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Abstract

To understand the governing mechanisms of bio-inspired swimming has always been challenging
due to intense interactions between flexible bodies of natural aquatic species and water around
them. Advanced modal decomposition techniques provide us with tools to develop more in-depth
understating about these complex dynamical systems. In this paper, we employ proper orthogonal
decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract
energetically strongest spatio-temporal orthonormal components of complex kinematics of a
Crevalle jack (Caranx hippos) fish. Then, we present a computational framework for handling
fluid—structure interaction related problems in order to investigate their contributions towards the
overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can
be described by only two standing-wave like spatially orthonormal modes. Constructing the data
set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our
modal analyses reveal that only the first few modes receive energy from both the fluid and
structure, but the contribution of the structure in the remaining modes is minimal. For the viscous
and transitional flow conditions considered here, both spatially and temporally orthonormal
modes show strikingly similar coherent flow structures. Our investigations are expected to assist in
developing data-driven reduced-order mathematical models to examine the dynamics of
bio-inspired swimming robots and develop new and effective control strategies to bring their

performance closer to real fish species.

1. Introduction

For the last two decades, scientific community has
made a lot of progress to understand the natural
aquatic locomotion of numerous species that can
enable them to utilize the discovered hydrodynamic
mechanisms to propose efficient and maneuverable
designs for bio-inspired underwater vehicles (Fish
2020). In spite of this substantial amount of efforts
previously, there exists a huge gap to design effective
flow control strategies for these robotic devices. A
major difficulty in this pursuit relates to the involve-

ment of uncertain real conditions in large water
reservoirs, such as oceans and rivers, to be faced by
swimming robots and the prediction of their dynam-
ical states impacted by numerous physical factors.
In this context, data-driven techniques come up as
great candidates for predicting complex nonlinear
flow dynamics and tuning the kinematics of the
flexible body-structures of fish-like robots (Brunton
et al 2020, Verma et al 2018) to obtain desired
performance levels. This scenario has also raised the
requirement of developing effective reduced- or low-
order mathematical models to describe the mechanics

© 2020 IOP Publishing Ltd



10P Publishing

Bioinspir. Biomim. 16 (2021) 016018

of these engineering systems that would open up new
horizons to apply machine learning or deep learning
control techniques in this field. For the dimen-
sionality reduction, advanced modal decomposition
techniques, such as proper orthogonal decomposition
(POD), dynamic mode decomposition (DMD) and
their variants (Rowley and Dawson 2017) provide
great tools to extract primary features of nonlin-
ear dynamical systems without really solving the
governing equations. Previously, several people
reported their efforts to utilize these techniques to
understand underlying hydrodynamic mechanisms
for bio-inspired flows. Ting and Yang (2009) used
singular-value decomposition (SVD) method to
extract key flow features in the two-dimensional
wake of a fish. Some other studies (Liang and Dong
2015, Li et al 2016, Li et al 2017, Han et al 2017)
presented the utility of POD technique based on
a traditional eigenvalue decomposition analysis
for flows around flapping wings and plates. These
investigations also proposed the concept of virtual
force to classify the modes to find their contributions
in the production of lift and thrust forces.

There is another interesting way of investigating
the effects of dominant structural modes to quantify
their relative contributions in the production of total
hydrodynamic forces on bio-inspired structures dur-
ing their steady swimming. For example, Bozkurttas
et al (2009) utilized the SVD formulation to deter-
mine that only three structural POD modes were suf-
ficient to model the complex dynamics of a flexible
pectoral fin of a bluegill sunfish. They concluded that
the kinematics reconstructed by the mean and three
oscillatory POD modes was able to produce 92% of
the thrust force generated by the full-order kinemat-
ics of the pectoral fin. Ren and Dong (2016) used
a similar methodology to decompose the morphing
wing kinematics of a hovering dragonfly to exam-
ine the effects of POD modes on its aerodynamic
performance.

Besides, there were a few recent efforts to break
down the travelling-wave like motion of differ-
ent carangiform swimmers (Feeny and Feeny 2013,
Tanha 2018). Feeny and Feeny (2013) considered the
transverse kinematics of a whiting and carried out
complex modal analysis. They found that a single
complex mode was enough to represent the transverse
wavy motion of the fish. In this formulation, this com-
plex mode had two components out of which the real
one showed a standing wave and the imaginary part
represented a traveling wave like structure. Follow-
ing a similar approach, Tanha (2018) employed the
modal information to approximate important kine-
matic parameters, such as oscillation amplitudes and
phases and their dependence on time and spatial loca-
tion on fish bodies. However, the low-dimensional
analyses conducted in the afore-mentioned studies
were limited to the kinematics of flexible structures.
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The connections between dominant kinematic modes
and primary flow features of complex fluid—structure
interaction-based systems are still elusive.

Recent advancements in the field of modal anal-
ysis to characterize complex dynamical systems have
opened doors to analyze the underlying mechan-
ics of bio-inspired systems. A very significant ele-
ment of such systems is the nonlinear interaction
between the involving fluids and structures. Although
a common approach is to segregate the flow field
information from the overall system and examine
its dynamical properties, yet it would be very infor-
mative to incorporate the structural kinematics into
these mathematical and computational frameworks
to determine the levels of coupling between the fluid
and structures. This approach will also enable us to
segregate contributions of the fluid and structures
towards the dynamics of the overall system. The only
effort in this account found in literature was done by
Goza A and Colonius T (2018) in which they con-
sidered a two-dimensional flow field around a flap-
ping flag and analyzed its limit-cycle and chaotic
dynamics.

