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Characterization of antibiotic resistance genes (ARGs) from high-throughput
sequencing data of metagenomics and cultured bacterial samples is a challenging
task, with the need to account for both computational (e.g., string algorithms) and
biological (e.g., gene transfers, rearrangements) aspects. Curated ARG databases
exist together with assorted ARG classification approaches (e.g., database
alignment, machine learning). Besides ARGs that naturally occur in bacterial
strains or are acquired through mobile elements, there are chromosomal genes
that can render a bacterium resistant to antibiotics through point mutations, i.e.,
ARG variants (ARGVs). While ARG repositories also collect ARGVs, there are only a
few tools that are able to identify ARGVs from metagenomics and high throughput
sequencing data, with a number of limitations (e.g., pre-assembly, a posteriori
verification of mutations, or specification of species). In this work we present the
k-mer, i.e., strings of fixed length k, ARGV analyzer - KARGVA — an open-source,
multi-platform tool that provides: (i) an ad hoc, large ARGV database derived
from multiple sources; (ii) input capability for various types of high-throughput
sequencing data; (iii) a three-way, hash-based, k-mer search setup to process
data eficiently, linking k-mers to ARGVs, k-mers to point mutations, and ARGVs
to k-mers, respectively; (iv) a statistical filter on sequence classification to reduce
type | and Il errors. On semi-synthetic data, KARGVA provides very high accuracy
even in presence of high sequencing errors or mutations (99.2 and 86.6% accuracy
within 1 and 5% base change rates, respectively), and genome rearrangements
(98.2% accuracy), with robust performance on ad hoc false positive sets. On data
from the worldwide MetaSUB consortium, comprising 3,700+ metagenomics
experiments, KARGVA identifies more ARGVs than Resistance Gene l|dentifier
(4.8x) and PointFinder (6.8x), yet all predictions are below the expected false
positive estimates. The prevalence of ARGVs is correlated to ARGs but ecological
characteristics do not explain well ARGV variance. KARGVA is publicly available at
https://github.com/DatalntellSystLab/KARGVA under MIT license.

antibiotic resistance, gene variants, metagenomics, high-throughput sequencing,
bioinformatics, statistical learning

1. Introduction

Bacterial antimicrobial resistance is a global threat to human health and to numerous
ecosystems, responsible for over 1 million and associated to over 4 million of peoples’ deaths
annually (2019 estimate) worldwide (Murray et al., 2022), disruption of livestock production,
and environmental contamination (Iwu et al., 2020). Resistance in bacteria can manifest
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naturally, evolve through genetic mutations, or be acquired through
gene transfer. While antibiotic susceptibility testing through in vitro
cultures is the standard in microbiology research and in clinical/
veterinary care settings, high-throughput — targeted and
metagenomics — sequencing is becoming a promising alternative, at a
relatively low cost and fast turnaround time (Gu et al., 2019; de Abreu
etal., 2021). The characterization of antibiotic resistance genes (ARGs)
from metagenomics as well as cultured bacterial samples through
high-throughput sequencing involves development of computational
approaches to process large experimental data, up to the terabyte scale,
as well as biological annotation of existing and new ARGs into curated
database resources (Boolchandani et al., 2019).

Several public ARG databases are actively maintained, e.g., the
comprehensive antibiotic resistance database (CARD; Alcock et al.,
2020), MEGARes (Doster et al., 2020), the national database of
antibiotic resistant organisms (NDARO; Sayer et al., 2020), ResFinder
(Bortolaia et al., 2020), and the structured antibiotic resistance gene
(SARG) database (Yin et al., 2018), providing access to thousands of
gene entries and functional annotations. There is substantial overlap
among the databases, however, and it is nontrivial to compare the
annotations due to differences in ontology used. For instance,
MEGARes uses a tree-based hierarchical structure to represent
antimicrobial chemical classes, biological mechanisms, and operon-
level gene groups; conversely, CARD uses a reticulate structure.
Numerous tools for ARG identification from high-throughput
sequencing data are available that rely on one or more of these
databases, including methods that are based on: sequence alignment,
e.g., AMRPlusPlus (Doster et al., 2020); k-mers (strings of fixed length
k), e.g., ResFinder (Bortolaia et al., 2020), KARGA (Prosperi and
Marini, 2021), and AMR-meta (Marini et al., 2022); hidden Markov
models, e.g., Meta-MARC (Lakin et al., 2019), Resfams (Gibson et al.,
2015); and other machine learning algorithms, e.g., DeepARG
(Arango-Argoty et al., 2018).

