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Some animals including humans use stereoscopic vision which reconstructs spatial information about the
environment from the disparity between images captured by eyes in two separate adjacent locations. Like other
sensory information, such stereoscopic information is expected to influence attentional selection. We develop a
biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual
saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on
unbound sets of elementary features. We show that taking into account the stereoscopic information improves

the performance of the model in the prediction of human eye movements with statistically significant differences.

1. Introduction

We are surrounded by three-dimensional space; however, each retina
captures only a two-dimensional image. Each retinal image individually
can contain clues for depth information such as shading, looming sizes,
and occlusion, with the latter including the presence of T-junctions
(Nakayama et al., 1995; von der Heydt, 2015; Welchman, 2016). In
addition, binocular vision which uses triangulation by two eyeballs,
provides a reliable cue for depth and results in vivid three-dimensional
(3D) perception. Not only is this capability used for range finding, some
animals with front-facing eyes, including humans, also exploit binocular
stereopsis for camouflage breaking (Nityananda & Read, 2017); in the
words of Bela Julesz, “with stereoscopic vision there is no camouflage”
(Julesz, 1989). This is likely due to the organization of visual scenes into
objects: camouflage exploits erroneous assignment of perceptual edges
which is made more difficult by the existence of explicit depth differ-
ences at object borders, and their absence within object borders (Adams
et al., 2019; Poggio & Poggio, 1984).

Binocular vision has been studied both in neuroscience and in en-
gineering, the former primarily focusing on revealing how nervous
systems achieve stereovision and the latter on finding efficient and
precise algorithms. In both fields, a major difficulty is the stereo corre-
spondence problem: to find out which features in two retinal images
originate from the same point in 3D space. The problem may seem trivial
because we effortlessly and quickly solve it in daily life. Nonetheless, it is
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not simple, and the brain devotes multiple cortical areas to solve it
(Cumming & DeAngelis, 2001; Kumano et al., 2008; Tanabe et al.,
2004). The mechanisms employed in the primary visual cortex have
been extensively studied, and the “disparity energy model” is widely
accepted as it agrees well with data from neurophysiological experi-
ments (Ohzawa et al., 1990, 1997).

Binocular information, together with other visual features, not only
underlies functions like object recognition but presumably also provides
inputs for the determination of which parts of the visual scene are the
most relevant, i.e. which require detailed processing. Identifying these
regions is the task solved by visual selective attention. In general, this is
a highly complex function which involves perceptual and cognitive
processes at many levels. An important part of this function is data-
driven, or bottom-up attention, that finds the most relevant image re-
gions based on low-level visual features and their combinations. These
regions are usually called the most “salient” areas of the scene. The
seminal work by Koch and Ullman (Koch & Ullman, 1985) established a
systematic way to find these regions in the form of a saliency map which
ranks the level of saliency at different locations in the visual scene.
Predictions of this theory need to be compared with behavioral obser-
vations. Two considerations are of relevance here. First, the saliency
map was originally proposed as a mechanism for covert attention which
is correlated with, but not identical to, overt attention, i.e. eye move-
ments. There are methods to measure behavioral consequences of covert
visual attention, e.g. (Posner, 1980) but in practice, it is much easier to
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measure the state of overt attention(Parkhurst et al., 2002) which, as
mentioned, is known to correlate with covert attention (Deubel &
Schneider, 1996; Hoffman & Subramaniam, 1995; Moore & Fallah,
2001; van der Stigchel & Theeuwes, 2007). For this reason, (Parkhurst
et al., 2002) proposed to use overt attention as an approximation to
covert attention for the purposes of testing models of the latter. Second,
the saliency map only takes account of bottom-up information. To
minimize (though not eliminate) the effects of top-down attention,
which is goal-directed and depends on the internal state of the observer
in addition to the visual input (Parkhurst et al., 2002) and later studies
use a free-viewing paradigm.

Many models of visual saliency rely on local contrast in low-level
features such as intensity, color, and orientation. However, a plethora
of studies in psychology and neurophysiology have shown that visual
attention is also influenced by the rapid perceptual organization of the
visual scene into tentative objects rather than the basic features them-
selves (Egly et al., 1994; Einhauser et al., 2008; Nuthmann & Henderson,
2010; Qiu et al., 2007; Stoll et al., 2015; Zhou et al., 2000). By “tentative
objects” we mean that even relatively low-level visual processes can
capture the structure (e.g., foreground and background) of the input
scene. These tentative objects, or areas that possess “objectness,” are
called proto-objects (Rensink, 2000). A proto-object based saliency
model was shown to predict eye fixations with good accuracy (Russell
et al., 2014). In that model, the combination of edge detection, center-
surround mechanism, and grouping processes extracts the tentative
objects based on closure and proximity. While originally this model used
information from maps of intensity, color, and orientation, it was later
extended to additionally utilize motion, depth, and texture features (Hu
et al., 2016; Mancinelli et al., 2018; Molin et al., 2015; Uejima et al.,
2020), and it was also implemented in biofidelic neuromorphic hard-
ware (Ghosh et al., 2022; Iacono et al.,, 2019; Molin et al., 2021;
Ramenahalli et al., 2013).

In this paper, we propose a model of biological stereopsis and
incorporate it into that proto-object based saliency model. While depth
and disparity features have been integrated into the model previously
(Hu et al., 2016; Mancinelli et al., 2018), we discuss below why our
approach employs a different mechanism to exploit binocular disparity
that is biologically plausible. As in previous work, the output of our
model is a saliency map, and we compare it with published human
fixation data obtained while participants freely viewed stereogram im-
ages. As we show below, our model shows better predictive performance
than the original two-dimensional (2D) proto-object based saliency
model.

The main novel contributions of our study are: 1) building a bio-
fidelic 3D visual saliency model that includes disparity-tuned neurons
and border-ownership coding neurons in areas V1, V2, and V4,
achieving proto-object based perception; and 2) applying the model to
natural 3D scenes and evaluating 3D effects on saliency with fixation
data collected from humans viewing natural scenes.

2. Related studies
2.1. Stereopsis and eye fixations

Many studies have sought an understanding of how the brain ach-
ieves stereoscopic vision. Since Julesz introduced random dot stereo-
grams (Julesz, 1971), which do not include any 2D depth cues and
provide only disparity information, neuroscientists have used these
stimuli to study brain activity corresponding to depth perception solely
generated by binocular disparity (Poggio et al., 1985). These experi-
ments have also shown that no prior knowledge about objects is needed
for stereo correspondence because an observer can perceive nontrivial
image contents only after fusing the stereogram.

