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Affect detection from wearables in the “real” wild—where people go about their
daily routines in heterogeneous contexts—is a different problem than affect
detection in the lab or in the “quasi” wild (e.g., curated or restricted contexts). The
U.S. government recently supported a program to develop and evaluate the
performance of contemporary affect detection systems in the real-wild along the
dimensions of accuracy, robustness, and generalizability. Evaluations by an
independent testing team revealed that none of the performing teams met the
aspirational performance metrics. Alarmingly, performance was near zero for
several cases. This article is the result of soul searching to reconcile the chasm
between expected and achieved performance in light of past successes of the field.
We discuss the major challenges faced, their implications for future research, and

suggest a path forward.

The ability to autonomously, ubiquitously, accu-
rately, and robustly infer affect as people go
about their daily lives is one of the holy grails of
affective computing. This vision was largely a fantasy
in the early days of the field (roughly 1995-2010), when
researchers were grappling with foundational theoreti-
cal (e.g., what is an emotion?), technical (e.g., how to
measure facial expressions?), and methodological
(e.g., how to represent ground truth?) issues.
Consequently, early affect detection systems mainly
focused on detecting acted affect (i.e, posed expres-
sions), which was followed by the efforts to detect spon-
taneous affect (i.e., nonacted but elicited in response to
a stimulus). This research was mainly conducted in the
lab but would occasionally occur in quasi (e.g., YouTube
videos) or restricted (e.g, classrooms) real-world set-
tings.! Smartphones and wearable sensing ushered forth
by fitness trackers changed everything. Suddenly,
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researchers were able to record various the aspects of
human behavior and physiology (e.g., heart rate, activity,
locations visited, phone use, and social media use) as it
unfolded in the real-world and across a variety of con-
texts, which we refer to as the “real-wild.” When com-
bined with cost-effective computing and advances in
deep learning, the vision of real-world affect detection
from wearables was suddenly within reach. Accordingly,
the past decade (2010 and beyond) has yielded numer-
ous efforts toward fully automated affect detection
in the real-wild. Literature surveys suggest impress-
ive accuracies, such as 65%-97% 60%-99%, and
78%-97%" for stress detection and 65%-81% for other
affective states (anxiety, positive affect, etc).
Notwithstanding that a lack of standardized appro-
aches to validate systems and report results compli-
cates independent verification and comparison, the
promising results have garnered significant attention
beyond the affective computing community—who
would not be excited by a 97% accuracy of stress
detection? For example, the smart health community
is interested in being able to track a person’s emotions
because this can have profound implications for
diagnosis and treatment of numerous mental health
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conditions including depression, anxiety, and bipolar
disorder. Whereas wearable devices can provide con-
tinuous monitoring of physiological signals, converting
these raw values into emotion estimates is a game
changer. Similarly, industrial and organizational psy-
chologists, who study the methods to improve occu-
pational outcomes (e.g., decreasing absenteeism and
improving task performance) are keenly interested in
automatically tracking stress and early warning indica-
tors of burnout, and then there is the military, where
automatic measurement of workload, trust, and other
affect-related constructs are important components
for next-generation teams of humans and intelligent
machines.

But a nagging issue persists in the midst of this
enthusiasm. The ability to detect a complex psycho-
logical construct like affect from commodity sensors
as people engage in everyday activities (e.g., working,
sleeping, leisure, commuting) without restriction (i.e.,
people are moving, dancing, laughing), in varied physi-
cal (e.g., while skiing, meditating, dancing) and social
(e.g., along, with friends, work colleagues) contexts
with high (or even moderate) accuracies seems too
good to be true. It is also inconsistent with psychologi-
cal research questioning the strength of the link
between expressing and experiencing affect and on
the influence of social, environmental, and cultural
factors on affective states.> The major inconsistency
between the promising published results given the
immense complexity of the problem leads us to ask
whether affect detection from wearables in the real-
wild is fact or fantasy or somewhere inbetween?

In 2017, the U.S. Intelligent Advanced Research
Project Agency (IARPA) provided a unique opportunity
to address this question. IARPA’s Multimodal Objec-
tive Sensing to Assess Individuals with Context
(MOSAIC) program aimed to “to develop and validate
unobtrusive, passive, and persistent sensor-based
methods to assess stable and dynamic psychological,
cognitive, and physiological aspects of an individual."
In addition to accuracy, which is the main perfor-
mance measure used in the field, MOSAIC empha-
sized robustness (estimates/predictions had to be
provided even with noisy/missing data) and generaliz-
ability (modeling approaches had to be user-indepen-
dent and reflect real-world experiences).

