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ABSTRACT

The immersed boundary method (IBM) has been widely
employed to study bio-inspired underwater propulsion which
often involves the high Reynolds number, complex body
morphologies and large computational domain. Due to these
problems, the immersed boundary (IB) reconstruction can be
very costly in a simulation. Based on our previous work, an
improved level-set-based immersed boundary method (LS-IBM)
has been developed in this paper by introducing the narrow-band
technique. Comparing with the previous LS-IBM, the narrow-
band level-set-based immersed boundary method (NBLS-IBM) is
only required to propagate the level set values from the points
near the boundaries to all the points in the narrow band. This
improvement  reduces the computational cost  from
O0((Lp/Ax)3) to O(k(Lp/Ax)?). By simulating a steady-
swimming Jackfish-like body, the consistency and stability of the
new reconstruction method in the flow solver have been verified.
Applications to a dolphin-like body swimming and a shark-like
body swimming are used to demonstrate the efficiency and
accuracy of the NBLS-IBM. The time for reconstructions shows
that the reconstruction efficiency can increase up to 64.6% by
using the NBLS-IBM while keeping the accuracy and robustness
of the original LS-IBM. The vortex wake of the shark-like body
in steady swimming shows the robustness, fastness and
compatibility of the NBLS-IBM to our current flow solver.

Keywords: Level set, immersed boundary method, narrow
band, bio-inspired underwater propulsion

NOMENCLATURE
Lp the characteristic length
Ax mesh size
k number of cells in the narrow band
U; the velocity component
p the pressure
p the fluid density
Re Reynold number
St Strouhal number

Q level set function

R searching radius
1. INTRODUCTION

The immersed boundary method was first proposed by
Peskin[1] to simulate cardiac blood flow problems. After
introducing the discrete forcing method[2], immersed boundary
methods have been widely used to study bio-inspired flows,
including insect flight, fish swimming, and biomedical
problems, often involving complex body morphologies and
moving boundaries. For such flows, the unstructured surface
mesh is employed to present the body shape, and the interface
between the solid body and the fluid at each time step is detected
by the immersed boundary reconstruction process, which
directly determines the efficiency and quality of the
simulations[3]. For some bio-inspired underwater propulsion
problems, the geometry of the immersed bodies can be complex
with sharp concave and convex parts. It is challenging to identify
the interior and exterior nodes for complex body morphologies,
and incorrectly labeling the fluid and solid nodes can ruin the
simulation. Besides, in a real fish swimming simulation, the
Reynolds number can reach 0(10°%) or above, which requires
dense body mesh and fine-enough Cartesian mesh, and the
computation domain can be extremely large. This results that the
computational cost for IB reconstruction at each step is
expensive. Thus, a fast, accurate and versatile IB reconstruction
method is necessary for studying the bio-inspired underwater
propulsion.

Mittal et al. [3] employed a direct searching method to
determine fluid and solid nodes, which reconstructed the
interface by sweeping through all the triangular body meshes and
finding all Cartesian points near the boundary. The exterior
(fluid) and interior (solid) points can be separated according to
the sign of the dot-product of the vector extending from the
centroid of a triangular element to its closest node with the
surface normal of the element. The computational cost of this
method is in the order of O((Lp/Ax)%)[4], where Lj is the
characteristic length and Ax is the minimum mesh size. The
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computational consumption will be very high when the Cartesian
mesh is dense or the computation domain is large. In addition,
Senocak et al.[5] found that the method may fail when the
differences in size between triangular surface elements are too
large. To improve the robustness and efficiency of detecting
immersed boundaries, Deng et al.[4] proposed a level-set-based
fast reconstruction method for complex moving boundaries with
the 3D finite-difference sharp-interface immersed boundary
method, and we call it LS-IBM in this work. In their work, the
immersed boundary was identified by calculating the signed
distance value, stored in the level set function, of grid points near
the solid boundaries, and propagating the values to the
surrounding domain. The computational cost was reduced from
0((Lp/Ax)®) to O((Lp/Ax)®) comparing with the standard
IB method. Then, Wang et al.[6] further developed this method
to handle the bio-inspired models with both solid body and
membrane.

