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Affect detection from wearables in the “real” wild—where people go about their

daily routines in heterogeneous contexts—is a different problem than affect

detection in the lab or in the “quasi” wild (e.g., curated or restricted contexts). The

U.S. government recently supported a program to develop and evaluate the

performance of contemporary affect detection systems in the real-wild along the

dimensions of accuracy, robustness, and generalizability. Evaluations by an

independent testing team revealed that none of the performing teams met the

aspirational performance metrics. Alarmingly, performance was near zero for

several cases. This article is the result of soul searching to reconcile the chasm

between expected and achieved performance in light of past successes of the field.

We discuss the major challenges faced, their implications for future research, and

suggest a path forward.

T
he ability to autonomously, ubiquitously, accu-

rately, and robustly infer affect as people go

about their daily lives is one of the holy grails of

affective computing. This vision was largely a fantasy

in the early days of the field (roughly 1995–2010), when

researchers were grappling with foundational theoreti-

cal (e.g., what is an emotion?), technical (e.g., how to

measure facial expressions?), and methodological

(e.g., how to represent ground truth?) issues.

Consequently, early affect detection systems mainly

focused on detecting acted affect (i.e., posed expres-

sions), which was followed by the efforts to detect spon-

taneous affect (i.e., nonacted but elicited in response to

a stimulus). This research was mainly conducted in the

lab but would occasionally occur in quasi (e.g., YouTube

videos) or restricted (e.g., classrooms) real-world set-

tings.1 Smartphones and wearable sensing ushered forth

by fitness trackers changed everything. Suddenly,

researchers were able to record various the aspects of

human behavior and physiology (e.g., heart rate, activity,

locations visited, phone use, and social media use) as it

unfolded in the real-world and across a variety of con-

texts, which we refer to as the “real-wild.” When com-

bined with cost-effective computing and advances in

deep learning, the vision of real-world affect detection

from wearables was suddenly within reach. Accordingly,

the past decade (2010 and beyond) has yielded numer-

ous efforts toward fully automated affect detection

in the real-wild. Literature surveys suggest impress-

ive accuracies, such as 65%–97%,2 60%–99%,3 and

78%–97%4 for stress detection and 65%–81% for other

affective states (anxiety, positive affect, etc).

Notwithstanding that a lack of standardized appro-

aches to validate systems and report results compli-

cates independent verification and comparison, the

promising results have garnered significant attention

beyond the affective computing community—who

would not be excited by a 97% accuracy of stress

detection? For example, the smart health community

is interested in being able to track a person’s emotions

because this can have profound implications for

diagnosis and treatment of numerous mental health
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conditions including depression, anxiety, and bipolar

disorder. Whereas wearable devices can provide con-

tinuous monitoring of physiological signals, converting

these raw values into emotion estimates is a game

changer. Similarly, industrial and organizational psy-

chologists, who study the methods to improve occu-

pational outcomes (e.g., decreasing absenteeism and

improving task performance) are keenly interested in

automatically tracking stress and early warning indica-

tors of burnout, and then there is the military, where

automatic measurement of workload, trust, and other

affect-related constructs are important components

for next-generation teams of humans and intelligent

machines.

But a nagging issue persists in the midst of this

enthusiasm. The ability to detect a complex psycho-

logical construct like affect from commodity sensors

as people engage in everyday activities (e.g., working,

sleeping, leisure, commuting) without restriction (i.e.,

people are moving, dancing, laughing), in varied physi-

cal (e.g., while skiing, meditating, dancing) and social

(e.g., along, with friends, work colleagues) contexts

with high (or even moderate) accuracies seems too

good to be true. It is also inconsistent with psychologi-

cal research questioning the strength of the link

between expressing and experiencing affect and on

the influence of social, environmental, and cultural

factors on affective states.5 The major inconsistency

between the promising published results given the

immense complexity of the problem leads us to ask

whether affect detection from wearables in the real-

wild is fact or fantasy or somewhere inbetween?

In 2017, the U.S. Intelligent Advanced Research

Project Agency (IARPA) provided a unique opportunity

to address this question. IARPA’s Multimodal Objec-

tive Sensing to Assess Individuals with Context

(MOSAIC) program aimed to “to develop and validate

unobtrusive, passive, and persistent sensor-based

methods to assess stable and dynamic psychological,

cognitive, and physiological aspects of an individual.”a

In addition to accuracy, which is the main perfor-

mance measure used in the field, MOSAIC empha-

sized robustness (estimates/predictions had to be

provided even with noisy/missing data) and generaliz-

ability (modeling approaches had to be user-indepen-

dent and reflect real-world experiences).