In our current study, we present a computational
framework to look for energetically strong modal
decompositions for three-dimensional dynamical
systems involving prescribed fluid—boundary inter-
action. We employ the physiology of a jack fish the
motion of which has been recorded live by a high-
speed photogrammetry system. First, utilizing POD
on the data set of its structural configurations enables
us to propose a low-dimensional description of its
complex flexible body kinematics. Next, we use POD
and DMD approaches to investigate fluid—structure
interactive mechanics and explain formation and pro-
duction of primary coherent fluid structures for two
Reynolds numbers: 500 and 4000. We perform the
modal analyses in a prescribed fluid—boundary inter-
action framework for the flow over the caudal fin only
due to the following two reasons, (1) the inclusion of
a thick body structure in this computational frame-
work will lead to spurious flow oscillations around
and inside the body Goza A and Colonius T (2018)
Menon K and Mittal R (2020), and (2) the caudal fin
is the primary thrust producing component for a jack
fish as also explained by Liu et al (2017).

The manuscript is organized as follows. Section 2
explains our computational methodology to per-
form numerical simulations using a sharp-interface
immersed boundary method-based solver. It also pro-
vides details for our approach to conduct modal anal-
yses of the kinematics of a jack fish and the prescribed
fluid—fin interaction-based system composed of the
membranous caudal fin and the vortical flow field
around it. Next, we present our analyses and find-
ings about the low-dimensional description of this
highly nonlinear system using POD and DMD in
section 3. Finally, we summarize and conclude our
work in section 4.
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track their motion.

Figure 1. (a) Virtual tunnel for simulating flows over the caudal fin of a jack fish with its dimensions where the inner box shows
the domain to extract data for modal decompositions, (b) a zoomed-in view of the inner domain covering the caudal fin and
coherent flow structures in its wake, and (c) jack fish body and caudal fin covered with a mesh to indicate the marker points to

2. Computational methodology

In this section, we elucidate our computational
methodology to handle the reconstruction of the
physiological model of a jack fish and its kinemat-
ics. We also explain the numerical methodology based
on a sharp interface immersed-boundary method to
perform numerical simulations for flows over the cau-
dal fin at Reynolds numbers (Re = U,,L/v) 500 and
4000. Here, v indicates kinematic viscosity of the
fluid, U, stands for free-stream velocity, and L is the
entire body-length of the jack fish. Moreover, we sum-
marize POD and DMD techniques and illustrate our
strategy to set up snapshot data matrices for their fur-
ther processing in order to extract the most domi-
nant modal characteristics for the kinematics of a jack
fish and the prescribed fluid—boundary interaction
based system of its caudal fin. Due to capturing the
real fin motion and its incorporation in our compu-
tational solver, we argue that this whole system forms
the basis of our claim about the interaction between
the fluid flow and the structural oscillations in our
present study. As explained in subsequent sections,
the consistency in finding the same Strouhal num-
ber for all the swimming speeds of the jack fish also
supports this argument.

To illustrate more on this aspect in our present
work, we use the real fish kinematics recorded
and reconstructed through high-speed cameras. This
same kinematics is further utilized in our IBM-based

CFD solver. This integrated experimental-numerical
approach allows us to analyze hydrodynamics and
resultant wake features produced by real fish motion.
Because the live recording effectively captures the flex-
ible body dynamics of the membranous caudal fin,
we consider it a fluid—fin interaction system where
the structural response has already been taken care
of by the high-speed photogrammetry technique.
We obtain the formation and dynamics of coher-
ent flow structures through our CFD solver. Thus,
this whole approach justifies the use of the term pre-
scribed fluid—boundary interaction. As far the compu-
tational approach is concerned, our current system
seems to present more like one-way FSI (from struc-
ture to fluid), but the integration of experimentally
determined real kinematics gives us the actual struc-
tural response thus taking care of the feedback of the
fluid to affect the structural response. It is important
to mention that the present kinematics was found to
be statistically robust for a wide range of swimming
speeds of jack fish (Liu et al 2017).

2.1. Jack fish physiological model and kinematics

To reconstruct the geometry of a jack fish and its kine-
matics, we employ the data recorded and reported
previously by (Liu et al 2017) to investigate the
body—fin and fin—fin interaction during its steady
swimming. Although the procedure to capture the
fish motion and its physiology along with the statis-
tical details has been covered in reference (Liu et al
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2017), we present its salient points here as well for the
sake of completeness. The current model is of Crevalle
jack (Caranx hippos) which is classified as a carangi-
form swimmer. Out of total 12 individuals of this
class of fish with a mean total length L = 0.338 m and
swimming at 1L s™! to 4L s~!. It is important to high-
light that their body kinematics did not change much
with the increasing swimming speed. The currently
used kinematic data was adopted from an individual
fish having L = 0.31 m and swimming at 2L s~ '. The
total height and width, normalized by L, of this fish
are 0.286 and 0.144, respectively. The area, normal-
ized by L%, of the caudal fin is 0.023 and its normalized
length is 0.244. The normalized height and length of
the caudal fin are 0.315 and 0.244, respectively.

In this study, we consider the trunk and caudal fin
only because these two components primarily con-
tribute towards the kinematics and functionality of
a fish. Its trunk is modeled as a solid body with a
closed surface and the caudal fin is a membrane with
zero thickness. Each surface is, then, represented by
triangular mesh where the main body is composed
of 11358 nodes and 22712 elements. The surface of
the caudal fin has 1369 nodes and 2560 elements (see
figure 1(c)). The measured wavelength from the mid-
line profiles is approximately 1.05L which is a char-
acteristic of the carangiform swimming mode. The
measured Strouhal number (St) for these recordings
remain 0.30, where St = 2Af;/U with f; being the
excitation/flapping frequency of the caudal fin, A as
the maximum one-sided oscillation amplitude of the
caudal fin, and U as the swimming speed.

2.2. Numerical solver

We perform three dimensional (3D) numerical sim-
ulations for flows over the oscillating caudal fin; a
membranous structure, at Re = 500 and 4000. Fol-
lowing non-dimensional forms of the continuity and
incompressible Navier—Stokes equations constitute
the mathematical model for the fluid flow:

Uu; -0
Bxi o

Continuity Equation:

Navier—Stokes Equations:

Ou; N Quwj — 9p 1 Dy

Re 0x;0x;

ot ij B Ox;
where the indices {i,j} = {1,2,3}, x; shows Carte-
sian directions, the u; denotes the Cartesian compo-
nents of the fluid velocity, p is the pressure, and Re
represents the Reynolds number.

