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ABSTRACT 
The immersed boundary method (IBM) has been widely 

employed to study bio-inspired underwater propulsion which 
often involves the high Reynolds number, complex body 
morphologies and large computational domain. Due to these 
problems, the immersed boundary (IB) reconstruction can be 
very costly in a simulation. Based on our previous work, an 
improved level-set-based immersed boundary method (LS-IBM) 
has been developed in this paper by introducing the narrow-band 
technique. Comparing with the previous LS-IBM, the narrow-
band level-set-based immersed boundary method (NBLS-IBM) is 
only required to propagate the level set values from the points 
near the boundaries to all the points in the narrow band. This 
improvement reduces the computational cost from 𝑂((𝐿𝐷 𝛥𝑥⁄ )3)  to 𝑂(𝑘(𝐿𝐷 𝛥𝑥⁄ )2) . By simulating a steady-
swimming Jackfish-like body, the consistency and stability of the 
new reconstruction method in the flow solver have been verified. 
Applications to a dolphin-like body swimming and a shark-like 
body swimming are used to demonstrate the efficiency and 
accuracy of the NBLS-IBM. The time for reconstructions shows 
that the reconstruction efficiency can increase up to 64.6% by 
using the NBLS-IBM while keeping the accuracy and robustness 
of the original LS-IBM. The vortex wake of the shark-like body 
in steady swimming shows the robustness, fastness and 
compatibility of the NBLS-IBM to our current flow solver. 

Keywords: Level set, immersed boundary method, narrow 
band, bio-inspired underwater propulsion 

NOMENCLATURE 𝐿𝐷  the characteristic length Δ𝑥  mesh size 

k          number of cells in the narrow band 

 𝑢𝑖 the velocity component 

 𝑝 the pressure 

 𝜌 the fluid density 

 Re Reynold number 

 St  Strouhal number 

 𝜑          level set function 

 R        searching radius 

1. INTRODUCTION 
The immersed boundary method was first proposed by 

Peskin[1] to simulate cardiac blood flow problems. After 
introducing the discrete forcing method[2], immersed boundary 
methods have been widely used to study bio-inspired flows, 
including insect flight, fish swimming, and biomedical 
problems, often involving complex body morphologies and 
moving boundaries. For such flows, the unstructured surface 
mesh is employed to present the body shape, and the interface 
between the solid body and the fluid at each time step is detected 
by the immersed boundary reconstruction process, which 
directly determines the efficiency and quality of the 
simulations[3]. For some bio-inspired underwater propulsion 
problems, the geometry of the immersed bodies can be complex 
with sharp concave and convex parts. It is challenging to identify 
the interior and exterior nodes for complex body morphologies, 
and incorrectly labeling the fluid and solid nodes can ruin the 
simulation. Besides, in a real fish swimming simulation, the 
Reynolds number can reach 𝑂(106) or above, which requires 
dense body mesh and fine-enough Cartesian mesh, and the 
computation domain can be extremely large. This results that the 
computational cost for IB reconstruction at each step is 
expensive. Thus, a fast, accurate and versatile IB reconstruction 
method is necessary for studying the bio-inspired underwater 
propulsion. 

Mittal et al. [3] employed a direct searching method to 
determine fluid and solid nodes, which reconstructed the 
interface by sweeping through all the triangular body meshes and 
finding all Cartesian points near the boundary. The exterior 
(fluid) and interior (solid) points can be separated according to 
the sign of the dot-product of the vector extending from the 
centroid of a triangular element to its closest node with the 
surface normal of the element. The computational cost of this 
method is in the order of 𝑂((𝐿𝐷 Δ𝑥⁄ )5) []], where 𝐿𝐷  is the 
characteristic length and Δ𝑥  is the minimum mesh size. The 
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computational consumption will be very high when the Cartesian 
mesh is dense or the computation domain is large. In addition, 
Senocak et al.[5] found that the method may fail when the 
differences in size between triangular surface elements are too 
large. To improve the robustness and efficiency of detecting 
immersed boundaries, Deng et al.[]] proposed a level-set-based 
fast reconstruction method for complex moving boundaries with 
the 3D finite-difference sharp-interface immersed boundary 
method, and we call it LS-IBM in this work. In their work, the 
immersed boundary was identified by calculating the signed 
distance value, stored in the level set function, of grid points near 
the solid boundaries, and propagating the values to the 
surrounding domain. The computational cost was reduced from 𝑂((𝐿𝐷 Δ𝑥⁄ )5)  to 𝑂((𝐿𝐷 Δ𝑥⁄ )3)  comparing with the standard 
IB method. Then, Wang et al.[6] further developed this method 
to handle the bio-inspired models with both solid body and 
membrane. 