How did the affect detection systems fare when

put to this rigorous test? The short answer—not very

well—indeed, none of the three teams came close to

meeting the target metrics. Even more concerning,

the results were null (zero) in several cases. In an

attempt to reconcile these sobering results with the

aforementioned past successes, we, who were per-

formers on two separate teams, reflect on our experi-

ences by asking: what worked, what went wrong, why,

and where do we go from here?

OVERVIEWOFMOSAIC
MOSAIC was structured such that participating teams

collected their own data using different suites of sen-

sors and modeling approaches. However, the evalua-

tion methods and metrics were standardized and

conducted by an independent testing and evaluation

team.

Key Aspects of the MOSAIC Challenge
Participants and Context

Because IARPA focuses on the intelligence community,

the participants had to be employed in occupations

that resemble the demands on the intelligence work-

force. For this reason, relying on convenience samples

(i.e., students/faculty) was not permitted; this compo-

nent itself reflects a major deviation from past affect

detection studies. Further, data collection had to occur

as participants engaged in their normal, everyday rou-

tines, which in prepandemic times entailed commuting

into the office (though remoteworkwas also permitted)

andwork-related travel.

Constructs and Ground Truth

The constructs to be measured included physical

health, mental health and well-being, intelligence, per-

sonality, and job performance. Here, we focus on the

measurement of four affect-related constructs: posi-

tive and negative affect, stress, and anxiety. All

“ground truth” measures consisted of validated self-

report questionnaires. Each construct was assessed

as both a stable “trait” once at the start of the study

and also as a contextually varying “state” once per day

(including weekends) for at least two months. Daily

measurement frequency varied by construct, but

affect was measured once per day at some predeter-

mined time (e.g., at either 8am, 12pm, or 4pm local

time) using ecological momentary assessments or

EMAs (i.e., participants received a text to complete a

3–5 min survey). Positive and negative affect were

measured with the 60-item PANAS-X (trait) and 10-

item PANAS-Short (state) measure. Anxiety was mea-

sured with the 20-item STAI (trait) and with single

omnibus item (state). Stress was only measured as a

state, also with a single omnibus item (i.e., “Overall,

ap.6 of the request for proposals available at htt_ps://www.iarpa.
gov/research-programs/mosaic and htt_ps://osf.io/ax6yg/.
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how would you rate your current level of stress?”).

Details on scoring and assessment are discussed in

MITRE Corporation’s report.6

Modeling Constraints and Assessing

Performance

Ground-truth data from a subset (20%–40%) of partici-

pants was withheld (i.e., blinded) from the teams

either pseudorandomly or from a separate cohort.

Teams could train and internally validate their models

on the nonblinded data. They submitted predictions

on the blinded data, which were used to assess

performance.

Teams could use any modeling approach but could

only rely on automatically sensed information to generate

predictions. Even demographic information could not be

used unless it was automatically detected and location

coordinates were not permitted. These criteria, along

with the blinding, were established to assess generaliz-

ability to new (unseen) participants. A prediction was

scored if there was a corresponding ground-truth mea-

sure irrespective of whether any sensor data were

recorded. This is an important component of robustness.

Further, all code and data were independently verified by

the testing and evaluation team.

Scoring focused on predicting between-individual

differences (trait measures) and within-individual dif-

ferences (state/daily measures). For trait measures,

the target metric was a correlation of 0.5 or higher

between sensor-based predicted and the self-reported

ground-truth score. Scoring for state measures was a

bit more involved,6 but essentially the target was an

R2 (proportion of variance explained) of 0.25, which

corresponds to a correlation of 0.5. The 0.5 metric cor-

responds to a Cohen’s d of about 1.2 sigma (a “large”

effect) or an area under the curve (AUC) of 0.8.

Overview of Team Tesserae and the

Tracking Individual PerformanceWith

Sensors (TILES) Team
We discuss the methods and results of two of the

three participating teams called Tesseraeb and TILES.c

Both were multidisciplinary, multiorganizational teams

encompassing more than 30 individuals each.