In this work, we further improve the efficiency of immersed
boundary reconstruction by developing a narrow band level-set-
based immersed boundary method (NBLS-IBM) and apply it to
some underwater propulsion problems. For the previous LS-
IBM[4], the level set values of other grid points in the
computational domain are obtained by propagating the signed
distance values of points in the immediate vicinity of the
immersed boundary. The computational cost of this operation is
0((Lp/Ax)?), and the operation is required at every time step in
a simulation. However, to identify the solid and fluid nodes, we
just need to update the level set values near the immersed
boundary at the current time step to detect the interface, and
directly use the level set values passed on from the precious time
step for other grid points. Thus, we employ the narrow-band
technique[7] to speed up the boundary reconstruction process.
By building a thin band around the zero-level set, the
computations are only performed on the points in the band,
which can reduce the computation cost from O((Lp/Ax)3) to
0(k(Lp/Ax)?)[8], where k is the number of cells in the narrow
band. In the meantime, the narrow band LS-IBM (NBLS-IBM)
inherits the accuracy and robustness of LS-IBM demonstrated in
Ref. [4]. Next, we present the narrow band level-set-based
immersed boundary method in detail and apply it to underwater
propulsion problems including Jackfish swimming, dolphin
swimming and shark swimming with complex moving
boundaries.

2. METHODOLOGY
2.1 Sharp-interface immersed-boundary-based flow
solver

The governing equations considered in this work are 3-D
unsteady Navier-Stokes equations for a viscous incompressible
flow, written in an indicial form as,

ouj _ o i M=_la_p 9% (1)
ax; 7ot ax; p Ax; 9x;0x;
where the u; are the velocity components, p is the pressure,
and p and v denote the fluid density and the kinematic
viscosity respectively.

A finite-difference Cartesian-grid sharp-interface immersed

boundary method[3] is employed to solve the above eqautions.

In this method, the complex moving boundaries are conducted
on stationary Cartesian grids, which greatly reduces the
computational cost comparing to the body-conformal methods.
The equations are discretized in space by using a second-order
central difference scheme. A fractional step method is employed
to obtain second-order accuracy in time for these unsteady
equations. A second-order, Adams-Bashforth scheme is
employed for the convection terms, while the diffusion terms are
discretized using an implicit Crank-Nicolson scheme. Besides, a
multi-dimensional ghost-cell method is used to impose boundary
conditions on the immersed boundary precisely. This method has
been successfully applied to simulate biological fish
swimming[9, 10], fish-like swimming[11-14] and other flapping
propulsions[15-19]. More details about the method can be found
in Ref.[3].

22 A fast
reconstruction

The computation complexity of the previous LS-IB
reconstruction method is O((Lp/Ax)3). Even though this
method greatly increases the reconstruction speed compared to
the direct searching method in Ref. [3], the IB reconstruction
process will be time-consuming and inefficient when the body
mesh and domain mesh are dense, or the computational domain
is large. It limits applying the method to high Reynolds number
underwater propulsions or the complex swimming motion in a
large domain.

To improve the efficiency of LS-IB reconstruction for
complex moving boundaries, we introduce the narrow band
technique. In the LS-IB reconstruction method, the level set
values are updated for each grid points in the computation
domain after calculating the signed distance values of grid points
in the immediate vicinity of the solid boundary. The central idea
of the narrow method is to build a thin band around the zero-
level set, that is, the solid interface, and to update the level set
values at the Cartesian grids only in this band, which thus
reduces the computational complexity of propagating level set
values to O(k(Lp/Ax)?).

The level set function is smooth [20], recording the signed
distance values of any grid point to the interface between the
solid body and the fluid, and is denoted as ¢. In this work, ¢ =
0 is the interface, ¢ <0 denotes the fluid and ¢ >0
represents the solid body. The LS-IBM described in the previous
study[4] contains four steps. The difference between the current
method and the previous LS-IBM is mainly at the third step. For
the completeness of the paper, we still list all four steps here and
highlight the changes.

