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A B S T R A C T   

Some animals including humans use stereoscopic vision which reconstructs spatial information about the 
environment from the disparity between images captured by eyes in two separate adjacent locations. Like other 
sensory information, such stereoscopic information is expected to influence attentional selection. We develop a 
biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual 
saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on 
unbound sets of elementary features. We show that taking into account the stereoscopic information improves 
the performance of the model in the prediction of human eye movements with statistically significant differences.   

1. Introduction 

We are surrounded by three-dimensional space; however, each retina 
captures only a two-dimensional image. Each retinal image individually 
can contain clues for depth information such as shading, looming sizes, 
and occlusion, with the latter including the presence of T-junctions 
(Nakayama et al., 1995; von der Heydt, 2015; Welchman, 2016). In 
addition, binocular vision which uses triangulation by two eyeballs, 
provides a reliable cue for depth and results in vivid three-dimensional 
(3D) perception. Not only is this capability used for range finding, some 
animals with front-facing eyes, including humans, also exploit binocular 
stereopsis for camouflage breaking (Nityananda & Read, 2017); in the 
words of Bela Julesz, “with stereoscopic vision there is no camouflage” 
(Julesz, 1989). This is likely due to the organization of visual scenes into 
objects: camouflage exploits erroneous assignment of perceptual edges 
which is made more difficult by the existence of explicit depth differ
ences at object borders, and their absence within object borders (Adams 
et al., 2019; Poggio & Poggio, 1984). 

Binocular vision has been studied both in neuroscience and in en
gineering, the former primarily focusing on revealing how nervous 
systems achieve stereovision and the latter on finding efficient and 
precise algorithms. In both fields, a major difficulty is the stereo corre
spondence problem: to find out which features in two retinal images 
originate from the same point in 3D space. The problem may seem trivial 
because we effortlessly and quickly solve it in daily life. Nonetheless, it is 

not simple, and the brain devotes multiple cortical areas to solve it 
(Cumming & DeAngelis, 2001; Kumano et al., 2008; Tanabe et al., 
2004). The mechanisms employed in the primary visual cortex have 
been extensively studied, and the “disparity energy model” is widely 
accepted as it agrees well with data from neurophysiological experi
ments (Ohzawa et al., 1990, 1997). 

Binocular information, together with other visual features, not only 
underlies functions like object recognition but presumably also provides 
inputs for the determination of which parts of the visual scene are the 
most relevant, i.e. which require detailed processing. Identifying these 
regions is the task solved by visual selective attention. In general, this is 
a highly complex function which involves perceptual and cognitive 
processes at many levels. An important part of this function is data- 
driven, or bottom-up attention, that finds the most relevant image re
gions based on low-level visual features and their combinations. These 
regions are usually called the most “salient” areas of the scene. The 
seminal work by Koch and Ullman (Koch & Ullman, 1985) established a 
systematic way to find these regions in the form of a saliency map which 
ranks the level of saliency at different locations in the visual scene. 
Predictions of this theory need to be compared with behavioral obser
vations. Two considerations are of relevance here. First, the saliency 
map was originally proposed as a mechanism for covert attention which 
is correlated with, but not identical to, overt attention, i.e. eye move
ments. There are methods to measure behavioral consequences of covert 
visual attention, e.g. (Posner, 1980) but in practice, it is much easier to 
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measure the state of overt attention(Parkhurst et al., 2002) which, as 
mentioned, is known to correlate with covert attention (Deubel & 
Schneider, 1996; Hoffman & Subramaniam, 1995; Moore & Fallah, 
2001; van der Stigchel & Theeuwes, 2007). For this reason, (Parkhurst 
et al., 2002) proposed to use overt attention as an approximation to 
covert attention for the purposes of testing models of the latter. Second, 
the saliency map only takes account of bottom-up information. To 
minimize (though not eliminate) the effects of top-down attention, 
which is goal-directed and depends on the internal state of the observer 
in addition to the visual input (Parkhurst et al., 2002) and later studies 
use a free-viewing paradigm. 

Many models of visual saliency rely on local contrast in low-level 
features such as intensity, color, and orientation. However, a plethora 
of studies in psychology and neurophysiology have shown that visual 
attention is also influenced by the rapid perceptual organization of the 
visual scene into tentative objects rather than the basic features them
selves (Egly et al., 1994; Einhäuser et al., 2008; Nuthmann & Henderson, 
2010; Qiu et al., 2007; Stoll et al., 2015; Zhou et al., 2000). By “tentative 
objects” we mean that even relatively low-level visual processes can 
capture the structure (e.g., foreground and background) of the input 
scene. These tentative objects, or areas that possess “objectness,” are 
called proto-objects (Rensink, 2000). A proto-object based saliency 
model was shown to predict eye fixations with good accuracy (Russell 
et al., 2014). In that model, the combination of edge detection, center- 
surround mechanism, and grouping processes extracts the tentative 
objects based on closure and proximity. While originally this model used 
information from maps of intensity, color, and orientation, it was later 
extended to additionally utilize motion, depth, and texture features (Hu 
et al., 2016; Mancinelli et al., 2018; Molin et al., 2015; Uejima et al., 
2020), and it was also implemented in biofidelic neuromorphic hard
ware (Ghosh et al., 2022; Iacono et al., 2019; Molin et al., 2021; 
Ramenahalli et al., 2013). 

In this paper, we propose a model of biological stereopsis and 
incorporate it into that proto-object based saliency model. While depth 
and disparity features have been integrated into the model previously 
(Hu et al., 2016; Mancinelli et al., 2018), we discuss below why our 
approach employs a different mechanism to exploit binocular disparity 
that is biologically plausible. As in previous work, the output of our 
model is a saliency map, and we compare it with published human 
fixation data obtained while participants freely viewed stereogram im
ages. As we show below, our model shows better predictive performance 
than the original two-dimensional (2D) proto-object based saliency 
model. 

The main novel contributions of our study are: 1) building a bio
fidelic 3D visual saliency model that includes disparity-tuned neurons 
and border-ownership coding neurons in areas V1, V2, and V4, 
achieving proto-object based perception; and 2) applying the model to 
natural 3D scenes and evaluating 3D effects on saliency with fixation 
data collected from humans viewing natural scenes. 

2. Related studies 

2.1. Stereopsis and eye fixations 

Many studies have sought an understanding of how the brain ach
ieves stereoscopic vision. Since Julesz introduced random dot stereo
grams (Julesz, 1971), which do not include any 2D depth cues and 
provide only disparity information, neuroscientists have used these 
stimuli to study brain activity corresponding to depth perception solely 
generated by binocular disparity (Poggio et al., 1985). These experi
ments have also shown that no prior knowledge about objects is needed 
for stereo correspondence because an observer can perceive nontrivial 
image contents only after fusing the stereogram. 

One of the major difficulties of stereoscopic vision is the corre
spondence problem, i.e. to find corresponding features in the two 2D 
images. A cooperative process is an early model to solve this problem, by 

finding matching points using iterative computations which minimize 
an error-measure(Marr, 1982; Marr & Poggio, 1979). While this could 
potentially be realized in the nervous system, the biological system 
seems to process stereovision more rapidly than is expected from an 
iterative process, at least in its early stages. Neurophysiological studies 
have revealed that stereoscopic vision can be explained by the so-called 
disparity energy model, in which binocular simple cells sum the activity 
of monocular simple cells linearly. Subsequently, binocular complex 
cells sum the squared responses of quadrature pairs of the simple cells 
(Ohzawa, 1998; Ohzawa et al., 1990, 1997). Marr and Poggio pointed 
out that combining multi-spatial-frequency filters (i.e., neuronal recep
tive fields) aids to prevent false matches between parts of one image to 
non-corresponding portions of the other image (Marr & Poggio, 1979). 
Their original idea employs a sequential coarse-to-fine structure that 
first computes coarse (low spatial frequencies) disparities and then 
proceeds to finer scales. Later, pooling multi-spatial-frequency features 
to find correspondence points based on information from all scales at 
once (rather than sequentially at different scales) was proposed (Fleet 
et al., 1996). While it is not clear whether the biological system employs 
a sequential mechanism or a simultaneous pooling algorithm, integra
tion over multiple spatial-frequencies has been observed in primate area 
V4 (Kumano et al., 2008) and in primary visual cortex of cat (Baba et al., 
2015), and we adopt it in our model. 