In this work, we further improve the efficiency of immersed 
boundary reconstruction by developing a narrow band level-set-
based immersed boundary method (NBLS-IBM) and apply it to 
some underwater propulsion problems. For the previous LS-
IBM[]], the level set values of other grid points in the 
computational domain are obtained by propagating the signed 
distance values of points in the immediate vicinity of the 
immersed boundary. The computational cost of this operation is 𝑂((𝐿𝐷 Δ𝑥⁄ )3), and the operation is required at every time step in 
a simulation. However, to identify the solid and fluid nodes, we 
just need to update the level set values near the immersed 
boundary at the current time step to detect the interface, and 
directly use the level set values passed on from the precious time 
step for other grid points. Thus, we employ the narrow-band 
technique[7] to speed up the boundary reconstruction process. 
By building a thin band around the zero-level set, the 
computations are only performed on the points in the band, 
which can reduce the computation cost from 𝑂((𝐿𝐷 Δ𝑥⁄ )3) to 𝑂(𝑘(𝐿𝐷 Δ𝑥⁄ )2)[8], where k is the number of cells in the narrow 
band. In the meantime, the narrow band LS-IBM (NBLS-IBM) 
inherits the accuracy and robustness of LS-IBM demonstrated in 
Ref. []]. Next, we present the narrow band level-set-based 
immersed boundary method in detail and apply it to underwater 
propulsion problems including Jackfish swimming, dolphin 
swimming and shark swimming with complex moving 
boundaries. 
2. METHODOLOGY 
2.1 Sharp-interface immersed-boundary-based flow 
solver 

The governing equations considered in this work are 3-D 

unsteady Navier-Stokes equations for a viscous incompressible 

flow, written in an indicial form as,  𝜕𝑢𝑖𝜕𝑥𝑖 = 0, 𝜕𝑢𝑖𝜕𝑡 + 𝜕𝑢𝑖𝑢𝑗𝜕𝑥𝑗 = − 1𝜌 𝜕𝑝𝜕𝑥𝑖 + ν 𝜕2𝑢𝑖𝜕𝑥𝑖𝜕𝑥𝑗  (1) 

where the 𝑢𝑖  are the velocity components, 𝑝  is the pressure, 
and 𝜌  and 𝜈  denote the fluid density and the kinematic 
viscosity respectively. 

A finite-difference Cartesian-grid sharp-interface immersed 

boundary method[3] is employed to solve the above eqautions. 

In this method, the complex moving boundaries are conducted 

on stationary Cartesian grids, which greatly reduces the 

computational cost comparing to the body-conformal methods.   

The equations are discretized in space by using a second-order 

central difference scheme. A fractional step method is employed 

to obtain second-order accuracy in time for these unsteady 

equations. A second-order, Adams-Bashforth scheme is 
employed for the convection terms, while the diffusion terms are 
discretized using an implicit Crank-Nicolson scheme. Besides, a 
multi-dimensional ghost-cell method is used to impose boundary 
conditions on the immersed boundary precisely. This method has 
been successfully applied to simulate biological fish 
swimming[9, 10], fish-like swimming[11-1]] and other flapping 
propulsions[15-19]. More details about the method can be found 
in Ref.[3].  
2.2 A fast narrow-band level-set based IB 
reconstruction 

The computation complexity of the previous LS-IB 
reconstruction method is 𝑂((𝐿𝐷 Δ𝑥⁄ )3) . Even though this 
method greatly increases the reconstruction speed compared to 
the direct searching method in Ref. [3], the IB reconstruction 
process will be time-consuming and inefficient when the body 
mesh and domain mesh are dense, or the computational domain 
is large. It limits applying the method to high Reynolds number 
underwater propulsions or the complex swimming motion in a 
large domain. 