Step 1: Go through all the elements of the immersed
boundary, determine their positions by checking their
coordinates along the x, y and z grid lines of the Cartesian mesh.
In the above process, the neighbor grid points in the immediate
vicinity of the solid boundary have been searched and recorded
with the corresponding elements. In Figure 1, the circles and
squares represent the fluid points and the solid points
respectively. And the neighbor points are labeled by the solid red
circles and squares. The computational cost of this step is

0((Lp/Ax)?).

narrow-band level-set based IB
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Step 2: For each neighbor point, find the closest element and
calculate the signed distance value (level set value) to the
element. The signed distance value of other Cartesian points
within the researching area in Figure 1 are also calculated. Figure
1 marked the searching area by the dashed lines and the
searching points by hollowed red circle and square. In this step,
the updated level set values may be incorrect, which can
jeopardize the reconstruction of the interface and crash the
simulation. In case of that, we check the level set values one by
one and fix the failed point by averaging the level set values
around the point.

FIGURE 1: SCHEMATIC OF SEARCHING THE NEIGHBOR
POINTS. THE DARK SOLID LINE DENOTES THE IMMERSED
BOUNDARY AND THE SEARCHING AREA IS BORDERED WITH
THE BLUE DASHED LINES. THE CIRCLES AND SQUARES
REPRESENT THE FLUID POINTS AND THE SOLID POINTS
RESPECTIVELY.

Step 3: Use the labeled neighbor points to build a narrow
band and propagate level set values to other points in this band.
In this work, we set the width of the band as four; that is, the
level set values propagate forward and backward for two grids in
each direction, respectively. The narrow band is the area
bordered by the dashed blue line in Fig. 2. For other points in the
narrow band, the calculation of level set values is as follows,

oK = % + sgn(sume) X diste
I+1 Z]+1_1ZK+1

u — u
SUMQ™ = Li=j-12j=j k=k-1Pijk @)
\

dlSt(p = \/(x_u - xIJ,K)Z + (x_u - xI,]'K)Z + (x_” - xl’]’K)z

max{|l —Io|,|] = Jol, IK — Kol} < 2
Here @7k is the level set value at the gird (I,/,K) that is to
be updated by the neighboring grids with the updated level set

value @;';), m is the number of cells in the summation. *

denotes the average center of the updated grids around the new
point. (Iy, /o, Ky) 1is the neighbor point in the immediate vicinity
of the solid boundary, and max{|I — I,|,|] — Jol, |IK — K|} < 2
represents that the band width is four.

Step 4: Use the level set value to decide the status of each
grid point. As mentioned before, ¢ > 0 represents the solid
points, and ¢ < 0 denotes the fluid points.

In the initial time step of a simulation, the IB reconstruction
is conducted by directly calculating the level set value of grid

points in the whole domain. Thus, the initialized level set
function stores accurate level set values for all grid points. After
that, by building a narrow band around the IB, the level set values
are just to be updated for the points in this band at the current
time step. The level set values of grid points outside the narrow
band can be directly passed on from the previous step. In this
way, the computational cost of the third step is reduced to
0(k(Lp/Ax)?). Then, the fluid/solid grid status can be decided
from the sign of the level set value.

FIGURE 2: SCHEMATIC OF PROPAGATING THE LEVEL SET
VALUES TO ALL POINTS IN THE NARROW BAND.

3. RESULTS AND DISCUSSION

In this section, the consistency and stability of the new
reconstruction method to the flow solver is firstly demonstrated
by comparing the hydrodynamics of Jackfish-like body in steady
swimming simulated by using the NBLS-IBM based flow solver
and the LS-IBM based flow solver. Then, the efficiency of the
new method will be analyzed by comparing the reconstruction
time of NBLS-IBM and that of LS-IBM for a dolphin-like body
and a shark-like body with different background Cartesian
meshes. Besides, with the NBLS-IBM, the vortex wake of a
steady-swimming shark is also presented to show the
computability, reliability and effectiveness of the new IB
reconstruction method in the current flow solver.
3.1 Jackfish steady swimming