One of the major difficulties of stereoscopic vision is the corre-
spondence problem, i.e. to find corresponding features in the two 2D
images. A cooperative process is an early model to solve this problem, by
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finding matching points using iterative computations which minimize
an error-measure(Marr, 1982; Marr & Poggio, 1979). While this could
potentially be realized in the nervous system, the biological system
seems to process stereovision more rapidly than is expected from an
iterative process, at least in its early stages. Neurophysiological studies
have revealed that stereoscopic vision can be explained by the so-called
disparity energy model, in which binocular simple cells sum the activity
of monocular simple cells linearly. Subsequently, binocular complex
cells sum the squared responses of quadrature pairs of the simple cells
(Ohzawa, 1998; Ohzawa et al., 1990, 1997). Marr and Poggio pointed
out that combining multi-spatial-frequency filters (i.e., neuronal recep-
tive fields) aids to prevent false matches between parts of one image to
non-corresponding portions of the other image (Marr & Poggio, 1979).
Their original idea employs a sequential coarse-to-fine structure that
first computes coarse (low spatial frequencies) disparities and then
proceeds to finer scales. Later, pooling multi-spatial-frequency features
to find correspondence points based on information from all scales at
once (rather than sequentially at different scales) was proposed (Fleet
et al., 1996). While it is not clear whether the biological system employs
a sequential mechanism or a simultaneous pooling algorithm, integra-
tion over multiple spatial-frequencies has been observed in primate area
V4 (Kumano et al., 2008) and in primary visual cortex of cat (Baba et al.,
2015), and we adopt it in our model.

Visual saliency has been widely studied in 2D (Bruce & Tsotsos,
2005; Hou et al., 2012; Itti et al., 1998; Itti & Koch, 2000; Judd et al.,
2009; Koch & Ullman, 1985; Li, 2002; Niebur & Koch, 1996), see (Borji
et al., 2013) for a comparative study. While these models approach the
problem from a mechanistic point of view, deep learning based models
have also been used, and showed remarkably high performance in pre-
dicting human fixations (Cornia et al., 2016; Huang et al., 2015; Kru-
thiventi et al., 2015; Kiimmerer et al., 2014, 2016; Vig et al., 2014).
Recently, some studies attempted to incorporate psychological concepts,
based on Gestalt principles, into saliency models (Russell et al., 2014;
Zhang & Sclaroff, 2013, 2016). Gestalt psychology argues that the whole
of an object is more important than individual features for perception.
This assertion has been supported by neurophysiological studies of
figure-ground organization coding in visual cortex (Qiu et al., 2007; Qiu
& von der Heydt, 2005; von der Heydt, 2015; Williford & von der Heydt,
2016; Zhou et al., 2000) which link perception and neural responses.

Saliency regarding stereoscopic images has been also studied,
although not to the extent of 2D saliency. Reports investigating how
depth information affects human eye movements (Gautier & Le Meur,
2012; Huynh-Thu & Schiatti, 2011; Jansen et al., 2009; Khaustova et al.,
2013; Lang et al., 2012) showed that, overall, humans tend to fixate
similar locations in situations with or without binocular information.
More specifically, the fixation locations are almost the same for 3D and
2D images in long observation windows (20 s) but different in short
observation windows (about four or five seconds) (Gautier & Le Meur,
2012; Jansen et al., 2009; Khaustova et al., 2013). Notably, researchers
reported a tendency for humans to look at closer points soon after they
look at an image (Gautier & Le Meur, 2012; Jansen et al., 2009; Lang
et al., 2012). The effect of 3D cues for visual perception was also
observed on shorter time scales in a texture segmentation task (Zhaoping
etal., 2009). The study showed that the 3D process shortens the reaction
time to segment two textures if and only if the task is difficult for the 2D
process, which implies that V1 plays a dominant role during the initial
attentional process, and that extrastriate cortex later provides additional
information. More specifically, when texture segmentation is suffi-
ciently easy, human observers typically require a reaction time of half a
second to one second to report the location of the boundary between two
neighboring textures. Their experiments indicate that this reaction time
is not shortened by adding depth information to visual inputs unless the
segmentation is so difficult that the reaction time is longer than one
second. We note that these influences of binocular vision on saliency
should not be confounded with the effect of ocularity, predicted by (Li,
2002) and observed experimentally by (Zhaoping, 2008, 2012, 2018);
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see also the discussion below.

Based on these behavioral results, researchers have proposed visual
saliency models for 3D still scenes. Lang et al. calculated “depth priors”
that indicates how eye fixations of human observers differed between 2D
images and the corresponding 3D scenes, and they proposed to include
these priors in existing 2D saliency models (Lang et al., 2012). Wang
et al. took a Bayesian approach to incorporate depth effects on fixations
(Wang et al., 2013), in which the parameters for the probability distri-
bution were tuned by observed fixation data. Ma and Hang (Ma & Hang,
2015) proposed another learning-based model that employed a similar
method for the Judd et al. model (Judd et al., 2009) for 2D static images,
which includes various features including a face detection mechanism.
They extended the model to incorporate features from a depth map. In
these data-driven approaches, the parameters are determined by human
behavioral data and did not explicitly implement biological mecha-
nisms. An alternative biologically plausible binocular segmentation
model has been proposed, which employs disparity selective V2 neurons
(Zhaoping, 2002). In that study, intracortical interaction generate the
stereo correspondence and pre-attentive stereo segmentation on
random-dot stereograms. The study focused on early visual processing
involving area V1 and V2 and did not include later processing areas such
as V4.

In the context of binocular vision, it is known that dichoptic features
also affect saliency, which was an important prediction generated by a
saliency map model implemented in area V1 (Li, 2002). In a series of
studies, Zhaoping (Zhaoping, 2008, 2012, 2018) showed that these
features include ocularity. Specifically, she used dichoptic viewing in
which a center stimulus was presented to one eye and its surround to the
other. She showed that ocular singletons, in which the center stimulus
differed from the surround in some feature, e.g. orientation, elicit
behavior that was consistent with strong saliency at the stimulus loca-
tion. Remarkably, this was the case even though under such viewing
conditions humans are typically not aware to which eye a stimulus is
presented, i.e. their perception is identical to that of a stimulus in a
surround field in a monocularly presentation. Although these results are
highly interesting, we here do not study dichoptic vision but focus on
complex natural scenes.

In this study, we implement algorithms inspired by the information
processing principles employed in the primate brain. More specifically,
we use the framework of a proto-object based model of perceptual or-
ganization and attentional control (Russell et al., 2014) and integrate a
biologically-plausible stereovision mechanism in this model.

Previously, Hu and collaborators published a proto-object based sa-
liency model that includes depth features (Hu et al., 2016). This model
takes a depth map as input along with a 2D image, which means depth
information must be calculated or measured before it is used in the
model. The depth map is then treated similar to any other feature map, e.
g., the intensity map. Another model, proposed by Mancinelli et al.
(Mancinelli et al., 2018) takes two images from the right and left cam-
eras rather than a depth map. This approach is more biofidelic because
the visual cortex is not provided with an explicit depth map as input, but
instead, with the output from two retinae. However, the images in the
Mancinelli et al model need to be rectified which either requires precise
knowledge of the optical geometry, which often is not available, or
additional knowledge of the depth at several locations in the scene. This
is the main disadvantage of the model since it leaves open where this
information comes from. We therefore take a different approach for
modelling visual saliency based on Gestalt principles with a stereopsis
mechanism that does not suffer from these limitations, by only requiring
input from two cameras.

