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Abstract

To understand the governing mechanisms of bio-inspired swimming has always been challenging
due to intense interactions between flexible bodies of natural aquatic species and water around
them. Advanced modal decomposition techniques provide us with tools to develop more in-depth
understating about these complex dynamical systems. In this paper, we employ proper orthogonal
decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract
energetically strongest spatio-temporal orthonormal components of complex kinematics of a
Crevalle jack (Caranx hippos) fish. Then, we present a computational framework for handling
fluid–structure interaction related problems in order to investigate their contributions towards the
overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can
be described by only two standing-wave like spatially orthonormal modes. Constructing the data
set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our
modal analyses reveal that only the first few modes receive energy from both the fluid and
structure, but the contribution of the structure in the remaining modes is minimal. For the viscous
and transitional flow conditions considered here, both spatially and temporally orthonormal
modes show strikingly similar coherent flow structures. Our investigations are expected to assist in
developing data-driven reduced-order mathematical models to examine the dynamics of
bio-inspired swimming robots and develop new and effective control strategies to bring their
performance closer to real fish species.

1. Introduction

For the last two decades, scientific community has

made a lot of progress to understand the natural

aquatic locomotion of numerous species that can

enable them to utilize the discovered hydrodynamic

mechanisms to propose efficient and maneuverable

designs for bio-inspired underwater vehicles (Fish

2020). In spite of this substantial amount of efforts

previously, there exists a huge gap to design effective

flow control strategies for these robotic devices. A

major difficulty in this pursuit relates to the involve-

ment of uncertain real conditions in large water

reservoirs, such as oceans and rivers, to be faced by

swimming robots and the prediction of their dynam-

ical states impacted by numerous physical factors.

In this context, data-driven techniques come up as

great candidates for predicting complex nonlinear

flow dynamics and tuning the kinematics of the

flexible body-structures of fish-like robots (Brunton

et al 2020, Verma et al 2018) to obtain desired

performance levels. This scenario has also raised the

requirement of developing effective reduced- or low-

order mathematical models to describe the mechanics

© 2020 IOP Publishing Ltd
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of these engineering systems that would open up new

horizons to apply machine learning or deep learning

control techniques in this field. For the dimen-

sionality reduction, advanced modal decomposition

techniques, such as proper orthogonal decomposition

(POD), dynamic mode decomposition (DMD) and

their variants (Rowley and Dawson 2017) provide

great tools to extract primary features of nonlin-

ear dynamical systems without really solving the

governing equations. Previously, several people

reported their efforts to utilize these techniques to

understand underlying hydrodynamic mechanisms

for bio-inspired flows. Ting and Yang (2009) used

singular-value decomposition (SVD) method to

extract key flow features in the two-dimensional

wake of a fish. Some other studies (Liang and Dong

2015, Li et al 2016, Li et al 2017, Han et al 2017)

presented the utility of POD technique based on

a traditional eigenvalue decomposition analysis

for flows around flapping wings and plates. These

investigations also proposed the concept of virtual

force to classify the modes to find their contributions

in the production of lift and thrust forces.

There is another interesting way of investigating

the effects of dominant structural modes to quantify

their relative contributions in the production of total

hydrodynamic forces on bio-inspired structures dur-

ing their steady swimming. For example, Bozkurttas

et al (2009) utilized the SVD formulation to deter-

mine that only three structural POD modes were suf-

ficient to model the complex dynamics of a flexible

pectoral fin of a bluegill sunfish. They concluded that

the kinematics reconstructed by the mean and three

oscillatory POD modes was able to produce 92% of

the thrust force generated by the full-order kinemat-

ics of the pectoral fin. Ren and Dong (2016) used

a similar methodology to decompose the morphing

wing kinematics of a hovering dragonfly to exam-

ine the effects of POD modes on its aerodynamic

performance.

Besides, there were a few recent efforts to break

down the travelling-wave like motion of differ-

ent carangiform swimmers (Feeny and Feeny 2013,

Tanha 2018). Feeny and Feeny (2013) considered the

transverse kinematics of a whiting and carried out

complex modal analysis. They found that a single

complex mode was enough to represent the transverse

wavy motion of the fish. In this formulation, this com-

plex mode had two components out of which the real

one showed a standing wave and the imaginary part

represented a traveling wave like structure. Follow-

ing a similar approach, Tanha (2018) employed the

modal information to approximate important kine-

matic parameters, such as oscillation amplitudes and

phases and their dependence on time and spatial loca-

tion on fish bodies. However, the low-dimensional

analyses conducted in the afore-mentioned studies

were limited to the kinematics of flexible structures.

The connections between dominant kinematic modes

and primary flow features of complex fluid–structure

interaction-based systems are still elusive.

Recent advancements in the field of modal anal-

ysis to characterize complex dynamical systems have

opened doors to analyze the underlying mechan-

ics of bio-inspired systems. A very significant ele-

ment of such systems is the nonlinear interaction

between the involving fluids and structures. Although

a common approach is to segregate the flow field

information from the overall system and examine

its dynamical properties, yet it would be very infor-

mative to incorporate the structural kinematics into

these mathematical and computational frameworks

to determine the levels of coupling between the fluid

and structures. This approach will also enable us to

segregate contributions of the fluid and structures

towards the dynamics of the overall system. The only

effort in this account found in literature was done by

Goza A and Colonius T (2018) in which they con-

sidered a two-dimensional flow field around a flap-

ping flag and analyzed its limit-cycle and chaotic

dynamics.

In our current study, we present a computational

framework to look for energetically strong modal

decompositions for three-dimensional dynamical

systems involving prescribed fluid–boundary inter-

action. We employ the physiology of a jack fish the

motion of which has been recorded live by a high-

speed photogrammetry system. First, utilizing POD

on the data set of its structural configurations enables

us to propose a low-dimensional description of its

complex flexible body kinematics. Next, we use POD

and DMD approaches to investigate fluid–structure

interactive mechanics and explain formation and pro-

duction of primary coherent fluid structures for two

Reynolds numbers: 500 and 4000. We perform the

modal analyses in a prescribed fluid–boundary inter-

action framework for the flow over the caudal fin only

due to the following two reasons, (1) the inclusion of

a thick body structure in this computational frame-

work will lead to spurious flow oscillations around

and inside the body Goza A and Colonius T (2018)

Menon K and Mittal R (2020), and (2) the caudal fin

is the primary thrust producing component for a jack

fish as also explained by Liu et al (2017).

