric field,

) = 82 ) (3a)
P
the two-body term, which is mutual dipole induction at p(g) due to the induced dipole at ¢(p)
@ =2 () 3b
A =42 ) Qplglyg (3b)
p*q
the three-body term, which is dipole induction at p due to the induced dipole at s induced by ¢ (a
p-s-q induction chain) or dipole induction at p due to the induced dipole at s induced by p itself (a
p-s-p induction chain),
3 ek j
agj) =13 Z 0,0ty Z o Z TiT,] (3¢c)
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the four-body term, correspondingly all possible p-s-s’-q, p-s-s’-p, p-q-s’-q, p-q-s’-p, p-q-p-q
induction chains,
. 12 k’ P
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etc., with the p, g, s, s’ summations running over the N atoms. We presently stop at the four-body

limit and discuss its contribution to the full expression. The matrices T,, are 3X3 dipole field

tensors,
6i' T
(T,,).. == -3-+2 4)
pa);; 3 5
Yo T Tpq



with 7,, being the magnitude of the p-g interatomic distance vector with the space-fixed Cartesian
components i, j = x, y, z; and Tp,=0. The isotropic atomic polarizabilities a,, and the correction

factors are both parameterized functions of molecular geometry r,

My
0 =a® + Y P (yo) (5a)
m=1
M>
M@ =14 ) e ut{ya) (5b)
m=1
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where ug’, and u;, are covariant and invariant polynomials,* respectively, in internuclear

distances that assure that the total polarizability a;; does not change upon permutation of any pair

of like nuclei. The 0(1(,0) are free atom “permanent” polarizabilities, and A, (r) = 1. The linear

(gp)

., are the same for atoms within the same

expansion coefficients for the atomic polarizabilities ¢
nuclear group g,. The variables y,; are functions of the internuclear distance r,;,. In the present
work we have used the y = r~! form. In short, Eq. 2 represents the 3N-6 dimensional PTS, in
analogy to the well-established descriptors for the potential energy and dipole moment surfaces,
PES and DMS, respectively.

While the conventional PIPs have been well described in the literature in the applications
to PES fitting,> their covariant counterparts appearing in DMS fitting (and presently in PTS
fitting) are less common and are generally not uniquely defined. Here we use a standard scheme

to generate the ug%, polynomials in Eq. 5a using symmetrized linear combinations of products of

the internuclear distance functions (monomials), as follows,

v amj,bmj o Zmj
Upm = Z bp.m.jy12 Vi3 y(N—l)N (6)
J



i < MAX

Equation 6 renders the m-th covariant PIP of the power 0 < @, ; + by j + +++ + Zpy

describing atom p, where MAX is the maximal power of the PIP representation. The binary

coefficient, or phase factor, b = =1 takes on one of these two values and is a function of the

pm,j
monomial index j. It is the only element responsible for covariance between a pair of identical

nuclei p and q. That is, without symmetrization, or equivalently with b, ., ; = +1 for all j in the
summation, Eq. 6 is reduced to a conventional PIP. A properly chosen phase assignment ensures
covariance of uy%,, meaning that a permutation of two identical nuclei, e.g., p and g, leaves the
electron density unchanged but results in a corresponding exchange of a,, and « so that the overall
polarizability tensor is invariant under the said permutation. A complete procedure for

determination of by, , ; is described in the supplementary material.

B. Optimization of the training set using NVE trial sets
Presently, for fitting of the PTS, and in the future applications in general, our motivation is to
construct a training set of configurations such that the distribution of their potential energies is as
close to uniform as possible. In other words, the general requirement is that all configurations with
potential energies up to some maximal value V.« be equally represented in the set. Our approach
is to first generate a few trial sets using NVE ensembles, i.e., classical MD trajectories of same
size, and then to “contract” them into a single set, while maximizing the criterion of the potential

energy uniformity, as stated above,
9wy = ) i) @
i

That is, the contracted set g(V) is a linear combination of the trial NVE sets fi(}) with the

coefficients chosen to make g(7) uniform. The total energies of each of the trial sets are selected



according to an exponential cooling schedule. The coefficients {b;} in Eq. 7 are solved using a
linear regression. This procedure is described in detail in the supplementary material, and here, we
show the final result for N4H" on [0,6200] cm!, up to the dissociation limit of NoH" + N> fragments
for NgH*_PES, using five trial NVE sets with the total energies 388, 755, 1550, 3100 and 6200
cm’!. The NVE trajectories were propagated using the N4H* PES potential for 100 ps each with
a time step of 1fs. From them, we constructed an optimized training set of 10 000 points, illustrated
in Figure 1. Given the five trial NVE sets, the curve is the best uniform distribution in the least-
squares sense. Up to ~4200 cm™! the potential energies are nearly equally represented, while a
smooth tapering of the tail occurs between 4500 and 6200 cm™. We then used the optimized
training set configurations to calculate the polarizability tensors needed for Raman scattering

analysis.
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Figure 1. An optimized training set of length /=10 000 sourced from five trial NVE sets, each of
length N=100001 configurations, for NsH* calculated at the N4H+_ PES level of theory. See

supplementary material for all definitions and contraction procedure.

C. Calculation of Raman spectra from MD simulations
Calculation of Raman spectra involves decomposition of the full polarizability tensor into a
spherical part @ = (0, + @y + a;,)/3 and a traceless anisotropic part f;; = a;; — §;;a, for
i,j=x,y,z. The respective polarized and depolarized components of the Raman spectrum are then

given by®’

10
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The brackets <...> involve the averaging over both the initial positions and momenta and over time
20,67

by employing a signal window.3%%%% Additionally, we use the depolarization ratio

p = 3lgepol/ (4Idep01 + SOIpol) as a tool to help identify weak resonances.

In total, 20 trajectories were generated randomly for isotopologues “N4H*, “N4sD* and
N4H*. The starting point was the global minimum structure (Table S5) optimized on the
analytical N4H+ PES trained on CCSD(T)-F12b/aug-cc-pVTZ data, and randomly selected
velocities. Each trajectory was propagated as an NVE ensemble corresponding to the temperature
of 200 K, up to 50 ps using the velocity-Verlet integrator.”® Calculations of convergence tests
showed that larger At time steps, e.g., 0.5 fs, resulted in appreciable peak position errors in the
high-frequency end of the spectra, and much better results were obtained with a time step of
At=0.2 fs. Furthermore, to better describe peak intensity in those high-frequency regions, as has
been done previously,® the classically derived spectral functions Iy (Eq. 8a) and Ziepol (Eq. 8b)
were additionally scaled by the quantum mechanical frequency-dependent factor k(w)=w/[ 1-exp(-

w/ksT)], where kg is the Boltzmann constant.”!

2.4 The a-DMD equations of motion
The equations of motion adapted presently for the DMD are
r=p/m (9a)

p=-VV(r)+f(r,t) (9b)
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where m are atomic masses, p and r are the 3N Cartesian momenta and coordinates, respectively,
and V(r) is the molecular interaction potential. The time-dependent driving force is f(r,?), and its
component with respect to Cartesian “4” on atom “a”, omitting the non-resonant sum-frequency

terms, is given by>®

2

& P;P; + S§;S;10a;;(r
far(,t) = ——OZ [PiSj cos(wt) + ——- (1) (10)
’ 2 2 OTg

ij
where g9 is the field strength, P; and S; are the normalized incident and Stokes scattered light vector
components, respectively, in the laboratory frame where i, j = x, y, z. The first term in the square
brackets corresponds to vibrational energy absorption at the Stokes frequency shift @, and the
second term is responsible for rotational scattering, i.e., the molecule may be rotationally excited
by the field. Note that the rotational scattering term does not depend explicitly on time but
resonates with the molecular vibrational motion as a perturbation to the potential energy via the
field-polarizability interaction. In the calculations below, we examine both the parallel scattering
regime, i.e., P = S, and the perpendicular scattering regime where P - S = 0, since the dynamical
differences between the two can help identify difficult cases, such as overtones.
Atomic coordinates, forces, dipoles, polarizabilities, and total energies, dipole, and
polarizability derivatives were collected along each trajectory to identify and assign Raman active
frequencies. The average absorbed energy monitored along the trajectory indicates Raman activity

and is defined as a time integral of the unperturbed molecular Hamiltonian Ho

1 t
Town(@) = 7 [ Hoa@,p(e); @) de’ an

For inactive modes, the average absorbed energy is small and oscillatory, while increases rapidly

at Raman resonances.>8
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Raman mode assignment is done similar to what we have done previously for the IR of
N4H"*.3° The symmetry coordinates, s; were analyzed (see supplementary material information for
the definition of s; and additional information) and plotted as functions of time for the resonant
trajectories. In addition, we also monitor averaged symmetrized displacements defined as a time
integral of the difference of symmetry coordinates from their equilibrium values to better

identify dominant vibrational motion,

250 = [} {1 = 00 e (12)