3. 3D eye fixations datasets
As mentioned previously, a widely accepted method to evaluate the

quality of saliency models is to compare how well they can predict
human eye fixations. Although many datasets of human fixations for 2D
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scenes have been published, only few are available for 3D stimuli.

The Gaze-3D dataset is a publicly-available 3D fixation dataset
(Wang et al., 2013). It consists of 18 stereoscopic images and corre-
sponding disparity and depth maps calculated by an optical flow
method. The fixation data were collected from 35 participants sitting at
93 cm distance from a 26-inch display with a resolution of 1920 x 1200
pixels for 15 s after stimulus onset. Their eye tracking data were
recorded from the left eye, meaning the fixation locations correspond to
the left image.

The NCTU-3D dataset consists of 475 stereoscopic scenes and cor-
responding depth maps (Ma & Hang, 2015). The eye-tracking data were
collected from 16 subjects. The 3D images were displayed on a 23-inch
monitor with 1920 x 1080 pixels resolution, placed at 78.5 cm from the
observers for 4 s after stimulus onset. Fig. 1 (a) shows an example of
stimuli, fixation map, and depth map from the NCTU-3D dataset. The
provided fixation data are based on right-eye tracking.

4. Proto-object based saliency model
4.1. Model framework

The disparity channels to be described in Section 3.2 provide input to
a variation of the proto-object based saliency model which was origi-
nally introduced by Russell et al. (Russell et al., 2014). We use an
improved algorithm developed by Uejima et al. (Uejima et al., 2020) but
omit the texture features introduced in that model. Since the model
framework used in this paper is the same as that in those prior studies,
we briefly explain it in Section 3.3.

The source code of the proposed model is available online (https://gi
thub.com/csmslab/proto-object-saliency-stereopsis).

4.2. Disparity channels

We start by modeling the retina under photopic conditions, i.e.,
under light conditions in which rods are saturated and cones play the
main role. Retinal output is generated by three types of retinal ganglion
cells: parasol, midget, and bistratified (Nassi & Callaway, 2009).
Simplified, the parasol cells mainly represent intensity (luminance)
while the other two represent chromatic information: the midget cells
red-green colors, and the bistratified cells yellow-blue colors. We model
the intensity channel, I, as:

_r+g+b

I
3

@

where r, g, and b are the red, green, and blue components of the image
(Itti et al., 1998).
The color channels are modeled as below:

R=|r-51 6= o=

2

|y rtg ,_|rte _Ir—sgl
B‘V’ 2J’Y_{2 2 bJ 2

RG = |R—G|.,GR = |G—R|
BY = |B—Y|.,YB=|Y—B] 3)

where |-] is half-wave rectification, and RG, GR, BY, and YB are color
opponency channels. The color signals are only computed for pixels
whose intensity value exceeds 10% of the maximum intensity of the
input image since hue variations are not perceivable at very low lumi-
nance. It is still unclear what role chromatic information plays for ste-
reopsis. It has been reported (Gregory, 1977; Jordan et al., 1990; Lu &
Fender, 1972) that random-dot stereograms need luminance cues to
cause depth perception although isoluminant figural stimuli can be
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(a) Dataset
Left Image

Right Image

(b) Disparity Channels
Near Zero
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Depth Map

Fixation Map (not used in our model)

Max

(c) Saliency Map

Min

Fig. 1. Examples of a 3D eye tracking dataset and the saliency map generated by the proposed model. (a) Stereo image, fixation map and depth map from the NCTU-
3D dataset. The depth map is not used in our model. (b) Disparity channels of Near, Zero, and Far calculated by our model. A fish in the lower-right is present in the
Near and Zero channels. (c) Saliency map generated from the disparity channels. The color bar applies to (b), (c) and the fixation map in (a).

perceived as stereoscopic. In our models, we implement versions with
and without contributions from color channels, see below.

We use the disparity energy model as a biologically-plausible method
to extract depth (Ohzawa et al., 1990, 1997). The brain, as well as our
model, combines multi-spatial-frequency filters to accurately detect
disparity information (Baba et al., 2015; Fleet et al., 1996; Kumano
et al., 2008). The calculation of disparity energy starts by computing
receptive field properties of monocular simple cells. Simple cells in V1
are modeled by Gabor filters (Kulikowski et al., 1982), in our model,

2 2
L.} )
8eo(x,y) = exp (Tyy> cos(wx) 4)
o
— 4y
8oo(x,y) =exp (?) sin(wx) (5)
o
x = xcosf + ysind, y/ = — xsinf + ycosfd 6)

where 6 € {0,223}, and g, ¢(x,y) and go¢(x,y) are the even- and odd-
Gabor filters with spatial aspect ratio y, width ¢ = 2.24, and spatial
frequency w = 1.57. As in many other models of early visual processing,
the value of y is chosen to be below unity, resulting in elongated filters as
shown in Fig. 2(a). For instance, Russell et al. used y = 0.5 and y = 0.8

for edge detection and orientation channels, respectively, and we use the

Vertical Gabor filter
(a)y =05

(b)y =5

Fig. 2. Vertical Gabor filters. (a) A low spatial aspect ratio Gabor filter. (b) A
high spatial aspect ratio Gabor filter.

same values for those purposes (edge detection and orientation chan-
nels). However, for the simple cells of the disparity features we employ
shortened Gabor filters with y = 5 because such filters showed better
results than elongated filters. Although most orientation-selective cells
in early cortex have elongated receptive fields, which low spatial aspect
ratios (y < 1), a fraction of them have high spatial aspect ratios (y > 1)
(Xu et al., 2016). This is rare for simple cells but more common for
complex cells (ibid.). An example of a shortened (non-elongated) filter is
shown in Fig. 2 (b). Our modeling results predict that the subpopulation
of cells with high spatial aspect ratio, which are ill-suited for function-
alities like orientation filters, is preferentially involved with the
computation of binocular disparity which is greatly improved by the
presence of these cells.