The manuscript is organized as follows. Section 2

explains our computational methodology to per-

form numerical simulations using a sharp-interface

immersed boundary method-based solver. It also pro-

vides details for our approach to conduct modal anal-

yses of the kinematics of a jack fish and the prescribed

fluid–fin interaction-based system composed of the

membranous caudal fin and the vortical flow field

around it. Next, we present our analyses and find-

ings about the low-dimensional description of this

highly nonlinear system using POD and DMD in

section 3. Finally, we summarize and conclude our

work in section 4.
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Figure 1. (a) Virtual tunnel for simulating flows over the caudal fin of a jack fish with its dimensions where the inner box shows
the domain to extract data for modal decompositions, (b) a zoomed-in view of the inner domain covering the caudal fin and
coherent flow structures in its wake, and (c) jack fish body and caudal fin covered with a mesh to indicate the marker points to
track their motion.

2. Computational methodology

In this section, we elucidate our computational

methodology to handle the reconstruction of the

physiological model of a jack fish and its kinemat-

ics. We also explain the numerical methodology based

on a sharp interface immersed-boundary method to

perform numerical simulations for flows over the cau-

dal fin at Reynolds numbers (Re = U∞L/ν) 500 and

4000. Here, ν indicates kinematic viscosity of the

fluid, U∞ stands for free-stream velocity, and L is the

entire body-length of the jack fish. Moreover, we sum-

marize POD and DMD techniques and illustrate our

strategy to set up snapshot data matrices for their fur-

ther processing in order to extract the most domi-

nant modal characteristics for the kinematics of a jack

fish and the prescribed fluid–boundary interaction

based system of its caudal fin. Due to capturing the

real fin motion and its incorporation in our compu-

tational solver, we argue that this whole system forms

the basis of our claim about the interaction between

the fluid flow and the structural oscillations in our

present study. As explained in subsequent sections,

the consistency in finding the same Strouhal num-

ber for all the swimming speeds of the jack fish also

supports this argument.

To illustrate more on this aspect in our present

work, we use the real fish kinematics recorded

and reconstructed through high-speed cameras. This

same kinematics is further utilized in our IBM-based

CFD solver. This integrated experimental-numerical

approach allows us to analyze hydrodynamics and

resultant wake features produced by real fish motion.

Because the live recording effectively captures the flex-

ible body dynamics of the membranous caudal fin,

we consider it a fluid–fin interaction system where

the structural response has already been taken care

of by the high-speed photogrammetry technique.

We obtain the formation and dynamics of coher-

ent flow structures through our CFD solver. Thus,

this whole approach justifies the use of the term pre-

scribed fluid–boundary interaction. As far the compu-

tational approach is concerned, our current system

seems to present more like one-way FSI (from struc-

ture to fluid), but the integration of experimentally

determined real kinematics gives us the actual struc-

tural response thus taking care of the feedback of the

fluid to affect the structural response. It is important

to mention that the present kinematics was found to

be statistically robust for a wide range of swimming

speeds of jack fish (Liu et al 2017).

2.1. Jack fish physiological model and kinematics

To reconstruct the geometry of a jack fish and its kine-

matics, we employ the data recorded and reported

previously by (Liu et al 2017) to investigate the

body–fin and fin–fin interaction during its steady

swimming. Although the procedure to capture the

fish motion and its physiology along with the statis-

tical details has been covered in reference (Liu et al

3
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2017), we present its salient points here as well for the

sake of completeness. The current model is of Crevalle

jack (Caranx hippos) which is classified as a carangi-

form swimmer. Out of total 12 individuals of this

class of fish with a mean total length L = 0.338 m and

swimming at 1L s−1 to 4L s−1. It is important to high-

light that their body kinematics did not change much

with the increasing swimming speed. The currently

used kinematic data was adopted from an individual

fish having L = 0.31 m and swimming at 2L s−1. The

total height and width, normalized by L, of this fish

are 0.286 and 0.144, respectively. The area, normal-

ized by L2, of the caudal fin is 0.023 and its normalized

length is 0.244. The normalized height and length of

the caudal fin are 0.315 and 0.244, respectively.

In this study, we consider the trunk and caudal fin

only because these two components primarily con-

tribute towards the kinematics and functionality of

a fish. Its trunk is modeled as a solid body with a

closed surface and the caudal fin is a membrane with

zero thickness. Each surface is, then, represented by

triangular mesh where the main body is composed

of 11 358 nodes and 22 712 elements. The surface of

the caudal fin has 1369 nodes and 2560 elements (see

figure 1(c)). The measured wavelength from the mid-

line profiles is approximately 1.05L which is a char-

acteristic of the carangiform swimming mode. The

measured Strouhal number (St) for these recordings

remain 0.30, where St = 2AfE/U with fE being the

excitation/flapping frequency of the caudal fin, A as

the maximum one-sided oscillation amplitude of the

caudal fin, and U as the swimming speed.

2.2. Numerical solver

We perform three dimensional (3D) numerical sim-

ulations for flows over the oscillating caudal fin; a

membranous structure, at Re = 500 and 4000. Fol-

lowing non-dimensional forms of the continuity and

incompressible Navier–Stokes equations constitute

the mathematical model for the fluid flow:

Continuity Equation:
∂ui

∂xi

= 0

Navier—Stokes Equations:

∂ui

∂t
+

∂uiuj

∂xj

= −
∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

where the indices {i, j} = {1, 2, 3}, xi shows Carte-

sian directions, the ui denotes the Cartesian compo-

nents of the fluid velocity, p is the pressure, and Re

represents the Reynolds number.