To improve the efficiency of LS-IB reconstruction for 
complex moving boundaries, we introduce the narrow band 
technique. In the LS-IB reconstruction method, the level set 
values are updated for each grid points in the computation 
domain after calculating the signed distance values of grid points 
in the immediate vicinity of the solid boundary. The central idea 
of the narrow method is to build a thin band around the zero-
level set, that is, the solid interface, and to update the level set 
values at the Cartesian grids only in this band, which thus 
reduces the computational complexity of propagating level set 
values to 𝑂(𝑘(𝐿𝐷 Δ𝑥⁄ )2). 

The level set function is smooth [20], recording the signed 
distance values of any grid point to the interface between the 
solid body and the fluid, and is denoted as 𝜑. In this work, 𝜑 =0  is the interface, 𝜑 < 0  denotes the fluid and 𝜑 > 0 
represents the solid body. The LS-IBM described in the previous 
study[]] contains four steps. The difference between the current 
method and the previous LS-IBM is mainly at the third step. For 
the completeness of the paper, we still list all four steps here and 
highlight the changes. 

Step 1: Go through all the elements of the immersed 
boundary, determine their positions by checking their 
coordinates along the x, y and z grid lines of the Cartesian mesh. 
In the above process, the neighbor grid points in the immediate 
vicinity of the solid boundary have been searched and recorded 
with the corresponding elements. In Figure 1, the circles and 
squares represent the fluid points and the solid points 
respectively. And the neighbor points are labeled by the solid red 
circles and squares. The computational cost of this step is 𝑂((𝐿𝐷 Δ𝑥⁄ )3). 
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Step 2: For each neighbor point, find the closest element and 
calculate the signed distance value (level set value) to the 
element. The signed distance value of other Cartesian points 
within the researching area in Figure 1 are also calculated. Figure 
1 marked the searching area by the dashed lines and the 
searching points by hollowed red circle and square. In this step, 
the updated level set values may be incorrect, which can 
jeopardize the reconstruction of the interface and crash the 
simulation. In case of that, we check the level set values one by 
one and fix the failed point by averaging the level set values 
around the point. 

 

 
FIGURE 1: SCHEMATIC OF SEARCHING THE NEIGHBOR 

POINTS. THE DARK SOLID LINE DENOTES THE IMMERSED 

BOUNDARY AND THE SEARCHING AREA IS BORDERED WITH 

THE BLUE DASHED LINES. THE CIRCLES AND SQUARES 

REPRESENT THE FLUID POINTS AND THE SOLID POINTS 

RESPECTIVELY.  

 

Step 3: Use the labeled neighbor points to build a narrow 
band and propagate level set values to other points in this band. 
In this work, we set the width of the band as four; that is, the 
level set values propagate forward and backward for two grids in 
each direction, respectively. The narrow band is the area 
bordered by the dashed blue line in Fig. 2. For other points in the 
narrow band, the calculation of level set values is as follows, 

{   
   𝜑𝐼,𝐽,𝐾𝑛 = 𝑠𝑢𝑚𝜑𝑢𝑚 + 𝑠𝑔𝑛(𝑠𝑢𝑚𝜑𝑢) × 𝑑𝑖𝑠𝑡𝜑𝑠𝑢𝑚𝜑𝑢 = ∑ ∑ ∑ 𝜑𝑖,𝑗,𝑘𝑢𝐾+1𝑘=𝐾−1𝐽+1𝑗=𝐽−1𝐼+1𝑖=𝐼−1𝑑𝑖𝑠𝑡𝜑 = √(𝑥𝑢̅̅ ̅ − 𝑥𝐼,𝐽,𝐾)2 + (𝑥𝑢̅̅ ̅ − 𝑥𝐼,𝐽,𝐾)2 + (𝑥𝑢̅̅ ̅ − 𝑥𝐼,𝐽,𝐾)2𝑚𝑎𝑥{|𝐼 − 𝐼0|, |𝐽 − 𝐽0|, |𝐾 − 𝐾0|} ≤ 2