Team Tesserae

Key ideas of team Tesserae were to: 1) collect a large,

geographically diverse dataset over an entire year to

improve generalizability and understand seasonal

effects; 2) jointly model physiology, behavior, social

interactions, and context by leveraging sensors that

people already use; and 3) develop novel computational

approaches to robustly integrate heterogeneous data

streams. Accordingly, the Tesserae team collected

longitudinal, year-long data from 757 information work-

ers (e.g., engineers, consultants, managers) from five

cohorts distributed across the United States. The sen-

sors included a wearable fitness tracker (Garmin Vivos-

mart 3.0 to collect physical activity, sleep, and heart

rate), a smartphone application (to collect communica-

tion metadata [not content]), Bluetooth beacons (to

track relative location), and social media (Facebook

posts). Modeling approaches ranged from top-down

methods (i.e., theoretically driven features (e.g., time

spent commuting) and standardmachine learning [Ran-

dom Forests]) tomore bottom-up approaches including

higher order networks and sequential deep learning.

An ensemble approach, where models were trained/

optimized on individual modalities (and combinations

thereof) and selectively deployed based on available

sensor data, was used to address missing data; see

Robles-Granda et al.’s work7 for details.

Team TILES

The key aims of the TILES project were to: 1) collect

data from a working demographic, which experiences

high levels of stress, fatigue, and burnout; 2) jointly

model physiology, behavior, social interactions, and

context using commercially available and unobtru-

sive sensing technologies; and 3) develop novel multi-

modal modeling techniques for uncovering the main

factors contributing to daily changes in well-being.

The TILES team gathered 10 weeks of sensor data

from 212 hospital workers (e.g., nurses, technicians,

therapists) working in different units (e.g., intensive

care, step-down). The suite of passive and wearable

sensors included a wrist-worn fitness tracker (Fitbit

Charge 2 to gather physical activity, sleep, and heart

rate), a fitness garment (OMSignal shirt for high-fidel-

ity heart rate, breathing rate, body movement), a por-

table vocal audio tracker (Unihertz Jelly Pro phone to

capture personal speech patterns [not content]),

Bluetooth hubs and beacons (to track relative loca-

tion, ambient temperature, humidity, light), and a

smartphone application (to collect social media). A

range of modeling approaches were investigated,

including top-down traditional and deep machine

learning as well as bottom-up motif analysis, signal-

aware sequential data imputation, and low-level fea-

turization; see Yan et al.’s work8 for details.

b[Online]. Available: htt_ps://tesserae.nd.edu/
c[Online]. Available: htt_ps://tiles-data.isi.edu/, htt _ps://sail.usc.
edu/tiles/
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Summary of Results
The results (see Table 1) support three main conclu-

sions. First, neither team met the program metrics

for either trait (r of 0.5) or state (R2 of 0.25) affect

detection. Second, performance for trait detection

was higher than that for state detection. Third, state

detection accuracies were essentially zero with

the exception of stress, where automated methods

explained 1%–3% of the variance in self-reported daily

stress. Further, the accuracies reported in Table 1 were

representative of the other nonaffective constructs. Spe-

cifically, Tesserae achieved a mean r of 0.14 (SD ¼ 0.12)

across 14 traits and a mean R2 of 1% (SD ¼ 3%) for 17

states. Equivalent results for TILES were a mean of. 10

(SD ¼ 0.17) for traits and a mean R2 of 1% (SD ¼ 4%)

for states.

POSTMORTEM: SIX CHALLENGES
Whereas it was unsurprising that none of the teams met

the aspirational program metrics, the null results for

affective state detection were especially concerning.

The following challenges arose in response to a request

from the government (IARPA) to opine as to why the

program metrics were not achieved. Here, we focus on

affective state detection since this is the primary focus

of the community and where results were the lowest.