We solve the described governing model for fluid

flow using a Cartesian grid-based sharp-interface

immersed boundary method (Mittal et al 2008) where

the spatial terms are discretized using a second-

order central difference scheme and a fractional-

step method is employed for time marching. This

makes our solutions second-order accurate in both

time and space. We utilize the Adams–Bashforth and

implicit Crank–Nicolson schemes for the respective

numerical approximations of convective and diffusive

terms. The prescribed wavy kinematics is enforced as

a boundary condition for the swimmers. We impose

such conditions on immersed bodies through a ghost-

cell procedure (Mittal et al 2008) that is suitable for

both rigid and membranous body-structures. Fur-

ther details of this solver and its employment to solve

numerous bio-inspired fluid flow problems are avail-

able in references (Liu et al 2017, Wang et al 2019, Han

et al 2020, Wang et al 2020).

Next, we employ Dirichlet boundary conditions

for flow velocities on all sides except the left one where

Neumann conditions are used at the outflow bound-

ary (see figure 1(a)). The slices on the back and left

boundaries show the regions with high mesh density

in order to adequately resolve the flow features around

the structure and its wake. The rectangular box in

figure 1(b), encompassing the swimmer’s body, shows

the region of which we extract the data to perform our

modal analysis. We use a mesh size
(

Nx, Ny, Nz

)

=

(385, 129, 161) for the complete flow domain, while

the extracted domain for our further analysis has a

mesh size
(

nx, ny, nz

)

= (234, 123, 153). For the mesh

independent study, the readers are referred to the ref-

erence (Liu et al 2017). It means that the total number

of nodes in the entire flow domain and its extracted

part are 7.99 million and 4.40 million, respectively.

2.3. Proper orthogonal decomposition

Proper orthogonal decomposition technique pro-

vides us with a data analysis method focusing on

extracting energetically ranked modes to propose

relevant mathematical models in order to describe

the system dynamics with reduced dimensionality

(Akhtar et al 2009). This strategy gives us opti-

mal and orthonormal spatio-temporal modes of a

dataset. POD modes and their associated useful infor-

mation can be obtained by employing either eigen-

value decomposition of the covariance matrix of a

dataset or by performing singular value decomposi-

tion (SVD) of the data matrix. In this data matrix,

information about the states of a dynamical system is

stored and arranged in particular patterns to further

process it by utilizing these techniques.

In our present study, we perform the POD anal-

ysis through the SVD technique. The main focus

here is to use modal decomposition methods for

two purposes: (1) to extract significantly reduced-

dimensional information for the complex wavy

kinematics of a jack fish and (2) to propose a compu-

tational framework in order to perform modal anal-

yses of fluid–structure interaction based systems and

capture the most relevant information about both the

structural motion and flow field. It is customary to

exclude the time-averaged profiles of a dataset before

applying POD. This practice makes it equivalent to

principal component analysis (PCA) in the fields of

imaging, video processing, and computer graphics

4
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(Perlibakas 2004). To decompose the fish kinemat-

ics into its primary POD modes, we construct the

following snapshot data matrix:

XS =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ξt1
B ξt2

B · · · ξtN
B

ξt1
CF ξt2

CF · · · ξtN
CF

ηt1
B ηt2

B · · · ηtN
B

ηt1
CF ηt2

CF · · · ηtN
CF

ζ t1
B ζ t2

B · · · ζ tN
B

ζ t1
CF ζ t2

CF · · · ζ tN
CF

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3NB+3NCF) × NT

where ξ, η, and ζ denote the displacements of each

nodal point on the surface of the fish in x, y, and

z directions, respectively. The subscripts B and CF

indicate the information belonging to the main body

(trunk) and caudal fin, respectively. This snapshot

matrix contains the motion information of 48 time

instants spanning one complete oscillation cycle of

the jack fish. The SVD is formulated as:

XS = UΣVT

where U is a unitary matrix containing left eigenvec-

tors of the snapshot data matrix XS, Σ is a diagonal

matrix with positive numbered entries σi termed as

singular values and arranged in the descending order,

i.e., σ1 � σ2 � σ3 . . . . � σN, and V is another uni-

tary matrix. The eigenvalues (λ) can be computed by

squaring σ values. It is important to highlight that

the columns of U matrix give us the spatial distribu-

tion of POD modes, whereas V contains the informa-

tion about the temporal variations in these modes.

Each column of the V matrix provides us the tem-

poral coefficients (α) of the POD modes. To con-

nect it with the traditional eigenvalue decomposition,

U and V are the eigenvectors of covariance matri-

ces XT
S XS and XSXT

S , respectively. Conventionally, the

sizes of U , Σ, and V matrices are (3NB + 3NCF) ×

(3NB + 3NCF), (3NB + 3NCF) × NT, and NT × NT,

respectively. However, performing the ‘economy’ SVD

in MATLAB enables us to obtain and process

U and Σ matrices with their respective sizes of

(3NB + 3NCF) × NT and NT × NT which reduces the

computational burden to a large extent and pre-

vents us from facing out-of-memory problems during

numerical processing.

A reduced-order reconstruction for the system’s

kinematics or dynamics can be attained by using U ,

Σ, and V matrices in the basic formulation of SVD.

To obtain the temporal behavior (video) of a partic-

ular ith POD mode, we can make all the entries zero

except its particular singular value σi in the Σ matrix.

Thus, the mathematical form for this concept is;

X i = UΣiV
T

In order to utilize this technique for a system based on
fluid–structure interaction, we construct our snap-
shot matrix using the entries pertaining to the dynam-
ical states of both the structure, the caudal fin in this

case, and fluid flow in the following form:

Xc =



















ut1 ut2 · · · utN

vt1 vt2 · · · vtN

wt1 wt2 · · · wtN

ξt1
CF ξt2

CF · · · ξtN
CF

ηt1
CF ηt2

CF · · · ηtN
CF

ζ t1
CF ζ t2

CF · · · ζ tN
CF



















(3Nx+3Ny+3Nz+3NCF)× NT

Here, u, v, and w are the Cartesian components of the

fluid velocity, and each column represents a snapshot

of the FSI system at one time instant.