(2) 

Here 𝜑𝐼,𝐽,𝐾𝑛  is the level set value at the gird (𝐼, 𝐽, 𝐾) that is to 
be updated by the neighboring grids with the updated level set 
value 𝜑𝑖,𝑗,𝑘𝑢  , 𝑚  is the number of cells in the summation. ∙ ̅
denotes the average center of the updated grids around the new 
point. (𝐼0, 𝐽0, 𝐾0) is the neighbor point in the immediate vicinity 
of the solid boundary, and 𝑚𝑎𝑥{|𝐼 − 𝐼0|, |𝐽 − 𝐽0|, |𝐾 − 𝐾0|} ≤ 2 
represents that the band width is four. 

Step 4: Use the level set value to decide the status of each 
grid point. As mentioned before, 𝜑 > 0  represents the solid 
points, and 𝜑 < 0 denotes the fluid points. 

In the initial time step of a simulation, the IB reconstruction 
is conducted by directly calculating the level set value of grid 

points in the whole domain. Thus, the initialized level set 
function stores accurate level set values for all grid points. After 
that, by building a narrow band around the IB, the level set values 
are just to be updated for the points in this band at the current 
time step. The level set values of grid points outside the narrow 
band can be directly passed on from the previous step. In this 
way, the computational cost of the third step is reduced to 𝑂(𝑘(𝐿𝐷 Δ𝑥⁄ )2). Then, the fluid/solid grid status can be decided 
from the sign of the level set value.  

 

 
FIGURE 2: SCHEMATIC OF PROPAGATING THE LEVEL SET 

VALUES TO ALL POINTS IN THE NARROW BAND. 

 

3. RESULTS AND DISCUSSION 
In this section, the consistency and stability of the new 

reconstruction method to the flow solver is firstly demonstrated 

by comparing the hydrodynamics of Jackfish-like body in steady 

swimming simulated by using the NBLS-IBM based flow solver 

and the LS-IBM based flow solver. Then, the efficiency of the 

new method will be analyzed by comparing the reconstruction 

time of NBLS-IBM and that of LS-IBM for a dolphin-like body 

and a shark-like body with different background Cartesian 

meshes. Besides, with the NBLS-IBM, the vortex wake of a 

steady-swimming shark is also presented to show the 

computability, reliability and effectiveness of the new IB 

reconstruction method in the current flow solver.  

3.1 Jackfish steady swimming 
To demonstrate that the consistency and stability of NBLS-

IBM in the current flow solver, we simulate the steady 

swimming of a Jackfish-like body by using NBLS-IBM based 

flow solver and the previous LS-IBM based flow solver 

separately. The Reynolds number is set as 𝑅𝑒 = 2,000  to 

reduce the computational cost, and the Strouhal number is fixed 

at 0.5. Figure 3 shows the time history of thrust, which is 

produced by caudal fin (CF), and drag, which works on the trunk 

(TK), of a Jackfish in steady swimming. In this paper, the 

hydrodynamic forces are normalized by using the following 

formula, 

 𝐶𝐹 = 𝐹1 2⁄ 𝜌𝑈2𝑆 (3) 

where 𝜌 = 1 is the fluid density in the solver, 𝑈 = 0.5 is the 

swimming velocity and S denotes the area of caudal fin. From 

Figure 3, it can be seen that results calculated by these two 

solvers are completely matching, which demonstrates the 
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consistency and stability of the narrow-band level-set method in 

the flow solver.  