Visual saliency has been widely studied in 2D (Bruce & Tsotsos, 
2005; Hou et al., 2012; Itti et al., 1998; Itti & Koch, 2000; Judd et al., 
2009; Koch & Ullman, 1985; Li, 2002; Niebur & Koch, 1996), see (Borji 
et al., 2013) for a comparative study. While these models approach the 
problem from a mechanistic point of view, deep learning based models 
have also been used, and showed remarkably high performance in pre
dicting human fixations (Cornia et al., 2016; Huang et al., 2015; Kru
thiventi et al., 2015; Kümmerer et al., 2014, 2016; Vig et al., 2014). 
Recently, some studies attempted to incorporate psychological concepts, 
based on Gestalt principles, into saliency models (Russell et al., 2014; 
Zhang & Sclaroff, 2013, 2016). Gestalt psychology argues that the whole 
of an object is more important than individual features for perception. 
This assertion has been supported by neurophysiological studies of 
figure-ground organization coding in visual cortex (Qiu et al., 2007; Qiu 
& von der Heydt, 2005; von der Heydt, 2015; Williford & von der Heydt, 
2016; Zhou et al., 2000) which link perception and neural responses. 

Saliency regarding stereoscopic images has been also studied, 
although not to the extent of 2D saliency. Reports investigating how 
depth information affects human eye movements (Gautier & Le Meur, 
2012; Huynh-Thu & Schiatti, 2011; Jansen et al., 2009; Khaustova et al., 
2013; Lang et al., 2012) showed that, overall, humans tend to fixate 
similar locations in situations with or without binocular information. 
More specifically, the fixation locations are almost the same for 3D and 
2D images in long observation windows (20 s) but different in short 
observation windows (about four or five seconds) (Gautier & Le Meur, 
2012; Jansen et al., 2009; Khaustova et al., 2013). Notably, researchers 
reported a tendency for humans to look at closer points soon after they 
look at an image (Gautier & Le Meur, 2012; Jansen et al., 2009; Lang 
et al., 2012). The effect of 3D cues for visual perception was also 
observed on shorter time scales in a texture segmentation task (Zhaoping 
et al., 2009). The study showed that the 3D process shortens the reaction 
time to segment two textures if and only if the task is difficult for the 2D 
process, which implies that V1 plays a dominant role during the initial 
attentional process, and that extrastriate cortex later provides additional 
information. More specifically, when texture segmentation is suffi
ciently easy, human observers typically require a reaction time of half a 
second to one second to report the location of the boundary between two 
neighboring textures. Their experiments indicate that this reaction time 
is not shortened by adding depth information to visual inputs unless the 
segmentation is so difficult that the reaction time is longer than one 
second. We note that these influences of binocular vision on saliency 
should not be confounded with the effect of ocularity, predicted by (Li, 
2002) and observed experimentally by (Zhaoping, 2008, 2012, 2018); 
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see also the discussion below. 
Based on these behavioral results, researchers have proposed visual 

saliency models for 3D still scenes. Lang et al. calculated “depth priors” 
that indicates how eye fixations of human observers differed between 2D 
images and the corresponding 3D scenes, and they proposed to include 
these priors in existing 2D saliency models (Lang et al., 2012). Wang 
et al. took a Bayesian approach to incorporate depth effects on fixations 
(Wang et al., 2013), in which the parameters for the probability distri
bution were tuned by observed fixation data. Ma and Hang (Ma & Hang, 
2015) proposed another learning-based model that employed a similar 
method for the Judd et al. model (Judd et al., 2009) for 2D static images, 
which includes various features including a face detection mechanism. 
They extended the model to incorporate features from a depth map. In 
these data-driven approaches, the parameters are determined by human 
behavioral data and did not explicitly implement biological mecha
nisms. An alternative biologically plausible binocular segmentation 
model has been proposed, which employs disparity selective V2 neurons 
(Zhaoping, 2002). In that study, intracortical interaction generate the 
stereo correspondence and pre-attentive stereo segmentation on 
random-dot stereograms. The study focused on early visual processing 
involving area V1 and V2 and did not include later processing areas such 
as V4. 

In the context of binocular vision, it is known that dichoptic features 
also affect saliency, which was an important prediction generated by a 
saliency map model implemented in area V1 (Li, 2002). In a series of 
studies, Zhaoping (Zhaoping, 2008, 2012, 2018) showed that these 
features include ocularity. Specifically, she used dichoptic viewing in 
which a center stimulus was presented to one eye and its surround to the 
other. She showed that ocular singletons, in which the center stimulus 
differed from the surround in some feature, e.g. orientation, elicit 
behavior that was consistent with strong saliency at the stimulus loca
tion. Remarkably, this was the case even though under such viewing 
conditions humans are typically not aware to which eye a stimulus is 
presented, i.e. their perception is identical to that of a stimulus in a 
surround field in a monocularly presentation. Although these results are 
highly interesting, we here do not study dichoptic vision but focus on 
complex natural scenes. 

In this study, we implement algorithms inspired by the information 
processing principles employed in the primate brain. More specifically, 
we use the framework of a proto-object based model of perceptual or
ganization and attentional control (Russell et al., 2014) and integrate a 
biologically-plausible stereovision mechanism in this model. 

Previously, Hu and collaborators published a proto-object based sa
liency model that includes depth features (Hu et al., 2016). This model 
takes a depth map as input along with a 2D image, which means depth 
information must be calculated or measured before it is used in the 
model. The depth map is then treated similar to any other feature map, e. 
g., the intensity map. Another model, proposed by Mancinelli et al. 
(Mancinelli et al., 2018) takes two images from the right and left cam
eras rather than a depth map. This approach is more biofidelic because 
the visual cortex is not provided with an explicit depth map as input, but 
instead, with the output from two retinae. However, the images in the 
Mancinelli et al model need to be rectified which either requires precise 
knowledge of the optical geometry, which often is not available, or 
additional knowledge of the depth at several locations in the scene. This 
is the main disadvantage of the model since it leaves open where this 
information comes from. We therefore take a different approach for 
modelling visual saliency based on Gestalt principles with a stereopsis 
mechanism that does not suffer from these limitations, by only requiring 
input from two cameras. 

3. 3D eye fixations datasets 

As mentioned previously, a widely accepted method to evaluate the 
quality of saliency models is to compare how well they can predict 
human eye fixations. Although many datasets of human fixations for 2D 

scenes have been published, only few are available for 3D stimuli. 
The Gaze-3D dataset is a publicly-available 3D fixation dataset 

(Wang et al., 2013). It consists of 18 stereoscopic images and corre
sponding disparity and depth maps calculated by an optical flow 
method. The fixation data were collected from 35 participants sitting at 
93 cm distance from a 26-inch display with a resolution of 1920 × 1200 
pixels for 15 s after stimulus onset. Their eye tracking data were 
recorded from the left eye, meaning the fixation locations correspond to 
the left image. 

The NCTU-3D dataset consists of 475 stereoscopic scenes and cor
responding depth maps (Ma & Hang, 2015). The eye-tracking data were 
collected from 16 subjects. The 3D images were displayed on a 23-inch 
monitor with 1920 × 1080 pixels resolution, placed at 78.5 cm from the 
observers for 4 s after stimulus onset. Fig. 1 (a) shows an example of 
stimuli, fixation map, and depth map from the NCTU-3D dataset. The 
provided fixation data are based on right-eye tracking. 

4. Proto-object based saliency model 

4.1. Model framework 

The disparity channels to be described in Section 3.2 provide input to 
a variation of the proto-object based saliency model which was origi
nally introduced by Russell et al. (Russell et al., 2014). We use an 
improved algorithm developed by Uejima et al. (Uejima et al., 2020) but 
omit the texture features introduced in that model. Since the model 
framework used in this paper is the same as that in those prior studies, 
we briefly explain it in Section 3.3. 

The source code of the proposed model is available online (https://gi 
thub.com/csmslab/proto-object-saliency-stereopsis). 

4.2. Disparity channels 

We start by modeling the retina under photopic conditions, i.e., 
under light conditions in which rods are saturated and cones play the 
main role. Retinal output is generated by three types of retinal ganglion 
cells: parasol, midget, and bistratified (Nassi & Callaway, 2009). 
Simplified, the parasol cells mainly represent intensity (luminance) 
while the other two represent chromatic information: the midget cells 
red-green colors, and the bistratified cells yellow-blue colors. We model 
the intensity channel, I, as: 

I =
r + g + b

3
(1)  

where r, g, and b are the red, green, and blue components of the image 
(Itti et al., 1998). 