II1. RESULTS AND DISCUSSION
A. Molecular polarizability benchmark study

Here we describe the comparative analysis of the quantum mechanical methodologies in
calculating the polarizability tensor . done with MP2, CCSD, and CCSD(T) methods with several
basis sets: aug-cc-pVDZ (AVDZ), d-aug-cc-pVDZ (d-AVDZ), and cc-pVTZ (VTZ), and aug-cc-
pVTZ excluding d functions on hydrogen and f functions on nitrogen atoms, respectively (AVTZ-
tr), aug-cc-pVTZ (AVTZ), and d-aug-cc-pVTZ (d-AVTZ), respectively. We report atomic and
molecular polarizabilities in A units and corresponding percent errors with the respect to the
available experiment,%”-”2 and high-level theoretical calculations’? (Tables I and Tables S1-S4). All
molecular polarizabilities were evaluated at the equilibrium geometries optimized at the
CCSD(T)/AVTZ level of theory and Coy symmetry transition state’® of NsH*. The best results
relative to the corresponding benchmark values of NsH*, NoH*, N> and N(*S) and considering the
central processing unit (CPU) times required for a single point calculation were obtained with
CCSD(T) and a truncated AVTZ-tr basis set. Such basis set reduction yields relatively small

percent errors ~ 3% for N and less than 1% for N2, NoH, and NsH'. Also, for N4sH* the computer

13



times are manageable for generating the necessary data points (Table S4). Thus, we use this level

of theory to calculate the polarizability values for the 10,000 training set points with the

CCSD(T)’*7° as implemented in MOLPRO.”®

TABLE 1. Benchmark calculations of the fragments, and a comparison of N4H" non-zero
polarizability tensor components® calculated at the ab initio CCSD(T)/AVTZ-tr level of theory and

the analytical N4H+_PTS.

Atom/Molecule ax (A% oy (A% 0 (A% diso (A% Claniso (A?)
Ab initio

N 1.062 1.062 1.062 1.062 0.000

N> 1.514 1.514 2.225 1.751 0.712
NH* 1.151 1.151 2.085 1.462 0.934
N4sH" min, Dech 2.434 2.434 5.536 3.468 3.102
N4sH' TS, Cay 2.516 3.143 4317 3.325 1.583
N4H+ PTS

N4sH" min, Dech 2431 2431 5.353 3.466 3.104
N4sH' TS, Cay 2.427 3.333 4.290 3.350 1.613

2 See Tables S1-S4 for additional information.

B. Fitting of the PTS

Presently, we use a PIP of order 5 to fit the PTS. The unknown coefficients {c.} of Eq. 5

are searched for by a large-scale L-BFGS minimization procedure’’ applied to a least-squares

functional with the starting point of a non-interacting system of atoms {c, = 0}. For large training

sets we find it necessary to improve the performance of this approach by evaluating the least-

squares function along with its gradient using shared-memory parallelization, as described in the

SI.
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We take the permanent atomic polarizabilities 0(1(\]0 ) = 1.0617 A® calculated for N(*S) at
the CCSD(T)/aug-cc-pVTZ(N:spd, H:sp) level of theory and (xg)) = 0 for H*. The total number of

variables for the a® and a(4)

ij ij representations are 832 and 1040. Using the non-linear optimization

procedure, the final converged RMSE are 0.0387 A3 (0.85%) and 0.0239 A? (0.53%) for the three-

body and four-body polarizability representations, respectively.
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Figure 2. Correlation plot of the fourth order PTS fit using the training set of 10 000 points for (a)
the diagonal elements and (b) for the off-diagonal elements of the (3X3) polarizability tensor. The

RMSE of the fit is 0.024 A3 or ~0.53%.
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As can be seen, the correction to the three-body representation made at the ocg?)

representation is ~37%, a valuable improvement considering only a marginal increase in the

computational complexity. To note, the number of operations is O(27N?%) in (xﬁ) and O(54N?) in

ag.}) for the number of atoms N = 5. This result suggests that the four-body representation is quite

suitable for small gas phase systems, similar to the one considered in the present case. In Figure 2

)

we show correlation plots of the training set points fitted with the 0(5? representation. The

uniformity of data spread around the target line (the diagonal) points to the more-or-less equal

goodness of the fit for all the configurations on the broad energy range of [0,6200] cm.
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Figure 3. MD Raman spectra of “N4H" at 200 K. The polarized Iyo (top panel, Eq. 8a),
depolarized lgepol (middle panel, Eq. 8b) components, and the depolarization ratio p (bottom panel)
were calculated using the analytical N4H+_ PES and the presently fitted NdH+_ PTS surfaces. The
harmonic frequencies are shown as red sticks.
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C. The MD simulations

In the calculated spectra we identified the fundamentals (Figs. 3 and S5) and the broad region of
the non-harmonic features (Figure 3 and Figure 4), roughly between 500 and 2000 cm! for the
three isotopologues, that are complementary to the IR spectra studied previously using
theoretical’>’! and experimental methods®®>7 Tables S9-S11 in the supplementary material
summarize the vibrational frequencies and point group symmetries obtained from a normal mode
analysis. In addition, we present the Raman intensities calculated at the MP2/AVTZ level of theory
as implemented in Gaussian.”

The N4H"* complex has three Raman active symmetric fundamental modes, namely, the
N—N---H bend (vs, I1g), No++-H"--:Ny stretch (vo, £7), and N—N stretch (vi, X7), with the frequency
labels (vi) adopted from the experiment>® and our previous work.*® The corresponding harmonic
frequencies on N4H+ PES are 264, 436, and 2412 cm™' (Table S9), respectively. The MD
spectrum calculated at 200 K shows two dominant peaks appearing on both the polarized and
depolarized signals (Figure 3) and the peaks are assigned to vs at 260 cm™ and v; at 2420 cm™!.,
respectively. There is a weak peak in the polarized spectrum between 300 and 400 cm™! that may
be loosely assigned to the totally symmetric v2. Concurrently, the depolarization ratio curve clearly
indicates a sharp drop near 345 cm’!, suggesting the presence of a highly symmetric mode which
we think is the Nj---H™--Ny stretch vibration, v2. High level VCI/VSCF calculations using
MULTIMODE, 5MR level of treatment?! predicted several modes, in particular, vs = 260 cm™ and
a pair of two strongly mixed states with the energies 2335/2376 cm™!, where one state is v; although

with some minor ambiguity of assignment. We partially reproduced these calculations using a
lower level of theory: 3MR on a CCSD(T)/AVDZ surface in a direct MOLPRO

implementation.’®>%7¢ We found two highly mixed states of £; vibrational symmetry at 2268 cm’

17



"and 2340 cm!, with the corresponding eigenvectors for state-1: 19% |100000>(vi) + 44%
|000002>(2vs), and for state-2: 50% |100000>(v1). This result appears to agree with the previously
reported ones and suggests a presence of a strongly mixed and nearly resonant pair of a
fundamental and an overtone. Aiding this issue to some degree, the IR experimental study by Ricks
et al’® made an indirect assignment of these IR-inactive modes by matching fundamentals and
combination bands while assuming additivity of fundamentals, resulting in 240 cm™! for vs and
2228 cm™! for vi.

The broad and weak intensity super band spanning 500-2000 cm™! in the N4H* Raman
spectrum contains only one fundamental mode, vs, which is Raman inactive. The band is thus
interpreted as a dense superposition of non-harmonic features such as symmetry allowed
combination bands and overtones of any of the seven fundamentals listed in Table S9. For instance,
any combination of the gerade modes and any even-valued combination of the ungerade modes

will be Raman active.
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Figure 4. The Raman MD spectra (showing the total intensity) for “N4sH*,'*N4sD*, and "N4H" at
200 K calculated with analytical N4H+_ PES and the presently fitted NdH+ PTS.
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Targeted application of isotopic substitution provided additional insights. We constructed
MN/*N and H/D isotopic analogs of NsH* and repeated the MD simulations. The calculations
reveal that the broad spectral feature is massively red shifted upon the H/D substitution, as can be
seen in Figure 4. The "“N/"*N isotopic shift revealed the most substantial changes in the symmetric
N—N stretch being redshifted by ~90 cm™!, the symmetric Ny---H"---N; stretch redshifted by ~15
cm’!, and the symmetric N—N---H bend redshifted by ~9 cm™!. The broad band remained virtually
unaffected by the heavy nitrogen; therefore, it is presently attributed to vibrations dominated by

the proton motion. (See the supplementary material for more details on the isotope spectra.)

D. a-DMD simulations of Raman activity

Here we discuss mode assignment and the nature of non-harmonic spectral features
identified in the MD Raman spectrum. Each DMD trajectory was propagated at a scanned
frequency w,, up to 10 ps with a 0.2 fs time step. We used the frequency resolution of Aw,= 25
cm’!. The starting point was always the global minimum structure optimized on the analytical
N4H+_ PES (Table S5) and zero velocities. The electric field strength is tuned to elicit appreciable
absorption of energy at a given frequency range, i.e., some of the low frequency modes required a
stronger field. An ¢-DMD spectrum is generated at the w,, points from the averaged absorbed
energies (Eq. 11) collected at the end of each of the driven trajectories.