How did the affect detection systems fare when
put to this rigorous test? The short answer—not very
well—indeed, none of the three teams came close to

2p.6 of the request for proposals available at https://www.iarpa.
gov/research-programs/mosaic and https://osf.io/ax6yg/.
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meeting the target metrics. Even more concerning,
the results were null (zero) in several cases. In an
attempt to reconcile these sobering results with the
aforementioned past successes, we, who were per-
formers on two separate teams, reflect on our experi-
ences by asking: what worked, what went wrong, why,
and where do we go from here?

MOSAIC was structured such that participating teams
collected their own data using different suites of sen-
sors and modeling approaches. However, the evalua-
tion methods and metrics were standardized and
conducted by an independent testing and evaluation
team.

Key Aspects of the MOSAIC Challenge

Participants and Context

Because IARPA focuses on the intelligence community,
the participants had to be employed in occupations
that resemble the demands on the intelligence work-
force. For this reason, relying on convenience samples
(i.e., students/faculty) was not permitted; this compo-
nent itself reflects a major deviation from past affect
detection studies. Further, data collection had to occur
as participants engaged in their normal, everyday rou-
tines, which in prepandemic times entailed commuting
into the office (though remote work was also permitted)
and work-related travel.

Constructs and Ground Truth

The constructs to be measured included physical
health, mental health and well-being, intelligence, per-
sonality, and job performance. Here, we focus on the
measurement of four affect-related constructs: posi-
tive and negative affect, stress, and anxiety. All
“ground truth” measures consisted of validated self-
report questionnaires. Each construct was assessed
as both a stable “trait” once at the start of the study
and also as a contextually varying “state” once per day
(including weekends) for at least two months. Daily
measurement frequency varied by construct, but
affect was measured once per day at some predeter-
mined time (e.g., at either 8am, 12pm, or 4pm local
time) using ecological momentary assessments or
EMAs (i.e., participants received a text to complete a
3-5 min survey). Positive and negative affect were
measured with the 60-item PANAS-X (trait) and 10-
item PANAS-Short (state) measure. Anxiety was mea-
sured with the 20-item STAI (trait) and with single
omnibus item (state). Stress was only measured as a
state, also with a single omnibus item (i.e., “Overall,



how would you rate your current level of stress?”).
Details on scoring and assessment are discussed in
MITRE Corporation’s report.®

Modeling Constraints and Assessing
Performance

Ground-truth data from a subset (20%—40%) of partici-
pants was withheld (i.e., blinded) from the teams
either pseudorandomly or from a separate cohort.
Teams could train and internally validate their models
on the nonblinded data. They submitted predictions
on the blinded data, which were used to assess
performance.

Teams could use any modeling approach but could
only rely on automatically sensed information to generate
predictions. Even demographic information could not be
used unless it was automatically detected and location
coordinates were not permitted. These criteria, along
with the blinding, were established to assess generaliz-
ability to new (unseen) participants. A prediction was
scored if there was a corresponding ground-truth mea-
sure irrespective of whether any sensor data were
recorded. This is an important component of robustness.
Further, all code and data were independently verified by
the testing and evaluation team.

Scoring focused on predicting between-individual
differences (trait measures) and within-individual dif-
ferences (state/daily measures). For trait measures,
the target metric was a correlation of 0.5 or higher
between sensor-based predicted and the self-reported
ground-truth score. Scoring for state measures was a
bit more involved,® but essentially the target was an
R? (proportion of variance explained) of 0.25, which
corresponds to a correlation of 0.5. The 0.5 metric cor-
responds to a Cohen'’s d of about 1.2 sigma (a “large”
effect) or an area under the curve (AUC) of 0.8.

Overview of Team Tesserae and the
Tracking Individual Performance With
Sensors (TILES) Team

We discuss the methods and results of two of the
three participating teams called Tesserae® and TILES.
Both were multidisciplinary, multiorganizational teams
encompassing more than 30 individuals each.