The color channels are modeled as below: 

R =

⌊

r −
g + b

2

⌋

, G =

⌊

g −
r + b

2

⌋

B =
⌊

b −
r + g

2

⌋
, Y =

⌊
r + g

2
−

|r − g|

2
− b

⌋

(2)  

RG = ⌊R − G⌋., GR = ⌊G − R⌋  

BY = ⌊B − Y⌋., YB = ⌊Y − B⌋ (3)  

where ⌊⋅⌋ is half-wave rectification, and RG, GR, BY, and YB are color 
opponency channels. The color signals are only computed for pixels 
whose intensity value exceeds 10% of the maximum intensity of the 
input image since hue variations are not perceivable at very low lumi
nance. It is still unclear what role chromatic information plays for ste
reopsis. It has been reported (Gregory, 1977; Jordan et al., 1990; Lu & 
Fender, 1972) that random-dot stereograms need luminance cues to 
cause depth perception although isoluminant figural stimuli can be 
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perceived as stereoscopic. In our models, we implement versions with 
and without contributions from color channels, see below. 

We use the disparity energy model as a biologically-plausible method 
to extract depth (Ohzawa et al., 1990, 1997). The brain, as well as our 
model, combines multi-spatial-frequency filters to accurately detect 
disparity information (Baba et al., 2015; Fleet et al., 1996; Kumano 
et al., 2008). The calculation of disparity energy starts by computing 
receptive field properties of monocular simple cells. Simple cells in V1 
are modeled by Gabor filters (Kulikowski et al., 1982), in our model, 

ge,θ(x, y) = exp
(

−x′2 + γ2y′2

2σ2

)

cos(ωx′) (4)  

go,θ(x, y) = exp
(

−x′2 + γ2y′2

2σ2

)

sin(ωx′) (5)  

x′ = xcosθ + ysinθ, y′ = − xsinθ + ycosθ (6)  

where θ ∈
{
0, π

4, π
2, 3π

4
}
, and ge,θ(x, y) and go,θ(x, y) are the even- and odd- 

Gabor filters with spatial aspect ratio γ, width σ = 2.24, and spatial 
frequency ω = 1.57. As in many other models of early visual processing, 
the value of γ is chosen to be below unity, resulting in elongated filters as 
shown in Fig. 2(a). For instance, Russell et al. used γ = 0.5 and γ = 0.8 
for edge detection and orientation channels, respectively, and we use the 

same values for those purposes (edge detection and orientation chan
nels). However, for the simple cells of the disparity features we employ 
shortened Gabor filters with γ = 5 because such filters showed better 
results than elongated filters. Although most orientation-selective cells 
in early cortex have elongated receptive fields, which low spatial aspect 
ratios (γ < 1), a fraction of them have high spatial aspect ratios (γ > 1) 
(Xu et al., 2016). This is rare for simple cells but more common for 
complex cells (ibid.). An example of a shortened (non-elongated) filter is 
shown in Fig. 2 (b). Our modeling results predict that the subpopulation 
of cells with high spatial aspect ratio, which are ill-suited for function
alities like orientation filters, is preferentially involved with the 
computation of binocular disparity which is greatly improved by the 
presence of these cells. 

Model receptive fields vary in size to make responses tolerant to 
changes in scale. For the sake of computational efficiency, we scale the 
input image, by full-octave steps, rather than the filters. The image of the 
k-th scale level is written as Xk, X ∈ {I, RG, GR, BY, YB}. Monocular 
simple cells are represented as: 

Sk
X,R,e,θ(x, y) = Xk

R(x, y)*ge,θ(x, y) (7)  

Sk
X,R,o,θ(x, y) = Xk

R(x, y)*go,θ(x, y) (8)  

where Sk
R,e,θ is a k-th level simple cell activation function with even- 

symmetric Gabor filters from the right image which has a preferred 
angle of θ. Sk

R,o,θ is the same but for an odd-symmetric Gabor filter. The 
asterisk symbol * indicates convolution. The simple cells from the left 
image, Sk

L,e,θ and Sk
L,o,θ, are obtained in the same way: 

Sk
X,L,e,θ(x, y) = Xk

L(x, y)*ge,θ(x, y) (9)  

Sk
X,L,o,θ(x, y) = Xk

L(x, y)*go,θ(x, y) (10)  

Model A : θ =
π
2

, X = I (11)  

Model B : θ =

{

0,
π
4

,
π
2

,
3π
4

}

, X = I (12)  

Model C : θ =
π
2

, X = {I, RG, GR, BY, YB} (13)  

Model D : θ =

{

0,
π
4

,
π
2

,
3π
4

}

, X = {I, RG, GR, BY, YB} (14) 

Fig. 1. Examples of a 3D eye tracking dataset and the saliency map generated by the proposed model. (a) Stereo image, fixation map and depth map from the NCTU- 
3D dataset. The depth map is not used in our model. (b) Disparity channels of Near, Zero, and Far calculated by our model. A fish in the lower-right is present in the 
Near and Zero channels. (c) Saliency map generated from the disparity channels. The color bar applies to (b), (c) and the fixation map in (a). 

Fig. 2. Vertical Gabor filters. (a) A low spatial aspect ratio Gabor filter. (b) A 
high spatial aspect ratio Gabor filter. 
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We define four 3D models which differ in the combinations of fea
tures and orientations. To compute disparity information, Model A uses 
intensity at one orientation only (vertical), model B uses intensity at four 
orientations, model C uses intensity plus color features at one orienta
tion, and model D uses intensity plus color features at four orientations. 
This means that model A, the simplest, uses θ = π

2 in equations (4) and 
(5), i.e., a vertical Gabor filter and only the I channel as X in equations 
(7–10). Model D, the most complex, utilizes θ ∈

{
0, π

4, π
2, 3π

4

}
for the Gabor 

filters and I, RG, GR, BY, and YB channel as X. All models include the 2D 
features described in Section 3.3, which means that all of them include 
color and orientation information in the computation of 2D saliency. 

Responses of binocular complex cells are calculated from the simple 
cells with displaced images, 

Ck
X,θ,d(x, y) =

(
Sk

X,R,e,θ(x, y) + Sk
X,L,e,θ(x + d, y)

)2

+
(

Sk
X,R,o,θ(x, y) + Sk

X,L,o,θ(x + d, y)
)2 (15)  

where d is the disparity between the right and left images. The range of 
the disparity d is arbitrary. In this paper, d takes on the range of ± 8% of 
the input image width. The simple cell activities Sk are rescaled to the 
original image size before the calculation to make the disparity d cover 
the same displacement at all levels. 

As described, this is called a position-based model since the 
displacement between two images is represented as a position differ
ence. indicated by d in the equations. The displacement can also be 
represented by a phase difference, resulting in phase-based models 
(Fleet et al., 1991, 1996; Ohzawa et al., 1997). Physiological experi
ments show that the brain uses both approaches (DeAngelis et al., 1991; 
Ohzawa et al., 1990), but their roles in stereopsis are controversial. One 
possibility is that the phase disparity tuned cells are used because they 
provide higher accuracy (Qian & Zhu, 1997). However, pure phase- 
based disparity can only capture disparities smaller than the receptive 
field’s wavelength. Furthermore, Read and Cumming pointed out that 
phase disparity does not exist in natural images and that cells 
responding with phase disparity characteristics may function as “lie- 
detectors” to eliminate false matches (Read & Cumming, 2007). In this 
study, for the sake of simplicity we use only the position-based model. 

The output of a binocular complex cell is enhanced when the two 
images match at the cell’s preferred disparity. Focusing on a specific 
location (x, y), the value of Ck

β,θ,d represents the “confidence” that the 
location belongs to the specific disparity d, which depends on X, θ, and k. 
However, its response is also enhanced where false matches or high 
monocular contrast exist. To compensate for such unreliable responses, 
we employ a softmax function to compute normalized complex cell re
sponses C′, 

C′kX,θ,d(x, y) =
exp

(
Ck

X,θ,d(x, y)
)

∑
d′exp

(
Ck

X,θ,d′(x, y)
) (16) 

This can be interpreted as the “normalized confidence” of the dis
parities of each location (x, y) and for each of the parameters (scale, 
angle, color, and intensity). This computation is similar to the divisive 
normalization mechanism that is found in many cortical circuits 
(Heeger, 1992). 