To demonstrate that the consistency and stability of NBLS-
IBM in the current flow solver, we simulate the steady
swimming of a Jackfish-like body by using NBLS-IBM based
flow solver and the previous LS-IBM based flow solver
separately. The Reynolds number is set as Re = 2,000 to
reduce the computational cost, and the Strouhal number is fixed
at 0.5. Figure 3 shows the time history of thrust, which is
produced by caudal fin (CF), and drag, which works on the trunk
(TK), of a Jackfish in steady swimming. In this paper, the
hydrodynamic forces are normalized by using the following
formula,

F

= 1/2pU2s )
where p = 1 is the fluid density in the solver, U = 0.5 is the
swimming velocity and S denotes the area of caudal fin. From
Figure 3, it can be seen that results calculated by these two
solvers are completely matching, which demonstrates the

Cr
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consistency and stability of the narrow-band level-set method in
the flow solver.
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FIGURE 3: (A) UNSTRUCTURED MESH ON A JACKFISH-LIKE
BODY, (B) THE CALCULATED ZERO-LEVEL-SET BODY
SHAPE, AND (C) THE TIME HISTORY OF THRUST AND DRAG
ON THE JACKFISH BODY CALCULATED BY USING NBLS-IBM
FLOW SOLVER AND PRECIOUS LS-IBM FLOW SOLVER
SEPARATELY. HERE, FOR CONVENIENCE, ONLY THE
THRUST PRODUCED BY CAUDAL FIN AND DRAG ON THE
FISH TRUNK ARE PRESENTED.

3.2 Dolphin-like body reconstruction

The reconstruction of a dolphin-like body in steady
swimming is applied to demonstrate the higher efficiency and
reliability of the NBLS-IBM. A comparison of reconstruction
times for the dolphin-like body has been conducted by applying
LS-IBM and NBLS-IBM to different Cartesian meshes. The total
number of surface elements of the dolphin body is 59,968, and
the unstructured surface mesh is shown in Fig. 4(a). The
Cartesian grids are 16.6 million, 48.7 million, and 146.2 million,
respectively, and the corresponding smallest Cartesian mesh
dimensions are 0.028, 0.021, and 0.015.

The times for reconstructing the immersed boundary at one
time step for each case are list in Table 1. We use the At to
denote the time saved by the NBLS-IBM comparing to the LS-
IBM, and use the ratio of At to the time for IB reconstruction

by using LS-IBM to represent to what extent the IB
reconstruction efficiency has been improved.

FIGURE 4: THE IB RECONSTRUCTION PROCESS OF A
DOLPHIN-LIKE BODY, (A) UNSTRUCTURED MESH ON A
DOLPHIN-LIKE BODY, (B) THE CALCULATED ZERO-LEVEL-
SET BODY SHAPE, AND (C) THE RECONSTRUCTED
IMMERSED BOUNDARY BUILT ON THE CARTESIAN MESH.
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0.00
.05
0.0

FIGURE 5: THE LEVEL-SET CONTOUR SLICES ARE AT THE
FRONT, MIDDLE AND TAIL OF A DOLPHIN-LIKE BODY.

TABLE 1. THE IB CONSTRUCTION TIME FOR EACH CASE IN
DOLPHIN SWIMMING.

Cartesian grids (million) 16.6 48.7 146.2
LS-
Time(sec) for IB IBM 7.99 2145 9776
reconstruction NBLS-
IBM 3.90 11.13 35.49
Time-saving 51.19% 48.11%  63.70%

Table 1 shows that the time saved by the NBLS-IBM
changes from 48.1% to 63.7% for different numbers of the
Cartesian mesh. It demonstrates the narrow band level-set
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method is much more efficient than the original LS-IBM. Next,
we present the unstructured mesh on a dolphin-like body, the
calculated zero-level-set body shape, and the reconstructed
immersed boundary of the case with 146.2 million Cartesian
mesh in Fig. 4. Figure 5 shows three slices of the level set
contour around the dolphin-like body at the front, middle and tail
of the body. From Fig. 4 and Fig. 5, it can be seen that the
immersed boundary can be precisely detected by using the
NBLS-IBM.