First, we calibrate the field strength by examining the rate of energy absorption using a
strongly Raman active mode as a reference. Several values of the field strength were tested, from
100 to 500 mV/bohr, and Figure 5 shows a well-behaved and clearly identifiable set of resonances
in the high frequency symmetric N—N stretch range between 2200 and 2600 cm™ with isotopic

shifts upon *N/!SN and H/D substitutions and with field strength of 350 mV/bohr. The maximum
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peak position is 2400 cm™! for N4H* and “N4D*, and 2325 ¢cm™! for "'N4H" isotope, which are
near their harmonic values (Tables S9-S11). One can see that the total absorbed energy (Ipmp) at
the end of the driving is roughly equal to the frequency of the vibrational resonance and well below
the NoH" + N> dissociation limit of ~6000 cm™ .2 This serves as a ‘rule-of-thumb’ for identifying

true resonances while helping distinguish them from spurious ones.

4000

"= 3000 —

2000 —

IDMD / cm

1000 —

0 T | T | T | T |
2250 2300 2350 2400 2450 2500

Frequency Jem’

Figure 5. The parallel scattering a-DMD spectrum of “N4H*,!*N4D* and '>N4H" in the high
frequency range calculated with the analytical N4H+_PES and the presently fitted N4H+_ PTS.

The electric field strength is 350 mV/bohrs with the initial orientation along the molecular axis.

We proceed by investigating a possible Fermi resonance in the Raman regime between the
gerade symmetric N—N stretch (vi) and the ungerade N---H"--:N bend overtone (2vs). This
overtone was identified, but not discussed, as a Fermi-like resonance in the previous experimental
study>® and the VSCF/VCI quantum vibrational study.?! Yet, these two transitions, vi and 2ve, are
nearly degenerate in "“N4H*. The corresponding harmonic values on the analytical NdH+_ PES
are 2412 cm™ and 2 X 1223 cm’!, (Table S9), respectively, with a gap of only 34 cm™ and are

easily resolvable by the 10 ps DMD trajectories employed presently. Driving the polarizability at
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the peak of the vi DMD absorption, 2400 cm™, in a parallel scattering regime yields a highly
suggestive interplay of intermodal energy transfer. Strong evidence of a Fermi resonance, in our
interpretation of the DMD dynamics, is seen in Figure 6 (the black curve) and Figures S6-S8 as
large N—N stretch displacements in the early stages of the driving 0-7 ps. The energy and the As;
coordinate (the gerade N—N stretch, vi) are excited immediately at the onset of the electric field
indicating a resonant absorption, while the coordinates characteristic of the v¢ mode, namely, As7
and Asy, are weakly excited or are unexcited at all. Their amplitudes remain small and only begin
to sharply increase at the later stage of the trajectory, near the 7 ps mark, indicative of an onset of
a second resonance. At exactly the same time the As; coordinate has stopped being excited, seen
in Figure 6 as the flattening of the curve. In other words, after 7 ps of electric field exposure, the
vibrational energy absorption in the vi fundamental mode has been saturated, while simultaneously
the v¢ mode overtone, described primarily by As7, has begun to absorb energy resulting in what
we call a bi-modal excitation. That the energy is being continuously absorbed, as opposed to being
oscillatory and partially released back to the field due to detuning, is suggested by the smoothly
increasing absorbed energy curve. There is a question of whether the overtone absorption at 7 ps
arises due to mode v directly interacting with the field (the direct absorption pathway) or via an
efficient two-step mechanism: field => vi => 2vs (the resonant vibrational energy transfer “VET”
pathway). In either case, beginning at the 7 ps mark both the vi fundamental and the 2vs overtone
are excited and are interacting or exchanging energy, a signature of a Fermi resonance in the

classical regime.
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Figure 6. The average absorbed energy (top panel, Eq. 11) and averaged symmetrized
displacements (Eq. 12) of the vi fundamental (Asi, middle panel) and the 2vs overtone (As7, bottom
panel) along each of the a-DMD trajectories driven at the corresponding symmetric N=N stretch
frequencies of *N4H" (2400 cm™), “N4D* (2400 cm™') and "N4H* (2324 cm™!). The strength of

the electric field was 350 mV/bohr in a parallel scattering regime.

Verifying the direct overtone absorption pathway, we scanned the frequencies slightly to
the blue of the fundamental v; peak, that is, in the 2400 and 2450 cm’! range using the same field
parameters: 350 mV/bohr in a parallel scattering regime. No resonances were identified in this
case or with the stronger field, 700 mV/bohr. Switching to a perpendicular scattering regime, i.e.,
with P along the molecule axis and with S perpendicular to it, we identified a single peak at ~2420
cm’! using the stronger field, 700 mV/bohr (Figure S10). Coordinate analysis revealed weakly
excited stretching coordinates, ~0.05 A, in the early stages 0-5 ps, followed by a sharp increase in

the bending coordinates at 7 ps, suggesting the presence of a Raman active bending transition at
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this frequency, which can only be the 2v¢ overtone (Figure S11). Since it appears to scatter at 2420
cm’! only in the perpendicular direction, the 2400 cm™! parallel scattering trajectory described
above must likely involve the VET vi/2vg coupling pathway. From this we can also deduce that
the level splitting should be of the order of ~20 cm’!.

Nevertheless, it is instructive to test the VET hypothesis explicitly. To this end we
employed elements of two-dimensional “pump-probe” spectroscopy. Using the 2400 cm™! a-DMD
trajectory as a pump acting to excite vi up to ~7 ps, the time necessary to active the transition to
2vs, we ‘turn on’ the probe by switching off the electric field and recording (probing) the resulting
dynamics. A probe duration of 2 ps was sufficient to observe a decay of the As; coordinate (the vi
fundamental) accompanied by rapid excitation occurring in the As; coordinate (the 2vs overtone).
These curves are shown in Figure S12. There is a clear indication of a rather fast vibrational energy
flow from the excited fundamental to the overtone. Fitting an exponential decay formula to the
fundamental mode coordinate: As, (t) = Aexp(—t/1) + B yielded a value of 7= 466 fs for the
lifetime (see Figure S12). If we assume a resonant energy level scheme and apply the golden rule
treatment to this process, the lifetime can be used to find the Fermi resonance’s coupling matrix
element as V = \/h/Tp(E)T The density of states can be approximated as the number of final
states N = 4, (I, X I, = 2%, + A,), divided by the total energy absorbed by the trajectory E =
1500 cm'!, as seen at the 7 ps mark of Figure 6, treating all other states below E as unavailable.
Thus, writing p(E) = N/E gives an upper bound for the coupling matrix element V' =26 cm™'.
The high-quality quantum mechanical calculations of Yu et al.®!' give the level splitting 6E = 41
cm! or equivalently V= 8E /2 =20 cm’!, assuming a two-level interaction picture. This pump-
probe derived estimate appears to agree well with the quantum result and the DMD calculated peak

difference described above.
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As a control simulation of the presence of the Fermi resonance, we employ isotopic
substitution, namely, for the isotopic substituted species *N4sD* and "N4H" such a mode mixing
along with an energy transfer interplay is not seen as taking place (Figs. 6, and S9 red and green
curves, respectively). In the “N4D" case, the symmetric N—N stretch fundamental is virtually
unchanged while the N-N-D bend overtone is expected to be at 2 x 893 = 1786 cm™! (the harmonic
values, Table S9), a ~600 cm™! gap. In the >N4H" case, the symmetric N—N stretch is isotopically
shifted to 2330 cm™ and 2ve =2 X 1220 = 2440 cm™! (the harmonic values, Table S10) a 110 cm’
U gap. If we drive these systems at their respective vi fundamental frequency, corrected for
anharmonicity by performing several exploratory drives, we see evidence of regular uni-modal
excitation profiles. That is, the respective Asi coordinates corresponding to v; in both
isotopologues, '"N4H* and “N4D* are increasing relatively smoothly, without indication of an
abrupt change. Meanwhile, the bend coordinates Ass-sio are unexcited and the complementary
stretch coordinates (Asz-s4) are slightly excited very early but remain stationary for the duration of
the driven trajectories. These calculations strongly suggest that the vi/2ve resonance is absent in
the two isotopologues.