Then, C′ is linearly summed up over scales, intensity and color maps, 
and orientations to compute disparity confidence maps, D′. This is 
written as: 

D′d(x, y) =
∑

θ

∑

β

∑

k
C′kX,θ,d(x, y) (17) 

Integration of multiple spatially frequency maps was reported in 
visual cortex (Baba et al., 2015; Kumano et al., 2008) (although we use a 
broader range of frequencies in our model) as was integration of color 
and orientation (Garg et al., 2019; Ghose and Ts’o, 2017). 

In the primate brain, disparity information is sent to both dorsal and 
ventral areas (Preston et al., 2008). Here, we focus on the ventral stream 
which encodes depth information categorically while the dorsal stream 
represents it in a parametric manner. Thus, we collapse the normalized 
disparity map into three categories: near-, zero-, and far-positions. This 
can be written as: 

Near(x, y) =
∑d∈near

d
D′d(x, y)

Zero(x, y) =
∑d∈zero

d
D′

d(x, y)

Far(x, y) =
∑d∈far

d
D′d(x, y) (18)  

where near, zero, and far mean ranges of disparities for each position in 
the scene. We set these ranges based on Panum’s fusional area which is 
defined as encompassing any point where binocular fusion can be ach
ieved (i.e. absence of diplopia) and which spans approximately 10 to 20 
min of arc disparity (Qin et al., 2004). The channel of zero is set to 
approximate Panum’s fusional area, and near and far include all nearer 
and farther disparities, respectively. We used ± 5 pixels (which corre
sponds to approximately ± 10 min of arc for our validation setup 
described in Section 3.4) as the range for the zero channel. 

Fig. 3 shows a schematic of the disparity channel computation. The 
calculated disparity channels form one set of inputs to the proto-object 
based saliency model, on the same footing with the 2D features in
tensity, color, and orientation (Russell et al., 2014; Uejima et al., 2020). 
Fig. 4 explains how the depth information is processed in the proposed 
disparity process. 

Fig. 3. Schematic of disparity channel computation.  
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4.3. Proto-object based model 

2D feature channels are generated by extracting intensity, color, and 
orientation feature maps from the input, and then the 2D channels and 
disparity channels are processed by the proto-object based model. These 
algorithms except disparity channels are basically the same as the sup
plementary materials in (Uejima et al., 2020) and in the remainder of 
this subsection we follow the description in that paper closely. 

The intensity and color channels are computed by eq. (1–3), 
respectively. 

The orientation channels with four angles, O0, O1
4 π , O1

2 π , O3
4 π, are 

calculated from the intensity features, and they are the same as I at this 
point. 

Oθ = I =
r + g + b

3

(

θ ∈

{

0,
1
4

π,
1
2

π,
3
4

π
})

(19) 

10-level pyramid images are created by scaling the intensity, color, 
and disparity channels. The scaling is done by half-octave for each level. 
In a similar way to using the meta-variable X in Section 3.2, we refer to 
the image features at level k as βk,

β ∈
{

I, RG, GR, BY, YB, O0, O1
4 π , O1

2 π , O3
4 π, Near, Zero, Far

}
. 

The pyramid images are processed by surface detectors employing 
center-surround mechanism with receptive fields, cson and csoff , which 
are modeled as two 2D Gaussian filters represented as: 

cson(x, y) =
1

2πσ2
i
e

−
x2 +y2

2σ2
i −

1
2πσ2

o
e

−
x2 +y2

2σ2
o

csoff (x, y) = −
1

2πσ2
i
e

−
x2 +y2

2σ2
i +

1
2πσ2

o
e

−
x2 +y2

2σ2
o

(20)  

where σi is the standard deviation of the center (inner) Gaussian, and σo 
is the standard deviation of the surrounding (outer) Gaussian. Here, 
these are set as σi = 0.9 and σo = 2.7. These kernels are replaced by the 
even Gabor filters to calculate the orientation channel so that the ker
nels, cson,O,θ and csoff ,O,θ, are written as; 

cson,O,θ(x, y) = exp
(

−
x′2 + γ2

1y′2

2σ2
1

)

cos(ω1x′) (21)  

csoff ,O,θ(x, y) = − cson,O,θ(x, y) (22)  

x′ = xcosθ + ysinθ, y′ = − xsinθ + ycosθ (23) 

Where γ1 = 0.8, σ1 = 3.2, and ω1 = 0.7854 in the same manner as 
the original proto-object based model (Russell et al., 2014). The cson 

detects light objects on dark backgrounds and csoff does dark objects on 
light backgrounds. 

The center-surround activities, C S , are calculated as products of 
the center-surround kernels and each feature, which can be written as: 

For β ∈ {I, RG, GR, BY, YB, Near, Zero, Far}

C S
k
β,D(x, y) = N 1

(⌊
βk(x, y)*csoff (x, y)

⌋ )

C S
k
β,L(x, y) = N 1

(⌊
βk(x, y)*cson(x, y)

⌋ )

For β ∈
{

O0, O1
4 π , O1

2 π , O3
4 π

}

C S
k
β,D(x, y) = N 1

(⌊
βk(x, y)*csoff ,O,θ(x, y)

⌋ )

C S
k
β,L(x, y) = N 1

(⌊
βk(x, y)*cson,O,θ(x, y)

⌋ )
(24)  

where C S
k
D and C S

k
L form the dark and light object pyramids with k- 

th level scaled images, and N 1(⋅) is a normalization operator used in the 
same way as by (Russell et al., 2014). In the N 1 normalization process, 
C S D and C S L are simultaneously normalized to the range of 0 to 10. 
Then the average of all local maxima, m, is computed across both maps, 
and each map is multiplied by (10 − m)

2. It emphasizes the global 
maximum center-surround response and suppresses maps with multiple 
local maxima. Similar normalization procedures are used in many model 
implementations of saliency maps, including the original (Itti et al., 
1998) study. Simple cells activities, which work as edge detectors 

Sk
β,e,θ(x, y) = βk(x, y)*ge,θ(x, y) (25)  

Sk
β,o,θ(x, y) = βk(x, y)*go,θ(x, y) (26)  

where ge,θ and go,θ are defined in eq. (4–6) with γ = 0.5. 
The activity of complex cells are calculated from the simple cells: 

Ck
β,θ(x, y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Sk
β,e,θ(x, y)

2
+ Sk

β,o,θ(x, y)
2

√

(27) 

The surface (center-surround activities) and edge (complex cells) 
maps are used to calculate border-ownership coding which is physio
logically observed mainly in cortical area V2 (Zhou et al., 2000). The 

Fig. 4. Conceptual images of the disparity maps. (a) An input image represented in 3D space (actual stimulus is provided as stereo images). The depth is divided into 
three category: Near, Zero, and Far. (b) Extracted disparity maps. 
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firing activity of some of these cells is independent of contrast polarity. 
To simulate this function, we first compute B k

θ,L, the border ownership 
activity for a light object on a dark background and B k

θ,D, the border 
ownership activity for a dark object on a light background: 

B
k
β,θ,L(x, y) =

⌊

C
k
β,θ(x, y) ×

(

1 +
∑

j≥k

1
2jvθ+π(x, y)*C S

j
β,L(x, y)

−
∑

j≥k

1
2jvθ(x, y)*C S

j
β,D(x, y)

)⌋

B
k
β,θ,D(x, y) =

⌊

C
k
β,θ(x, y)

(

1 +
∑

j≥k

1
2jvθ+π(x, y)*C S

j
β,D(x, y)

−
∑

j≥k

1
2jvθ(x, y)*C S

j
β,L(x, y)

)⌋

(28)  

where v is the von Mises distribution (Russell et al., 2014) calculated as: 

vθ(x, y) = −
exp

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
− R0

)
sin

(
tan−1y

x − θ
) ]

2πI0

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
− R0

) (29) 

R0 is the zero-crossing radius of the center surround masks, and I0 is 
the modified Bessel function of the first kind. vθ is then normalized as: 

vθ(x, y) =
vθ(x, y)

max(vθ(x, y) )
(30) 

The responses of the border-ownership cells to light and dark objects 
are combined to make them independent of figure-ground contrast 
polarity. 