One crucial problem in ARG identification that has gone largely
unexplored for metagenomic data is the detection of ARG variants
(ARGVs; Coculescu, 2009; Sultan et al., 2018; Prosperi et al., 2019).
ARGVs are constituted by point mutations that allow regular
chromosomal genes (e.g., housekeeping genes, topoisomerases) to
confer resistance to one or more antimicrobials. It is particularly
challenging to detect this type of resistance because both the gene and
the mutation(s) must occur. Thus, only a few methods are capable of
flagging ARGVs and/or verifying the presence of point mutations.
AMRPlusPlus 2.0 flags genes that require variant confirmation, but
leaves this additional analysis to the user. Other algorithms might
require partial pre-assembly and protein translation, as was
recommended in CARD’s resistance gene identifier (RGI) prior to
version 6.0.0 to avoid over-reporting alignment to susceptible alleles;
or they might be limited to a number of bacterial strains that have to
be specified at runtime, such as PointFinder. This is a critical issue as
ARGVs can encompass a substantial part of ARG databases. For
example, 6% of the ARGs in MEGARes are ARGVs.

Here, we present the A-mer antibiotic resistance gene variant
analyzer (KARGVA). KARGVA is a multi-platform, open-source
software specifically designed to confirm the presence of point
resistance mutations in chromosomal genes from either metagenomics
or whole genome sequencing data. KARGVA is built after — and it is
intended to be used in conjunction with — our prior approach for
regular ARGs, which is KARGA (Prosperi and Marini, 2021).
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KARGVA merges different ARGV databases and utilizes an eficient
three-way, hash-based approach to mutually link point mutations,
k-mers, and genes. It is equipped with a statistical approach to filter
false positives and rank multiple, plausible ARGV candidates. Besides
the algorithmic innovation, KARGVA provides advantage over
existing tools since it relaxes the need to perform assembly and/or
identify species before analysis, and automatically confirms the
presence of required mutations during the analysis.

On semi-synthetic data, KARGVA provides high accuracy with
sequencing errors or gene mutations and demonstrates robustness with
respect to false positive sets. On a large collection of metagenomic data
collated by the MetaSUB consortium, KARGVA identifies more ARGVs
than AMRPIlusPlus, RGI, and PointFinder, and its predictions exhibit a
low false positive rate (estimated on a semi-synthetic benchmark set).

2. Methods

We proceed as follows: First, we collate and manually curate
ARGVs from different sources into the KARGVA database and
develop the KARGVA algorithm; second, we benchmark KARGVA
on semi-synthetic datasets with a known ground truth; finally,
we validate KARGVA on real metagenomics data. This process is
depicted in Figure 1.

2.1. Database collation

KARGVA integrates ARGV sequences from three different ARG
databases: CARD,! MEGARes,”> and NDARO.> We collect all the
protein entries for NDARO. For CARD, we extract ARGVs from the
protein variant model, including single resistance variants, multiple
resistance variants (with the exclusion of duplications), nonsense
mutations, and high confidence M. tuberculosis ARGVs (integrated in
CARD from the ReSeqTB database).* MEGARes ARGVs are compiled
through external header and sequence mapping to one of the other
sources with available point mutation information. The merged
database is made partially non-redundant by collapsing sequences that
are identical at the amino acid level. However, multiple mutations are
unmodified from the original sources. Thus, if a gene can become
resistant through multiple independent point mutations or different
combinations of mutations, e.g., the wild-type gene MKRIK mutates
into MKRVK or MKRPK to become resistant, all resulting ARGVs
appear separately in the database. This is done on purpose to respect
the natural occurrence of amino acid variations and their
combinations as observed in real-world samples.

Sequence headers and antibiotic resistance ontology metadata, e.g.,
MEGARes’ class/mechanism/group hierarchy or NDARO’s antibiotic
compounds, are pooled together. Since the ontologies of MEGARes,
and CARD differ, and NDARO does not use a standardized annotation,
KARGVA can report ARGVs with one ontology/annotation term, or
more than one if the same ARGV comes from multiple databases.

1 https://card.mcmaster.ca/

2 https://megares.meglab.org/

3 https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
4

https://github.com/CPTR-ReSeqTB/UVP

frontiersin.org


https://doi.org/10.3389/fmicb.2023.1060891
https://card.mcmaster.ca/
https://megares.meglab.org/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
https://github.com/CPTR-ReSeqTB/UVP
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Marini et al. 10.3389/fmicb.2023.1060891
Megares CARD \
9 Randomly
generated
non-ARGVs Overall performance
> on semi-synthetic data
NDARO — Simulated (Fig. 2)
ARGVs, with
errors
)
KARGVA RaBaGe
db
Assessment of false
_ BeS _ positive rate on
esu semi-synthetic data
KARGVA (Fig. 3)
algorithm
TeSu
ResFinder ARGV detection on
MetaSUB N MetaSUB
FIGURE 1
Development of KARGVA: The KARGVA database is collated from different sources. Benchmarks on semi-synthetic data: a first semi-synthetic dataset
is used to benchmark KARGVA against randomly generated non-ARGVs and simulated ARGVs with errors; and three other semi-synthetic datasets are
used to benchmark KARGVA against false positives. Evaluation on real metagenomics data: KAGVA is applied to real metagenomics data and the results
are compared with existing ARGV prediction algorithms.