We solve the described governing model for fluid
flow using a Cartesian grid-based sharp-interface
immersed boundary method (Mittal et al 2008) where
the spatial terms are discretized using a second-
order central difference scheme and a fractional-
step method is employed for time marching. This
makes our solutions second-order accurate in both
time and space. We utilize the Adams—Bashforth and
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implicit Crank—Nicolson schemes for the respective
numerical approximations of convective and diffusive
terms. The prescribed wavy kinematics is enforced as
a boundary condition for the swimmers. We impose
such conditions on immersed bodies through a ghost-
cell procedure (Mittal et al 2008) that is suitable for
both rigid and membranous body-structures. Fur-
ther details of this solver and its employment to solve
numerous bio-inspired fluid flow problems are avail-
able in references (Liuetal 2017, Wang et al 2019, Han
et al 2020, Wang et al 2020).

Next, we employ Dirichlet boundary conditions
for flow velocities on all sides except the left one where
Neumann conditions are used at the outflow bound-
ary (see figure 1(a)). The slices on the back and left
boundaries show the regions with high mesh density
in order to adequately resolve the flow features around
the structure and its wake. The rectangular box in
figure 1(b), encompassing the swimmer’s body, shows
the region of which we extract the data to perform our
modal analysis. We use a mesh size (Nx, N,, NZ) =
(385,129, 161) for the complete flow domain, while
the extracted domain for our further analysis has a
mesh size (nx, 1y, nz) = (234,123,153). For the mesh
independent study, the readers are referred to the ref-
erence (Liu et al 2017). It means that the total number
of nodes in the entire flow domain and its extracted
part are 7.99 million and 4.40 million, respectively.

2.3. Proper orthogonal decomposition

Proper orthogonal decomposition technique pro-
vides us with a data analysis method focusing on
extracting energetically ranked modes to propose
relevant mathematical models in order to describe
the system dynamics with reduced dimensionality
(Akhtar et al 2009). This strategy gives us opti-
mal and orthonormal spatio-temporal modes of a
dataset. POD modes and their associated useful infor-
mation can be obtained by employing either eigen-
value decomposition of the covariance matrix of a
dataset or by performing singular value decomposi-
tion (SVD) of the data matrix. In this data matrix,
information about the states of a dynamical system is
stored and arranged in particular patterns to further
process it by utilizing these techniques.

In our present study, we perform the POD anal-
ysis through the SVD technique. The main focus
here is to use modal decomposition methods for
two purposes: (1) to extract significantly reduced-
dimensional information for the complex wavy
kinematics of a jack fish and (2) to propose a compu-
tational framework in order to perform modal anal-
yses of fluid—structure interaction based systems and
capture the most relevant information about both the
structural motion and flow field. It is customary to
exclude the time-averaged profiles of a dataset before
applying POD. This practice makes it equivalent to
principal component analysis (PCA) in the fields of
imaging, video processing, and computer graphics
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(Perlibakas 2004). To decompose the fish kinemat-
ics into its primary POD modes, we construct the
following snapshot data matrix:

151 t N

B B 15

5l 5] IN
CF CF "7 CF

31 7] IN

Xo— Mg Mg - 7
S— 1 [ N
Mee Tice -+ e

3! 7] IN

B B . 5

2} tz PO IN

[ >CF  SCF CF | (3N5+3Ncp) x N

where &, 1, and (¢ denote the displacements of each
nodal point on the surface of the fish in x, y, and
z directions, respectively. The subscripts B and CF
indicate the information belonging to the main body
(trunk) and caudal fin, respectively. This snapshot
matrix contains the motion information of 48 time
instants spanning one complete oscillation cycle of
the jack fish. The SVD is formulated as:

Xs=UxV!

where U is a unitary matrix containing left eigenvec-
tors of the snapshot data matrix X, ¥ is a diagonal
matrix with positive numbered entries o; termed as
singular values and arranged in the descending order,
ie, 0y >0y >03....> 0pN, and V is another uni-
tary matrix. The eigenvalues (\) can be computed by
squaring o values. It is important to highlight that
the columns of U matrix give us the spatial distribu-
tion of POD modes, whereas V contains the informa-
tion about the temporal variations in these modes.
Each column of the V matrix provides us the tem-
poral coefficients («) of the POD modes. To con-
nect it with the traditional eigenvalue decomposition,
U and V are the eigenvectors of covariance matri-
ces X4 X and XsX3, respectively. Conventionally, the
sizes of U, ¥, and V matrices are (3Ng + 3N¢p) X
(3NB + SNCF)) (3NB + SNCF) X Nr, and N7 X Nr,
respectively. However, performing the ‘economy’ SVD
in MATLAB enables us to obtain and process
U and ¥ matrices with their respective sizes of
(3N + 3N¢r) X Nt and Nt x Nt which reduces the
computational burden to a large extent and pre-
vents us from facing out-of-memory problems during
numerical processing.

A reduced-order reconstruction for the system’s
kinematics or dynamics can be attained by using U,
3, and V matrices in the basic formulation of SVD.
To obtain the temporal behavior (video) of a partic-
ular ith POD mode, we can make all the entries zero
except its particular singular value o; in the ¥ matrix.
Thus, the mathematical form for this concept is;

X, =Ux, V"

In order to utilize this technique for a system based on
fluid—structure interaction, we construct our snap-
shot matrix using the entries pertaining to the dynam-
ical states of both the structure, the caudal fin in this

M S Ullah Khalid et al

case, and fluid flow in the following form:

t 5
ul oy ... yiN
Yooyl Lo N
wi w2 . N
X = 1 o N
CF  SCF CF
! ) N
Mee Mce -0 ek
f 0 SN
CF  >CF = (3Nx+3N,+3N;+3Ncg ) x Ny

Here, u, v, and w are the Cartesian components of the
fluid velocity, and each column represents a snapshot
of the FSI system at one time instant.