Model receptive fields vary in size to make responses tolerant to
changes in scale. For the sake of computational efficiency, we scale the
input image, by full-octave steps, rather than the filters. The image of the
k-th scale level is written as X*, X € {I,RG, GR,BY, YB}. Monocular
simple cells are represented as:

S])((,R,eﬂ(x7y) = Xy(x,9)*8eo(x,y) 7)
Sk koo (5:¥) = X5 (%, 3)*00(x, ) ®

where Sﬁ,eﬂ is a k-th level simple cell activation function with even-
symmetric Gabor filters from the right image which has a preferred
angle of 6. S§ , , is the same but for an odd-symmetric Gabor filter. The
asterisk symbol * indicates convolution. The simple cells from the left
image, Sf,, and S, ,, are obtained in the same way:

S’)((,L‘e,e(xvy) = Xli(x’y)*gE,S(xa)’) (C)]
Sk Loo (5 Y) = Xi (X, )*800(x,) (10)
V3
Model A0 =7 X =1 an
ModelB: 0= 40 %% x (12)
. - 747 27 4 bl -
Model C: 0 = g,x = {I,RG, GR, BY, YB} (13)
ModelD : 6 = {o,g, g,%’[},x = {I,RG, GR, BY, YB} (14)
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We define four 3D models which differ in the combinations of fea-
tures and orientations. To compute disparity information, Model A uses
intensity at one orientation only (vertical), model B uses intensity at four
orientations, model C uses intensity plus color features at one orienta-
tion, and model D uses intensity plus color features at four orientations.
This means that model A, the simplest, uses § = 7 in equations (4) and
(5), i.e., a vertical Gabor filter and only the I channel as X in equations
(7-10). Model D, the most complex, utilizes @ € {0,%,2 3} for the Gabor
filters and I, RG, GR, BY, and YB channel as X. All models include the 2D
features described in Section 3.3, which means that all of them include
color and orientation information in the computation of 2D saliency.

Responses of binocular complex cells are calculated from the simple
cells with displaced images,

2
C;.(}.d (x,y) = (S‘)C(.R.ejl(x’y) + S‘)C(.L.e‘ll(x +d,y) > (1s)

2
+ (S,)((,R,oﬂ(‘x?y) + S’;(.L,o,a (x+d,y) )

where d is the disparity between the right and left images. The range of
the disparity d is arbitrary. In this paper, d takes on the range of + 8% of
the input image width. The simple cell activities S are rescaled to the
original image size before the calculation to make the disparity d cover
the same displacement at all levels.

As described, this is called a position-based model since the
displacement between two images is represented as a position differ-
ence. indicated by d in the equations. The displacement can also be
represented by a phase difference, resulting in phase-based models
(Fleet et al., 1991, 1996; Ohzawa et al., 1997). Physiological experi-
ments show that the brain uses both approaches (DeAngelis et al., 1991;
Ohzawa et al., 1990), but their roles in stereopsis are controversial. One
possibility is that the phase disparity tuned cells are used because they
provide higher accuracy (Qian & Zhu, 1997). However, pure phase-
based disparity can only capture disparities smaller than the receptive
field’s wavelength. Furthermore, Read and Cumming pointed out that
phase disparity does not exist in natural images and that cells
responding with phase disparity characteristics may function as “lie-
detectors” to eliminate false matches (Read & Cumming, 2007). In this
study, for the sake of simplicity we use only the position-based model.

The output of a binocular complex cell is enhanced when the two
images match at the cell’s preferred disparity. Focusing on a specific

location (x,y), the value of C}‘,ﬂ_d represents the “confidence” that the

location belongs to the specific disparity d, which depends on X, 6, and k.
However, its response is also enhanced where false matches or high
monocular contrast exist. To compensate for such unreliable responses,
we employ a softmax function to compute normalized complex cell re-
sponses C,

exp (C’,‘(‘(,‘d(x7 y) )
S exp(Clpplx.0) )

This can be interpreted as the “normalized confidence” of the dis-
parities of each location (x,y) and for each of the parameters (scale,
angle, color, and intensity). This computation is similar to the divisive
normalization mechanism that is found in many cortical circuits
(Heeger, 1992).

Then, C'is linearly summed up over scales, intensity and color maps,
and orientations to compute disparity confidence maps, D'. This is
written as:

y) = ZZZC/;,()_J(XJ) a7
0 5 K

Integration of multiple spatially frequency maps was reported in
visual cortex (Baba et al., 2015; Kumano et al., 2008) (although we use a
broader range of frequencies in our model) as was integration of color
and orientation (Garg et al., 2019; Ghose and Ts’o, 2017).

C/I;(.e,d(xd) = (16)
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In the primate brain, disparity information is sent to both dorsal and
ventral areas (Preston et al., 2008). Here, we focus on the ventral stream
which encodes depth information categorically while the dorsal stream
represents it in a parametric manner. Thus, we collapse the normalized
disparity map into three categories: near-, zero-, and far-positions. This
can be written as:

Near(x,y) = Zjean’d (x,)
dezero 1
Zero(x,y) = Zd Dy(x,y)
defar _,
Far(x,y) = Z; D'y(x,y) (18)

where near, zero, and far mean ranges of disparities for each position in
the scene. We set these ranges based on Panum’s fusional area which is
defined as encompassing any point where binocular fusion can be ach-
ieved (i.e. absence of diplopia) and which spans approximately 10 to 20
min of arc disparity (Qin et al., 2004). The channel of zero is set to
approximate Panum’s fusional area, and near and far include all nearer
and farther disparities, respectively. We used + 5 pixels (which corre-
sponds to approximately + 10 min of arc for our validation setup
described in Section 3.4) as the range for the zero channel.

Fig. 3 shows a schematic of the disparity channel computation. The
calculated disparity channels form one set of inputs to the proto-object
based saliency model, on the same footing with the 2D features in-
tensity, color, and orientation (Russell et al., 2014; Uejima et al., 2020).
Fig. 4 explains how the depth information is processed in the proposed
disparity process.

Input Image (Lcﬁ put Image (nght
Intensity & Color
Opponency Pyramids,

Gabor Filter ’ Gabor Filter ‘
I 0-7{/2’71’:37[/2 I
Monocular
Simple Cells
Even Odd
Binocular
Simple Cells ? @
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Disparities
Binocular
Complex Cells
Softmax
{ Integration of multiple

frequency an{i feature maps )
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Fig. 3. Schematic of disparity channel computation.
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{a) Input image in 3D space
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(b} Disparity maps

Far

fero Near

oY

? v

Fig. 4. Conceptual images of the disparity maps. (a) An input image represented in 3D space (actual stimulus is provided as stereo images). The depth is divided into

three category: Near, Zero, and Far. (b) Extracted disparity maps.

4.3. Proto-object based model

2D feature channels are generated by extracting intensity, color, and
orientation feature maps from the input, and then the 2D channels and
disparity channels are processed by the proto-object based model. These
algorithms except disparity channels are basically the same as the sup-
plementary materials in (Uejima et al., 2020) and in the remainder of
this subsection we follow the description in that paper closely.

The intensity and color channels are computed by eq. (1-3),
respectively.

The orientation channels with four angles, O, O%,,, O%”, O%”, are
calculated from the intensity features, and they are the same as I at this
point.

ogzlzm@e {o,ln,ln,EnD 19)

10-level pyramid images are created by scaling the intensity, color,
and disparity channels. The scaling is done by half-octave for each level.
In a similar way to using the meta-variable X in Section 3.2, we refer to
features at level k as /}k7
pe {I,RG7 GR,BY,YB,0y,04,,0,,,0s,, Near, Zero7Far}.