Team Tesserae
Key ideas of team Tesserae were to: 1) collect a large,
geographically diverse dataset over an entire year to

b[Online]. Available: https://tesserae.nd.edu/
°[Online]. Available: https://tiles-data.isi.edu/, https://sail.usc.
edu/tiles/

improve generalizability and understand seasonal
effects; 2) jointly model physiology, behavior, social
interactions, and context by leveraging sensors that
people already use; and 3) develop novel computational
approaches to robustly integrate heterogeneous data
streams. Accordingly, the Tesserae team collected
longitudinal, year-long data from 757 information work-
ers (e.g., engineers, consultants, managers) from five
cohorts distributed across the United States. The sen-
sors included a wearable fitness tracker (Garmin Vivos-
mart 3.0 to collect physical activity, sleep, and heart
rate), a smartphone application (to collect communica-
tion metadata [not content]), Bluetooth beacons (to
track relative location), and social media (Facebook
posts). Modeling approaches ranged from top-down
methods (i.e., theoretically driven features (e.g., time
spent commuting) and standard machine learning [Ran-
dom Forests]) to more bottom-up approaches including
higher order networks and sequential deep learning.
An ensemble approach, where models were trained/
optimized on individual modalities (and combinations
thereof) and selectively deployed based on available
sensor data, was used to address missing data; see
Robles-Granda et al.'s work’ for details.

Team TILES

The key aims of the TILES project were to: 1) collect
data from a working demographic, which experiences
high levels of stress, fatigue, and burnout; 2) jointly
model physiology, behavior, social interactions, and
context using commercially available and unobtru-
sive sensing technologies; and 3) develop novel multi-
modal modeling techniques for uncovering the main
factors contributing to daily changes in well-being.
The TILES team gathered 10 weeks of sensor data
from 212 hospital workers (e.g., nurses, technicians,
therapists) working in different units (e.g., intensive
care, step-down). The suite of passive and wearable
sensors included a wrist-worn fitness tracker (Fitbit
Charge 2 to gather physical activity, sleep, and heart
rate), a fitness garment (OMSignal shirt for high-fidel-
ity heart rate, breathing rate, body movement), a por-
table vocal audio tracker (Unihertz Jelly Pro phone to
capture personal speech patterns [not content]),
Bluetooth hubs and beacons (to track relative loca-
tion, ambient temperature, humidity, light), and a
smartphone application (to collect social media). A
range of modeling approaches were investigated,
including top-down traditional and deep machine
learning as well as bottom-up motif analysis, signal-
aware sequential data imputation, and low-level fea-
turization; see Yan et al.'s work® for details.
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TABLE 1. Results from the MOSAIC challenge on blinded set.

Trait (Criteria: r State (Criteria: R’
of 0.5) of 0.25)
Construct Tesserae | TILES | Tesserae | TILES
Positive affect .16 < .01 < .01 .01
Negative affect < .01 14 < .01 < .01
Anxiety 14 a3 < .01 < .01
Stress - - .01 .03

Summary of Results

The results (see Table 1) support three main conclu-
sions. First, neither team met the program metrics
for either trait (r of 0.5) or state (R? of 0.25) affect
detection. Second, performance for trait detection
was higher than that for state detection. Third, state
detection accuracies were essentially zero with
the exception of stress, where automated methods
explained 1%-3% of the variance in self-reported daily
stress. Further, the accuracies reported in Table 1 were
representative of the other nonaffective constructs. Spe-
cifically, Tesserae achieved a mean r of 0.14 (SD = 0.12)
across 14 traits and a mean R? of 1% (SD = 3%) for 17
states. Equivalent results for TILES were a mean of. 10
(SD = 0.17) for traits and a mean R? of 1% (SD = 4%)
for states.

Whereas it was unsurprising that none of the teams met
the aspirational program metrics, the null results for
affective state detection were especially concerning.
The following challenges arose in response to a request
from the government (IARPA) to opine as to why the
program metrics were not achieved. Here, we focus on
affective state detection since this is the primary focus
of the community and where results were the lowest.