2.4. Dynamic mode decomposition

Dynamic mode decomposition (DMD) provides a
computational framework to extract a primary low-
order description of a data set through its orthonor-
mal modes in a temporal sense. The DMD modes are
also approximations of the Koopman operator which
is a linear infinite dimensional operator representing
a nonlinear dynamical system onto the Hilbert space
of the functions and states under consideration (Kutz
et al 2016). It enables us to build a linear descrip-
tion of a complex dynamical system without losing its
nonlinear characteristics. The sole idea is to construct
a formulation of a dynamical system x(t) such that
x (t;) = Ax(t1), x(t3) = Ax(t2), and so on. In other
words, we have x (ty) = AN"'x(ty_1). This method
computes DMD modes for the matrix A by minimiz-
ing ||xx — Axx_1,||, where the subscripts k and k — 1
are some time-instants.

For this purpose, we distribute the original
snapshot data matrix X into two submatrices X,
and X,, where X, = [X"X"?...X'N-1] and X, =
[X2X" - .. XN]. For further details on the algorithm,
the readers are referred to references (Rowley et al
2009, Schmid 2010, Schmid 2011, Kutz et al 2016).
In order to exploit the underlying data-driven tech-
nique, this algorithm indirectly solves for the DMD
modes ® of A matrix. To reduce the computational
cost incurred due to the large amount of data set,
we, first, perform the POD and truncate the lowest
energy-ranked modes to include the most relevant
information in the DMD computations. The real and
imaginary parts of the corresponding DMD eigenval-
ues; A, and \;, respectively, denote the growth rate
and frequency of DMD modes. Next, the associated
angular frequencies having units rad/ sec is computed
by w = log(\) /At, and its further division by 27
gives us the linear frequency in Hertz. Here, Af is
the sampling time to obtain the snapshot data matrix.
We obtain the approximate solution for the next time
instants using the following form:

N
x(1) =) by explwit)
j=1

where b is the initial amplitude, serving as the initial
condition as well, of the jth mode.
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Figure 2. Time histories of hydrodynamic force coefficients in the horizontal and lateral directions.
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Figure 3. Fourier spectra of hydrodynamic force coefficients along the Cartesian axes, (a) and (d) drag/thrust force, (b) and (e)
vertical force, and (c) and (f) lateral force, where the left and right columns show data for Re = 500 and 4000, respectively.
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3. Results & discussion

Before discussing the modal analysis for the kinemat-
ics of a jack fish and the flow fields around its oscil-
lating caudal fin at different Reynolds numbers, it
is important to explain the temporal character and
the frequency components of hydrodynamic forces
on the caudal fin. For this purpose, we define the
nondimensional hydrodynamic force components as
C=F/ O.SpUzAcp, where Acr is the area of the cau-
dal fin. Subscripts of C represents the direction of each

force component. Figure 2 presents temporal varia-
tions of the horizontal (drag/thrust) and lateral forces.
We find that Cx = Cp tends to change its instanta-
neous magnitude levels with a change in Re, and there
exists a small change in its phase as well. Nonetheless,
C shows almost similar patterns for both Reynolds
numbers though higher Re causes a smaller increase
in its positive and negative peak values. The spectral
decompositions of horizontal, lateral, and sideways
forces in figure 3 reveal that the excitation frequency
of the caudal fin f¢ is the most dominant frequency
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Figure 4. Energy levels of POD modes of a jack fish kinematics.
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Figure 5. Modal configurations of the trunk and caudal fin of a jack fish where color coding is used to distinguish between the
instantaneous positions: red (£ = 0.25), green (£ = 0.50), blue (£ = 0.75), and yellow (£ = 1.00).

in the Fourier spectra of Cz. However, both Cp and
Cy possess the frequency 2fg as the strongest one with
smaller contributions from fg and its higher harmon-
ics. These observations are consistent with those from
flows over cylinders (Imtiaz and Akhtar 2017) and
flapping wings (Khalid et al 2015, Khalid et al 2018,
Liang and Dong 2015).

3.1. Fish kinematics

Due to the flexibility of their bodies, different
species of fishes perform complex wavy motions,
usually known as undulation composed of trav-
elling waves along their bodies [see supplemen-
tary movie 1 (https://stacks.iop.org/BB/16/016018/
mmedia)]. Using the POD technique, we decompose
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(a)

Figure 6. Mean flow fields and their symmetry properties using Cartesian components of vorticity where the left (a)—(d) and
right (e)—(h) columns show data for Re = 500 and 4000. The plots in the 1st row are drawn using Q-criterion. The 2nd, 3rd, and
4th rows represent data on the corresponding planes for w,, w,, and w,, respectively.
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Figure 7. Squared eigenvalues normalized by their summation for (a) Re = 500 and (b) 4000.
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its full-order kinematics into spatially orthonormal
modes. Figure 4 shows the POD eigenvalues normal-
ized by their summation that represent the corre-
sponding energy levels of each mode. It is evident that
the first POD mode constitutes approximately 79% of
the energy, whereas the second POD mode has more

than 20% energy. All the other modes carry almost
zero energy levels. Thus, seemingly complex carangi-
form motion mainly comprises of only two primary
modes.

To illustrate it further, we represent the instan-
taneous positioning of the fish trunk during its one
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POD Mode 3

Figure 8. Most dominant oscillatory POD and DMD modes for our FSI system working at Re = 500.