Challenge 1: The Mythical Experience–

Expression Link

Affect detection has historically been rooted on a myth

that there are exist robust and generalizable mappings

between affective expression (e.g., a big smile) and experi-

ence (e.g., feeling happy). Instead, research indicates that

the expression–experience link is weak and modulated by

numerous factors (e.g., context, culture, individual traits).5

Thus outside of carefully controlled, homogeneous, lab

studies, a more realistic expectation is that the link is

“above-chance probabilistic”—i.e., better than guessing.9

Unfortunately, this myth appears to be persistent and is

now embodied in commercial products, with occasional

caveats in the fine print.d

Challenge 2: Deficiency in Ground-Truth

Measurement

MOSAIC, like many other real-world affect detection

studies, used self-reports as the sole ground-truth

measure. Whereas self-reports are often eschewed as

being subjective, and consequently not reliable and

valid, this is a major misconception, since the field of

psychometrics has demonstrated that despite being

subjected to several biases, self-reports can yield reli-

able and valid data. The issue is that a singular mea-

surement instrument (e.g., a self-report) is inadequate

to measure a complex construct. As noted in Figure 1,

construct deficiency occurs when a measure only

targets a subset of the construct (e.g., self-reports

cannot access subconscious information), whereas

construct contamination occurs when a measure tar-

gets irrelevant information (e.g., self-reports can be

subject to social desirability bias). The obvious solu-

tion is to incorporate a diversity of methods (e.g.,

observer/informant reports/annotations, biomarkers,

such as cortisol) to maximize capture of construct rel-

evant variance. However, this is difficult to implement

TABLE 1. Results from the MOSAIC challenge on blinded set.

Trait (Criteria: r

of 0.5)

State (Criteria: RRRRRRR2

of 0.25)

Construct Tesserae TILES Tesserae TILES

Positive affect .16 < :01 < :01 .01

Negative affect < :01 .14 < :01 < :01

Anxiety .14 .13 < :01 < :01

Stress – – .01 .03

FIGURE 1. Sources of error in affective ground truth.

dAmazon Rekognition documentation states: “Note that a predic-
tion of an emotional expression is based on the physical appear-
ance of a person’s face only. It is not indicative of a person’s
internal emotional state, and Rekognition should not be used to
make such a determination” htt_ps://docs.aws.amazon.com/
rekognition/latest/dg/what-is.html(retrieved 8/23/22). Affectiva
makes no such caveat, instead maintaining that “Emotion recog-
nition is completed in iMotions using Affectiva, which uses the
collection of certain action units to provide information about
which emotion is being displayed.” htt_ps://imotions.com/blog/
facial-action-coding-system/ (retrieved 8/23/22).
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in the wild especially for large-scale longitudinal stud-

ies as in the MOSAIC program.

Challenge 3: Temporal Granularity and

Temporal Misalignment of Ground Truth

Affective computing methods require fine-grained

ground-truth annotations to be precisely aligned to the

sensed signals, which is common for studies in the lab

or quasi-wild, where measurement frequencies range

from milliseconds (frame-level annotation) to a few

minutes. However, ground-truth sampling rates in

MOSAIC were coarse grained (1/day) compared to the

sensors (about 1/sec), so as to not be disruptive to busy

individuals where achieving a modicum of EMA compli-

ance was a major concern. A related problem is that of

misalignment in that there can be significant delays

between experiencing an emotional episode and

reporting it (e.g., participants are handling a stressful

event rather than responding to the EMA). For example,

there was a median 2-hour delay between the onset of

an EMA and the subsequent response in the Tesserae

data. In general, there is the challenge of achieving pre-

cise temporal alignment between the sensor data,

onset of the affective events, and collection of ground

truth for studies in the real-wild (see Figure 2).

Challenge 4: Low-Intensity Affective Responses

High-intensity affective responses can be elicited in

the lab, for example, by inducing pain from heat or

stress via public speaking. In contrast, affective

responses in nonclinical samples largely consist of

low-intensity baseline affect (e.g., neutral, mild relaxa-

tion, or mild anxiety), which are occasionally punctu-

ated by strong emotional responses to events/

triggers. For example, participants in the Tesserae

study reported considerable stress (i.e., 4 or 5 on a 1–5

scale) only 5% of the time. This yielded limited training

samples of high-intensity responses and complicated

machine learning due to the class imbalance problem.

Challenge 5: Low-Fidelity Commodity Sensors

Scalable long-term affect detection entails using com-

modity sensors that people already use, a key principle

of Tesserae and somewhat of TILES, which did include a

higher fidelity physiological sensor (OMSignal shirt) but

was still subjected to considerable motion artefacts.10

The convenience of ambulatory monitoring with wear-

able sensors incurs a tradeoff with respect to the fidelity

of the sensors, such as which components of physiology

can be sensed, sampling rate, susceptibility to motion

artefacts, and other factors. To this point, a recent sur-

vey11 of 18 studies comparing wearable photoplethys-

mography (PPG) with gold-standard electrocardiography

(ECG) to measure heart rate variability (HRV) found

excellent alignment between the signals at rest, but pro-

gressively declining correlations as activity increased.