2.4. Dynamic mode decomposition

Dynamic mode decomposition (DMD) provides a

computational framework to extract a primary low-

order description of a data set through its orthonor-

mal modes in a temporal sense. The DMD modes are

also approximations of the Koopman operator which

is a linear infinite dimensional operator representing

a nonlinear dynamical system onto the Hilbert space

of the functions and states under consideration (Kutz

et al 2016). It enables us to build a linear descrip-

tion of a complex dynamical system without losing its

nonlinear characteristics. The sole idea is to construct

a formulation of a dynamical system x(t) such that

x (t2) = Ax(t1), x (t3) = Ax(t2), and so on. In other

words, we have x (tN) = AN−1x(tN−1). This method

computes DMD modes for the matrix A by minimiz-

ing ‖xk − Axk−12‖, where the subscripts k and k − 1

are some time-instants.

For this purpose, we distribute the original

snapshot data matrix X into two submatrices X1

and X2, where X1 = [Xt1 Xt2 · · ·XtN−1 ] and X2 =

[Xt2 Xt3 · · ·XtN ]. For further details on the algorithm,

the readers are referred to references (Rowley et al

2009, Schmid 2010, Schmid 2011, Kutz et al 2016).

In order to exploit the underlying data-driven tech-

nique, this algorithm indirectly solves for the DMD

modes Φ of A matrix. To reduce the computational

cost incurred due to the large amount of data set,

we, first, perform the POD and truncate the lowest

energy-ranked modes to include the most relevant

information in the DMD computations. The real and

imaginary parts of the corresponding DMD eigenval-

ues; λr and λi, respectively, denote the growth rate

and frequency of DMD modes. Next, the associated

angular frequencies having units rad/ sec is computed

by ω = log (λ) /∆t, and its further division by 2π

gives us the linear frequency in Hertz. Here, ∆t is

the sampling time to obtain the snapshot data matrix.

We obtain the approximate solution for the next time

instants using the following form:

x (t) =

N
∑

j=1

bjφj exp(ωjt)

where bj is the initial amplitude, serving as the initial

condition as well, of the jth mode.

5
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Figure 2. Time histories of hydrodynamic force coefficients in the horizontal and lateral directions.

Figure 3. Fourier spectra of hydrodynamic force coefficients along the Cartesian axes, (a) and (d) drag/thrust force, (b) and (e)
vertical force, and (c) and (f) lateral force, where the left and right columns show data for Re = 500 and 4000, respectively.

3. Results & discussion

Before discussing the modal analysis for the kinemat-

ics of a jack fish and the flow fields around its oscil-

lating caudal fin at different Reynolds numbers, it

is important to explain the temporal character and

the frequency components of hydrodynamic forces

on the caudal fin. For this purpose, we define the

nondimensional hydrodynamic force components as

C = F/0.5ρU2ACF, where ACF is the area of the cau-

dal fin. Subscripts of C represents the direction of each

force component. Figure 2 presents temporal varia-

tions of the horizontal (drag/thrust) and lateral forces.

We find that CX = CD tends to change its instanta-

neous magnitude levels with a change in Re, and there

exists a small change in its phase as well. Nonetheless,

CZ shows almost similar patterns for both Reynolds

numbers though higher Re causes a smaller increase

in its positive and negative peak values. The spectral

decompositions of horizontal, lateral, and sideways

forces in figure 3 reveal that the excitation frequency

of the caudal fin fE is the most dominant frequency

6
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Figure 4. Energy levels of POD modes of a jack fish kinematics.

Figure 5. Modal configurations of the trunk and caudal fin of a jack fish where color coding is used to distinguish between the
instantaneous positions: red ( t

τ
= 0.25), green ( t

τ
= 0.50), blue ( t

τ
= 0.75), and yellow ( t

τ
= 1.00).

in the Fourier spectra of CZ . However, both CD and

CY possess the frequency 2fE as the strongest one with

smaller contributions from fE and its higher harmon-

ics. These observations are consistent with those from

flows over cylinders (Imtiaz and Akhtar 2017) and

flapping wings (Khalid et al 2015, Khalid et al 2018,

Liang and Dong 2015).

3.1. Fish kinematics

Due to the flexibility of their bodies, different

species of fishes perform complex wavy motions,

usually known as undulation composed of trav-

elling waves along their bodies [see supplemen-

tary movie 1 (https://stacks.iop.org/BB/16/016018/

mmedia)]. Using the POD technique, we decompose

7
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Figure 6. Mean flow fields and their symmetry properties using Cartesian components of vorticity where the left (a)–(d) and
right (e)–(h) columns show data for Re = 500 and 4000. The plots in the 1st row are drawn using Q-criterion. The 2nd, 3rd, and
4th rows represent data on the corresponding planes for ωx, ωy, and ωz, respectively.

Figure 7. Squared eigenvalues normalized by their summation for (a) Re = 500 and (b) 4000.

its full-order kinematics into spatially orthonormal

modes. Figure 4 shows the POD eigenvalues normal-

ized by their summation that represent the corre-

sponding energy levels of each mode. It is evident that

the first POD mode constitutes approximately 79% of

the energy, whereas the second POD mode has more

than 20% energy. All the other modes carry almost

zero energy levels. Thus, seemingly complex carangi-

form motion mainly comprises of only two primary

modes.

To illustrate it further, we represent the instan-

taneous positioning of the fish trunk during its one

8



Bioinspir. Biomim. 16 (2021) 016018 M S Ullah Khalid et al

Figure 8. Most dominant oscillatory POD and DMD modes for our FSI system working at Re = 500.

oscillation cycle for the first two modes in figure 5

(see supplementary movies 2–4). In both the modal

configurations, the posterior part of the body shows a

greater amount of displacement from its equilibrium

position that is a characteristic feature of carangi-

form and sub-carangiform swimming patterns. The

first POD mode shows a standing wave like structure

where the nodes and antinodes are evidently visible.