(d)

(e)

(H
DMD Mode 4

oscillation cycle for the first two modes in figure 5
(see supplementary movies 2—4). In both the modal
configurations, the posterior part of the body shows a
greater amount of displacement from its equilibrium
position that is a characteristic feature of carangi-
form and sub-carangiform swimming patterns. The
first POD mode shows a standing wave like structure
where the nodes and antinodes are evidently visible.
The first node is located at 17% of the total body-
length, whereas the second one is positioned at 0.59L.
The orientations of the trunk section of the second
POD mode shows that the main body pitches about
the y-axis passing through a point at 0.34L. How-
ever, these configurations combined with those of
the caudal fins give another standing wave along its
length, where the first and second nodes are located at
7 = 0.34L and 0.84L. Moreover, looking at the caudal
fin alone in its POD modes 2, we observe its pitch-
ing motion about the mid-points of its dorsal and
ventral peripheries. Its formation in POD mode 1
exhibits a flapping motion; a combination of heav-
ing and pitching. It is interesting to notice that both
the POD modes demonstrate left—right asymmetry
for the trunk section and the caudal fin. We observe
prominent dorsal-ventral asymmetry for the caudal
fin by comparing its orientations. It appears that the
pitching angle of the ventral side of the caudal fin is
lesser than that of its dorsal side. A careful look at the
instantaneous configurations in figures 5(a) and (b)
reveals that there exists a phase angle of 7m/2 between
the two POD modes. Hence, the entire undulatory

kinematics of a jack fish comes out to be the sum-
mation of its mean position and two standing waves
moving with a phase of 7/2.

3.2. Flow fields analysis
Here, we perform numerical simulations for flows
over the caudal fin of a jack fish at two Reynolds num-
bers: 500 and 4000. These two flow conditions are
representatives of viscous (Re ~ 10%) and transition
(Re ~ 10%) flow regimes.

We present time-averaged flow fields in the wake
of the caudal fin for both Reynolds numbers being
considered for this study in figure 6. As observed
in the top-most row, there exist four distinct vortex
tubes at Re = 500 and six tubal structures are present
at Re = 4000. It seems that an increase in Re breaks
the two vortex tubes on the dorsal side of the caudal
fin, and the remaining two on the ventral side remain
intact with a few signs of disruptions as they get devel-
oped in the downstream direction. Here, four tubes
are elongated, and the other two new tubes developed
due to the higher Re remain shorter. Because these
structures traverse downstream at an inclination, they
tend to diverge from each other. To elucidate the sym-
metry features of these flow fields, we plot contours of
the Cartesian components of vorticity; wy, wy, and w;,
on surfaces normal to their corresponding axes. For
Re = 500, the x-component of vorticity (wy) shows
four distinct coherent structures reminiscent of the
formation of four vortex tubes in the wake of the
caudal fin. It is clear that w, demonstrates symmetry
about the diagonal axis joining the two corners of the
plane as drawn in figure 6(b).
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Figure 9. Most dominant oscillatory POD and DMD modes for our FSI system working at Re = 4000.

DMD Mode 4

In such a problem, there may exist four indepen-
dent reflection symmetries, denoted as Sy, Sy, Sz, and
Sp with respect to the x, y, z -axes and a diagonal axis
¥ + z. We use the following forms to mathematically
define these symmetry characteristics.

Sx: (x,y, z) = (—x,2,5)
(w,v,w) = (—u,v,w)
(x,y, z) — (x,—y,2)

Sy: (w, v, w) = (u, —v,w)

Sz: (%, 3,2) = (x,5,—2)

(v, w) — (u,v, —w)
Sp: (x,y, z) = (x,2,)

(u,vyw) = (u,w,v)

Employing these terms, wy holds Sp symmetry for
the mean flow field at Re = 500, but we do not find
any symmetry for w, at Re = 4000 with the existence
of a few coherent structures here. Observing the con-
tours of w, and w, on xz and xy planes, respectively,
reveals the formation of four shear layers for the lower
Re and six shear layers at the higher Re. Consider-
ing the three contour plots in figure 6(f), we come to
know that the development of distinct coherent vor-
tical structures should be carefully analyzed for com-
plex flows because their orientations and characteris-
tics may change as we move downstream. It may also
result in the switching of symmetric and asymmetric
flow features to be explained later in the study.

Performing POD for the snapshot data containing
information for both the fluid and structural motion
provides us with the knowledge about how much con-
tribution each POD mode would have in this com-
plex dynamical system. We present the energy levels
of POD modes for our full FSI system through the
squared and normalized eigenvalues in figure 7 for
Re = 500 and 4000. For the viscous flow regime, the
first two modes contribute 36.5% and 33.6% energy
to the overall system dynamics. The remaining modes
exist in pairs due to periodic oscillations of both the
caudal fin and vortices in the wake. The same phe-
nomenon was observed for flows over circular cylin-
ders at very low Re previously (Taira et al 2020).
Here, the first four modes have more than 85% of the
total energy of this dynamical system. Analyzing the
data in figure 7(b) for Re = 4000 also reveals sim-
ilar trends. Here, the POD modes 1 and 2, respec-
tively, have 32.7% and 29.4% of the total energy. As
expected, we need to include six POD modes to cap-
ture around 85% of the energy due to a smaller effect
of viscosity under these conditions. Even though the
viscous action is at a reduced level for the higher Re,
we observe the formation of pairs reflecting order to a
large extent. Nevertheless, it is interesting to note that
the structural elements in our data would only con-
tribute to the first two POD modes for both the flow
conditions because we do not see substantial oscil-
lations of the caudal fin in the higher POD modes
(see supplementary movies 5 and 6). It means that the
caudal fin as the oscillating structure only contributes
towards the development of the first two POD modes,
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Table 1. Symmetry properties of mean and POD modes of our FSI systems.