The pyramid images are processed by surface detectors employing
center-surround mechanism with receptive fields, cso, and cs,g, which
are modeled as two 2D Gaussian filters represented as:

the image

2452 1 2

CSon(x,y) = 270 Y-
(20)

s (¥,3) = 72710? 2706°
where o; is the standard deviation of the center (inner) Gaussian, and o,
is the standard deviation of the surrounding (outer) Gaussian. Here,
these are set as 6; = 0.9 and 6, = 2.7. These kernels are replaced by the
even Gabor filters to calculate the orientation channel so that the ker-
nels, cson0,0 and csqp 0, are written as;

2,0

CSon00(X,y) = exp( — H#) cos(wx) (@4))
207

CSof00(%, ) = — CSan00(X,y) (22)

x = xcosd + ysind, y/ = —xsinf + ycosd (23)

Where y; = 0.8, 6; = 3.2, and w; = 0.7854 in the same manner as
the original proto-object based model (Russell et al., 2014). The cs,,
detects light objects on dark backgrounds and cs,;s does dark objects on
light backgrounds.

The center-surround activities, #.7, are calculated as products of
the center-surround kernels and each feature, which can be written as:

For p € {I,RG,GR,BY, YB, Near, Zero, Far}

I 5 00y) = 4 (| y) Fesor ()]
b (x0y) = (@) esa(x) )
For f € {OO,O%,,,O%,,-,O%,[}
e py) = A1 (| ) esupoa(x.)])
7S5, (x,y) = 20 (B ) csonoa(x,)]) @4

where Z’J’Z and ’(/’L‘ form the dark and light object pyramids with k-
th level scaled images, and ./ (-) is a normalization operator used in the
same way as by (Russell et al., 2014). In the ./"; normalization process,
¢./p and ¢.7 are simultaneously normalized to the range of 0 to 10.
Then the average of all local maxima, m, is computed across both maps,
and each map is multiplied by (10 —m)?. It emphasizes the global
maximum center-surround response and suppresses maps with multiple
local maxima. Similar normalization procedures are used in many model
implementations of saliency maps, including the original (Itti et al.,
1998) study. Simple cells activities, which work as edge detectors

S/];e.e(x)y) = ﬁk(xv.Y)*ga.H(st) (25)
88,06, 3) = B (x,9) 800 (x.y) (26)

where g,y and g, are defined in eq. (4-6) with y = 0.5.
The activity of complex cells are calculated from the simple cells:

2 2
Cho(x,3) = \/Shen(x,3)" +55,0(x,¥) 27

The surface (center-surround activities) and edge (complex cells)
maps are used to calculate border-ownership coding which is physio-
logically observed mainly in cortical area V2 (Zhou et al., 2000). The
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firing activity of some of these cells is independent of contrast polarity.
To simulate this function, we first compute %”; 1» the border ownership

activity for a light object on a dark background and ., the border
ownership activity for a dark object on a light background:

'%;.s‘L(XJ) = \‘Z;_e(xv)’) X (1 +22/V9+n x,y)* //;iL( ¥)

=
Ekwxy

* /iD(x Y)>J

’%}Z.o‘n(x»Y) = \» /m(x y (1 + 22 Vorn(X,¥)* 7//10(" y)

Jj=k

=k

- Z%V()()ﬂy)* %]j/”(x7y) >J (28)

where v is the von Mises distribution (Russell et al., 2014) calculated as:

exp {(\/m - R0> sin(tan~'2 — 0) ]
27l (V55 Ro)

Ry is the zero-crossing radius of the center surround masks, and I, is
the modified Bessel function of the first kind. v, is then normalized as:

(29)

vo(x,y) =

V()()C, y)

max(vo(x,3) ) 30

Vo ()C7 y) =

The responses of the border-ownership cells to light and dark objects
are combined to make them independent of figure-ground contrast
polarity.

Byolx,y) =

At each pixel, multiple border ownership cells exist for each direction
of ownership, organized in pairs with mutually opposing spatial pref-
erences. For instance, at a pixel located on a vertical border, there is one
border ownership with a higher rate when the foreground object is to its
right, and its partner which has identical feature preferences but which
fires with a higher rate when the foreground object is to its left. To
determine which border a pixel belongs to, the model uses a winner-
take-all algorithm between the response of a border ownership selec-

%/‘;91 (x,3) + %/‘;HD (x,y) (€3]

tive neuron /}k and its partner .%

041
Dy(ey) = () (32)
where
0= argmax( ﬂﬂé,(x y) — ]‘/';‘H”(x,y)) (33)

Then, the grouping cell responses are calculated by summing the
winning border ownership activity in an annular fashion (Craft et al.,
2007; Russell et al., 2014)

Zhy) = 30|6(Hha0), 7 ) x (Zhe0) = B 9) ) wiley) |

o

(34)

—~k —~k
where § (,’%f;g(x, y), %l,> =1if ,%‘Zﬂ(x, Y) = % and zero otherwise.

A final saliency map is computed by normalizing and combining each
grouping cell response from each channel. The combined channels for

intensity, color, orientation, and disparity (namely, .7, Z, @, and )

are calculated by:

T =2 (5)

T = (7 Y+ (Zhy) +12(55,))

G) +.4 ( Gfm
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N

(@5°72(70,))

ac{0,n/4,1n/2,3n/4}

T =85 (V2 (Dhear) T2 Fre) + 72 (Fr)) (%)

In these equations, ./",(-) is almost identical to ./’ (-) which was
defined after eq. (24), but rather than normalizing two maps ( . and
¢.7'1), normalization only is performed on one map (the argument of
A2(4))-

The sum over normalized proto-object maps of all features consti-
tutes the final saliency map, ., which is represented as:

T = (WA + AN AC)+ N O)+ 1 2(T)) (36)

The overall view of the model is shown in Fig. 5. In this paper, we call
the model without the disparity channels (i.e., calculated from only
intensity, color, and orientation features) the 2D model, and models that
include the disparity channels 3D models (Model A — D, described in
Section 3.2).

For the comparison of model results with ground truth, we use eye
movement data from two empirical studies, the Gaze-3D and the NCTU-
3D data sets (Section 2.2). The former reports eye movements of the left
eye and the latter from the right eye. In both cases, we compute the
saliency map from the image projected to that eye whose movements
were recorded, i.e. from the left eye for the Gaze-3D dataset and the right
eye for the NCTU-3D dataset.

4.4. Validation

To evaluate the quality of the proposed model, we used publicly-
available eye fixation datasets to compare our saliency maps with
human eye movements which are taken as ground truth for the
deployment of selective attention. We used the Gaze-3D dataset (Wang
et al., 2013) which includes 18 images and the NCTU-3D dataset (Ma &
Hang, 2015) comprising 475 images. We reduced the image size of the
datasets by a factor of two before using them as input to our model to
decrease computation time.