As a final remark, we note that our c-DMD simulations do in fact reveal the Raman active
overtone of the asymmetric N---H"---N stretch (v4) identified in the MD spectrum (Figure 4) as
part of the broad spectral feature between 500-2000 cm'! that shifts upon H/D isotopic substitution.
We remind that in our previous NsH" work® on assigning the IR spectrum using u-DMD we
identified the N---H*---N asymmetric stretch fundamental at 775 cm™. The high level VSCF/VCI
calculations®! predicted it at 758 cm™!. Attempting to find a characteristic resonance in the 500-
2000 cm! feature of the Raman spectrum, we drive near the center of the broad band, which

happens to roughly correspond to 2v4 at 2 X 775 = 1550 cm’'. It is known that due to the very
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small intensity of the band one must use a much stronger electric field to incite an inherently weak
overtone transition, as we observed previously in related applications.!>** A 700 mV/bohr value
proved to be sufficient. Figure 7 summarizes this calculation. We note an early bump in the
absorbed energy accompanied by a similar bump in the N---H"--N displacement Ass. It is followed
by the fast and monotonically increasing As4 with the other ¥ symmetry displacements, Asi-s3,
remaining smaller by an order of magnitude. The angular displacements are virtually zero
suggesting that the I1 symmetry modes are not being excited. Only after ~13 ps of field exposure
when the 2v4 overtone has clearly been excited, do the other modes begin to follow as all other
possible combination bands begin to respond to the field. This result, in conjunction with our
isotope-derived conclusions stated above, provides solid evidence that the 500 and 2000 cm’!
region is dominated by the parallel-proton-transfer bands. Based on VSCF/VCI calculations®! and
symmetry rules,!® we expect additional N4H* Raman active combination bands and overtones

between 500-2000 cm™, e.g. vatvy, vatvs, vet vz, and 2v; .
g
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Figure 7. The average absorbed energy (top panel) and averaged symmetrized stretch
displacements, Asi4 (middle panel), and averaged symmetrized bend displacements, Ass.io
(bottom panel), (Eq. 12) along the parallel scattering a-DMD trajectory for the asymmetric
N---H*--N stretch overtone 2v4 of NsH* driven at 1550 cm™!. The intensity of the electric field is
700 mV/bohr.

IV. CONCLUSIONS

We have presented new calculations of the Raman spectra of the linear centrosymmetric N4H" ion
using first principles molecular dynamics simulations, namely, employing the previously
published CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (NsH*_PES) and a newly fitted
CCSD(T)/aug-cc-pVTZ-tr polarizability tensor surface (N4H* PTS). To represent the PTS in
terms of a permutationally invariant polynomial (PIP) basis, we utilize a recently described

formulation for computing the polarizability using a many-body expansion in the orders of dipole-

dipole interaction pairs. We examined three- and four-body expansions, and showed that the four-
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body representation, with the relative RMSE of 0.53%, is quite suitable for N4H'. Future
developments related to PTS fitting are currently being investigated in our ongoing work on linear
parameterization of PTS and associated developments on tensor parameterization approaches
using linear regression techniques.

We have also described a new approach for generating training sets, for fitting PTS, DMS
and PTS, by superposing and pruning (or contracting) trial sets obtained from NVE trajectories so
that the distribution of potential energy points is as close to uniform as possible. This new approach
allows to take the strategy of first using a low-level method for the generation of the extended
NVE trial sets, e.g., at a DFT level, and then using the contracted set configurations to calculate
the energy, gradient, polarizability, and its gradient at a higher level of theory, e.g., MP2 or
CCSD(T).

The extensive MD and polarizability-driven (¢-DMD) simulations reveal several major
features in the Raman spectrum:

(i) A strong Raman activity at 260 cm™! and at 2400 cm™! corresponding to the symmetric

fundamental N—N---H bend (IT,) and symmetric fundamental N—N stretch (X]) modes,

respectively. Weaker activity was identified at 345 cm! and assigned to the fundamental
symmetric No---H'--:N3 (27) stretch vibration. These assignments are in close agreement with the
experiment.

(i) A very broad Raman active region on 500-2000 cm’! assignable as a dense
superposition of non-harmonic features involving proton transfer motion, such as symmetry
allowed combinations (v4+v7, v2t+vs, and vet v7) and overtones (2v2 and 2v4). The calculations
suggest that this region is dominated by parallel proton transfer bands, such as one identified as

the overtone of the N---H"---N asymmetric stretch £ fundamental of 775 cm’!.
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(iii) Existence of a Fermi-like resonance in the Raman spectrum near 2400 cm™! between

one quantum of the X7 N—N stretch and two quanta of the I'T, fundamental, corresponding to the

perpendicular N---H"--:N proton transfer. This resonance was interrogated in detail by two
unrelated calculations, (1) differentiating the parallel and perpendicular Raman scattering regimes,
which located, respectively, the fundamental excitation at 2400 cm™ and the overtone excitation
at 2420 cm’!, suggesting the interaction of the order of 20 cm!; and (2) by setting up a two-
dimensional (pump-probe) “experiment” which showed fairly efficient energy transfer from the
excited fundamental to the overtone with the transition lifetime of 466 fs, corresponding to the
(upper bound of) Fermi interaction matrix element of ~26 cm™'. Both above estimates are in good

agreement with the previously reported high-level VSCF/VCI calculations.

SUPPLEMENTARY MATERIAL

See supplementary material for additional information on formation of a training set by
pruning trial data, least-square optimization procedure, N4H" optimized geometry, harmonic
frequencies, IR and Raman intensities, molecular polarizability data, MD spectra, driven molecular
dynamics coordinate analysis, a covariant symmetrization scheme, and details of the polarizability

tensor.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No.
CHE-1855583. This work was also supported in part by research computing resources and
technical expertise via a partnership between Kennesaw State University’s Office of the Vice

President for Research and the Office of the CIO and Vice President for Information Technology.”

28



ALK acknowledges the use of computational resources of the Cherry L. Emerson Center for

Scientific Computation.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding authors upon

reasonable request.

References

(1) E. Fermi, Z. Phys. 71, 250, (1931).

(2) S. Roy, P.J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, J. Raman Spectrosc. 41,
1194, (2010).

(3) R. B. Wright and C. H. Wang, J. Chem. Phys. 58, 2893, (1973).

(4) R. Lemus, M. Sanchez-Castellanos, F. Pérez-Bernal, J. M. Fernandez, and M. Carvajal, J.
Chem. Phys. 141, 054306, (2014).

(5) G. Tejeda, B. Matg, and S. Montero, J. Chem. Phys. 103, 568, (1995)

(6) M. Basire, F. Mouhat, G. Fraux, A. Bordage, J.-L. Hazemann, M. Louvel, R. Spezia, S.
Bonella, and R. Vuilleumier, J. Chem. Phys. 146, 134102, (2017).

(7) L. A. Verzhbitskiy, A. P. Kouzov, F. Rachet, and M. Chrysos, J. Chem. Phys. 134, 194305,

(2011).

29



(8) L.R. McCunn, J. R. Roscioli, M. A. Johnson, and A. B. McCoy, Phys. Chem. B 112, 321,
(2008).

(9) M. Kaledin, A. L. Kaledin, J. M. Bowman, J. Ding, and K. D. Jordan, J. Phys. Chem. A 113,
7671, (2009).

(10) Q.-R. Huang, Y.-C. Li, T. Nishigori, M. Katada, A. Fujii, and J. Kuo, J. Phys. Chem. Lett.
11, 10067, (2020).

(11) N. R. Samala and N. Agmon, Chem. Phys. 514, 164, (2018).

(12) M. Kaledin, A. L. Kaledin, and J. M. Bowman, J. Phys. Chem A 110, 2933, (2006).

(13) D. C. McDonald II; J.P. Wagner, A. B. McCoy, and M. A. Duncan, J. Phys. Chem. Lett. 9,
5664, (2018).

(14) Q.-R. Huang, R. Shishido, C.-K. Lin, C.-W. Tsai, J. A. Tan, A. Fujii, and J. -L. Kuo,
Angew. Chem., Int. Ed. 60, 1936, (2021).

(15) D. Boutwell, O. Okere, O. Omodemi, A. Toledo, A. Barrios, M. Olocha, M. Kaledin, J.
Phys. Chem. A 124, 7549, (2020).

(16) Q.-R. Huang, T. Endo, S. Mishra, B. Zhang, L.-W. Chen, A. Fujii, L. Jiang, G. N. Patwari,
Y. Matsuda, and J.-L. Kuo, Phys. Chem. Chem. Phys. 23, 3739, (2021).

(17) G. Zundel, W.D. Lubos, and K. Kolkenbeck, Can. J. Chem, 49, 3795, (1971).

(18) S. Mishra, H.-Q. Nguyen, Q.-R. Huang, C.-K. Lin, J.-L. Kuo, and G. N. Patwari, J. Chem.
Phys. 153, 194301, (2020).

(19) P. Atkins, J. de Paula, J. Keeler. Atkins’ Physical Chemistry, 11th ed. (Oxford University
Press, UK, 2018).

(20) E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular vibrations (Dover, New York, 1980).

(21) H. J. Zeng and M. A. Johnson, Ann. Rev. Phys. Chem. 72, 667, (2021).

30



(22) R. Roscioli, L. R. McCunn, and M. A. Johnson, Science 316, 249, (2007).

(23) M. V. Vener and J. Sauer, Chem. Phys. Lett. 312, 591, (1999).

(24) M. V. Vener, O. Kuhn, and J. Sauer, J. Chem. Phys. 114, 240, (2001).

(25) Q. Yuand J. M. Bowman, J. Chem. Phys. 146, 121102, (2017).

(26) J. Dai, Z. Bacic, X. Huang, S. Carter, and J. M. Bowman, J. Chem. Phys. 119, 6571, (2003).
(27) T. K. Esser, H. Knorke, K. R. Asmis, W. Schollkopf, Q. Yu, C. Qu, J. M. Bowman, and J.
Kaledin, J. Phys. Chem. Lett. 9, 798, (2018).