  
FIGURE 3: (A) UNSTRUCTURED MESH ON A JACKFISH-LIKE 

BODY, (B) THE CALCULATED ZERO-LEVEL-SET BODY 

SHAPE, AND (C) THE TIME HISTORY OF THRUST AND DRAG 

ON THE JACKFISH BODY CALCULATED BY USING NBLS-IBM 

FLOW SOLVER AND PRECIOUS LS-IBM FLOW SOLVER 

SEPARATELY. HERE, FOR CONVENIENCE, ONLY THE 

THRUST PRODUCED BY CAUDAL FIN AND DRAG ON THE 

FISH TRUNK ARE PRESENTED.  

 

3.2 Dolphin-like body reconstruction 
The reconstruction of a dolphin-like body in steady 

swimming is applied to demonstrate the higher efficiency and 

reliability of the NBLS-IBM. A comparison of reconstruction 

times for the dolphin-like body has been conducted by applying 

LS-IBM and NBLS-IBM to different Cartesian meshes. The total 

number of surface elements of the dolphin body is 59,968, and 

the unstructured surface mesh is shown in Fig. 4(a). The 

Cartesian grids are 16.6 million, 48.7 million, and 146.2 million, 

respectively, and the corresponding smallest Cartesian mesh 

dimensions are 0.028, 0.021, and 0.015. 

The times for reconstructing the immersed boundary at one 

time step for each case are list in Table 1. We use the Δ𝑡 to 

denote the time saved by the NBLS-IBM comparing to the LS-

IBM, and use the ratio of Δ𝑡 to the time for IB reconstruction 

by using LS-IBM to represent to what extent the IB 

reconstruction efficiency has been improved. 

 

 
FIGURE 4: THE IB RECONSTRUCTION PROCESS OF A 

DOLPHIN-LIKE BODY, (A) UNSTRUCTURED MESH ON A 

DOLPHIN-LIKE BODY, (B) THE CALCULATED ZERO-LEVEL-

SET BODY SHAPE, AND (C) THE RECONSTRUCTED 

IMMERSED BOUNDARY BUILT ON THE CARTESIAN MESH. 

 

 
FIGURE 5: THE LEVEL-SET CONTOUR SLICES ARE AT THE 

FRONT, MIDDLE AND TAIL OF A DOLPHIN-LIKE BODY. 

 

TABLE 1. THE IB CONSTRUCTION TIME FOR EACH CASE IN 

DOLPHIN SWIMMING. 

Cartesian grids (million) 16.6 48.7 146.2 

Time(sec) for IB 

reconstruction 

LS-

IBM 
7.99 21.45 97.76 

NBLS-

IBM 
3.90 11.13 35.49 

Time-saving 51.19% 48.11% 63.70% 

 

Table 1 shows that the time saved by the NBLS-IBM 

changes from 48.1% to 63.7% for different numbers of the 

Cartesian mesh. It demonstrates the narrow band level-set 



 5 © 2021 by ASME 

method is much more efficient than the original LS-IBM. Next, 

we present the unstructured mesh on a dolphin-like body, the 

calculated zero-level-set body shape, and the reconstructed 

immersed boundary of the case with 146.2 million Cartesian 

mesh in Fig. 4. Figure 5 shows three slices of the level set 

contour around the dolphin-like body at the front, middle and tail 

of the body. From Fig. 4 and Fig. 5, it can be seen that the 

immersed boundary can be precisely detected by using the 

NBLS-IBM.  
 

3.3 Shark-like body reconstruction 
In this part, we tested the boundary reconstruction times for 

a shark-like body with 107K triangular surface elements, as 

shown in Fig. 6(a), immersed in the Cartesian mesh 24.8M, 48M, 

97.6M and 196.4M, respectively. The corresponding smallest 

Cartesian mesh dimensions for each case are 0.021, 0.016, 0.013, 

and 0.010. The results are listed in Table 2. From Table 2, it is 

found that the maximum time-saving is 64.6% and is reached 

when the number of the Cartesian mesh is 48M, which shows the 

higher efficiency of the NBLS-IBM comparing to the original 

LS-IBM. It also shows that the matching between the body mesh 

and the Cartesian mesh may affect the reconstruction speed, 

which will be explored in the future. Like the case of the dolphin-

like body, we also present the IB reconstruction process for the 

shark-like body including the unstructured mesh on the body 

surface, the zero-level-set body shape and the reconstructed 

immersed boundary built on the Cartesian mesh in Fig. 6. 