For quantitative validation, we employed five metrics to assess the
predictive performance of the generated saliency maps for human fix-
ations. The metrics are normalized scanpath saliency (NSS), Pearson’s
correlation coefficient (CC), similarity (SIM), Kullback-Leibler diver-
gence (KLD), and shuffled area under the ROC curve (sAUC). These
metrics were calculated using published codes (Bylinskii et al., 2019).

As a short overview, NSS is the mean value of the normalized sa-
liency map at the fixation locations. The normalized saliency map is
calculated by transforming the map values to zero mean and unit stan-
dard deviation. CC takes on zero value for two uncorrelated variables
and unit value for identical ones. The SIM measure of two maps is zero
when the maps have no overlap and unity if the two maps are identical.
KLD quantifies the dissimilarity between two probability distributions,
and smaller KLD indicates higher similarity. The sAUC is a modified
version of the area under the ROC curve. The Receiver Operating
Characteristic (ROC) measures the ratio of true positives and false pos-
itives at various thresholds. The sAUC samples negative points to
calculate the false positive rate from equivalent fixation locations of
other images, rather than uniformly random locations from the same
image that standard AUC uses. This compensates for systematic biases
present in all images, such as the well-known center-bias, see. e.g.
Parkhurst et al 2002 (Parkhurst et al., 2002). For a discussion how center
bias is corrected for the other four metrics see below.

It is known that blurring saliency maps can affect metrics (Borji &
Itti, 2012; Hou et al., 2012). Basically, blurring approximates the sam-
pling error of the eye tracker used for recording fixations. We applied 2D
Gaussian kernels with various widths and determined the optimal
blurring kernel for each model and metric. The kernel width was varied
between 1% and 20% of the image widths for NCTU-3D, and between
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Fig. 5. Overall view of the model. In this overview, the non-depth related components of the saliency map (intensity, color, orientation) are computed from the input
to the left eye. During validation, this is the case for the Gaze-3D dataset. For the NCTU-3D dataset, these components are computed from the input to the right eye.

Fixation Map

Saliency Map from 2D Saliency Map from 3D

Fig. 6. Examples of saliency maps generated by the 2D model and a 3D model (model A). The input image and fixation map are from the NCTU-3D dataset. Our 3D
model suppresses background saliency compared to the 2D model. Color scale applies to all saliency and fixation maps.
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1% and 40% for Gaze-3D in steps of 1%. An exception was the sAUC
metric which was calculated under the condition of the blurring kernel
width between 1% and 8%, because the sAUC’s metric produced higher
values for smaller kernels than the other metrics.

All metrics except sAUC are affected by the center-bias: human ob-
servers tend to fixate preferentially at locations in the vicinity of the
centers of images. Parkhurst et al (Parkhurst et al., 2002) showed that
weighting saliency with a Gaussian at the image center resulted in better
fixation prediction, and that it could be improved even more by
centering a Gaussian on the location of the instantaneous fixation, to
take into account the fall-off of visual acuity in the periphery. Following
(Zhang & Sclaroff, 2016), here we use a simpler approach of using a
fixed parabolic distance-to-center (DTC) re-weighting. This is computed
as:

37

where i and j are the row and column indice and H and W are the height
and width of the input image. The generated saliency map blurred by the
2D Gaussian kernel with the best sigma is pixel-wise multiplied with
DTC. The DTC re-weighting procedure was not applied for the sAUC
metric because SAUC automatically compensates for the center-bias.

5. Results

Examples of the proposed disparity channels and the resulting sa-
liency map are shown in Fig. 1 (b) and (c), respectively. The fixation map
in this example indicates that participants tend to fixate a fish in the
lower half of the image that is closer to the observer than the other fish.
The computed disparity maps in Fig. 1 (b) show that the location of the
fish is captured by the near and zero channels. The saliency map is
calculated based on the disparity channels and shows high value at the
approximate location of this fish as shown in Fig. 1 (c).

Fig. 6 shows comparisons between fixation maps and saliency maps
generated by the 2D and 3D models. We here use model A described in
Section 3.2 which employs vertical orientation and intensity. The 2D
model saliency maps were calculated from intensity, color, and orien-
tation features as in (Uejima et al., 2020), but without the texture fea-
tures in that model. The 3D saliency maps were computed by adding
depth maps generated from the disparity channels. In these examples,
the 2D model predicted the human fixations to some extent, and the
depth information improved the predictions. In the example of the first
row, for instance, the 3D model shows higher saliency value at the

Table 1
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location of the airship than the 2D model, in agreement with human
fixations. In all examples shown, the 3D model suppresses saliency to
background patterns, relative to foreground objects. This shows that
depth plays a role in the prediction of overt attention.

To quantify the performance enhancement due to adding depth
channels, we calculate the metrics of the saliency maps generated with
and without the depth information by comparing them against human
fixations. These metrics are shown in Table 1. As described in Section
3.2, we used four variations of the 3D model which include different
combinations of color features and orientations. Our results indicate that
the depth channels improve the prediction of human fixations. Because
of the small size of the Gaze-3D dataset (only 18 images), in the
following we focus our analysis on the NCTU-3D data.

We first look at the models that only use intensity information (not
color), i.e., models A and B. For all but two of the ten comparisons be-
tween the 2D model and the two corresponding models with 3D infor-
mation (Models A and B), the models with 3D information performed
equally well or better than the 2D model. The increase in performance
was significant for 5 of these comparisons (two-tailed paired t-test, p <
0.05).

If color information is added, models incorporating 3D cues (Models
C and D) are equal or better than the corresponding 2D model for all ten
comparisons. However, the differences are small and don’t reach sig-
nificance. A surprising result is that the simplest of the 3D models, Model
A with only one orientation (vertical) in which neither color nor the
other orientations contribute, overall performs best. It has the best
scores by all metrics on the Gaze-3D dataset, and the highest by all
metrics bar-one on the NCTU-3D dataset. Even in case of the one
exception in the NCTU-3D data, the best performance occurs in the
second model with only one orientation, Model C. Given that human
eyes are typically at the same height, and binocular disparity thus
occurring between locations symmetric to the vertical, it seems intuitive
that the vertical orientation is the most important. It appears that taking
into account other orientations is not only unnecessary but, in fact,
interfering with optimal performance. As for the lacking contribution of
color information, we will come back to this question in our Discussion
section.