Thus, a major caveat is that the sensors were of lower

fidelity than the research-grade sensors used in the lab.

Challenge 6: Heterogeneity of Contexts

Context can bebroadly defined as the physical and social

environment surrounding ameasurement. Unlike studies

in the lab or quasi-wild, data collection unfolded across a

range of heterogeneous contexts. Indeed, the MOSA(IC)

program aimed for assessments of “individuals with con-

text.” However, ground-truth data on a person in their

real-world context was only collected once a day, making

it difficult to determine how to integrate context into the

models. Thus, like much of affect detection research,

both the Tesserae and TILES teams adopted context-

general approaches (i.e., a single model was trained

across all contexts), whichmay be a fatal design decision

if the affect expression–experience link is context depen-

dent as most emotion theories would suggest.5,9 This

might also explain why results were higher for trait

assessment, which aggregates across contexts than the

context-dependent state assessments.

IMPLICATIONS: THREE
CONJECTURES

We discuss implications of the aforementioned chal-

lenges as three conjectures—opinions based on

incomplete information.

FIGURE 2. Temporal granularity and temporal misalignment

between affective responses and measurement of ground

truth via ecologically momentary assessments (EMA).
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Conjecture 1. Affect Detection in the Lab and

“quasi”Wild Might Be a Different Problem Than

Detection in the “real”Wild

Two salient aspects of current affect detection research

make it particularly alien from affect detection in the

real-wild. First, current work occurs in homogeneous

contexts—i.e., it exists within a particular configuration

of time, space, and environment (e.g., undergraduates

silently viewing 20 minutes of videos designed to elicit

sadness in a lab). This is irrespective of whether affect is

acted, experimentally elicited, or occurs naturally, and it

also applies when experimental control is relaxed as in

the quasi-wild. For example, detecting affect from the

diverse videos of automotive reviews (i.e, theMuSE-CaR

dataset12) reflects an expanded but still homogeneous

context.e Second, most current affect detection app-

roaches require the underlying signals (video, audio,

physiology, etc.) to be aligned with fine-grained, tempo-

rally precise annotations (i.e., ground-truth affect; e.g.,

annotating each frame in a video or collecting self-

reports of affect every 15 secs).

Conversely, affect detection in the real-wild must

operate across heterogeneous contexts, which include

multiple activities (work, rest, leisure, housework), loca-

tions (home, office, etc), social interactions (along,

peers, friends, family, etc.), and timescales with unique

rhythms (e.g., diurnal cycles, seasonal effects). It must

also handle coarse-grained, misaligned annotations

because it is implausible to expect people to self-report

affect every few minutes or to have observers provide

fine-grained annotations without resorting to mass sur-

veillance. Thus, research in the real-wild must contend

with challenges posed by heterogeneous contexts and

temporal granularity/misalignment of annotations and

signals, two features, which do not pose major compli-

cations in the lab or quasi-wild.

Conjecture 2. Published Results onWearable

Sensing in theWild Might Not Reflect Robust,

Generalizable Performance

Why were the current results completely at odds with

studies reporting impressive accuracies for affect

detection from wearables in the wild (60%–99%2,3,4)?

One possibility might be factors specific to theMOSAIC

program, such as the target populations, the infrequent

(1/day) and exclusive use of self-reports to measure

the ground truth, and the specific survey instruments

themselves. Further, the expedited timescale of 17–20

months from inception, data collection, modeling, to

evaluation might not have promoted a creative, discov-

ery-oriented approach, instead requiring teams to rap-

idly adapt and apply existing affect detection methods,

which might have been ill suited for the real-wild (see

Conjecture 1). We must also acknowledge that our

teamsmight not have been sufficiently skilled, and other

teamswould have beenmore successful (although simi-

lar results were obtained by a third teamf).

Alternatively, theremight be a cause to question the

veracity of the impressive accuracies reported in pub-

lished studies on affect detection from wearables in the

wild. As we have recently argued,13 there is a tendency

to simplify the problem to optimize accuracy at the

expense of robustness and generalizability. Table S1g

tabulates a set of design decisions from published stud-

ies that pose threats to robustness and generalizability.