POD mode
Reynolds No. number Doy Py o
Mean Sa Asymmetry (shear Asymmetry (shear
layer, no coherent layer, no coherent
structures) structures)
1 S, Sy Asymmetric
2 S, Sy Asymmetric
3 Sq—Asymmetry Asymmetric Asymmetric
switching
4 Sqi—Asymmetry switching Asymmetric Asymmetric
500 5 S, Sy Asymmetric
6 S, Sy Asymmetric
7 Asymmetric Asymmetric Asymmetric
8 Asymmetric Asymmetric Asymmetric
Mean Asymmetric Asymmetry (shear Asymmetry (shear
layer, no coherent layer, no coherent
structures) structures)
1 S,—Asymmetry Sx(on the mid—plane Asymmetry
switching only)—asymmetry
switching
2 S,—Asymmetry S, (on the mid—plane Asymmetry
switching only)—asymmetry
4000 switching
3 Asymmetric Asymmetric Asymmetric
4 Asymmetric Asymmetric Asymmetric
5 S,—Asymmetry S, (on the mid—plane Asymmetry
switching only)—asymmetry
switching
6 S,—Asymmetry S, (on the mid—plane Asymmetry
switching only)—asymmetry
switching
7 Asymmetry Asymmetry Asymmetry
8 Asymmetry Asymmetry Asymmetry

and the oscillatory patterns in the higher POD modes
find their origin in the fluid dynamics only.

Now, we present the POD modes of our FSI sys-
tem at Re = 500 and 4000 in figures 8(a)—(c) and
9(a)—(c), respectively. For the lower Reynolds num-
ber conditions, the flow structures tend to form a
shape of a ‘headless panda’ (quadfurcated shape) with
four small arms extended in the downstream direc-
tion. Nevertheless, these arms like structures van-
ish in the higher POD modes and we see only pla-
nar structures aligned closely with each other. For
Re = 4000, these features adopt hairpin-like shapes
as presented in figure 9, but these flow features lose
their distinct shape when we see the higher POD
modes here although the formation and presence of
coherent flow structures are evident there as well.

In table 1, we provide symmetry characteristics of
the first 8 POD modes for each flow condition. We
discover that the lateral component of vorticity (w,)
always shows asymmetry, whereas the other two com-
ponents; wy and w,, show variations in their prop-
erties. It is also important to note that each pair of
POD modes possesses similar characteristics despite
the complex motion of the caudal fin and the vor-
tex patterns in its wake. While moving xy, yz, and
xz planes along their corresponding normal axes, we
find that the symmetry properties of these dynami-
cal systems do not remain consistent throughout the

wake. Instead, they may momentarily switch their
states with some asymmetric patterns to regain sym-
metry afterwards. We explain those conditions in
table 1. An important feature of our analysis is that,
for a few significant POD modes at Re = 4000, w,
exhibits symmetric coherent patterns about the axis
parallel to the xz-plane and the one cutting it into
two halves only when the plane lies in the middle of
the domain. Thus, it is of utmost importance that
extreme care should be taken while performing such
analyses using experimental techniques where middle
planes are usually selected to find the traits of coherent
structures. Another salient observation is the increas-
ing number of asymmetric flow patterns of the POD
modes at the higher Re.

Next, we plot temporal coefficients of the first
eight POD modes for our FSI system at Re = 500
in figure 10. These coefficients remain the same in
their trends and magnitude levels at Re = 4000, not
shown here for the sake of brevity. Which modes con-
tribute to the production of respective hydrodynamic
forces can be understood by comparing dominant
frequency contents of each temporal coefficient with
those of hydrodynamic forces on the caudal fin pre-
sented in figure 3. It is evident that our POD modes
1 and 2 have more contribution towards the pro-
duction of lateral hydrodynamic force, F,, whereas
the thrust production is more associated with POD

11
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Figure 10. Temporal coefficients for the POD modes of our FSI system at Re = 500.

modes 3 and 4. We argue that the temporal coeffi-
cients for the POD modes 1 and 2 undergo one oscil-
lation cycle in one time-period that shows their most
dominant frequency to be equal to the excitation fre-
quency. We observe the same pattern for the oscilla-
tions of the lateral force in figure 2(b). Comparing
the time-histories of the POD modes 3 and 4 with
those of the drag/thrust force in figure 2(a), it is clear
that these parameters have 2f; as the most dominant
frequency. Here, the higher modes carry components
due to a combination of the fundamental frequency
with its second harmonic. It is important to reiterate
here that an increase in Re does not change the tempo-
ral features of the POD modes and the associated vari-
ations are only reflected in their spatial characteristics
(figure 11).

Now, we reconstruct the flow and structural
dynamics using time-averaged structural states and
flow fields and stepwise additions of POD modes
to illustrate the contributions of each POD mode
towards the production of oscillations in the wake.
Using critical values through the Q-criterion here, we
provide vortex visualizations where the addition of
POD mode 1 with the mean flow and structural fields
explains the role of this first oscillatory mode to cause
the breaking of the vortex tubes (see figure 6(a)) in
the primary direction of the flow. It is evident that
the POD mode 1 would play the key role in determin-
ing the wavelength of the coherent structures in the

wake. Moreover, bringing the POD mode 2 into this
system causes the emergence of connecting legs of the
vortices to produce coherent flow patterns. For Re =
500, only the mean fields added with the first two
POD modes is sufficient to reconstruct the intricate
details of the FSI dynamics (see figure 11) although
the contribution of these two modes is limited to 70%
of the total energy of this system.

Furthermore, we witness that the POD mode 1
computed for Re = 4000 plays the same role in break-
ing the vortex tubes (not shown here) in the mean
flow field (see figure 6(e)). Nevertheless, the addition
of another mode (POD mode 2) in this case would not
reconstruct the major features of the vortex dynamics
as it does for our viscous flow conditions. To develop
meaningful connections between the broken parts of
the vortex tubes, we need to add at least the first four
POD modes into the time-averaged field. The POD
modes 2, 3, and 4 play their part for the development
and growth of fluidic connections in the lateral and
sideways directions to produce significant coherent
structures in the wake, as shown by the perspective,
top, and side views of the flow domain in figure 12.