Challenge 1: The Mythical Experience-
Expression Link

Affect detection has historically been rooted on a myth
that there are exist robust and generalizable mappings
between affective expression (e.g. a big smile) and experi-
ence (e.g, feeling happy). Instead, research indicates that
the expression—experience link is weak and modulated by
numerous factors (e.g, context, culture, individual traits).>
Thus outside of carefully controlled, homogeneous, lab
studies, a more realistic expectation is that the link is
“above-chance probabilistic"—i.e., better than guessing.®
Unfortunately, this myth appears to be persistent and is
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now embodied in commercial products, with occasional
caveats in the fine print.®

Challenge 2: Deficiency in Ground-Truth
Measurement

MOSAIC, like many other real-world affect detection
studies, used self-reports as the sole ground-truth
measure. Whereas self-reports are often eschewed as
being subjective, and consequently not reliable and
valid, this is a major misconception, since the field of
psychometrics has demonstrated that despite being
subjected to several biases, self-reports can yield reli-
able and valid data. The issue is that a singular mea-
surement instrument (e.g., a self-report) is inadequate
to measure a complex construct. As noted in Figure 1,
construct deficiency occurs when a measure only
targets a subset of the construct (e.g., self-reports
cannot access subconscious information), whereas
construct contamination occurs when a measure tar-
gets irrelevant information (e.g., self-reports can be
subject to social desirability bias). The obvious solu-
tion is to incorporate a diversity of methods (e.g.,
observer/informant reports/annotations, biomarkers,
such as cortisol) to maximize capture of construct rel-
evant variance. However, this is difficult to implement

4Amazon Rekognition documentation states: “Note that a predic-
tion of an emotional expression is based on the physical appear-
ance of a person’s face only. It is not indicative of a person's
internal emotional state, and Rekognition should not be used to
make such a determination” https://docs.aws.amazon.com/
rekognition/latest/dg/what-is.html(retrieved 8/23/22). Affectiva
makes no such caveat, instead maintaining that “Emotion recog-
nition is completed in iMotions using Affectiva, which uses the
collection of certain action units to provide information about
which emotion is being displayed.” https://imotions.com/blog/
facial-action-coding-system/ (retrieved 8/23/22).
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FIGURE 2. Temporal granularity and temporal misalignment
between affective responses and measurement of ground
truth via ecologically momentary assessments (EMA).

in the wild especially for large-scale longitudinal stud-
ies as in the MOSAIC program.

Challenge 3: Temporal Granularity and
Temporal Misalignment of Ground Truth
Affective computing methods require fine-grained
ground-truth annotations to be precisely aligned to the
sensed signals, which is common for studies in the lab
or quasi-wild, where measurement frequencies range
from milliseconds (frame-level annotation) to a few
minutes. However, ground-truth sampling rates in
MOSAIC were coarse grained (1/day) compared to the
sensors (about 1/sec), so as to not be disruptive to busy
individuals where achieving a modicum of EMA compli-
ance was a major concern. A related problem is that of
misalignment in that there can be significant delays
between experiencing an emotional episode and
reporting it (e.g., participants are handling a stressful
event rather than responding to the EMA). For example,
there was a median 2-hour delay between the onset of
an EMA and the subsequent response in the Tesserae
data. In general, there is the challenge of achieving pre-
cise temporal alignment between the sensor data,
onset of the affective events, and collection of ground
truth for studies in the real-wild (see Figure 2).

Challenge 4: Low-Intensity Affective Responses
High-intensity affective responses can be elicited in
the lab, for example, by inducing pain from heat or
stress via public speaking. In contrast, affective

responses in nonclinical samples largely consist of
low-intensity baseline affect (e.g., neutral, mild relaxa-
tion, or mild anxiety), which are occasionally punctu-
ated by strong emotional responses to events/
triggers. For example, participants in the Tesserae
study reported considerable stress (i.e, 4 or5ona1-5
scale) only 5% of the time. This yielded limited training
samples of high-intensity responses and complicated
machine learning due to the class imbalance problem.

Challenge 5: Low-Fidelity Commodity Sensors

Scalable long-term affect detection entails using com-
modity sensors that people already use, a key principle
of Tesserae and somewhat of TILES, which did include a
higher fidelity physiological sensor (OMSignal shirt) but
was still subjected to considerable motion artefacts.'
The convenience of ambulatory monitoring with wear-
able sensors incurs a tradeoff with respect to the fidelity
of the sensors, such as which components of physiology
can be sensed, sampling rate, susceptibility to motion
artefacts, and other factors. To this point, a recent sur-
vey" of 18 studies comparing wearable photoplethys-
mography (PPG) with gold-standard electrocardiography
(ECG) to measure heart rate variability (HRV) found
excellent alignment between the signals at rest, but pro-
gressively declining correlations as activity increased.
Thus, a major caveat is that the sensors were of lower
fidelity than the research-grade sensors used in the lab.