Primates express strong interest in faces and bodies which attract
attention even when they are task-irrelevant (Landman et al., 2014).
Indeed, detection of faces and body parts is supported by anatomical
structures in monkeys (Desimone, 1991; Gross, 2008; Tsao et al., 2003)
and humans (Downing et al., 2001). We expect that the human fixation
locations that we use as ground truth in this study show a similar bias.
Since none of our models has corresponding explicit detection mecha-
nisms for faces or body parts, we expected that models predict fixation

Models incorporating depth features predict human eye fixations equally well or better than the 2D model. In column 1, “1 orientation” indicates a model with only one
(vertical) Gabor filter and “4 orientations” models with Gabor filter with four orientations. Labels “I” and “I&C” indicate models with only the intensity feature and a
combination of intensity and color features, respectively. Underscore denotes the best score for each metric. A parenthesis next to the performance value of a model
indicates that this model performs significantly better than any of the models listed in the parenthesis, where B, C, D, indicate the different 3D models, and “2” the 2D
model. For instance, by the CC metric Model A performs better than models 2, B, and C. Significance was evaluated by two-tailed paired t-tests (p < 0.05). Larger values

are better for all metrics but KLD.

Model Metrics

NSS cC SIM KLD sAUC
NCTU-3D dataset
2D model 1.468 0.633 0.612 0.518 0.657
Model A (3D, 1 orientation, I) 1.473 (B) 0.638 (2,C,D) 0.614 (2,B,C) 0.513 0.655
Model B (3D, 4 orientations, I) 1.463 0.638 (2,C,D) 0.613 (2) 0.515 (2) 0.654
Model C (3D, 1 orientation, 1&C) 1.468 0.633 0.612 0.517 0.660 (A,B)
Model D (3D, 4 orientations, I&C) 1.470 0.633 0.613 0.516 0.657
Gaze-3D dataset
2D model 0.958 0.685 0.731 0.254 0.609
Model A (3D, 1 orientation, I) 0.968 (C,D) 0.687 (C,D) 0.732 0.252 0.611
Model B (3D, 4 orientations, I) 0.959 (D) 0.684 (D) 0.731 0.255 0.610
Model C (3D, 1 orientation, 1&C) 0.949 0.678 0.729 0.256 0.608
Model D (3D, 4 orientations, 1&C) 0.947 0.680 0.729 0.255 0.605
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locations better for images that have no persons in the scene than for
images with persons. We therefore divided the images into two sets: one
set with humans visible (fully or partially) and the other set without. The
latter could, however, include animals or statues of humans. In the
NCTU data set, we found 303 images in which humans were visible, at
least partially, and 172 images in which that was not the case. In the
Gaze-3D data, 7 images included visible humans and 11 did not.

The results shown in Table 2 confirm our expectation: for all five
models, and for all five metrics, fixation prediction performance
decreased with the presence of faces, bodies, or body parts in the NCTU-
3D dataset. In the majority of the tests (15/25), this decrease was sig-
nificant (one-tailed Welch test, p < 0.05). Similarly for the Gaze-3D
data, the majority (17/25) of tests showed higher performance for im-
ages without humans and the majority of these differences (10/17) were
significant. Overall, the effect was somewhat weaker than for the NCTU-
3D data, but the Gaze-3D dataset is very small which limits the statistical
power that can be achieved. We also note that a separate channel for
face detection, for instance using the standard Viola-Jones algorithm
(Viola & Jones, 2001), can be easily added to the models and would
most likely increase fixation prediction performance substantially, as it
did in a previously-developed class of models from the same pedigree as
ours (Cerf et al., 2008).

6. Discussion

Binocular information processing in our model is based on physio-
logical and psychological evidence. Its basic mechanism is the binocular
energy model which combines information from two monocular input
sources into a binocular signal, akin to the generation of complex cell
responses from the activity of monocular simple cells in two eyes.
Binocular complex cells are tuned to specific disparity ranges and their
activity represents a “confidence” measure of the disparity difference
within their receptive fields. Our model of cells with binocular receptive
fields uses Gabor filters with high spatial aspect ratio (y > 1). While the
spatial aspect ratio of the majority of orientation selective cortical cells
is y > 1, a fraction of cells in early visual cortex have a spatial aspect
ratio larger than unity. We hypothesize that their role is primarily in
disparity computations, rather than in the representation of oriented
edges for which elongated filters are better suited.

Despite decades of neurophysiological research, it is still not entirely
clear how the brain deals with depth information. Early studies of ste-
reopsis proposed that the disparity processing is achieved categorically,
by cells tuned near, far, and zero (in the focal plane) (Poggio & Poggio,
1984; Richards, 1971). Later, this three-channel model was replaced by
a continuous representation, similar to that for orientation or motion
direction (Poggio, 1995). A recent imaging study indicates that, in fact,

Table 2
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both ideas may be correct but used in different pathways: dorsal cortical
areas, including V3A and V7 encode parametric disparity while areas in
the ventral pathway, in particular the lateral occipital area, represent
the categorical responses “near” and “far (Preston et al., 2008). The
former may be more relevant for visual control of action while the latter
may be more useful for tasks like object recognition. In our model, we
adopt the latter, i.e. a categorical model akin to what is found in the
ventral pathway, with the responses of the binocularly tuned cells
organized in three channels: near, far, and (close-to-)zero.

The boundaries between the zero channel and the other two are
defined by Panum’s area. This gives rise to a limitation of our approach
because the model assumes that the focal plane is always in the zero
disparity range of the input image. Because subjects can move their eyes,
they can fixate objects outside the focal plane in which case Panum’s
fusion area changes. Our model does not include such dynamic change
of subjective disparity perception.

The output of these disparity channels is given as input to a proto-
object based saliency model (Russell et al., 2014) with V4 playing a
major role. This is clearly different from previous studies of biofidelic 2D
saliency (Itti et al., 1998; Itti & Koch, 2000; Koch & Ullman, 1985; Li,
2002; Niebur & Koch, 1996) and 3D saliency (Zhaoping, 2002). It is
known that latencies of V2 responses are longer than V1 responses by
approximately a dozen of milliseconds in the primate brain (Gawne &
Martin, 2002; Nowak et al., 1995; Schmolesky et al., 1998). Reaction
time studies (Zhaoping et al., 2009) indicate that depth features, pre-
sumably processed in V2, influence attentional guidance in complex
stimulus stimuli (those requiring more than one second of human
manual reaction times to report their visual perception), in contrast to
the low-level features involving V1, which direct attention in tasks
where reaction times are much faster. This would imply that depth-
derived attentional guidance in our proto-object based mechanism
would also be rather slow, with reaction times on the order of a second
or more. We can not address directly whether this is the case because in
the datasets we use in our study, eye fixations last for 4 to 15 s.

In our model, proto-objects are calculated separately in the spaces of
near, far, and zero channels. As in earlier saliency map models, in-
teractions between features and spatial scales emphasize the influence of
those maps with a small number of local maxima and suppress those
with many peaks. In typical scenes, a small number of foreground ob-
jects tend to be in the near or zero depth zones while broad areas of
cluttered background are in the “far” channel. For such scene structures,
the model emphasizes the foreground objects in the near and zero
channels which only have a few peaks. This agrees with the observation
that humans tend to fixate objects in foreground (near) locations
(Gautier & Le Meur, 2012; Jansen et al., 2009; Lang et al., 2012). We
find that by most metrics our intensity-based models (Models A and B)

Effect of presence of persons in images. The left and right columns of each metrics show model performance on images without and with persons, respectively.
Underscore denotes the best score for each metric. For the NCTU-3D data, model performance is always higher on images without persons. This is not the case for Gaze-
3D but this dataset has only 7 images with persons. An asterisk (*) indicates that the performance is significantly better on images without persons (one-tailed Welch

test, p < 0.05).