Here, column 2 shows the wake constructed from
the first 3 modes and exhibits the presence of more
intense vortices which is not the case for full-order
system dynamics in the 1st column. In the 3rd col-
umn, the wake dynamics with the addition of the
4th mode starts resembling more with the full-order
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Figure 11. Reconstruction of FSI dynamics for a flow over the caudal fin of a jack fish at Re = 500 using mean features and the
POD modes, where the left, middle, and right columns show the full-order fluid—structure dynamics, the addition of the mean
states with the POD mode 1, and the addition of the mean states with the POD modes 1 and 2, respectively. Each row shows the
perspective, top, and side view of the whole flow and structural domains.
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system dynamics. It happens due to the phase rela-
tionship between the modes that brings the reduced-
order representation closer to the full-order one. This
dynamical feature can either enhances the strength
of vortices or cause a decrease there depending on
the constructive and destructive interference between
coherent flow structures.

Next, we perform dynamical mode decomposi-
tion for the full FSI systems constructed from the
structural motion of the caudal fin and the flow field
around it. An important objective of this analysis is
to segregate the frequency components from each
other in this bio-inspired dynamical system where the
modes are temporally orthonormal, whereas the tem-
poral coefficient of each POD mode contains more
than one frequency. In figure 13, we plot the angu-
lar frequencies (rad/sec) of the DMD modes that
are computed by taking the logarithm of Ritz val-
ues (DMD eigenvalues) and dividing it by the sam-
pling time interval. Unlike POD, these eigenvalues
are not arranged in the descending order, and one
needs to carefully determine the significant DMD
modes and their associated parameters. A param-
eter to rank these modes is the amplitude of the

DMD modes (Kutz et al 2016). These DMD eigenval-
ues come up with their complex conjugates because
we process the real-valued data here. The Ritz val-
ues existing on a unit circle indicate neutrally stable
modes, whereas those inside the circle and outside its
periphery show decaying and unstable DMD modes,
respectively. Here, the real value of an angular fre-
quency (w,) on the left side of the vertical axis in
figure 13 reflects the stability of that particular DMD
mode. All the DMD modes with their w, = 0 are neu-
trally stable. We neither find any DMD mode with
wy > 0 for Re = 500 nor for 4000. The most domi-
nant mode, in both cases, indicated by red circles in
figure 13 are the mean DMD modes also referred to
as the DMD mode 1. These modes have w; = 0 that
shows their non-oscillatory character. For Re = 500,
the first three strongest oscillatory DMD modes have
wy = 0 which means that they do not decay with time.
All the other modes with angular frequencies have
negative w, and decay as we progress in time. This
parabolic arrangement of modal frequencies has also
been observed previously by Schmid et al (Schmid
2010, 2011). In the case of Re = 4000, only DMD
mode 2 has w, = 0. All the remaining modes show
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Figure 12. Reconstruction of FSI dynamics for a flow over the caudal fin of a jack fish at Re = 4000 using mean features and the
POD modes, where the left, middle, and right columns show the full-order fluid—structure dynamics, the addition of the mean
states with the first three POD modes, and the addition of the mean states with the first four POD modes, respectively. Each row
shows the perspective, top, and side view of the whole flow and structural domains.
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the decaying character. Under both the flow condi-
tions, the DMD mode 2 has the excitation frequency
of the caudal fin, whereas DMD modes 3 and 4 have
frequencies equal to 2f; and 3f;, respectively.

To illustrate more on the strength of these DMD
modes, we plot frequencies, normalized by the exci-
tation frequency of the caudal fin, and growth rates
for each modal component versus modal amplitude
in figure 14 for both Reynolds numbers. Here, we only
show the information for oscillatory components.
We determine that the amplitudes of these frequency
components decay asymptotically (see figures 14(a)
and (c)), and no DMD mode has a growth rate greater
than zero. This element exhibits the stable character of
the dynamics of this prescribed fluid—fin interaction-
based system. It is important to mention that the
strength of higher DMD modes is more in the case of
Re = 4000 as compared to those at Re = 500. Modal
distributions in figure 14(d) show the cluster of the
strongest DMD modes near the zero value on the hor-
izontal axis. Our analysis establishes that the DMD
mode 3 contributes more towards the production of
thrust force on the caudal fin, whereas the second
DMD mode has a greater effect on the lateral force.

To illustrate more on the strength of these DMD
modes, we plot frequencies, normalized by the exci-
tation frequency of the caudal fin, and growth rates
for each modal component versus modal amplitude
in figure 14 for both Reynolds numbers. Here, we only
show the information for oscillatory components.
We determine that the amplitudes of these frequency
components decay asymptotically (see figures 14(a)
and (c)), and no DMD mode has a growth rate greater
than zero. This element exhibits the stable character of
the dynamics of this prescribed fluid—fin interaction-
based system. It is important to mention that the
strength of higher DMD modes is more in the case of
Re = 4000 as compared to those at Re = 500. Modal
distributions in figure 14(d) show the cluster of the
strongest DMD modes near the zero value on the hor-
izontal axis. Our analysis establishes that the DMD
mode 3 contributes more towards the production of
thrust force on the caudal fin, whereas the second
DMD mode has a greater effect on the lateral force.

As also mentioned by Taira ef al (2020), POD and
DMD modes are usually similar for periodic flows. In
our present study, we observe this phenomenon not
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Figure 13. Real and imaginary components of the angular frequencies computed from the Ritz values for (a) Re = 500 and (b)
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Figure 14. DMD modal frequencies and growth rates vs modal amplitudes for Re = 500 (a) and (b) and Re = 4000 (c) and (d).

only for highly viscous conditions but also at a rel-
atively higher Re ~ 10°. We illustrate these observa-
tions by comparing the POD and DMD modes pre-
sented in figures 8 and 9 for Re = 500 and 4000,
respectively. For the lower Re, the DMD flow struc-
tures also appear as planar elements with the four
extended arms in the downstream direction, whereas
their shapes turn out to be hairpin-like for the higher
Re.