Challenge 6: Heterogeneity of Contexts

Context can be broadly defined as the physical and social
environment surrounding a measurement. Unlike studies
in the lab or quasi-wild, data collection unfolded across a
range of heterogeneous contexts. Indeed, the MOSA(IC)
program aimed for assessments of “individuals with con-
text.” However, ground-truth data on a person in their
real-world context was only collected once a day, making
it difficult to determine how to integrate context into the
models. Thus, like much of affect detection research,
both the Tesserae and TILES teams adopted context-
general approaches (i.e, a single model was trained
across all contexts), which may be a fatal design decision
if the affect expression—experience link is context depen-
dent as most emotion theories would suggest.>® This
might also explain why results were higher for trait
assessment, which aggregates across contexts than the
context-dependent state assessments.

We discuss implications of the aforementioned chal-
lenges as three conjectures—opinions based on
incomplete information.
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Conjecture 1. Affect Detection in the Lab and
“quasi” Wild Might Be a Different Problem Than
Detection in the “real” Wild

Two salient aspects of current affect detection research
make it particularly alien from affect detection in the
real-wild. First, current work occurs in homogeneous
contexts—i.e., it exists within a particular configuration
of time, space, and environment (e.g., undergraduates
silently viewing 20 minutes of videos designed to elicit
sadness in a lab). This is irrespective of whether affect is
acted, experimentally elicited, or occurs naturally, and it
also applies when experimental control is relaxed as in
the quasi-wild. For example, detecting affect from the
diverse videos of automotive reviews (i.e, the MuSE-CaR
dataset') reflects an expanded but still homogeneous
context.® Second, most current affect detection app-
roaches require the underlying signals (video, audio,
physiology, etc.) to be aligned with fine-grained, tempo-
rally precise annotations (i.e., ground-truth affect; e.g.,
annotating each frame in a video or collecting self-
reports of affect every 15 secs).

Conversely, affect detection in the real-wild must
operate across heterogeneous contexts, which include
multiple activities (work, rest, leisure, housework), loca-
tions (home, office, etc), social interactions (along,
peers, friends, family, etc.), and timescales with unique
rhythms (e.g., diurnal cycles, seasonal effects). It must
also handle coarse-grained, misaligned annotations
because it is implausible to expect people to self-report
affect every few minutes or to have observers provide
fine-grained annotations without resorting to mass sur-
veillance. Thus, research in the real-wild must contend
with challenges posed by heterogeneous contexts and
temporal granularity/misalignment of annotations and
signals, two features, which do not pose major compli-
cations in the lab or quasi-wild.

Conjecture 2. Published Results on Wearable
Sensing in the Wild Might Not Reflect Robust,
Generalizable Performance

Why were the current results completely at odds with
studies reporting impressive accuracies for affect
detection from wearables in the wild (60%-99%23%?
One possibility might be factors specific to the MOSAIC
program, such as the target populations, the infrequent

¢The approach adopted by some commercial vendors of
scraping the web for large volumes of data on affect expres-
sions (e.g., Google images) does involve heterogeneous con-
texts, but it is questionable as to whether it actually entails
affect detection because there is no evidence that actual
emotions are involved (annotating happiness from smiling
faces does not mean the person is happy—see footnote 4).
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(1/day) and exclusive use of self-reports to measure
the ground truth, and the specific survey instruments
themselves. Further, the expedited timescale of 17-20
months from inception, data collection, modeling, to
evaluation might not have promoted a creative, discov-
ery-oriented approach, instead requiring teams to rap-
idly adapt and apply existing affect detection methods,
which might have been ill suited for the real-wild (see
Conjecture 1). We must also acknowledge that our
teams might not have been sufficiently skilled, and other
teams would have been more successful (although simi-
lar results were obtained by a third team).

Alternatively, there might be a cause to question the
veracity of the impressive accuracies reported in pub-
lished studies on affect detection from wearables in the
wild. As we have recently argued,” there is a tendency
to simplify the problem to optimize accuracy at the
expense of robustness and generalizability. Table S18
tabulates a set of design decisions from published stud-
ies that pose threats to robustness and generalizability.
Briefly, these include: 1) quantizing continuously mea-
sured affect into discrete low versus high categories,
while disregarding the more difficult medium category;
2) avoiding the data imbalance problem by balancing
class labels (including testing data); 3) discarding miss-
ing data by only generating estimates (predictions) for
cases with high sensing fidelity; 4) overfitting due to a
lack of strict person-level independence in training and
testing sets; 5) reporting accuracy metrics, which do not
adjust for baseline performance (i.e., when there is class
imbalance) or not considering counterfactual compari-
son models (e.g., shuffling labels); and 6) adopting arbi-
trary criteria for several decisions including cutoffs used
for quantization, number of folds, treatment of missing
data, and so on. To be clear, we are not implying any
nefarious intent, as we have also published studies that
are susceptible to these threats. Instead, we suggest
that the field values/rewards the false idol of accuracy
at the expense of robustness and generalizability.