(28) A.B. McCoy, X. C Huang, S. Carter, M. Y. Landerweer, and J. M. Bowman, J. Chem. Phys.
122, 061101, (2005).

(29) C. H. Duong, O. Gorlova, N. Yang, P. J. Kelleher, M. A. Johnson, A. B. McCoy, Q. Yu, and
J. M. Bowman, J. Phys. Chem. Lett. 8, 3782, (2017).

(30) R. Hooper, D. Boutwell, and M. Kaledin, J. Phys. Chem. A 123, 5613, (2019).

(31) Q. Yu, J. M. Bowman, R. C. Fortenberry, J. S. Mancini, T. J. Lee, T. D. Crawford, W.
Klemperer, and J. S. Francisco, J. Phys. Chem. A 119, 11623, (2015).

(32) K. Terrill and D. J. Nesbitt, Phys. Chem. Chem. Phys. 12, 8311, (2010).

(33) M. Kaledin and C. A. Wood, J. Chem. Theory Comput. 6, 2525, (2010).

(34) D. Verdes, H. Linnartz, J. P. Maier, P. Botschwina, R. Oswald, P. Rosmus, and P. J.
Knowles, J. Chem. Phys. 111, 8400, (1999).

(35) M. Mladenovic and E. Roueff, Astron. Astrophys. A 144, 566, (2014).

(36) M. E. Tuckerman and G. J. Martyna, J. Phys. Chem. B 104, 159, (2000).

(37) D. Boutwell, D. Pierre-Jacques, C. Tyler, J. Dyke, and M. Kaledin, J. Phys. Chem. A 126,
583, (2022).

(38) M. Neff and G. Rauhut, J. Chem. Phys. 131, 124129, (2009).

31



(39) M. Neff, T. Hrenar, D. Oschetzki, and G. Rauhut, J. Chem. Phys. 134, 064105, (2011).
(40) B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, (2009).

(41) S. Manzhos and T. Carrington, Chem. Rev. 121, 10187, (2021).

(42) G. M. Sommers, M. F. Calegari Andrade, L. Zhang, H. Wang, and R. Car, Phys. Chem.
Chem. Phys. 22, 10592, (2020).

(43) Y. Zhang, S. Ye, J. Zhang, C. Hu, J. Jiang, and B. Jiang, J. Phys. Chem. B 124, 7284,
(2020).

(44) A. Nandi, C. Qu, P. L. Houston, R. Conte, Q. Yu, and J. M. Bowman, J. Phys. Chem. Lett.
12, 10318, (2021).

(45) P. L. Houston, C. Qu, A. Nandi, R. Conte, Q. Yu, and J. M. Bowman, J. Chem. Phys. 156,
044120, (2022).

(46) Q. Yu, C. Qu, P. L. Houston, R. Conte, A. Nandi, J. M. Bowman, J. Phys. Chem. Lett. 13,
5068, (2022).

(47) X. Huang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308, (2005).

(48) O. Omodemi, S. Sprouse, D. Herbert, M. Kaledin, and A. L. Kaledin, J. Chem. Theory
Comput. 18, 37, (2022).

(49) O. Omodemi, M. Kaledin, and A. L. Kaledin, J. Comput. Chem. 43, 1495, (2022).

(50) A. B. McCoy, B. J. Braams, A. Brown, X. Huang, Z. Jin, and J. M. Bowman, J. Phys.
Chem. A 108, 4991, (2004).

(51) A. Brown, A. B. McCoy, B. J. Braams, Z. Jin, and J. M. Bowman, J. Chem. Phys. 121,
4105, (2004).

(52) Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26, (2010).

(53) D. Smith, Chem. Rev. 92, 1473, (1992).

32



(54) E. Herbst, J. Payzant, H. Schiff, and D. Bohme, Astrophys. J. 201, 603, (1975).

(55) E. Vigren, V. Zhaunerchyk, M. Hamberg, M. Kaminska, J. Semaniak, M. af Ugglas, M.
Larsson, R. D. Thomas, and W. D. Geppert, Astrophys. J. 757, 34, (2012).

(56) A. M. Ricks, G. E. Douberly, and M. A. Duncan, J. Chem. Phys. 131, 1045312, (2009).
(57) H. -Y. Liao, M. Tsuge, J. A. Tan, J. -L. Kuo, and Y. -P. Lee, Phys. Chem. Phys. Chem. 18,
20484, (2017).

(58) D. Pierre-Jacques, C. Tyler, J. Dyke, A. L. Kaledin, and M. Kaledin, Mol. Phys. 119,
€1939453, (2021).

(59) K. M. Christoffel and J. M. Bowman, J. Phys. Chem. 85, 2159, (1981).

(60) G. R. Medders and F. Paesani, J. Chem. Theory Comput. 11, 1145, (2015).

(61) A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukamel,
Phys. Rev. Lett. 79, 2702, (1997).

(62) M. Kaledin, A. L. Kaledin, A. Brown, and J. M. Bowman, In Normal-Mode Analysis:
Theory and Applications to Biological and Chemical Systems, Q. Cui, I. Bahar, Eds. (CRC
Press: Boca Raton, FL, 2005).

(63) J. Applequist, J. R. Carl, and K. -K. Fung, J. Am. Chem. Soc. 94, 2952, (1972).

(64) J. Applequist, P. Rivers, and D. E. Applequist, J. Amer. Chem. Soc. 91, 5705, (1969).
(65) B. T. Thole, Chem. Phys. 59, 341, (1981).

(66) P. T. van Duijnen and M. Swart, J. Phys. Chem. A 102, 2399, (1998).

(67) D. A. McQuarrie, Statistical Mechanics (Harper & Row: New York, 1976).

(68) M. Kaledin, J. M. Moffit, C. R. Clark, and F. Rizvi, J. Chem. Theory Comput. 5, 1328,
(2009).

(69) M. Kaledin and D. T. Adedeji, J. Phys. Chem. A 119, 1875, (2015).

33



(70) L. Verlet, Phys. Rev. 159, 98, (1967).

(71) P. H. Berens and K. R. Wilson, J. Chem. Phys. 74, 4872, (1981).

(72) T. M. Miller and B. Bederson, Adv. At. Mol. Phys. 13, 1, (1977).

(73) Y. N. Kalugina and N. Cherepanov, N. Atmos. Ocean. Opt. 28, 406, (2015).

(74) C. Hampel, K. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1, (1992).

(75) M. J. O. Deegan and P. J. Knowles. J. Chem. Phys. Lett. 227, 321, (1994).

(76) H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schiitz, P. Celani, W. Gyorfty, D.
Kats, T. Korona, and R. Lindh, et al. MOLPRO, version 2019.2, a package of ab initio
programs, https://www.molpro.net.

(77) D. Liu and J. Nocedal, Math. Program. B 45, 503, (1989).

(78) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, and H. Nakatsuji. et al.
Gaussian, Inc., Wallingford CT, 2016.

(79) Research Computing, Kennesaw State University, 2021, Digital Commons Training

Materials. 10. https://digitalcommons.kennesaw.edu/training/10 (accessed August 3, 2022).

34


https://digitalcommons.kennesaw.edu/training/10

Supplementary Information

A Fermi resonance and a parallel-proton-transfer overtone in the Raman
spectrum of linear centrosymmetric N4sH": A polarizability-driven first
principles molecular dynamics study

Oluwaseun Omodemi,! Ramsay Revennaugh,! Janiyah Riley,! Alexey L. Kaledin,>"

Martina Kaledin!"

' Department of Chemistry & Biochemistry, Kennesaw State University, 370 Paulding Ave NW,
Box # 1203, Kennesaw, GA 30144, United States of America

2 Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory
University, 1515 Dickey Drive, Atlanta, GA, 30322, United States of America

S.1 Formation of a training set by pruning extensive trial data 2
S.2 Atomic and molecular polarizability benchmark study 6
S.3 N4H" geometries and corresponding polarizability tensors 12

S.4 Harmonic frequencies, IR, and Raman intensities for NsH*, N4D*,

and MD spectra 14
S.5 Driven molecular dynamics coordinate analysis 17
S.6 Least-squares optimization 24
S.7 A covariant symmetrization scheme 25
S.8 Details of the polarizability tensor 26
S.9 References 27



S.1 Formation of a training set by pruning extensive trial data

Our present task is to generate as diverse and global a set of geometries as possible using only
classical trajectories. To this end, we may invoke the ergodicity hypothesis and propagate a “very
long” NVE trajectory of energy Ei and then select every n-th geometry to generate an arguably
high-quality training set for PES/DMS/PTS fitting. Even if assuming the entire coordinate space
has been visited by the trajectory, such a set would necessarily sample significantly more
geometries with the higher potential energies, centered about ~Et/2, and “neglect” many of those
with the lower potential energies. (One is referred to the classical harmonic oscillator.) The regions
near the low energy stationary points, which contain chemically important structures, may be
severely underrepresented in this set. To amend this, one may add to the training set a trajectory
propagated for the same total time, but with a lower total energy, e.g., Ewt/2. Yet, simply combining
these two sets from the two trajectories will put substantially more weight on the structures with
the potential energies near the Ei/4 region than on all other regions, making a combined set better
than the original but still poorly balanced, and so on.