B
k
β,θ(x, y) = B

k
β,θ,L(x, y) + B

k
β,θ,D(x, y) (31) 

At each pixel, multiple border ownership cells exist for each direction 
of ownership, organized in pairs with mutually opposing spatial pref
erences. For instance, at a pixel located on a vertical border, there is one 
border ownership with a higher rate when the foreground object is to its 
right, and its partner which has identical feature preferences but which 
fires with a higher rate when the foreground object is to its left. To 
determine which border a pixel belongs to, the model uses a winner- 
take-all algorithm between the response of a border ownership selec
tive neuron B k

θ and its partner B k
θ+π , 

B̂
k

β(x, y) = B
k
β,θ̂(x, y) (32)  

where 

θ̂ = argmax
θ

(
B

k
β,θ(x, y) − B

k
β,θ+π(x, y)

)
(33) 

Then, the grouping cell responses are calculated by summing the 
winning border ownership activity in an annular fashion (Craft et al., 
2007; Russell et al., 2014) 

G
k
β(x, y) =

∑

θ

⌊
δ
(
B

k
β,θ(x, y), B̂

k

β

)
×

(
B

k
β,θ̂(x, y) − B

k
β,θ̂+π(x, y)

)
*vθ̂(x, y)

⌋

(34)  

where δ
(
B k

β,θ(x, y), B̂
k
β

)
= 1 if B k

β,θ(x, y) = B̂
k
β and zero otherwise. 

A final saliency map is computed by normalizing and combining each 
grouping cell response from each channel. The combined channels for 
intensity, color, orientation, and disparity (namely, I , C , O , and D ) 
are calculated by: 

I = ⊕k=10
k=1 N 2

(
G

k
I

)

C = ⊕k=10
k=1

(
N 2

(
G

k
RG

)
+ N 2

(
G

k
GR

)
+ N 2

(
G

k
BY

)
+ N 2

(
G

k
YB

) )

O =
∑

α∈{0,π/4,π/2,3π/4}

(
⊕k=10

k=1 N 2
(
G

k
Oα

) )

D = ⊕k=10
k=1

(
N 2

(
G

k
Near

)
+ N 2

(
G

k
Zero

)
+ N 2

(
G

k
Far

) )
(35) 

In these equations, N 2(⋅) is almost identical to N 1(⋅) which was 
defined after eq. (24), but rather than normalizing two maps (C S D and 
C S L), normalization only is performed on one map (the argument of 
N 2(⋅)). 

The sum over normalized proto-object maps of all features consti
tutes the final saliency map, S , which is represented as: 

S = (N 2(I ) + N 2(C ) + N 2(O ) + N 2(D ) ) (36) 

The overall view of the model is shown in Fig. 5. In this paper, we call 
the model without the disparity channels (i.e., calculated from only 
intensity, color, and orientation features) the 2D model, and models that 
include the disparity channels 3D models (Model A – D, described in 
Section 3.2). 

For the comparison of model results with ground truth, we use eye 
movement data from two empirical studies, the Gaze-3D and the NCTU- 
3D data sets (Section 2.2). The former reports eye movements of the left 
eye and the latter from the right eye. In both cases, we compute the 
saliency map from the image projected to that eye whose movements 
were recorded, i.e. from the left eye for the Gaze-3D dataset and the right 
eye for the NCTU-3D dataset. 

4.4. Validation 

To evaluate the quality of the proposed model, we used publicly- 
available eye fixation datasets to compare our saliency maps with 
human eye movements which are taken as ground truth for the 
deployment of selective attention. We used the Gaze-3D dataset (Wang 
et al., 2013) which includes 18 images and the NCTU-3D dataset (Ma & 
Hang, 2015) comprising 475 images. We reduced the image size of the 
datasets by a factor of two before using them as input to our model to 
decrease computation time. 

For quantitative validation, we employed five metrics to assess the 
predictive performance of the generated saliency maps for human fix
ations. The metrics are normalized scanpath saliency (NSS), Pearson’s 
correlation coefficient (CC), similarity (SIM), Kullback-Leibler diver
gence (KLD), and shuffled area under the ROC curve (sAUC). These 
metrics were calculated using published codes (Bylinskii et al., 2019). 

As a short overview, NSS is the mean value of the normalized sa
liency map at the fixation locations. The normalized saliency map is 
calculated by transforming the map values to zero mean and unit stan
dard deviation. CC takes on zero value for two uncorrelated variables 
and unit value for identical ones. The SIM measure of two maps is zero 
when the maps have no overlap and unity if the two maps are identical. 
KLD quantifies the dissimilarity between two probability distributions, 
and smaller KLD indicates higher similarity. The sAUC is a modified 
version of the area under the ROC curve. The Receiver Operating 
Characteristic (ROC) measures the ratio of true positives and false pos
itives at various thresholds. The sAUC samples negative points to 
calculate the false positive rate from equivalent fixation locations of 
other images, rather than uniformly random locations from the same 
image that standard AUC uses. This compensates for systematic biases 
present in all images, such as the well-known center-bias, see. e.g. 
Parkhurst et al 2002 (Parkhurst et al., 2002). For a discussion how center 
bias is corrected for the other four metrics see below. 

It is known that blurring saliency maps can affect metrics (Borji & 
Itti, 2012; Hou et al., 2012). Basically, blurring approximates the sam
pling error of the eye tracker used for recording fixations. We applied 2D 
Gaussian kernels with various widths and determined the optimal 
blurring kernel for each model and metric. The kernel width was varied 
between 1% and 20% of the image widths for NCTU-3D, and between 
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Fig. 5. Overall view of the model. In this overview, the non-depth related components of the saliency map (intensity, color, orientation) are computed from the input 
to the left eye. During validation, this is the case for the Gaze-3D dataset. For the NCTU-3D dataset, these components are computed from the input to the right eye. 

Fig. 6. Examples of saliency maps generated by the 2D model and a 3D model (model A). The input image and fixation map are from the NCTU-3D dataset. Our 3D 
model suppresses background saliency compared to the 2D model. Color scale applies to all saliency and fixation maps. 
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1% and 40% for Gaze-3D in steps of 1%. An exception was the sAUC 
metric which was calculated under the condition of the blurring kernel 
width between 1% and 8%, because the sAUC’s metric produced higher 
values for smaller kernels than the other metrics. 

All metrics except sAUC are affected by the center-bias: human ob
servers tend to fixate preferentially at locations in the vicinity of the 
centers of images. Parkhurst et al (Parkhurst et al., 2002) showed that 
weighting saliency with a Gaussian at the image center resulted in better 
fixation prediction, and that it could be improved even more by 
centering a Gaussian on the location of the instantaneous fixation, to 
take into account the fall-off of visual acuity in the periphery. Following 
(Zhang & Sclaroff, 2016), here we use a simpler approach of using a 
fixed parabolic distance-to-center (DTC) re-weighting. This is computed 
as: 

DTC(i, j) = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
i − H

2

)2
+

(
j − W

2

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
H
2

)2
+

(
W
2

)2
√ (37)  

where i and j are the row and column indice and H and W are the height 
and width of the input image. The generated saliency map blurred by the 
2D Gaussian kernel with the best sigma is pixel-wise multiplied with 
DTC. The DTC re-weighting procedure was not applied for the sAUC 
metric because sAUC automatically compensates for the center-bias. 

5. Results 

Examples of the proposed disparity channels and the resulting sa
liency map are shown in Fig. 1 (b) and (c), respectively. The fixation map 
in this example indicates that participants tend to fixate a fish in the 
lower half of the image that is closer to the observer than the other fish. 
The computed disparity maps in Fig. 1 (b) show that the location of the 
fish is captured by the near and zero channels. The saliency map is 
calculated based on the disparity channels and shows high value at the 
approximate location of this fish as shown in Fig. 1 (c). 

Fig. 6 shows comparisons between fixation maps and saliency maps 
generated by the 2D and 3D models. We here use model A described in 
Section 3.2 which employs vertical orientation and intensity. The 2D 
model saliency maps were calculated from intensity, color, and orien
tation features as in (Uejima et al., 2020), but without the texture fea
tures in that model. The 3D saliency maps were computed by adding 
depth maps generated from the disparity channels. In these examples, 
the 2D model predicted the human fixations to some extent, and the 
depth information improved the predictions. In the example of the first 
row, for instance, the 3D model shows higher saliency value at the 

location of the airship than the 2D model, in agreement with human 
fixations. In all examples shown, the 3D model suppresses saliency to 
background patterns, relative to foreground objects. This shows that 
depth plays a role in the prediction of overt attention. 