Model Metrics
NSS cC SIM KLD sAUC

NCTU-3D dataset without with without with without with without with without with
2D model 1.540 1.427 0.685* 0.603 0.637* 0.597 0.478* 0.541 0.657 0.657
Model A (3D, 1 orientation, I) 1.551% 1.430 0.693* 0.607 0.640* 0.599 0.465% 0.541 0.661 0.653
Model B (3D, 4 orientations, I) 1.545* 1.416 0.692* 0.607 0.640* 0.598 0.469* 0.542 0.655 0.653
Model C (3D, 1 orientation, 1&C) 1.532 1.432 0.685* 0.604 0.635* 0.599 0.479* 0.539 0.665 0.657
Model D (3D, 4 orientations, 1&C) 1.543 1.429 0.685* 0.604 0.637* 0.599 0.476* 0.538 0.660 0.654
Gaze-3D dataset without with without with without with without with without with
2D model 0.874 1.090 0.703 0.657 0.760* 0.686 0.217* 0.311 0.610 0.607
Model A (3D, 1 orientation, I) 0.878 1.110 0.704 0.660 0.760* 0.690 0.219* 0.304 0.618 0.599
Model B (3D, 4 orientations, I) 0.871 1.098 0.702 0.656 0.759% 0.687 0.222% 0.307 0.604 0.621
Model C (3D, 1 orientation, 1&C) 0.855 1.096 0.693 0.655 0.757* 0.684 0.220* 0.312 0.606 0.610
Model D (3D, 4 orientations, 1&C) 0.862 1.082 0.696 0.653 0.758* 0.684 0.216* 0.316 0.598 0.616

10
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predict human fixation patterns better than the analogous model that
uses monocular information only (Table 1).

This was not the case for the two models that, in addition to intensity,
also use color information. While intensity-only based Models A and B
showed nearly uniformly better performance than the 2D model, the
models incorporating color information to calculate depth in addition
(Models C and D) performed similarly to the 2D model on the NCTU-3D
dataset, and even slightly worse on the Gaze-3D dataset (the small size of
Gaze-3D makes it difficult to assign high importance to the latter result).
Furthermore, comparing the intensity-only models directly with the
models that use both intensity and color information, the former predict
fixation clearly better. This result seems at first puzzling: why would a
model that has access to more information perform worse than one with
less information?

There are two considerations to take into account. First, parameters
in our models are assigned fixed values, they are not selected by a
learning algorithm that optimizes performance in a given task (here,
optimal agreement with eye fixations). There is therefore no guarantee
that providing additional information improves the performance. Sec-
ond, and in addition, we define performance as agreement with human
eye movements. By this measure, the expectation that making available
additional source of types of information improves performance rests on
the assumption that this information is also available to, and used by,
the mechanisms that guide eye movements in humans. This is, however,
not necessarily the case; the role of chromatic information in stereopsis
is complicated. At the same time that Julesz invented random-dot ste-
reograms (Julesz, 1971), he reported that anti-correlated dots (with
reversed intensity polarity) did not give rise to stereoscopic vision, but
that correlated colors of the dots aided binocular fusion. Shortly there-
after, Lu and Fender disputed the latter finding, concluding their paper
with the sentence “luminance alone is used as the principal signal to
determine their depth” (Lu & Fender, 1972). Later studies found evi-
dence for stereoscopic vision in isoluminant conditions (Comerford,
1974; Grinberg & Williams, 1985) but methodological problems with
their approach led Livingstone and Hubel to question these results
(Livingstone & Hubel, 1987). Instead, they proposed that color, pro-
cessed in the parvocellular stream, interacts minimally, at best, with
orientation, motion and depth which are predominantly represented in
the magnocellular stream. This interpretation has been questioned yet
again by newer results that provide evidence for effective cross-
communication between the magnocellular and parvocellular channels
that support stereopsis driven by luminance, even though it is not clear
that color information by itself is sufficient to induce depth perception
(Scharff & Geisler, 1992; Simmons & Kingdom, 1997; Tyler & Cavanagh,
1991). While newer evidence supports that color information does
modulate perception of depth (Den Ouden et al., 2005), it is not clear if
the effect is strong enough in natural scenes, the stimuli that we use, to
result in statistically significant differences. Overall, while it was not the
focus of our work to study the role of color in stereopsis, our results
provide some support to the notion that for this perceptual function and
for this set of stimuli, chromatic information pays only a minor role if
any.

Understanding stereoscopic vision is not only of interest for basic
science but it also has practical implications. As mentioned in the
Introduction, one is obviously the determination of the distance of ob-
jects from the observer. Another (related) one is camouflage breaking.
The goal of camouflage is to disrupt the process of segmenting the to-be-
camouflaged object from its background. In addition to the obvious
method of trying to match the local visual properties of the object as
closely as possible with those of the background, a (related) technique is
to create strong contours inside the object boundaries, resulting in the
creation of internal “false” edges. This process interferes with the
grouping of the object’s features into a coherent entity, and therefore its
identification (Adams et al., 2019). Availability of depth information
reduces the effect of monocular edges internal to the object and there-
fore aids the visual system in the formation of correct object borders,
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segregating the object from the background. It is known that visual
scenes are organized in terms of such segregated objects, or more pre-
cisely, proto-objects (Rensink, 2000) which are entities towards atten-
tion is directed (Egeth & Yantis, 1997; Egly et al., 1994; Scholl, 2001).
The fact that our 3D models predict human fixation patterns better than
the 2D model supports the idea that human fixations are partially guided
by depth cues. Furthermore, this result may have consequences for the
application of our models in the context of camouflage. Given that depth
cues contribute strongly to scene segmentation and, therefore, camou-
flage breaking (Adams et al., 2019), we may conjecture that this is a
possible application where algorithms like our models A and B may be
useful. We did not test this hypothesis specifically on scenes with cam-
ouflage patterns, but this is a topic for future research.

7. Conclusion

We incorporate a biologically plausible stereopsis mechanism into a
proto-object based saliency model. The proposed model takes stereo-
scopic images as input and computes categorical depth information from
a disparity energy model. We combine the resulting depth information
with monocular information (intensity, color, and orientation) to form a
representation of the visual scene in terms of proto-objects. The resulting
saliency map generates predictions for the allocation of overt attention
that agree significantly better with human behavior than those from the
corresponding maps using monocular cues only. We also note that,
different from typical machine learning approaches, all stages of this
process are derived from first principles. No training is required other
than the setting of a small number of general parameters.
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