Below, we propose a pruning method to approximately eliminate these types of imbalances
and make equal representation of configurations by the potential energy, i.e., assign appropriate
weights to configurations in a consistent and simple manner. This prescription achieves equal
representation of the points regardless of the energy of the configuration.

For a set of trial potential energy distributions {f(})} derived from microcanonical
trajectories of different total energies, here assumed ergodic for the sake of argument, numbered i

=1, 2, ... each of length N time steps, we seek such coefficients in the “pruned” distribution

9w =) afiv) 5.1

L
that

Vmax

ade((V) M)—o $.2
ac 9 anax B '
0

where o is a constant to be determined by the g(}) normalization requirement (see below), and
where M << N is the size of the pruned set. This condition ensures that g(}) is as close to a uniform,

or a top-hat, distribution as possible by assigning approximately equal weights to the



configurations with the potential energies on [0, V] One may interpret g(V) as a quasi-canonical
ensemble depending on the nature of the mixing coefficients as functions of the total energy; this
will be examined below.

Variation with respect to ¢; yields the unique solution

MN 1
c=a S| : S.3a
Vmax 1
or
MN
Ci=Q Z[S_l]ij S.3b
Vmax ]

where the elements of the overlap matrix S are
Vmax
Sij = f av,nfw) S.4
0
We define the pruned set to be of size
Vmax Vmax

sz dVg(V)chif dei(V)zNZci S.5a

with all trial distributions by construction containing the same number of points N,

Vmax
f avf;(V)=N S.5b
0
which gives by substitution of S.3b
MN
M = Na Z[S_I]U S.6a
Vmax l]



or

Vmax
0= —a—7— S.6b
N2 Y;[87;;

[
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Therefore, the coefficient of set “i” in the pruned set is
MY .[S71]..
N Yi;[$71;;

independent of the energy cutoff parameter V.. and the grid on which fi(V) is defined. The number

[
1

of points taken from set “i” is simply

M; = N¢; S.8

while the normalization condition for the “pruned” set “i”” holds true

S oy 2ulSTy
ZML = Nch = MZij[S_l]ij =M S.9

Finally, the frequency of pruned points (sampling intervals) in each trial set is
=c ! S.10

which is to say, we pick every v;-th point from each of the corresponding trial sets “i” to build the
pruned set of size M that will best resemble a uniform distribution of potential energy points on
[0, Vmax]. Note that the relative weights, defined by the ratios ci/c;, formally depend only on the
overlap matrix, i.e., the shapes of the trial distributions. However, a certain amount of noise in the
pruned distribution will be present due to a somewhat arbitrary way of selecting the M; points
using formula S.10. Still, for large values of M and N the amount of noise is expected to be

insignificant, and a greater number of trial sets will produce a better fit to a uniform distribution.



And since most computing facilities and workstations are equipped with multiple processors,
propagation of several NVE trajectories can be easily carried out in parallel without consuming

excessive wall-clock time.
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Figure S1. A five-trial-set contraction scheme of length N=100001 (each set), of N4H" calculated
at the NsH+ PES level of theory, to a pruned set of size M=10000 using the (a=1, b=2, En,x=6200
cm!) schedule. The pruning intervals are 15, 60, 96, 273 and 283 for the E1, E», E3, E4 and Es trial
sets, respectively. Note the difference in the shapes of the Simple Sum (unpruned) set and the
Optimized Sum (pruned) set.

Our approach to trial set generation is based on partitioning the total energy of the system
in reference to the harmonic ZPE, a dissociation limit or some key transition state, with the NVE

trajectory total energies selected according to the schedule,

aEmax
pi-1"’

E = i=12,.. S.11

where the choice of (a, b, Enax) is guided by particular goals of the fit and system’s properties. For

example, (a=1, b=2, Enu=1/2 ZPE) is expected to produce a trial distribution suitable for most



MD applications at low/room temperature, while (a=3, b=1.5, Enx=3/2 ZPE) yields a set suitable
for both high temperature MD and quantum vibrational calculations, and so on. Figure S1
illustrates this approach with four trial sets of 5001 points each to make a pruned set of 1000
optimally selected points. Unlike the highly imbalanced Simple Sum distribution, the pruned
distribution has a well-defined top-hat shape.
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Figure S2. Trial set mixing coefficients (open circles) appearing in Eq. S.1 and given by Eq. S.7.
The total energies (inverted) are those seen in Figure S1. The red line is an exponential fit to these
points of the form c(E") = c(0) exp(1/(TE™")), with the characteristic temperature 7= 2200 cm’.

Analysis of the mixing coefficients ¢;, which are related to the pruned points per set M,,
suggests an increasing exponential function with the total energy of the microcanonical trial
ensembles. Or, in other words, the nature of the pruned ensemble g(») may be interpreted as an
“inverse” Boltzmann distribution where the lower energy trial NVE ensembles make exponentially
smaller contribution to the pruned ensemble. This is exposed in Figure S2 on the distributions

presented in Figure S1.

S.2 Atomic and molecular polarizability benchmark study

The benchmark study for molecular polarizabilities (Eq. S.12) of N (*S) atom and N», NoH', N4sH*
molecules was carried out using the MOLPRO program. The polarizabilities were calculated
numerically by the differentiation with the respect to the electric field. MP2, CCSD, and CCSD(T)

methods were tested with various basis sets. All polarizabilities for N2, NoH', NsH* were evaluated



at the CCSD(T)/aug-cc-pVTZ optimized geometries and compared to the to the available
experiment'? and high-level theoretical calculations.® In the N4H' case, we used the reference
point at the CCSD(T)/d-aug-cc-pVTZ level of theory. Computer times were reported for the single
point molecular polarizability calculation on a single processor (Table S4).

a= Aiso = (axx + ayy + azz)/g (S 12a)

1 1/2
Qaniso = 7 [(axx - ayy)z + (ay, — azz)z + (az; — ap)? + 6(a2, + a2, + af,z)] (5.12b)



Table S1: Error analysis for the N (*S) atomic polarizabilities.

Method a/ A3 % error
MP2/AVDZ 1.009 8.243
MP2/dAVDZ 1.073 2.436
MP2/VTZ 0.720 34.519
MP2/AVTZ-tr 1.052 4.374
MP2/AVTZ 1.055 4.061
MP2/dAVTZ 1.068 2914
CCSD/AVDZ 1.008 8.336
CCSD-dAVDZ 1.075 2.259
CCSD/VTZ 0.724 34214
CCSD/AVTZ-tr 1.054 4.159
CCSD/AVTZ 1.063 3.400
CCSD/dAVTZ 1.076 2.198
CCSD(T)/AVDZ 1.013 7.881
CCSD(T)/dAVDZ 1.082 1.611
CCSD(T)VTZ 0.723 34,285
CCSD(T)/AVTZ-tr 1.062 3.476
CCSD(T)/AVTZ 1.070 2.771
CCSD(T)/dAVTZ 1.084 1.485
CCSD(T)/AVQZ 1.081 1.723
CCSD(TYAVSZ 1.080 1.795
Experiment! 1.100 0.000




Table S2: Error analysis for the N> molecular polarizabilities.

Method Cixxyy / A3 o/ A3 al A3 % error
MP2/AVDZ 1.475 2.135 1.695 3.701
MP2/dAVDZ 1.506 2.153 1.722 2.184
MP2/VTZ 1.105 2.005 1.405 20.159
MP2/AVTZ-tr 1.494 2.139 1.709 2.878
MP2/AVTZ 1.505 2.136 1.715 2.534
MP2/dAVTZ 1.510 2.141 1.720 2.248
CCSD/AVDZ 1.481 2.199 1.720 2.266
CCSD-dAVDZ 1.511 2218 1.747 0.743
CCSD/VTZ 1.102 2.081 1.428 18.858
CCSD/AVTZ-tr 1.496 2.202 1.731 1.627
CCSD/AVTZ 1.502 2.197 1.734 1.492
CCSD/dAVTZ 1.507 2.201 1.738 1.240
CCSD(T)/AVDZ 1.497 2.224 1.739 1.200
CCSD(T)/dAVDZ 1.529 2.243 1.767 0.381
CCSD(T)/VTZ 1.107 2.092 1.436 18.437
CCSD(T)/AVTZ-tr 1.514 2.225 1.751 0.524
CCSD(T)/AVTZ 1.520 2218 1.753 0.408
CCSD(T)/dAVTZ 1.525 2222 1.758 0.130
Experiment? 1.450 2.380 1.760 0.000




Table S3: Error analysis for the NoH" molecular polarizabilities.