Briefly, these include: 1) quantizing continuously mea-

sured affect into discrete low versus high categories,

while disregarding the more difficult medium category;

2) avoiding the data imbalance problem by balancing

class labels (including testing data); 3) discarding miss-

ing data by only generating estimates (predictions) for

cases with high sensing fidelity; 4) overfitting due to a

lack of strict person-level independence in training and

testing sets; 5) reporting accuracymetrics, which do not

adjust for baseline performance (i.e., when there is class

imbalance) or not considering counterfactual compari-

son models (e.g., shuffling labels); and 6) adopting arbi-

trary criteria for several decisions including cutoffs used

for quantization, number of folds, treatment of missing

data, and so on. To be clear, we are not implying any

nefarious intent, as we have also published studies that

are susceptible to these threats. Instead, we suggest

that the field values/rewards the false idol of accuracy

at the expense of robustness and generalizability.

Conjecture 3. Expectations for High Accuracy in

Low Signal to Noise Conditions Might Be

Implausible in the Real-Wild

It is worth considering why the field expects high or

even moderate accuracies in the real-wild. We argue

that these expectations arise from a tendency to overly

extrapolate findings from so called “biomarkers” (mea-

surable indicators) of mental states and from conflatingeThe approach adopted by some commercial vendors of
scraping the web for large volumes of data on affect expres-
sions (e.g., Google images) does involve heterogeneous con-
texts, but it is questionable as to whether it actually entails
affect detection because there is no evidence that actual
emotions are involved (annotating happiness from smiling
faces does not mean the person is happy—see footnote 4).

fWe cannot disclose specifics due to confidentiality require-
ments since IARPA does not make the results public (per-
sonal communication 01/12/2022).
gSupplementary materials available at htt_ps://osf.io/ax6yg/.
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a statistically significant effect with the size of the

effect. To illustrate, consider the strength of the biologi-

cally plausible and empirically supported inverse rela-

tionship between HRV and stress.14 A meta-analysis14

of 43 studies comparing differences in HRV for individu-

als diagnosed with posttraumatic stress disorder and

healthy controls at baseline (i.e., without a stressor)

revealed effects (i.e., jHedges’ gj) ranging from .23 to .66

(depending on HRV measure). The average jgj of .43

corresponds to an R2 of 4.4%, which can be considered

a medium-sized effect (i.e., Cohen’s d around 0.43). The

vast majority of studies investigating this relationship

occurred in controlled lab conditions (e.g., 77% in

Schneider and Schwerdtfeger’s work14) using research-

grade sensing (ECG) while restricting movement. These

study constraints increased the signal to noise ratio

(SNR), yet effects were still moderate (i.e., HRV explains

< 5% of the variance).

Conversely, many factors inherent to ambulatory (in

situ) real-world studies on the HRV-stress relationship

diminish SNR, (see review in Martinez et al.’s work15),

such as the use of commodity sensing (e.g., PPG), which

have lower accuracy (see Challenge 5), unrestrained

movement, lack of clearly defined/measurable stressors,

and lower intensity responses, which cannot be precisely

aligned with the onset of the stressor (see Challenges 3

and 4). Thus, expectations of accuracymust be calibrated

with respect to the SNR ratio, with lab studies involving

biomarkers providing upper bounds. To this point, regres-

sion models predicting self-reported stress from several

HRV measures in the Tesserae study yielded an R2 of

about 1%,15 a small effect (Cohen’s d of 0.2) and only 25%

of the above average meta-analytic effect of 4.4%. Similar

results have been reported for facial expressions,5 where

data are lacking on other bimarkers, such as speech and

body movements.

WAY FORWARD: FIVE
SUGGESTIONS

We end with some suggestions for the way forward.

Suggestion 1. Embrace the Potential of

Wearable Sensors

At the risk of throwing the proverbial baby out with the

bathwater, we emphasize that wearable sensors are a

game changer because they enable the study of human

behavior in situ. Although we have argued that these sen-

sors have yet to demonstrate their potential for affect

detection in the real-wild, the challenges are not exclusive

to the sensors themselves, but are more systematic of

the complexity of the problem. Beyond affect detection,

wearable sensors can provide insights into human

behavior and experiences as it unfolds in the real-world,

finally enabling an escape from the confines of the lab.

Suggestion 2. Focus on Heterogeneous

Contexts

Researchers tend to focus on the lab-to-real-world

continuum but overlook whether the underlying con-

text is homogeneous or heterogeneous. Table 2 pro-

vides a 2� 3 framework to integrate both dimensions.