3.3 Shark-like body reconstruction

In this part, we tested the boundary reconstruction times for
a shark-like body with 107K triangular surface elements, as
shown in Fig. 6(a), immersed in the Cartesian mesh 24.8M, 48M,
97.6M and 196.4M, respectively. The corresponding smallest
Cartesian mesh dimensions for each case are 0.021,0.016,0.013,
and 0.010. The results are listed in Table 2. From Table 2, it is
found that the maximum time-saving is 64.6% and is reached
when the number of the Cartesian mesh is 48M, which shows the
higher efficiency of the NBLS-IBM comparing to the original
LS-IBM. It also shows that the matching between the body mesh
and the Cartesian mesh may affect the reconstruction speed,
which will be explored in the future. Like the case of the dolphin-
like body, we also present the IB reconstruction process for the
shark-like body including the unstructured mesh on the body
surface, the zero-level-set body shape and the reconstructed
immersed boundary built on the Cartesian mesh in Fig. 6.
Besides, the three slices at the front, middle and tail of the shark-
like body of the level set contour around the body are shown in
Fig. 7.

FIGURE 6: THE IB RECONSTRUCTION PROCESS OF A SHARK
BODY, (A) THE UNSTRUCTURED MESH ON A SHARK-LIKE BODY,
(B) THE CALCULATED ZERO-LEVEL-SET BODY SHAPE, AND (C)
THE RECONSTRUCTED IMMERSED BOUNDARY BUILT ON THE

CARTESIAN MESH.

level-set value
0.05
B
-0.05
FIGURE 7: THE LEVEL-SET CONTOUR SLICES ARE AT THE
FRONT, MIDDLE AND TAIL OF A SHARK-LIKE BODY.

TABLE 2. THE IB CONSTRUCTION TIME FOR EACH CASE IN
SHARK SWIMMING.

Cartesian grids (Million) 24.8 48 97.6 196.4
Time(sec) LS-IBM 8.71 9.52 | 3247 | 4294
for IB NBLS
reconstructio B
. IBM 3.08 5.45 12.74 29.37
42.75 60.76 31.60
—— o
Time-saving 64.64% % o o

3.4 Shark steady swimming

In this part, we simulate the shark-like body steady
swimming to demonstrate the robustness and fastness of the
NBLS-IBM in the current flow solver. The Reynolds number is
set as Re = 8,000 to reduce the computational cost, and the
Strouhal number is 0.8. Besides, to generate fine-enough grids
with limited memory, a block-wise octree-like structured
adaptive mesh refinement (AMR) technique is employed in the
solver[4]. The OpenMP parallelization is also applied to improve
the calculation speed. Figure 8 shows the vortex wake generated
by the shark-like body in steady swimming. The vortex
structures are visualized by using the iso-surface with the A,-
criterion at two different values (|1, = 4, 12).

FIGURE 8: THE VORTEX WAKE OF A SHARK-LIKE BODY IN
STEADY SWIMMING.

4. CONCLUSION
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In this work, we propose a narrow-band level-set immersed
boundary method to speed up the IB reconstruction process.
Comparing with the original LS-IBM in Ref. [4], the current
method only needs to propagate the level set value from the
neighbor points near the boundary to other points in the narrow
band when identifying the solid and fluid nodes at each time-
step. The introduction of the narrow band technique reduces the
computational cost of IB reconstruction from O((Lp/Ax)?) to
O(k(Lp/Ax)?) . The consistency and stability of the new
reconstruction method for the flow solver was demonstrated by
comparing the hydrodynamics of a Jackfish-like body in steady
swimming simulated by using the NBLS-IBM based solver and
LS-IBM solver separately. Then, we tested the reconstruction
efficiency of NBLS-IBM by analyzing the reconstruction time
for a dolphin-like body and a shark-like body with different
Cartesian meshes. The results show that the efficiency of 1B
reconstruction is greatly improved by introducing the narrow
band method and increases up to 64.6%. The detected immersed
boundaries shown in Fig. 4 and Fig. 6 demonstrate that the
accuracy of IB reconstruction can be maintained at the same
time. Finally, the vortex wake of the shark-like body in steady
swimming proves the stability and fastness of NBLS-IBM when
applying to the current flow solver.
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