The first node is located at 17% of the total body-

length, whereas the second one is positioned at 0.59L.

The orientations of the trunk section of the second

POD mode shows that the main body pitches about

the y-axis passing through a point at 0.34L. How-

ever, these configurations combined with those of

the caudal fins give another standing wave along its

length, where the first and second nodes are located at
x
L
= 0.34L and 0.84L. Moreover, looking at the caudal

fin alone in its POD modes 2, we observe its pitch-

ing motion about the mid-points of its dorsal and

ventral peripheries. Its formation in POD mode 1

exhibits a flapping motion; a combination of heav-

ing and pitching. It is interesting to notice that both

the POD modes demonstrate left–right asymmetry

for the trunk section and the caudal fin. We observe

prominent dorsal–ventral asymmetry for the caudal

fin by comparing its orientations. It appears that the

pitching angle of the ventral side of the caudal fin is

lesser than that of its dorsal side. A careful look at the

instantaneous configurations in figures 5(a) and (b)

reveals that there exists a phase angle of π/2 between

the two POD modes. Hence, the entire undulatory

kinematics of a jack fish comes out to be the sum-

mation of its mean position and two standing waves

moving with a phase of π/2.

3.2. Flow fields analysis

Here, we perform numerical simulations for flows

over the caudal fin of a jack fish at two Reynolds num-

bers: 500 and 4000. These two flow conditions are

representatives of viscous (Re ∼ 102) and transition

(Re ∼ 103) flow regimes.

We present time-averaged flow fields in the wake

of the caudal fin for both Reynolds numbers being

considered for this study in figure 6. As observed

in the top-most row, there exist four distinct vortex

tubes at Re = 500 and six tubal structures are present

at Re = 4000. It seems that an increase in Re breaks

the two vortex tubes on the dorsal side of the caudal

fin, and the remaining two on the ventral side remain

intact with a few signs of disruptions as they get devel-

oped in the downstream direction. Here, four tubes

are elongated, and the other two new tubes developed

due to the higher Re remain shorter. Because these

structures traverse downstream at an inclination, they

tend to diverge from each other. To elucidate the sym-

metry features of these flow fields, we plot contours of

the Cartesian components of vorticity;ωx,ωy, and ωz,

on surfaces normal to their corresponding axes. For

Re = 500, the x-component of vorticity (ωx) shows

four distinct coherent structures reminiscent of the

formation of four vortex tubes in the wake of the

caudal fin. It is clear that ωx demonstrates symmetry

about the diagonal axis joining the two corners of the

plane as drawn in figure 6(b).
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Figure 9. Most dominant oscillatory POD and DMD modes for our FSI system working at Re = 4000.

In such a problem, there may exist four indepen-

dent reflection symmetries, denoted as SX, SY, SZ, and

SD with respect to the x, y, z -axes and a diagonal axis

y + z. We use the following forms to mathematically

define these symmetry characteristics.

SX :
(

x, y, z
)

→ (−x, z, y)

(u, v, w) → (−u, v, w)
(

x, y, z
)

→ (x,−y, z)

SY : (u, v, w) → (u,−v, w)

SZ :
(

x, y, z
)

→ (x, y,−z)

(u, v, w) → (u, v,−w)

SD :
(

x, y, z
)

→ (x, z, y)

(u, v, w) → (u, w, v)

Employing these terms, ωx holds SD symmetry for

the mean flow field at Re = 500, but we do not find

any symmetry for ωx at Re = 4000 with the existence

of a few coherent structures here. Observing the con-

tours of ωy and ωz on xz and xy planes, respectively,

reveals the formation of four shear layers for the lower

Re and six shear layers at the higher Re. Consider-

ing the three contour plots in figure 6(f), we come to

know that the development of distinct coherent vor-

tical structures should be carefully analyzed for com-

plex flows because their orientations and characteris-

tics may change as we move downstream. It may also

result in the switching of symmetric and asymmetric

flow features to be explained later in the study.

Performing POD for the snapshot data containing

information for both the fluid and structural motion

provides us with the knowledge about how much con-

tribution each POD mode would have in this com-

plex dynamical system. We present the energy levels

of POD modes for our full FSI system through the

squared and normalized eigenvalues in figure 7 for

Re = 500 and 4000. For the viscous flow regime, the

first two modes contribute 36.5% and 33.6% energy

to the overall system dynamics. The remaining modes

exist in pairs due to periodic oscillations of both the

caudal fin and vortices in the wake. The same phe-

nomenon was observed for flows over circular cylin-

ders at very low Re previously (Taira et al 2020).

Here, the first four modes have more than 85% of the

total energy of this dynamical system. Analyzing the

data in figure 7(b) for Re = 4000 also reveals sim-

ilar trends. Here, the POD modes 1 and 2, respec-

tively, have 32.7% and 29.4% of the total energy. As

expected, we need to include six POD modes to cap-

ture around 85% of the energy due to a smaller effect

of viscosity under these conditions. Even though the

viscous action is at a reduced level for the higher Re,

we observe the formation of pairs reflecting order to a

large extent. Nevertheless, it is interesting to note that

the structural elements in our data would only con-

tribute to the first two POD modes for both the flow

conditions because we do not see substantial oscil-

lations of the caudal fin in the higher POD modes

(see supplementary movies 5 and 6). It means that the

caudal fin as the oscillating structure only contributes

towards the development of the first two POD modes,

10
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Table 1. Symmetry properties of mean and POD modes of our FSI systems.

Reynolds No.