Conjecture 3. Expectations for High Accuracy in
Low Signal to Noise Conditions Might Be
Implausible in the Real-Wild

It is worth considering why the field expects high or
even moderate accuracies in the real-wild. We argue
that these expectations arise from a tendency to overly
extrapolate findings from so called “biomarkers” (mea-
surable indicators) of mental states and from conflating

fWe cannot disclose specifics due to confidentiality require-
ments since IARPA does not make the results public (per-
sonal communication 01/12/2022).

8Supplementary materials available at https://osf.io/ax6yg/.



a statistically significant effect with the size of the
effect. To illustrate, consider the strength of the biologi-
cally plausible and empirically supported inverse rela-
tionship between HRV and stress.'* A meta-analysis'
of 43 studies comparing differences in HRV for individu-
als diagnosed with posttraumatic stress disorder and
healthy controls at baseline (i.e., without a stressor)
revealed effects (i.e., |[Hedges' ¢|) ranging from .23 to .66
(depending on HRV measure). The average |g| of .43
corresponds to an R? of 4.4%, which can be considered
a medium-sized effect (i.e., Cohen’s d around 0.43). The
vast majority of studies investigating this relationship
occurred in controlled lab conditions (e.g, 77% in
Schneider and Schwerdtfeger's work') using research-
grade sensing (ECG) while restricting movement. These
study constraints increased the signal to noise ratio
(SNR), yet effects were still moderate (i.e., HRV explains
< 5% of the variance).

Conversely, many factors inherent to ambulatory (in
situ) real-world studies on the HRV-stress relationship
diminish SNR, (see review in Martinez et al's work™),
such as the use of commodity sensing (e.g., PPG), which
have lower accuracy (see Challenge 5), unrestrained
movement, lack of clearly defined/measurable stressors,
and lower intensity responses, which cannot be precisely
aligned with the onset of the stressor (see Challenges 3
and 4). Thus, expectations of accuracy must be calibrated
with respect to the SNR ratio, with lab studies involving
biomarkers providing upper bounds. To this point, regres-
sion models predicting self-reported stress from several
HRV measures in the Tesserae study yielded an R? of
about 1%, a small effect (Cohen’s d of 0.2) and only 25%
of the above average meta-analytic effect of 4.4%. Similar
results have been reported for facial expressions,® where
data are lacking on other bimarkers, such as speech and
body movements.

We end with some suggestions for the way forward.

Suggestion 1. Embrace the Potential of
Wearable Sensors

At the risk of throwing the proverbial baby out with the
bathwater, we emphasize that wearable sensors are a
game changer because they enable the study of human
behavior in situ. Although we have argued that these sen-
sors have yet to demonstrate their potential for affect
detection in the real-wild, the challenges are not exclusive
to the sensors themselves, but are more systematic of
the complexity of the problem. Beyond affect detection,
wearable sensors can provide insights into human

TABLE 2. Two-dimensional framework for affect detection

studies.
Environmental Realism
Contextual A
s Lab Quasi-wild Real-world
Variability
. e.g.,
e.g., annotating A
e.g., .. naturalistic
o stress in videos .
Homogeneous eliciting . stress while
. of public .
Contexts stress in speakin taking
the lab P g standardized
events
tests
e.g., eliciting e.g., annotating e.g.,
stress via stress from naturalistic
multiple videos of stress during
Heterogeneous stimuli stressful events unconstrained
Contexts (memory (public daily activities
recall, social speaking, (home, work,
interactions, sporting commute,
etc.) events, etc) sport, etc)

behavior and experiences as it unfolds in the real-world,
finally enabling an escape from the confines of the lab.