Besides, the three slices at the front, middle and tail of the shark-

like body of the level set contour around the body are shown in 

Fig. 7. 

 
FIGURE 6: THE IB RECONSTRUCTION PROCESS OF A SHARK 

BODY, (A) THE UNSTRUCTURED MESH ON A SHARK-LIKE BODY, 

(B) THE CALCULATED ZERO-LEVEL-SET BODY SHAPE, AND (C) 

THE RECONSTRUCTED IMMERSED BOUNDARY BUILT ON THE 

CARTESIAN MESH. 

 
FIGURE 7: THE LEVEL-SET CONTOUR SLICES ARE AT THE 

FRONT, MIDDLE AND TAIL OF A SHARK-LIKE BODY. 

 
TABLE 2. THE IB CONSTRUCTION TIME FOR EACH CASE IN 

SHARK SWIMMING. 

Cartesian grids (Million) 24.8 48 97.6 196.4 

Time(sec) 

for IB 

reconstructio

n 

LS-IBM 8.71 9.52 32.47 42.94 

NBLS-

IBM 
3.08 5.45 12.74 29.37 

Time-saving 64.64% 
42.75

% 

60.76

% 

31.60

% 

 

3.4 Shark steady swimming 
In this part, we simulate the shark-like body steady 

swimming to demonstrate the robustness and fastness of the 

NBLS-IBM in the current flow solver. The Reynolds number is 

set as 𝑅𝑒 = 8,000 to reduce the computational cost, and the 

Strouhal number is 0.8. Besides, to generate fine-enough grids 

with limited memory, a block-wise octree-like structured 

adaptive mesh refinement (AMR) technique is employed in the 

solver[4]. The OpenMP parallelization is also applied to improve 

the calculation speed. Figure 8 shows the vortex wake generated 

by the shark-like body in steady swimming. The vortex 

structures are visualized by using the iso-surface with the 𝜆2-

criterion at two different values (|𝜆2| = 4, 12). 

 

 
FIGURE 8: THE VORTEX WAKE OF A SHARK-LIKE BODY IN 

STEADY SWIMMING.  

 

4. CONCLUSION 
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In this work, we propose a narrow-band level-set immersed 

boundary method to speed up the IB reconstruction process. 

Comparing with the original LS-IBM in Ref. [4], the current 

method only needs to propagate the level set value from the 

neighbor points near the boundary to other points in the narrow 

band when identifying the solid and fluid nodes at each time-

step. The introduction of the narrow band technique reduces the 

computational cost of IB reconstruction from 𝑂((𝐿𝐷 Δ𝑥⁄ )3) to 𝑂(𝑘(𝐿𝐷 Δ𝑥⁄ )2) . The consistency and stability of the new 

reconstruction method for the flow solver was demonstrated by 

comparing the hydrodynamics of a Jackfish-like body in steady 

swimming simulated by using the NBLS-IBM based solver and 

LS-IBM solver separately. Then, we tested the reconstruction 

efficiency of NBLS-IBM by analyzing the reconstruction time 

for a dolphin-like body and a shark-like body with different 

Cartesian meshes. The results show that the efficiency of IB 

reconstruction is greatly improved by introducing the narrow 

band method and increases up to 64.6%. The detected immersed 

boundaries shown in Fig. 4 and Fig. 6 demonstrate that the 

accuracy of IB reconstruction can be maintained at the same 

time. Finally, the vortex wake of the shark-like body in steady 

swimming proves the stability and fastness of NBLS-IBM when 

applying to the current flow solver.  
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