POD mode

number φωx φωy φωz

500

Mean Sd Asymmetry (shear Asymmetry (shear

layer, no coherent layer, no coherent

structures) structures)

1 Sy Sx Asymmetric

2 Sy Sx Asymmetric

3 Sd —Asymmetry Asymmetric Asymmetric

switching

4 Sd —Asymmetry switching Asymmetric Asymmetric

5 Sy Sx Asymmetric

6 Sy Sx Asymmetric

7 Asymmetric Asymmetric Asymmetric

8 Asymmetric Asymmetric Asymmetric

4000

Mean Asymmetric Asymmetry (shear Asymmetry (shear

layer, no coherent layer, no coherent

structures) structures)

1 Sy —Asymmetry Sx(on the mid–plane Asymmetry

switching only)—asymmetry

switching

2 Sy —Asymmetry Sx (on the mid–plane Asymmetry

switching only)—asymmetry

switching

3 Asymmetric Asymmetric Asymmetric

4 Asymmetric Asymmetric Asymmetric

5 Sy —Asymmetry Sx (on the mid–plane Asymmetry

switching only)—asymmetry

switching

6 Sy —Asymmetry Sx (on the mid–plane Asymmetry

switching only)—asymmetry

switching

7 Asymmetry Asymmetry Asymmetry

8 Asymmetry Asymmetry Asymmetry

and the oscillatory patterns in the higher POD modes

find their origin in the fluid dynamics only.

Now, we present the POD modes of our FSI sys-

tem at Re = 500 and 4000 in figures 8(a)–(c) and

9(a)–(c), respectively. For the lower Reynolds num-

ber conditions, the flow structures tend to form a

shape of a ‘headless panda’ (quadfurcated shape) with

four small arms extended in the downstream direc-

tion. Nevertheless, these arms like structures van-

ish in the higher POD modes and we see only pla-

nar structures aligned closely with each other. For

Re = 4000, these features adopt hairpin-like shapes

as presented in figure 9, but these flow features lose

their distinct shape when we see the higher POD

modes here although the formation and presence of

coherent flow structures are evident there as well.

In table 1, we provide symmetry characteristics of

the first 8 POD modes for each flow condition. We

discover that the lateral component of vorticity (ωz)

always shows asymmetry, whereas the other two com-

ponents; ωx and ωy, show variations in their prop-

erties. It is also important to note that each pair of

POD modes possesses similar characteristics despite

the complex motion of the caudal fin and the vor-

tex patterns in its wake. While moving xy, yz, and

xz planes along their corresponding normal axes, we

find that the symmetry properties of these dynami-

cal systems do not remain consistent throughout the

wake. Instead, they may momentarily switch their

states with some asymmetric patterns to regain sym-

metry afterwards. We explain those conditions in

table 1. An important feature of our analysis is that,

for a few significant POD modes at Re = 4000, ωy

exhibits symmetric coherent patterns about the axis

parallel to the xz-plane and the one cutting it into

two halves only when the plane lies in the middle of

the domain. Thus, it is of utmost importance that

extreme care should be taken while performing such

analyses using experimental techniques where middle

planes are usually selected to find the traits of coherent

structures. Another salient observation is the increas-

ing number of asymmetric flow patterns of the POD

modes at the higher Re.

Next, we plot temporal coefficients of the first

eight POD modes for our FSI system at Re = 500

in figure 10. These coefficients remain the same in

their trends and magnitude levels at Re = 4000, not

shown here for the sake of brevity. Which modes con-

tribute to the production of respective hydrodynamic

forces can be understood by comparing dominant

frequency contents of each temporal coefficient with

those of hydrodynamic forces on the caudal fin pre-

sented in figure 3. It is evident that our POD modes

1 and 2 have more contribution towards the pro-

duction of lateral hydrodynamic force, Fz, whereas

the thrust production is more associated with POD

11
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Figure 10. Temporal coefficients for the POD modes of our FSI system at Re = 500.

modes 3 and 4. We argue that the temporal coeffi-

cients for the POD modes 1 and 2 undergo one oscil-

lation cycle in one time-period that shows their most

dominant frequency to be equal to the excitation fre-

quency. We observe the same pattern for the oscilla-

tions of the lateral force in figure 2(b). Comparing

the time-histories of the POD modes 3 and 4 with

those of the drag/thrust force in figure 2(a), it is clear

that these parameters have 2fE as the most dominant

frequency. Here, the higher modes carry components

due to a combination of the fundamental frequency

with its second harmonic. It is important to reiterate

here that an increase in Re does not change the tempo-

ral features of the POD modes and the associated vari-

ations are only reflected in their spatial characteristics

(figure 11).

Now, we reconstruct the flow and structural

dynamics using time-averaged structural states and

flow fields and stepwise additions of POD modes

to illustrate the contributions of each POD mode

towards the production of oscillations in the wake.

Using critical values through the Q-criterion here, we

provide vortex visualizations where the addition of

POD mode 1 with the mean flow and structural fields

explains the role of this first oscillatory mode to cause

the breaking of the vortex tubes (see figure 6(a)) in

the primary direction of the flow. It is evident that

the POD mode 1 would play the key role in determin-

ing the wavelength of the coherent structures in the

wake. Moreover, bringing the POD mode 2 into this

system causes the emergence of connecting legs of the

vortices to produce coherent flow patterns. For Re =

500, only the mean fields added with the first two

POD modes is sufficient to reconstruct the intricate

details of the FSI dynamics (see figure 11) although

the contribution of these two modes is limited to 70%

of the total energy of this system.

Furthermore, we witness that the POD mode 1

computed for Re = 4000 plays the same role in break-

ing the vortex tubes (not shown here) in the mean

flow field (see figure 6(e)). Nevertheless, the addition

of another mode (POD mode 2) in this case would not

reconstruct the major features of the vortex dynamics

as it does for our viscous flow conditions. To develop

meaningful connections between the broken parts of

the vortex tubes, we need to add at least the first four

POD modes into the time-averaged field. The POD

modes 2, 3, and 4 play their part for the development

and growth of fluidic connections in the lateral and

sideways directions to produce significant coherent

structures in the wake, as shown by the perspective,

top, and side views of the flow domain in figure 12.