To quantify the performance enhancement due to adding depth 
channels, we calculate the metrics of the saliency maps generated with 
and without the depth information by comparing them against human 
fixations. These metrics are shown in Table 1. As described in Section 
3.2, we used four variations of the 3D model which include different 
combinations of color features and orientations. Our results indicate that 
the depth channels improve the prediction of human fixations. Because 
of the small size of the Gaze-3D dataset (only 18 images), in the 
following we focus our analysis on the NCTU-3D data. 

We first look at the models that only use intensity information (not 
color), i.e., models A and B. For all but two of the ten comparisons be
tween the 2D model and the two corresponding models with 3D infor
mation (Models A and B), the models with 3D information performed 
equally well or better than the 2D model. The increase in performance 
was significant for 5 of these comparisons (two-tailed paired t-test, p <
0.05). 

If color information is added, models incorporating 3D cues (Models 
C and D) are equal or better than the corresponding 2D model for all ten 
comparisons. However, the differences are small and don’t reach sig
nificance. A surprising result is that the simplest of the 3D models, Model 
A with only one orientation (vertical) in which neither color nor the 
other orientations contribute, overall performs best. It has the best 
scores by all metrics on the Gaze-3D dataset, and the highest by all 
metrics bar-one on the NCTU-3D dataset. Even in case of the one 
exception in the NCTU-3D data, the best performance occurs in the 
second model with only one orientation, Model C. Given that human 
eyes are typically at the same height, and binocular disparity thus 
occurring between locations symmetric to the vertical, it seems intuitive 
that the vertical orientation is the most important. It appears that taking 
into account other orientations is not only unnecessary but, in fact, 
interfering with optimal performance. As for the lacking contribution of 
color information, we will come back to this question in our Discussion 
section. 

Primates express strong interest in faces and bodies which attract 
attention even when they are task-irrelevant (Landman et al., 2014). 
Indeed, detection of faces and body parts is supported by anatomical 
structures in monkeys (Desimone, 1991; Gross, 2008; Tsao et al., 2003) 
and humans (Downing et al., 2001). We expect that the human fixation 
locations that we use as ground truth in this study show a similar bias. 
Since none of our models has corresponding explicit detection mecha
nisms for faces or body parts, we expected that models predict fixation 

Table 1 
Models incorporating depth features predict human eye fixations equally well or better than the 2D model. In column 1, “1 orientation” indicates a model with only one 
(vertical) Gabor filter and “4 orientations” models with Gabor filter with four orientations. Labels “I” and “I&C” indicate models with only the intensity feature and a 
combination of intensity and color features, respectively. Underscore denotes the best score for each metric. A parenthesis next to the performance value of a model 
indicates that this model performs significantly better than any of the models listed in the parenthesis, where B, C, D, indicate the different 3D models, and “2” the 2D 
model. For instance, by the CC metric Model A performs better than models 2, B, and C. Significance was evaluated by two-tailed paired t-tests (p < 0.05). Larger values 
are better for all metrics but KLD.  

Model Metrics 

NSS CC SIM KLD sAUC 

NCTU-3D dataset 
2D model  1.468  0.633  0.612  0.518  0.657 
Model A (3D, 1 orientation, I)  1.473 (B)  0.638 (2,C,D)  0.614 (2,B,C)  0.513  0.655 
Model B (3D, 4 orientations, I)  1.463  0.638 (2,C,D)  0.613 (2)  0.515 (2)  0.654 
Model C (3D, 1 orientation, I&C)  1.468  0.633  0.612  0.517  0.660 (A,B) 
Model D (3D, 4 orientations, I&C)  1.470  0.633  0.613  0.516  0.657 
Gaze-3D dataset 
2D model  0.958  0.685  0.731  0.254  0.609 
Model A (3D, 1 orientation, I)  0.968 (C,D)  0.687 (C,D)  0.732  0.252  0.611 
Model B (3D, 4 orientations, I)  0.959 (D)  0.684 (D)  0.731  0.255  0.610 
Model C (3D, 1 orientation, I&C)  0.949  0.678  0.729  0.256  0.608 
Model D (3D, 4 orientations, I&C)  0.947  0.680  0.729  0.255  0.605  
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locations better for images that have no persons in the scene than for 
images with persons. We therefore divided the images into two sets: one 
set with humans visible (fully or partially) and the other set without. The 
latter could, however, include animals or statues of humans. In the 
NCTU data set, we found 303 images in which humans were visible, at 
least partially, and 172 images in which that was not the case. In the 
Gaze-3D data, 7 images included visible humans and 11 did not. 

The results shown in Table 2 confirm our expectation: for all five 
models, and for all five metrics, fixation prediction performance 
decreased with the presence of faces, bodies, or body parts in the NCTU- 
3D dataset. In the majority of the tests (15/25), this decrease was sig
nificant (one-tailed Welch test, p < 0.05). Similarly for the Gaze-3D 
data, the majority (17/25) of tests showed higher performance for im
ages without humans and the majority of these differences (10/17) were 
significant. Overall, the effect was somewhat weaker than for the NCTU- 
3D data, but the Gaze-3D dataset is very small which limits the statistical 
power that can be achieved. We also note that a separate channel for 
face detection, for instance using the standard Viola-Jones algorithm 
(Viola & Jones, 2001), can be easily added to the models and would 
most likely increase fixation prediction performance substantially, as it 
did in a previously-developed class of models from the same pedigree as 
ours (Cerf et al., 2008). 

6. Discussion 

Binocular information processing in our model is based on physio
logical and psychological evidence. Its basic mechanism is the binocular 
energy model which combines information from two monocular input 
sources into a binocular signal, akin to the generation of complex cell 
responses from the activity of monocular simple cells in two eyes. 
Binocular complex cells are tuned to specific disparity ranges and their 
activity represents a “confidence” measure of the disparity difference 
within their receptive fields. Our model of cells with binocular receptive 
fields uses Gabor filters with high spatial aspect ratio (γ > 1). While the 
spatial aspect ratio of the majority of orientation selective cortical cells 
is γ > 1, a fraction of cells in early visual cortex have a spatial aspect 
ratio larger than unity. We hypothesize that their role is primarily in 
disparity computations, rather than in the representation of oriented 
edges for which elongated filters are better suited. 

Despite decades of neurophysiological research, it is still not entirely 
clear how the brain deals with depth information. Early studies of ste
reopsis proposed that the disparity processing is achieved categorically, 
by cells tuned near, far, and zero (in the focal plane) (Poggio & Poggio, 
1984; Richards, 1971). Later, this three-channel model was replaced by 
a continuous representation, similar to that for orientation or motion 
direction (Poggio, 1995). A recent imaging study indicates that, in fact, 

both ideas may be correct but used in different pathways: dorsal cortical 
areas, including V3A and V7 encode parametric disparity while areas in 
the ventral pathway, in particular the lateral occipital area, represent 
the categorical responses “near” and “far (Preston et al., 2008). The 
former may be more relevant for visual control of action while the latter 
may be more useful for tasks like object recognition. In our model, we 
adopt the latter, i.e. a categorical model akin to what is found in the 
ventral pathway, with the responses of the binocularly tuned cells 
organized in three channels: near, far, and (close-to-)zero. 

The boundaries between the zero channel and the other two are 
defined by Panum’s area. This gives rise to a limitation of our approach 
because the model assumes that the focal plane is always in the zero 
disparity range of the input image. Because subjects can move their eyes, 
they can fixate objects outside the focal plane in which case Panum’s 
fusion area changes. Our model does not include such dynamic change 
of subjective disparity perception. 

The output of these disparity channels is given as input to a proto- 
object based saliency model (Russell et al., 2014) with V4 playing a 
major role. This is clearly different from previous studies of biofidelic 2D 
saliency (Itti et al., 1998; Itti & Koch, 2000; Koch & Ullman, 1985; Li, 
2002; Niebur & Koch, 1996) and 3D saliency (Zhaoping, 2002). It is 
known that latencies of V2 responses are longer than V1 responses by 
approximately a dozen of milliseconds in the primate brain (Gawne & 
Martin, 2002; Nowak et al., 1995; Schmolesky et al., 1998). Reaction 
time studies (Zhaoping et al., 2009) indicate that depth features, pre
sumably processed in V2, influence attentional guidance in complex 
stimulus stimuli (those requiring more than one second of human 
manual reaction times to report their visual perception), in contrast to 
the low-level features involving V1, which direct attention in tasks 
where reaction times are much faster. This would imply that depth- 
derived attentional guidance in our proto-object based mechanism 
would also be rather slow, with reaction times on the order of a second 
or more. We can not address directly whether this is the case because in 
the datasets we use in our study, eye fixations last for 4 to 15 s. 