Method Cixxyy / A3 o/ A3 al A3 % error
MP2/AVDZ 1.147 2.020 1.438 1.017
MP2/dAVDZ 1.153 2.025 1.444 0.610
MP2/VTZ 0.985 2.007 1.326 8.746
MP2/AVTZ-tr 1.144 2.016 1.435 1.249
MP2/AVTZ 1.153 2.017 1.441 0.788
MP2/dAVTZ 1.149 2.018 1.438 0.997
CCSD/AVDZ 1.150 2.076 1.458 0.392
CCSD-dAVDZ 1.155 2.081 1.464 0.780
CCSD/VTZ 0.984 2.067 1.345 7.408
CCSD/AVTZ-tr 1.144 2.073 1.454 0.068
CCSD/AVTZ 1.153 2.073 1.459 0.457
CCSD/dAVTZ 1.148 2.073 1.456 0.228
CCSD(T)/AVDZ 1.156 2.090 1.468 1.027
CCSD(T)/dAVDZ 1.162 2.096 1.474 1.436
CCSD(T)/VTZ 0.988 2.077 1.351 7.024
CCSD(T)/AVTZ-tr 1.151 2.085 1.462 0.643
CCSD(T)/AVTZ 1.160 2.084 1.466 1.041
CCSD(T)/dAVTZ 1.155 2.084 1.465 0.815
CCSD(T)/AV5Z3 1.148 2.061 1.453 0.000
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Table S4: Error analysis for the N4H" molecular polarizabilities and computer times per single

processor.
Clxx,yy / Uaniso/A> % error  Time/ sec

Method A3 ozl A3 aigo/A3 % error
MP2/AVDZ 2.403 5.297  3.368 2.985 2.894 6.031 34
MP2/dAVDZ 2.433 5.306  3.391 2.330 2.873 6.710 130
MP2/VTZ 2.026 5.216  3.089 11.016 3.191 3.619 91
MP2/AVTZ-tr 2.414 5.287 3.372 2.881 2.873 6.707 120
MP2/AVTZ 2.430 5.286  3.382 2.585 2.856 7.263 540
MP2/dAVTZ 2.428 5.285 3.380 2.634 2.858 7.199 1897
CCSD/AVDZ 2.409 5485 3.434 1.068 3.076 0.122 578
CCSD-dAVDZ 2.438 5.493  3.457 0.429 3.055 0.801 2017
CCSD/VTZ 2.022 5.407  3.150 9.253 3.385 9.929 1240
CCSD/AVTZ-tr 2.415 5473 3434 1.074 3.058 0.701 1935
CCSD/AVTZ 2.427 5.463 3.439 0.932 3.035 1.424 7462
CCSD/dAVTZ 2.424 5.462  3.437 1.001 3.038 1.356 21312
CCSD(T)/AVDZ 2.427 5.553  3.469 0.064 3.126 1.517 1527
CCSD(T)/dAVDZ  2.458 5.562  3.493 0.615 3.104 0.790 5730
CCSD(T)/VTZ 2.032 5460 3.174 8.557 3.429 11.349 4338
CCSD(T)/AVTZ-tr 2.434 5.536  3.468 0.096 3.102 0.733 4084
CCSD(T)/AVTZ 2.448 5.525 3474 0.057 3.078 0.055 22115
CCSD(T)/dAVTZ  2.445 5.524 3472 0.000 3.079 0.000 182229
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S.3 N4H" geometries and corresponding polarizability tensors
Figures and Tables below show N4H" molecular geometries and corresponding polarizability

tensors.

Figure S3. N4H" linear geometry and atom numbering. The molecular axis is along Z.

Table S5: XYZ coordinates (A) for the NsH' global minimum structure optimized on the
analytical N4H*-PES (CCSD(T)-F12b/aug-cc-pVTZ), (Dech Symmetry).
The minimum energy is -219.03515571855 Hartree.

Atom X Y Z

0.0000000000 0.0000000000 2.3736107464
0.0000000000 0.0000000000 -2.3736107464
0.0000000000 0.0000000000 1.2766043851
0.0000000000 0.0000000000 -1.2766043851
0.0000000000 0.0000000000 0.0000000000

Tz ZzZzZ

Table S6: Polarizability, c;; data in atomic units for N4H" evaluated using analytical N¢dH+_ PTS at
the optimized geometry listed in the Table S5.

X Y Z

16.3665705316 0.0000000000 0.0000000000
0.0000000000 16.3665705316 0.0000000000
0.0000000000  0.0000000000 37.1473788311

N =< X
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Table S7: XYZ coordinates (A) for the NsH" global minimum structure (Doh symmetry)
optimized using MOLPRO at CCSD(T) /aug-cc-pVTZ level of theory.
The minimum energy is -218.98619507 Hartree.

Atom X Y Z
N 0.0000000000 0.0000000000 2.3767595533
N 0.0000000000 0.0000000000 -2.3767595533
N 0.0000000000 0.0000000000 1.2758541851
N 0.0000000000 0.0000000000 -1.2758541851
H 0.0000000000 0.0000000000 0.0000000000

Table S8: Polarizability, a;; data in atomic units for N4H* evaluated at the optimized geometry
listed in the Table S7.

X Y V4

16.517523384 0.000000000  0.000000000
0.000000000 16.517523385 0.000000000
0.000000000 0.000000000 37.286578143

Caoy (194i) Doq (554, 554i) Don (731, 3251‘ 82510)
E=4741 cm™! E=19887 cm’! E=20188 cm'!

o *%0 %® 3-3

Figure S4. CCSD(T)/aug-cc-pVTZ N4H" transition states. Imaginary frequencies (cm™) and
energies relative the global minimum (cm™') are also given.
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S.4 Harmonic frequencies, IR, and Raman intensities for NsJH*, NsD*, and MD spectra

We run normal mode analysis at the MP2, CCSD(T) levels of theory, and analytic PES surface for

various nitrogen and hydrogen isotopes, namely “NsH*, "N4H", “N4D* to predict harmonic IR

and Raman intensities and to identify “N/!N and H/D isotopic substitution related frequency

shifts. The corresponding Raman active harmonic frequencies on the analytical N4H+_PES for

the N—N symmetric stretch in *N4H" vs. I’N4H" (Tables S9 and S11) are 2412 and 2330 cm™!, for

Ny---H*-:N stretch 436 and 421 cm’!, and the symmetric N-N-H bend 264 and 255 cm’,

respectively. Raman MD spectrum obtained using the analytical N4H+_PTS is shown on Figure

S5. Figure 4 in the main text shows the Raman MD spectra in the range between 500-2000 cm™.

Table S9: “N4H" harmonic vibrational frequencies (in cm™!), IR intensities (km/mol), and
Raman intensities (A*/amu) calculated using optimized structure on the analytical PES, ab initio
MP2, and CCSD(T) with aug-cc-pVTZ basis set. The frequency labels (v;) correspond to the
experimental work* and our previous work.’

Symmetry MP2 MP2 MP2 Analytical CCSD(T) | CCSD(T)
Label freq. IR int. Raman int. N4H'-PES freq. IR int.
v7(I1,) 139 7.48 0.00 141 143 6.55
vs () 258 0.00 1.09 264 265 0.00
va (Zg) 438 0.00 3.84 436 438 0.00
va (ZF) 493 5170.42 0.00 99 159 5421.06
ve (I1,,) 1227 86.36 0.00 1223 1235 86.98
vz (ZF) 2212 241.51 0.00 2376 2366 270.21
vi(Zg) 2246 0.00 32.33 2412 2402 0.00
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Table S10: “N4D* harmonic vibrational frequencies (in cm™), IR intensities (km/mol), and
Raman intensities (A*/amu) calculated using optimized structure on the analytical PES, ab initio
MP2 and CCSD(T) with aug-cc-pVTZ basis set.

Symmetry MP2 MP2 MP2 Analytical CCSD(T) | CCSD(T)
Label freq. IR int. Raman int. N4H'-PES freq. IR int.

vy (M1,) 136 6.65 0.00 137 140 5.81

Vs ( 1l'lg) 258 0.00 1.09 264 265 0.00

va ( 125) 438 0.00 3.84 436 439 0.00

va (1ZF) 352 2596.84 0.00 70 114 2740.81

ve ( M1,) 896 36.21 0.00 893 905 37.16

vs (1Z}) 2211 199.18 0.00 2376 2365 240.32

vi( 125) 2247 0.00 32.33 2412 2402 0.00
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Table S11: >’N4H" harmonic vibrational frequencies (in cm™), IR intensities (km/mol), and
Raman intensities (A*/amu) calculated using optimized structure on the analytical PES, ab initio

MP2 and CCSD(T) with aug-cc-pVTZ basis set.

Symmetry MP2 MP2 MP2 Analytical | CCSD(T) | CCSD(T)
Label freq. IR int. | Raman int. | N4H*-PES freg. IR int.
vr ('L,) | 134 7.03 0.00 136 138 6.17
vs(g) | 250 0.00 1.02 255 256 0.00
va('Z5) | 423 0.00 3.59 421 424 0.00
va('ZE) | 493 | 5168.68 |  0.00 98 160 5419.59
ve (') | 1224 | 87.36 0.00 1220 1233 87.94
vs (') | 2137 | 231.57 0.00 2296 2286 256.44
vi('Z5) | 21709 | 0.00 30.18 2330 2321 0.00
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Figure S5. The MD spectra (the total intensity) for “N4H*,'*N4sD* and!>N4H* at 200 K calculated
with analytical N4H+_PES and the presently fitted N4H+_PTS.