Here, column 2 shows the wake constructed from

the first 3 modes and exhibits the presence of more

intense vortices which is not the case for full-order

system dynamics in the 1st column. In the 3rd col-

umn, the wake dynamics with the addition of the

4th mode starts resembling more with the full-order

12
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Figure 11. Reconstruction of FSI dynamics for a flow over the caudal fin of a jack fish at Re = 500 using mean features and the
POD modes, where the left, middle, and right columns show the full-order fluid–structure dynamics, the addition of the mean
states with the POD mode 1, and the addition of the mean states with the POD modes 1 and 2, respectively. Each row shows the
perspective, top, and side view of the whole flow and structural domains.

system dynamics. It happens due to the phase rela-

tionship between the modes that brings the reduced-

order representation closer to the full-order one. This

dynamical feature can either enhances the strength

of vortices or cause a decrease there depending on

the constructive and destructive interference between

coherent flow structures.

Next, we perform dynamical mode decomposi-

tion for the full FSI systems constructed from the

structural motion of the caudal fin and the flow field

around it. An important objective of this analysis is

to segregate the frequency components from each

other in this bio-inspired dynamical system where the

modes are temporally orthonormal, whereas the tem-

poral coefficient of each POD mode contains more

than one frequency. In figure 13, we plot the angu-

lar frequencies (rad/ sec) of the DMD modes that

are computed by taking the logarithm of Ritz val-

ues (DMD eigenvalues) and dividing it by the sam-

pling time interval. Unlike POD, these eigenvalues

are not arranged in the descending order, and one

needs to carefully determine the significant DMD

modes and their associated parameters. A param-

eter to rank these modes is the amplitude of the

DMD modes (Kutz et al 2016). These DMD eigenval-

ues come up with their complex conjugates because

we process the real-valued data here. The Ritz val-

ues existing on a unit circle indicate neutrally stable

modes, whereas those inside the circle and outside its

periphery show decaying and unstable DMD modes,

respectively. Here, the real value of an angular fre-

quency (ωr) on the left side of the vertical axis in

figure 13 reflects the stability of that particular DMD

mode. All the DMD modes with their ωr = 0 are neu-

trally stable. We neither find any DMD mode with

ωr > 0 for Re = 500 nor for 4000. The most domi-

nant mode, in both cases, indicated by red circles in

figure 13 are the mean DMD modes also referred to

as the DMD mode 1. These modes have ωi = 0 that

shows their non-oscillatory character. For Re = 500,

the first three strongest oscillatory DMD modes have

ωr = 0 which means that they do not decay with time.

All the other modes with angular frequencies have

negative ωr and decay as we progress in time. This

parabolic arrangement of modal frequencies has also

been observed previously by Schmid et al (Schmid

2010, 2011). In the case of Re = 4000, only DMD

mode 2 has ωr = 0. All the remaining modes show
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Figure 12. Reconstruction of FSI dynamics for a flow over the caudal fin of a jack fish at Re = 4000 using mean features and the
POD modes, where the left, middle, and right columns show the full-order fluid–structure dynamics, the addition of the mean
states with the first three POD modes, and the addition of the mean states with the first four POD modes, respectively. Each row
shows the perspective, top, and side view of the whole flow and structural domains.

the decaying character. Under both the flow condi-

tions, the DMD mode 2 has the excitation frequency

of the caudal fin, whereas DMD modes 3 and 4 have

frequencies equal to 2fE and 3fE, respectively.

To illustrate more on the strength of these DMD

modes, we plot frequencies, normalized by the exci-

tation frequency of the caudal fin, and growth rates

for each modal component versus modal amplitude

in figure 14 for both Reynolds numbers. Here, we only

show the information for oscillatory components.

We determine that the amplitudes of these frequency

components decay asymptotically (see figures 14(a)

and (c)), and no DMD mode has a growth rate greater

than zero. This element exhibits the stable character of

the dynamics of this prescribed fluid–fin interaction-

based system. It is important to mention that the

strength of higher DMD modes is more in the case of

Re = 4000 as compared to those at Re = 500. Modal

distributions in figure 14(d) show the cluster of the

strongest DMD modes near the zero value on the hor-

izontal axis. Our analysis establishes that the DMD

mode 3 contributes more towards the production of

thrust force on the caudal fin, whereas the second

DMD mode has a greater effect on the lateral force.

To illustrate more on the strength of these DMD

modes, we plot frequencies, normalized by the exci-

tation frequency of the caudal fin, and growth rates

for each modal component versus modal amplitude

in figure 14 for both Reynolds numbers. Here, we only

show the information for oscillatory components.

We determine that the amplitudes of these frequency

components decay asymptotically (see figures 14(a)

and (c)), and no DMD mode has a growth rate greater

than zero. This element exhibits the stable character of

the dynamics of this prescribed fluid–fin interaction-

based system. It is important to mention that the

strength of higher DMD modes is more in the case of

Re = 4000 as compared to those at Re = 500. Modal

distributions in figure 14(d) show the cluster of the

strongest DMD modes near the zero value on the hor-

izontal axis. Our analysis establishes that the DMD

mode 3 contributes more towards the production of

thrust force on the caudal fin, whereas the second

DMD mode has a greater effect on the lateral force.

As also mentioned by Taira et al (2020), POD and

DMD modes are usually similar for periodic flows. In

our present study, we observe this phenomenon not
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Figure 13. Real and imaginary components of the angular frequencies computed from the Ritz values for (a) Re = 500 and (b)
4000.

Figure 14. DMD modal frequencies and growth rates vs modal amplitudes for Re = 500 (a) and (b) and Re = 4000 (c) and (d).

only for highly viscous conditions but also at a rel-

atively higher Re ∼ 103. We illustrate these observa-

tions by comparing the POD and DMD modes pre-

sented in figures 8 and 9 for Re = 500 and 4000,

respectively. For the lower Re, the DMD flow struc-

tures also appear as planar elements with the four

extended arms in the downstream direction, whereas

their shapes turn out to be hairpin-like for the higher

Re.