Suggestion 2. Focus on Heterogeneous
Contexts

Researchers tend to focus on the lab-to-real-world
continuum but overlook whether the underlying con-
text is homogeneous or heterogeneous. Table 2 pro-
vides a 2 x 3 framework to integrate both dimensions.
Whereas there are an abundance of lab studies and
some quasi-wild studies in homogeneous contexts,
but heterogeneous contexts are rarely considered. We
suggest that affect detection research in heteroge-
neous contexts, but in controlled settings of the lab or
quasi-wild, might provide stepping stones toward
affect detection in the real-wild (i.e., heterogeneous
contexts in the real-world).

Suggestion 3: Recognize That We can not
Simply “Deep Learn” a Solution

Modern affect detection systems have harnessed the
power of deep learning with some success (e.g.,
Majumder et al.'s work'®). Although there is usually
insufficient data for end-to-end training, fine tuning
pretrained models is a promising approach. However,
the major successes of deep learning in object recog-
nition and language understanding might not be repli-
cated for affect detection, which focuses on ill-
defined conceptual entities (feelings and emotions)
rather than well-defined physical attributes (e.g.
object detection and speech recognition). Thus, in
addition to improvements in deep learning methods,
we need complementary advances in how data are
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collected and annotated and an increased scientific
understanding of emotion expression and experience
to achieve breakthrough results on affect detection in
the real-wild.

Suggestion 4: Leverage Alternate Methods to
Collect Ground Truth

There is a need for alternate approaches to collect
ground truth in cases where affective responses are
muted and there are a limited number of opportunities
for self-reports via EMAs. Potential strategies include
triggering EMAs based on the sensed signals (e.g.,
when heart rate is elevated), stratifying EMAs based
on automatically sensed context, scheduling EMAs to
align with specific affect-elicitation events, and adopt-
ing human-in-the-loop machine learning techniques
(e.g., active learning). EMAs can also be comple-
mented by alternate methods, such as day reconstruc-
tion, where participants use structured questionnaires
to reconstruct activities and experiences of the previ-
ous day.

Suggestion 5: Adopt a Multidimensional Value
and Reward System

In addition to the current overemphasis on accuracy,
the field should also consider robustness and gener-
alizability in its value and reward structures, and given
that deep learning methods are increasingly “black-
box,” explainability and bias/fairness should also be
important considerations. A binary categorization (i.e.,
low versus high) of these five factors yields 32 combi-
nations, and a given affect detection system can be
evaluated with respect to this multidimensional
space. Researchers can also develop validity argu-
ments—systematic evidence-based arguments on the
validity of an assessment tool for a particular context.
This is an important first step to change the conversa-
tion from how accurate? to how valid for what
purpose?

The MOSAIC program provided the inspiration to think
big and the means to do so. It resulted in integration of
large multiorganizational, multidisciplinary research
teams, collection of massive longitudinal, in-the-wild
datasets from working professionals (which are avail-
able for research purposes—see footnotes©), new
ways to integrate multimodal sensing streams, and
numerous scientific findings about human behavior,
cognition, emotion, and social interactions in real-world
contexts. By these standards, the program was a
resounding success, despite none of the teams achiev-
ing the deliberately challenging program metrics. So,
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where do we go from here? Whereas it is tempting to
disregard the poor affective state detection results by
adopting the position that the problem of assessing
self-reported affect from sensor streams was ill-defined
to begin with, there is also an opportunity for reflection.
More broadly, do the lack luster results reported here,
mounting critiques of affect detection from affect sci-
entists,®> poor performance of commercial systems for
nonposed expressions,"” and philosophical debates on
the feasibility and ethics of affect detection' suggest a
looming crisis for the field?

A parallel can be drawn to the replication crisis in
the psychological sciences, where more than 60% of
high-impact studies failed to replicate.” Although
there are several debates as to the extent of the crisis,
the general consensus was that there was a problem
with the status quo. This resulted confronting several
methodological shortcomings and adopting reforms
aimed at developing a more rigorous science (e.g., the
new statistics.?® But methodological reforms can only
go so far—values and reward structures need to be
re-examined. In the psychological sciences, statistical
significance (i.e., detecting an effect) at the expense
of robustness and generalizability were rewarded
because null findings were mostly unpublishable. Simi-
larly, affect detection values accuracy and technical
novelty, at the expense of robustness, generalizability,
explainability, and bias/fairness. As the field of affec-
tive computing turns 30 years old, it might also benefit
from reflection and reformation so as to come closer
to realizing its awesome promise and potential.
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