S.5 Driven molecular dynamics coordinate analysis

The following set of bond-angle coordinates (Eq. S. 13) were used in our previous work [5].
These symmetric internal coordinates, s were monitored along the DMD trajectories to visualize

and assign the vibrational modes. The atom numbering is described in the Figure S3.

Sl(Gg) =1r(Ny —N3) +r(N, — N,)

s2(0y) = 1(Ny — N3) —7(N, — N,)

ss(o,) = r(Hs — N3) + r(Hs — N)

s4(oy) = r(Hs — N3) —r(Hs — N,)

S5,6(7g %2,yz) = a(Ny = N3 = Hg)yx + a(Ny — Ny — Hy)y

57,8(75u'xZ; yz) = a(N3—Hs5 — N4)y,x

59,10(7Tu'xz' yz) = a(N; — N3 — HS)y,x —a(N, — N, — HS)y,x (S.13)
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Figure S6. Average absorbed energy (in cm™') and symmetric internal coordinates s;-/0 along the
parallel scattering a-DMD trajectories of *N4H" for the symmetric N—N stretch frequency 2400
cm!. The electric field strength is 350 mV/bohr with the initial orientation parallel to the molecular
axis. The Fermi resonance is confirmed by large displacements of the s5.;0 coordinates from their
equilibrium values at later stage of the trajectory, 7 ps.
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Figure S7. Average absorbed energy (in cm™!) and symmetric internal coordinates ;.70 along the
parallel scattering o-DMD trajectories of *N4D* for the symmetric N—N stretch frequency 2400
cm!, The electric field strength is 350 mV/bohr with the initial orientation parallel to the
molecular axis. The Fermi resonance is absent here, due to small displacements of the s5.1¢
coordinates from their equilibrium values.
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Figure S8. Average absorbed energy (in cm™!) and symmetric internal coordinates ;.70 along the
parallel scattering a-DMD trajectories of "N4H* for the symmetric N—N stretch frequency 2325
cm!, The electric field strength is 350 mV/bohr with the initial orientation parallel to the
molecular axis. The Fermi resonance is absent here, due to small displacements of the s5.1¢
coordinates from their equilibrium values.
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Figure S9. The average absorbed energy (in cm™') and averaged symmetrized displacements, As;
(Eq. 12, main text) along the parallel scattering c.-DMD trajectories for the symmetric N—N
stretch frequencies “N4H* 2400 cm™ (in black), '“N4D* 2400 cm™ (red), and "N4H* 2325 cm’!
(green). The electric field strength is 350 mV/bohr with the initial orientation parallel to the
molecular axis.
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Figure S10. The perpendicular scattering c.-DMD spectrum of *N4H" in the high frequency range
calculated with the analytical N4H+_PES and the presently fitted N4H+_ PTS. The electric field
strength is 700 mV/bohr with the initial orientation perpendicular to the molecular axis.
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Figure S11. The average absorbed energy (in cm™) and averaged symmetrized displacements,
As;i (Eq. 12, main text) along the perpendicular scattering c.-DMD trajectory for the asymmetric
N---H*--:N bend overtone frequency 2420 cm™! of “N4H*. The electric field strength is 700
mV/bohr with the initial orientation perpendicular to the molecular axis.
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Figure S12. Probe dynamics. T = 466 fs.

23



S.6 Least-squares optimization

We define the least-squares function for polarizability fitting in the following way,

W@ =523 O (a0~ ¥ r)’ (514

k=1i,j=1
where k runs over the total of K configurations; i, j are the polarizability tensor’s Cartesian
components X, Y, Z. “REF” refers to reference data obtained in an electronic structure calculation,
which may be of any level of theory, via trajectory propagation or any other comparable sampling

methods. In this form the coefficients of all six independent tensor components are simultaneously

optimized. This formulation is advantageous. The absolute RMS error of the fit is vI/, and the

relative RMS error is defined as

N[

1211 1( ij(rkic)— REF(rk))
12” 1( REF(rk))

To carry out an actual optimization, we differentiate W with respect to ¢ analytically and pass both

RMS(%) = 100

(5.15)

the function and its gradient

W@ =Y D (o) - alFF ) 20D (5.16)
k=1i,j=1

to the BFGS optimizer. With VW being highly non-linear, in a difficult case a typical number of
iterations to reach a tight convergence, e.g. RMS(%) < 1, can be O(10°) with CPU times measured
in days on a single processor workstation. Obviously, this is a major bottleneck when the total
polynomial order and size of the training set need to be increased. However, noticing that both W
and VW can be calculated by partitioning the training set K into any number of independent blocks,
we apply the usual MPI ‘send-receive’ parallelization routine to Eqgs. S.14 and S.16 and nest it
inside the main BFGS driver. With the overhead of a BFGS step being small, the parallelization is
highly scalable, permitting us to run efficient optimizations on a 56-core CPU Intel Xeon “Gold

6132” 2.6GHz node.
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S.7 A covariant symmetrization scheme

1. determine the number of non-zero powers in a monomial: M_NZ{monomial}

Ex: M_NZ{yZ,y13V14Y15V33Y94Ya5} =4

2. define quantity MAX SYM =min[N_ATOM - 1, M_NZ]

where N_ATOM is the number of atoms

3. define quantity MIN SYM =M _NZ - MAX SYM

4. compute the number of times (F%) the atom index (k) shows up in the monomial

Ex: for y2,¥13V1aY15Y33Y94Y 35

F1\=3, F>=3, F3=2, F4=0, F5=1

5. Compare F against the quantity F* = max[MAX SYM - 1, 1]:
a) set by default by =1
b) if x> MIN_SYM; then

if Fr > F*; then by = -1
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S.8 Details of the polarizability tensor

XYZ coordinates in A of configuration 1.

N1 0.00000000 0.00000000 1
N2 0.00000000 0.00000000 2
N3 0.00000000 0.00000000 -1
N4 0.00000000 0.00000000 -2
H5 0.00000000 0.00000000 0
ISOTROPIC POLARIZABILITIES (Ang”3)
1N 1.255024
2 N 0.242878
3N 1.255024
4 N 0.242878
5 H 0.157721
#LAMBDA-2 LAMBDA-3 LAMBDA-4
0.295457 -0.056623 0.427348
# 1-body tensor
3.1535239284 0.0000000000
0.0000000000 3.1535239284
0.0000000000 0.0000000000
# 2-body tensor
-1.5174468517 0.0000000000
0.0000000000 -1.5174468517
0.0000000000 0.0000000000
# 3-body tensor
0.9926978062 0.0000000000
0.0000000000 0.9926978062
0.0000000000 0.0000000000
# 4-body tensor
-0.5040854970 0.0000000000
0.0000000000 -0.5040854970
0.0000000000 0.0000000000
POLARIZABILITY TENSOR [Ang”3]

2.4335549933
0.0000000000
0.0000000000

0.0000000000
2.4335549933
0.0000000000

.27836800
.37975600
.27836800
.37975600
.00000000

.0000000000
.0000000000
.1535239284

.0000000000
.0000000000
.0348937034

.0000000000
.0000000000
.9707912249

.0000000000
.0000000000
.0326839757

.0000000000
.0000000000
.5487280203

(@]
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XYZ coordinates in A of configuration II upon

a cyclic permutation of X.

N2 0.00000000 0.00000000 2.37975600
N3 0.00000000 0.00000000 -1.27836800
N4 0.00000000 0.00000000 -2.37975600
N1 0.00000000 0.00000000 1.27836800
H5 0.00000000 0.00000000 0.00000000
ISOTROPIC POLARIZABILITIES ([Ang”3])
1N 0.242878
2 N 1.255024
3N 0.242878
4 N 1.255024
5 H 0.157721
#LAMBDA-2 LAMBDA-3 LAMBDA-4
0.295457 -0.056623 0.427348
# 1-body tensor
3.1535239284 0.0000000000 0.0000000000
0.0000000000 3.1535239284 0.0000000000
0.0000000000 0.0000000000 3.1535239284
# 2-body tensor
-1.5174468517 0.0000000000 0.0000000000
0.0000000000 -1.5174468517 0.0000000000
0.0000000000 0.0000000000 3.0348937034
# 3-body tensor
0.9926978062 0.0000000000 0.0000000000
0.0000000000 0.9926978062 0.0000000000
0.0000000000 0.0000000000 3.9707912249
# 4-body tensor
-0.5040854970 0.0000000000 0.0000000000
0.0000000000 -0.5040854970 0.0000000000
0.0000000000 0.0000000000 4.0326839757
POLARIZABILITY TENSOR [Ang”3]
2.4335549933 0.0000000000 0.0000000000
0.0000000000 2.4335549933 0.0000000000
0.0000000000 0.0000000000 5.5487280203
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