To relate our discussion with pressure in the flow

fields, we plot the contours of time-averaged pres-

sure coefficient, CP = P/0.5ρU2
∞, on the caudal fin’s

surface in figure 15 for both Reynolds numbers. It

shows that pressure on both sides exhibits a symmet-

ric pattern under the two flow conditions. However,

the distribution of CP is different for these cases. For

Re = 500, positive CP region is concentrated on the

leading edge of the caudal fin only. We do not find

positive CP for Re = 4000 on the tail’s surface. More-

over, stronger negative Cp regions are found on the

leading edge of the upper lobe and the trailing edge of

the lower lobe for the viscous flow regime. In the case

of transitional flow condition, the negative CP region

expands to the trailing edge of the upper lobe, but it
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Figure 15. Contours of pressure coefficient on the caudal fin’s surface where (a) and (b) show the data for Re = 500 and (c) and
(d) presents CP for Re = 4000. Left and right columns are for the right and left sides of the caudal fin, respectively.

seems concentrated more on the leading edge of the

lower lobe. This discussion presents how different Re

values can affect the surface pressure distributions on

swimmers’ bodies and their resultant hydrodynamic

forces.

Next, an effective and interesting method to esti-

mate the hydrodynamic forces is by computing POD

modes of the pressure in flow fields around solid bod-

ies. Previously, Imtiaz and Akhtar (2017) proposed

this methodology to compute hydrodynamic forces

over a cylinder. In this technique, the data matrix

is constructed using pressure instead of the velocity

components and modal analysis is performed. They

did not consider shear stress components to com-

pute hydrodynamic force coefficients and used only

the pressure components. Hence, the contribution of

each pressure POD mode is determined. Neverthe-

less, this method has its limitation when drag com-

ponent due to the friction over the body becomes

large. Here, we compare the magnitudes of pressure

and drag components, CDP and CDF, respectively, in

table 2 for both Reynolds numbers. Their temporal

profiles are provided in figure 16 for one oscillation

cycle. For Re = 500, CDF makes a greater contribu-

tion towards the overall drag production by the cau-

dal fin, and thrust production identified by CDP is not

enough to enable the body to generate thrust. In the

case of Re = 4000, thrust production from the pres-

sure component overcomes the frictional drag with

a small margin. Thus, it demonstrates that we need

to form the data matrix by incorporating both pres-

sure and velocity fields information for flows over

swimming bodies.
To further determine the viability of the pressure

POD modes in the present flow conditions, we per-
formed the SVD analysis on the following data matrix
containing pressure values in a flow field and the
caudal fin displacements.

XP =











Pt1 Pt2 . . . PtN

ξt1
CF ξt2

CF · · · ξtN
CF

ηt1
CF ηt2

CF · · · ηtN
CF

ζ t1
CF ζ t2

CF · · · ζ tN
CF











(Nx+Ny+Nz+3NCF)× NT

After performing the POD on this data set, we obtain

distributions of the normalized energy of the first 48

modes as presented in figure 17 for the two Re val-

ues. It is evident that the first mode for lower Re has a

greater energy as compared to the one for the higher

Re and the higher POD modes start making pairs that

are an indication of periodic flows. However, the over-

all trend of this distribution remains the same. We

also observe that the pressure POD technique does

not seem suitable for estimating hydrodynamic forces

because a very high number of pressure modes, more

than 40 in the present work, are needed to capture a

significant amount of energy of these dynamical sys-

tems. Nevertheless, from this analysis, there arises the

need to develop effective and efficient reduced-order

models for the direct estimation of forces applied by

the fluid on the swimming bodies.
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Table 2. Drag force coefficients and their pressure and friction components for Re = 500 and 4000.

Re Pressure drag component (CDP) Frictional drag component (CDF) Total drag coefficient (CD)

500 −0.1371 0.6389 0.5018

4000 −0.1580 0.1358 −0.0222

Figure 16. Instantaneous drag coefficient and its components for (a) Re = 500 and (b) 4000.

Figure 17. Squared eigenvalues normalized by their summation computed through pressure POD for (a) Re = 500 and (b) 4000.

4. Summary and conclusions

In this work, we perform modal decompositions of

the kinematics of a jack fish that belongs to the

carangiform family of swimmers. We find that its

complex undulatory motion is mainly composed of

two dominant modes which represent standing waves

with different locations of nodes and antinodes along

the fish’s body and its caudal fin. These two modes are

sufficient to present the wavy kinematics of this natu-

ral aquatic swimmer and this information can be used

to build a low-order model for further studies. Then,

we perform numerical simulations for flows over the

membranous caudal fin of the jack fish using our

immersed boundary method-based computational

solver. We employ a large amount of data from this

complex FSI system to extract dominant modes using

proper orthogonal and DMD techniques. Proper

orthogonal decomposition modes provide us with

spatially orthonormal structures, whereas the other

technique decomposes the entire information about

the structural and flow fields into orthonormal fre-

quency components. Each POD mode carries more

than one frequency, but each DMD mode has only

one frequency. We find that only two modes are suffi-

cient to reconstruct the structural and flow dynamics

at the lower Reynolds numbers. However, we need to

bring in a greater number of modes to capture essen-

tial dynamical features of the flow field at Re = 4000.

It means that high modal oscillations occur only due

to the fluid dynamics, not the structural motion. We

also illustrate the symmetry properties using vorticity

components plotted on their respective normal planes

in the wakes and reveal that there exists diagonal sym-

metry for certain POD modes. We also emphasize that
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these symmetry properties may be switched to asym-

metric patterns when their corresponding planes are

moved along their normal axes. We find similarities in

respective POD and DMD modes for both flow con-

ditions. The coherent structures adopt quadfurcated

shapes with four extended arms in the downstream

directions in both POD and DMD modes, but we

see hairpin-like structures for the flow at the greater

Reynolds number. Even these systems are representa-

tives of intense fluid–body interaction, yet we reveal

the formation of stable and neutrally stable DMD

modes here.
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