Whereas there are an abundance of lab studies and

some quasi-wild studies in homogeneous contexts,

but heterogeneous contexts are rarely considered. We

suggest that affect detection research in heteroge-

neous contexts, but in controlled settings of the lab or

quasi-wild, might provide stepping stones toward

affect detection in the real-wild (i.e., heterogeneous

contexts in the real-world).

Suggestion 3: Recognize ThatWe can not

Simply “Deep Learn” a Solution

Modern affect detection systems have harnessed the

power of deep learning with some success (e.g.,

Majumder et al.’s work16). Although there is usually

insufficient data for end-to-end training, fine tuning

pretrained models is a promising approach. However,

the major successes of deep learning in object recog-

nition and language understanding might not be repli-

cated for affect detection, which focuses on ill-

defined conceptual entities (feelings and emotions)

rather than well-defined physical attributes (e.g.,

object detection and speech recognition). Thus, in

addition to improvements in deep learning methods,

we need complementary advances in how data are

TABLE 2. Two-dimensional framework for affect detection

studies.
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collected and annotated and an increased scientific

understanding of emotion expression and experience

to achieve breakthrough results on affect detection in

the real-wild.

Suggestion 4: Leverage Alternate Methods to

Collect Ground Truth

There is a need for alternate approaches to collect

ground truth in cases where affective responses are

muted and there are a limited number of opportunities

for self-reports via EMAs. Potential strategies include

triggering EMAs based on the sensed signals (e.g.,

when heart rate is elevated), stratifying EMAs based

on automatically sensed context, scheduling EMAs to

align with specific affect-elicitation events, and adopt-

ing human-in-the-loop machine learning techniques

(e.g., active learning). EMAs can also be comple-

mented by alternate methods, such as day reconstruc-

tion, where participants use structured questionnaires

to reconstruct activities and experiences of the previ-

ous day.

Suggestion 5: Adopt a Multidimensional Value

and Reward System

In addition to the current overemphasis on accuracy,

the field should also consider robustness and gener-

alizability in its value and reward structures, and given

that deep learning methods are increasingly “black-

box,” explainability and bias/fairness should also be

important considerations. A binary categorization (i.e.,

low versus high) of these five factors yields 32 combi-

nations, and a given affect detection system can be

evaluated with respect to this multidimensional

space. Researchers can also develop validity argu-

ments—systematic evidence-based arguments on the

validity of an assessment tool for a particular context.

This is an important first step to change the conversa-

tion from how accurate? to how valid for what

purpose?

CONCLUDING REMARKS
The MOSAIC program provided the inspiration to think

big and the means to do so. It resulted in integration of

large multiorganizational, multidisciplinary research

teams, collection of massive longitudinal, in-the-wild

datasets from working professionals (which are avail-

able for research purposes—see footnotesb,c), new

ways to integrate multimodal sensing streams, and

numerous scientific findings about human behavior,

cognition, emotion, and social interactions in real-world

contexts. By these standards, the program was a

resounding success, despite none of the teams achiev-

ing the deliberately challenging program metrics. So,

where do we go from here? Whereas it is tempting to

disregard the poor affective state detection results by

adopting the position that the problem of assessing

self-reported affect from sensor streams was ill-defined

to begin with, there is also an opportunity for reflection.

More broadly, do the lack luster results reported here,

mounting critiques of affect detection from affect sci-

entists,5 poor performance of commercial systems for

nonposed expressions,17 and philosophical debates on

the feasibility and ethics of affect detection18 suggest a

looming crisis for the field?

A parallel can be drawn to the replication crisis in

the psychological sciences, where more than 60% of

high-impact studies failed to replicate.19 Although

there are several debates as to the extent of the crisis,

the general consensus was that there was a problem

with the status quo. This resulted confronting several

methodological shortcomings and adopting reforms

aimed at developing a more rigorous science (e.g., the

new statistics.20 But methodological reforms can only

go so far—values and reward structures need to be

re-examined. In the psychological sciences, statistical

significance (i.e., detecting an effect) at the expense

of robustness and generalizability were rewarded

because null findings were mostly unpublishable. Simi-

larly, affect detection values accuracy and technical

novelty, at the expense of robustness, generalizability,

explainability, and bias/fairness. As the field of affec-

tive computing turns 30 years old, it might also benefit

from reflection and reformation so as to come closer

to realizing its awesome promise and potential.
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