To relate our discussion with pressure in the flow
fields, we plot the contours of time-averaged pres-
sure coefficient, Cp = P/0.5p Uﬁo, on the caudal fin’s

surface in figure 15 for both Reynolds numbers. It
shows that pressure on both sides exhibits a symmet-
ric pattern under the two flow conditions. However,
the distribution of Cp is different for these cases. For
Re = 500, positive Cp region is concentrated on the
leading edge of the caudal fin only. We do not find
positive Cp for Re = 4000 on the tail’s surface. More-
over, stronger negative C, regions are found on the
leading edge of the upper lobe and the trailing edge of
the lower lobe for the viscous flow regime. In the case
of transitional flow condition, the negative Cp region
expands to the trailing edge of the upper lobe, but it
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(a)

Figure 15. Contours of pressure coefficient on the caudal fin’s surface where (a) and (b) show the data for Re = 500 and (c) and
(d) presents Cp for Re = 4000. Left and right columns are for the right and left sides of the caudal fin, respectively.

(b)

(d)

N\

seems concentrated more on the leading edge of the
lower lobe. This discussion presents how different Re
values can affect the surface pressure distributions on
swimmers’ bodies and their resultant hydrodynamic
forces.

Next, an effective and interesting method to esti-
mate the hydrodynamic forces is by computing POD
modes of the pressure in flow fields around solid bod-
ies. Previously, Imtiaz and Akhtar (2017) proposed
this methodology to compute hydrodynamic forces
over a cylinder. In this technique, the data matrix
is constructed using pressure instead of the velocity
components and modal analysis is performed. They
did not consider shear stress components to com-
pute hydrodynamic force coefficients and used only
the pressure components. Hence, the contribution of
each pressure POD mode is determined. Neverthe-
less, this method has its limitation when drag com-
ponent due to the friction over the body becomes
large. Here, we compare the magnitudes of pressure
and drag components, Cpp and Cpy, respectively, in
table 2 for both Reynolds numbers. Their temporal
profiles are provided in figure 16 for one oscillation
cycle. For Re = 500, Cpr makes a greater contribu-
tion towards the overall drag production by the cau-
dal fin, and thrust production identified by Cpp is not
enough to enable the body to generate thrust. In the
case of Re = 4000, thrust production from the pres-
sure component overcomes the frictional drag with
a small margin. Thus, it demonstrates that we need

to form the data matrix by incorporating both pres-
sure and velocity fields information for flows over
swimming bodies.

To further determine the viability of the pressure
POD modes in the present flow conditions, we per-
formed the SVD analysis on the following data matrix
containing pressure values in a flow field and the
caudal fin displacements.

ptr p2 . pW
1y ) IN
_ CF CE T CF
Xp = n t N
Mlce  MIce Tlce
2! ) CtN .

CE  SCF CEL (Ny-+-Ny+-Nz+3Ncp ) x Ny

After performing the POD on this data set, we obtain
distributions of the normalized energy of the first 48
modes as presented in figure 17 for the two Re val-
ues. It is evident that the first mode for lower Re has a
greater energy as compared to the one for the higher
Re and the higher POD modes start making pairs that
are an indication of periodic flows. However, the over-
all trend of this distribution remains the same. We
also observe that the pressure POD technique does
not seem suitable for estimating hydrodynamic forces
because a very high number of pressure modes, more
than 40 in the present work, are needed to capture a
significant amount of energy of these dynamical sys-
tems. Nevertheless, from this analysis, there arises the
need to develop effective and efficient reduced-order
models for the direct estimation of forces applied by
the fluid on the swimming bodies.
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Table 2. Drag force coefficients and their pressure and friction components for Re = 500 and 4000.

Re Pressure drag component (Cpp) Frictional drag component (Cpp) Total drag coefficient (Cp)
500 —0.1371 0.6389 0.5018
4000 —0.1580 0.1358 —0.0222

04, 0.35 0.5 0.75 1

t/1

Figure 16. Instantaneous drag coefficient and its components for (a) Re = 500 and (b) 4000.
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Figure 17. Squared eigenvalues normalized by their summation computed through pressure POD for (a) Re = 500 and (b) 4000.
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4. Summary and conclusions

In this work, we perform modal decompositions of
the kinematics of a jack fish that belongs to the
carangiform family of swimmers. We find that its
complex undulatory motion is mainly composed of
two dominant modes which represent standing waves
with different locations of nodes and antinodes along
the fish’s body and its caudal fin. These two modes are
sufficient to present the wavy kinematics of this natu-
ral aquatic swimmer and this information can be used
to build a low-order model for further studies. Then,
we perform numerical simulations for flows over the
membranous caudal fin of the jack fish using our
immersed boundary method-based computational
solver. We employ a large amount of data from this

complex FSI system to extract dominant modes using

proper orthogonal and DMD techniques. Proper
orthogonal decomposition modes provide us with
spatially orthonormal structures, whereas the other
technique decomposes the entire information about
the structural and flow fields into orthonormal fre-
quency components. Each POD mode carries more
than one frequency, but each DMD mode has only
one frequency. We find that only two modes are suffi-
cient to reconstruct the structural and flow dynamics
at the lower Reynolds numbers. However, we need to
bring in a greater number of modes to capture essen-
tial dynamical features of the flow field at Re = 4000.
It means that high modal oscillations occur only due
to the fluid dynamics, not the structural motion. We
also illustrate the symmetry properties using vorticity
components plotted on their respective normal planes
in the wakes and reveal that there exists diagonal sym-
metry for certain POD modes. We also emphasize that
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these symmetry properties may be switched to asym-
metric patterns when their corresponding planes are
moved along their normal axes. We find similarities in
respective POD and DMD modes for both flow con-
ditions. The coherent structures adopt quadfurcated
shapes with four extended arms in the downstream
directions in both POD and DMD modes, but we
see hairpin-like structures for the flow at the greater
Reynolds number. Even these systems are representa-
tives of intense fluid—body interaction, yet we reveal
the formation of stable and neutrally stable DMD
modes here.
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