In our model, proto-objects are calculated separately in the spaces of 
near, far, and zero channels. As in earlier saliency map models, in
teractions between features and spatial scales emphasize the influence of 
those maps with a small number of local maxima and suppress those 
with many peaks. In typical scenes, a small number of foreground ob
jects tend to be in the near or zero depth zones while broad areas of 
cluttered background are in the “far” channel. For such scene structures, 
the model emphasizes the foreground objects in the near and zero 
channels which only have a few peaks. This agrees with the observation 
that humans tend to fixate objects in foreground (near) locations 
(Gautier & Le Meur, 2012; Jansen et al., 2009; Lang et al., 2012). We 
find that by most metrics our intensity-based models (Models A and B) 

Table 2 
Effect of presence of persons in images. The left and right columns of each metrics show model performance on images without and with persons, respectively. 
Underscore denotes the best score for each metric. For the NCTU-3D data, model performance is always higher on images without persons. This is not the case for Gaze- 
3D but this dataset has only 7 images with persons. An asterisk (*) indicates that the performance is significantly better on images without persons (one-tailed Welch 
test, p < 0.05).  

Model Metrics 

NSS CC SIM KLD sAUC 

NCTU-3D dataset without with without with without with without with without with 

2D model 1.540 1.427 0.685* 0.603 0.637* 0.597 0.478* 0.541 0.657 0.657 
Model A (3D, 1 orientation, I) 1.551* 1.430 0.693* 0.607 0.640* 0.599 0.465* 0.541 0.661 0.653 
Model B (3D, 4 orientations, I) 1.545* 1.416 0.692* 0.607 0.640* 0.598 0.469* 0.542 0.655 0.653 
Model C (3D, 1 orientation, I&C) 1.532 1.432 0.685* 0.604 0.635* 0.599 0.479* 0.539 0.665 0.657 
Model D (3D, 4 orientations, I&C) 1.543 1.429 0.685* 0.604 0.637* 0.599 0.476* 0.538 0.660 0.654 
Gaze-3D dataset without with without with without with without with without with 
2D model 0.874 1.090 0.703 0.657 0.760* 0.686 0.217* 0.311 0.610 0.607 
Model A (3D, 1 orientation, I) 0.878 1.110 0.704 0.660 0.760* 0.690 0.219* 0.304 0.618 0.599 
Model B (3D, 4 orientations, I) 0.871 1.098 0.702 0.656 0.759* 0.687 0.222* 0.307 0.604 0.621 
Model C (3D, 1 orientation, I&C) 0.855 1.096 0.693 0.655 0.757* 0.684 0.220* 0.312 0.606 0.610 
Model D (3D, 4 orientations, I&C) 0.862 1.082 0.696 0.653 0.758* 0.684 0.216* 0.316 0.598 0.616  
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predict human fixation patterns better than the analogous model that 
uses monocular information only (Table 1). 

This was not the case for the two models that, in addition to intensity, 
also use color information. While intensity-only based Models A and B 
showed nearly uniformly better performance than the 2D model, the 
models incorporating color information to calculate depth in addition 
(Models C and D) performed similarly to the 2D model on the NCTU-3D 
dataset, and even slightly worse on the Gaze-3D dataset (the small size of 
Gaze-3D makes it difficult to assign high importance to the latter result). 
Furthermore, comparing the intensity-only models directly with the 
models that use both intensity and color information, the former predict 
fixation clearly better. This result seems at first puzzling: why would a 
model that has access to more information perform worse than one with 
less information? 

There are two considerations to take into account. First, parameters 
in our models are assigned fixed values, they are not selected by a 
learning algorithm that optimizes performance in a given task (here, 
optimal agreement with eye fixations). There is therefore no guarantee 
that providing additional information improves the performance. Sec
ond, and in addition, we define performance as agreement with human 
eye movements. By this measure, the expectation that making available 
additional source of types of information improves performance rests on 
the assumption that this information is also available to, and used by, 
the mechanisms that guide eye movements in humans. This is, however, 
not necessarily the case; the role of chromatic information in stereopsis 
is complicated. At the same time that Julesz invented random-dot ste
reograms (Julesz, 1971), he reported that anti-correlated dots (with 
reversed intensity polarity) did not give rise to stereoscopic vision, but 
that correlated colors of the dots aided binocular fusion. Shortly there
after, Lu and Fender disputed the latter finding, concluding their paper 
with the sentence “luminance alone is used as the principal signal to 
determine their depth” (Lu & Fender, 1972). Later studies found evi
dence for stereoscopic vision in isoluminant conditions (Comerford, 
1974; Grinberg & Williams, 1985) but methodological problems with 
their approach led Livingstone and Hubel to question these results 
(Livingstone & Hubel, 1987). Instead, they proposed that color, pro
cessed in the parvocellular stream, interacts minimally, at best, with 
orientation, motion and depth which are predominantly represented in 
the magnocellular stream. This interpretation has been questioned yet 
again by newer results that provide evidence for effective cross- 
communication between the magnocellular and parvocellular channels 
that support stereopsis driven by luminance, even though it is not clear 
that color information by itself is sufficient to induce depth perception 
(Scharff & Geisler, 1992; Simmons & Kingdom, 1997; Tyler & Cavanagh, 
1991). While newer evidence supports that color information does 
modulate perception of depth (Den Ouden et al., 2005), it is not clear if 
the effect is strong enough in natural scenes, the stimuli that we use, to 
result in statistically significant differences. Overall, while it was not the 
focus of our work to study the role of color in stereopsis, our results 
provide some support to the notion that for this perceptual function and 
for this set of stimuli, chromatic information pays only a minor role if 
any. 

Understanding stereoscopic vision is not only of interest for basic 
science but it also has practical implications. As mentioned in the 
Introduction, one is obviously the determination of the distance of ob
jects from the observer. Another (related) one is camouflage breaking. 
The goal of camouflage is to disrupt the process of segmenting the to-be- 
camouflaged object from its background. In addition to the obvious 
method of trying to match the local visual properties of the object as 
closely as possible with those of the background, a (related) technique is 
to create strong contours inside the object boundaries, resulting in the 
creation of internal “false” edges. This process interferes with the 
grouping of the object’s features into a coherent entity, and therefore its 
identification (Adams et al., 2019). Availability of depth information 
reduces the effect of monocular edges internal to the object and there
fore aids the visual system in the formation of correct object borders, 

segregating the object from the background. It is known that visual 
scenes are organized in terms of such segregated objects, or more pre
cisely, proto-objects (Rensink, 2000) which are entities towards atten
tion is directed (Egeth & Yantis, 1997; Egly et al., 1994; Scholl, 2001). 
The fact that our 3D models predict human fixation patterns better than 
the 2D model supports the idea that human fixations are partially guided 
by depth cues. Furthermore, this result may have consequences for the 
application of our models in the context of camouflage. Given that depth 
cues contribute strongly to scene segmentation and, therefore, camou
flage breaking (Adams et al., 2019), we may conjecture that this is a 
possible application where algorithms like our models A and B may be 
useful. We did not test this hypothesis specifically on scenes with cam
ouflage patterns, but this is a topic for future research. 

7. Conclusion 

We incorporate a biologically plausible stereopsis mechanism into a 
proto-object based saliency model. The proposed model takes stereo
scopic images as input and computes categorical depth information from 
a disparity energy model. We combine the resulting depth information 
with monocular information (intensity, color, and orientation) to form a 
representation of the visual scene in terms of proto-objects. The resulting 
saliency map generates predictions for the allocation of overt attention 
that agree significantly better with human behavior than those from the 
corresponding maps using monocular cues only. We also note that, 
different from typical machine learning approaches, all stages of this 
process are derived from first principles. No training is required other 
than the setting of a small number of general parameters. 
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Stoll, J., Thrun, M., Nuthmann, A., & Einhäuser, W. (2015). Overt attention in natural 
scenes: Objects dominate features. Vision Research, 107, 36–48. https://doi.org/ 
10.1016/j.visres.2014.11.006 

Tanabe, S., Umeda, K., & Fujita, I. (2004). Rejection of False Matches for Binocular 
Correspondence in Macaque Visual Cortical Area V4. The Journal of Neuroscience, 24 
(37), 8170–8180. https://doi.org/10.1523/JNEUROSCI.5292-03.2004 

Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., & Tootell, R. B. H. (2003). 
Faces and objects in macaque cerebral cortex. Nature Neuroscience, 6(9), 989–995. 
https://doi.org/10.1038/nn1111 

Tyler, C. W., & Cavanagh, P. (1991). Purely chromatic perception of motion in depth: 
Two eyes as sensitive as one. Perception & Psychophysics, 49(1), 53–61. https://doi. 
org/10.3758/BF03211616 

Uejima, T., Niebur, E., & Etienne-Cummings, R. (2020). Proto-Object Based Saliency 
Model With Texture Detection Channel. Frontiers in Computational Neuroscience, 14, 
84. https://www.frontiersin.org/article/10.3389/fncom.2020.541581. 

van der Stigchel, S., & Theeuwes, J. (2007). The relationship between covert and overt 
attention in endogenous cuing. Perception & Psychophysics, 69(5), 719–731. https:// 
doi.org/10.3758/BF03193774 

Vig, E., Dorr, M., & Cox, D. (2014). Large-Scale Optimization of Hierarchical Features for 
Saliency Prediction in Natural Images. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (pp. 2798–2805). 

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple 
features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition. CVPR 2001, 1, I–I. 10.1109/CVPR.2001.990517. 

von der Heydt, R. (2015). Figure–ground organization and the emergence of proto- 
objects in the visual cortex. Frontiers in Psychology, 6, 1695. https://www.frontiersin. 
org/article/10.3389/fpsyg.2015.01695. 

Wang, J., Da Silva, M. P., Callet, P. L., & Ricordel, V. (2013). Computational Model of 
Stereoscopic 3D Visual Saliency. IEEE Transactions on Image Processing, 22(6), 
2151–2165. https://doi.org/10.1109/TIP.2013.2246176 

Welchman, A. E. (2016). The Human Brain in Depth: How We See in 3D. Annual Review 
of Vision Science, 2(1), 345–376. https://doi.org/10.1146/annurev-vision-111815- 
114605 

Williford, J. R., & von der Heydt, R. (2016). Figure-Ground Organization in Visual Cortex 
for Natural Scenes. ENEURO.0127-16.2016 ENeuro, 3(6). https://doi.org/10.1523/ 
ENEURO.0127-16.2016. 

Xu, T., Li, M., Chen, K., Wang, L., & Yan, H.-M. (2016). Aspect Ratio of the Receptive 
Field Makes a Major Contribution to the Bandwidth of Orientation Selectivity in Cat 
V1. Advances in Cognitive Neurodynamics, 133–142. 

Zhang, J., & Sclaroff, S. (2013). Saliency Detection: A Boolean Map Approach. IEEE 
International Conference on Computer Vision, 2013, 153–160. https://doi.org/ 
10.1109/ICCV.2013.26 

Zhang, J., & Sclaroff, S. (2016). Exploiting Surroundedness for Saliency Detection: A 
Boolean Map Approach. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 38(5), 889–902. https://doi.org/10.1109/TPAMI.2015.2473844 

Zhaoping, L. (2002). Pre–attentive segmentation and correspondence in stereo. 
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 
357(1428), 1877–1883. https://doi.org/10.1098/rstb.2002.1158 

Zhaoping, L. (2008). Attention capture by eye of origin singletons even without 
awareness—A hallmark of a bottom-up saliency map in the primary visual cortex. 
Journal of Vision, 8(5), 1. https://doi.org/10.1167/8.5.1 

Zhaoping, L. (2012). Gaze capture by eye-of-origin singletons: Interdependence with 
awareness. Journal of Vision, 12(2), 17. https://doi.org/10.1167/12.2.17 

Zhaoping, L. (2018). Ocularity Feature Contrast Attracts Attention Exogenously. In Vision 
(Vol. 2, Issue 1). https://doi.org/10.3390/vision2010012 

Zhaoping, L., Guyader, N., & Lewis, A. (2009). Relative contributions of 2D and 3D cues 
in a texture segmentation task, implications for the roles of striate and extrastriate 
cortex in attentional selection. Journal of Vision, 9(11), 20. https://doi.org/10.1167/ 
9.11.20 

Zhou, H., Friedman, H. S., & von der Heydt, R. (2000). Coding of border ownership in 
monkey visual cortex. The Journal of Neuroscience, 20(17), 6594–6611. https://doi. 
org/10.1523/JNEUROSCI.2797-12.2013 

T. Uejima et al.                                                                                                                                                                                                                                  

https://doi.org/10.1038/nrn2619
https://doi.org/10.1038/nrn2619
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0325
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0325
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0325
https://doi.org/10.1242/jeb.143883
https://doi.org/10.1242/jeb.143883
https://doi.org/10.1017/S095252380000804X
https://doi.org/10.1017/S095252380000804X
https://doi.org/10.1167/10.8.20
https://doi.org/10.1016/S0959-4388(98)80039-1
https://doi.org/10.1016/S0959-4388(98)80039-1
https://doi.org/10.1126/science.2396096
https://doi.org/10.1152/jn.1997.77.6.2879
https://doi.org/10.1016/S0042-6989(01)00250-4
https://doi.org/10.1016/S0042-6989(01)00250-4
https://doi.org/10.1093/cercor/5.3.193
https://doi.org/10.1016/0042-6989(85)90065-3
https://doi.org/10.1146/annurev.ne.07.030184.002115
https://doi.org/10.1146/annurev.ne.07.030184.002115
https://doi.org/10.1080/00335558008248231
https://doi.org/10.1523/JNEUROSCI.2728-08.2008
https://doi.org/10.1523/JNEUROSCI.2728-08.2008
https://doi.org/10.1016/S0042-6989(96)00331-8
https://doi.org/10.2150/jlve.28.126
https://doi.org/10.1038/nn1989
https://doi.org/10.1038/nn1989
https://doi.org/10.1016/j.neuron.2005.05.028
https://doi.org/10.1016/j.neuron.2005.05.028
https://doi.org/10.1038/nn1951
https://doi.org/10.1038/nn1951
https://doi.org/10.1080/135062800394667
https://doi.org/10.1364/JOSA.61.000410
https://doi.org/10.1016/j.visres.2013.10.005
https://doi.org/10.1016/j.visres.2013.10.005
https://doi.org/10.1364/JOSAA.9.000868
https://doi.org/10.1152/jn.1998.79.6.3272
https://doi.org/10.1016/S0010-0277(00)00152-9
https://doi.org/10.1016/S0042-6989(96)00273-8
https://doi.org/10.1016/S0042-6989(96)00273-8
https://doi.org/10.1016/j.visres.2014.11.006
https://doi.org/10.1016/j.visres.2014.11.006
https://doi.org/10.1523/JNEUROSCI.5292-03.2004
https://doi.org/10.1038/nn1111
https://doi.org/10.3758/BF03211616
https://doi.org/10.3758/BF03211616
https://www.frontiersin.org/article/10.3389/fncom.2020.541581
https://doi.org/10.3758/BF03193774
https://doi.org/10.3758/BF03193774
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0485
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0485
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0485
https://www.frontiersin.org/article/10.3389/fpsyg.2015.01695
https://www.frontiersin.org/article/10.3389/fpsyg.2015.01695
https://doi.org/10.1109/TIP.2013.2246176
https://doi.org/10.1146/annurev-vision-111815-114605
https://doi.org/10.1146/annurev-vision-111815-114605
https://doi.org/10.1523/ENEURO.0127-16.2016
https://doi.org/10.1523/ENEURO.0127-16.2016
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0515
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0515
http://refhub.elsevier.com/S0042-6989(23)00128-1/h0515
https://doi.org/10.1109/ICCV.2013.26
https://doi.org/10.1109/ICCV.2013.26
https://doi.org/10.1109/TPAMI.2015.2473844
https://doi.org/10.1098/rstb.2002.1158
https://doi.org/10.1167/8.5.1
https://doi.org/10.1167/12.2.17
https://doi.org/10.3390/vision2010012
https://doi.org/10.1167/9.11.20
https://doi.org/10.1167/9.11.20
https://doi.org/10.1523/JNEUROSCI.2797-12.2013
https://doi.org/10.1523/JNEUROSCI.2797-12.2013

	The influence of stereopsis on visual saliency in a proto-object based model of selective attention
	1 Introduction
	2 Related studies
	2.1 Stereopsis and eye fixations

	3 3D eye fixations datasets
	4 Proto-object based saliency model
	4.1 Model framework
	4.2 Disparity channels
	4.3 Proto-object based model
	4.4 Validation

	5 Results
	6 Discussion
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