2.2. Classification approach and statistical
scoring

The classification of a DNA sequence read as belonging to an
ARGV is carried out at the amino acid level, comparing the k-mer
spectrum of a given protein-translated query sequence with the k-mer
spectrum of the ARGV database and, separately, of all £-mers that
include point mutations associated with antibiotic resistance. Since
raw high-throughput data is at the nucleotide level, each sequence
read is paired to its reverse complement, translated into amino acids
using all six reading frames, and then queried against the merged
ARGYV database. The reason for performing reverse complements and
protein translation in all reading frames is due to the fact that
mutations of the AMR genes are annotated at the amino-acidic level,
and thus we need to identify the right coding frame for a given read.
Of note, since reads can contain errors (including frameshifts), we do
not base the choice on stop codons, but we pick the translation with
highest number of k-mer matches and mutation matches at the
amino-acidic level, using the algorithm below.

For each query, first it is verified to determine whether its &-mer
spectrum contains resistance mutations, by comparing it with each
ARGV’s subset of k-mers that include at least one resistance mutation,
out of the complete k-mer spectrum of each ARGV. All ARGVs for
which at least one positive match of point mutations is found are
retained as candidates. Second, the most probable ARGVs are chosen
on the basis of the highest relative prevalence of point mutation
k-mers as well as all k-mers that are included in the whole k-mer
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spectrum of an ARGV, but do not necessarily contain point mutations.
Since k-mers might not be unique to ARGVs, the prevalence scores
are weighted by the A-mer multiplicity in different genes, e.g., if a k-
mer is present in three different ARGV genes, its weight is one third
as compared to a k-mer that is found in one ARGV gene only. A
combined score is the result of the probabilistic sum
(Peombines =P1 +P, — P1xP,) of the two matching measures (i.e., P,
represents the fraction of k-mers of the read that match a gene and P,
represents the proportion of the subset of matching kA-mers that
contain resistance mutations) and decrees the final ARGV ranking.
We also use a statistical test that checks how many A-mer matches
relative to point mutations could be due to chance given a specific
sequence length and £ value. In this way, we are able to filter out false
positive classifications at a desired level of confidence. Our procedure
calculates the empirical distribution of point mutation Ak-mer
occurrences for a suficiently number of random queries, and draws
the probability threshold on the basis of the percentile distribution
counts, resembling an exact formula previously introduced
theoretically (Prosperi et al., 2012), and then later implemented. In
brief, the test simulates a number of random reads and compares their
k-mer spectrum against the AMR database, deriving a count
distribution of A-mer matches. A given percentile of this distribution,
e.g., 95th or 99th, is used as a threshold to flag false positives. For
KARGVA, the p-value for false positive rejection is set to 0.01, and the
number of query randomizations is set to 12,500 (although it can
be changed by the user). This parameter has been empirically
optimized over 200,000 tests to accommodate a broad range of read
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lengths and A-mer lengths (from 3 to 41 nucleotides). We showed that
the probability density function is degenerate until £ =11, which is the
minimum & we allow, and then the 99th percentile quickly approaches
the unity from £ =23 and higher (Prosperi and Marini, 2021). As the
ARGV database is only in part non-redundant, there can be cases
when more than one ARGV exhibits an optimal score not by chance.
To account for these situations, KARGVA reports all scores that are
within 5% of the optimal one. Thus, for each sequence read, either no
classification to ARGV or classification to one or more ARGVs is
provided, with the statistical summaries.

Concomitantly to the per-read classification, KARGVA updates a
whole-sample classification, as follows: each time a protein sequence
query is assigned to one or more ARGVs, its k-mer spectrum is used
to update the overall A&~-mer content match for each ARGV in the
database. There can be also cases when the A~-mer content of a read
significantly overlaps with that of a region of one or more ARGVs
where no required mutations are present, and the read is still used to
update the coverage and depth of said ARGV. However, only ARGVs
whose resistance mutations are confirmed and pass the statistical
filtering are eligible for output, regardless the overall ~-mer matches.
Thus, after processing all reads, KARGVA outputs sample-level
coverage and depth summaries for all ARGVs in the database. The
coverage is quantified as the fraction of k-mers over the total number
of distinct k-mers in the gene (weighting multiplicity), whilst the
depth is the average number of times a k-mer is covered.

2.3. Data structures and implementation

Three main relational structures are created by indexing: (1)
ARGV identifiers linked to A-mers (one-to-many); k-mers containing
point mutations linked to ARGV identifiers (one-to-many); (2)
non-mutant k-mers linked to ARGV identifiers (one-to-many); and
(3) ARGV identifiers linked to all their k-mers along with frequencies
(many-to-one-to-many). The k-mers are placed in a hash table;
therefore, there is a unique hash code identifying a unique k-mer.
However, a unique k-mer can be found in multiple genes with a
certain multiplicity. The multiple genes are stored in array lists whose
pointers are the values of the said k-mer hash table. The k-mer
multiplicity is stored in secondary hash tables for each AMR gene. The
code is implemented in Java,® using legacy data structures (HashMaps
and ArrayLists) for the aforementioned relations. The number of
k-mers of the merged databases has been calculated in advance to
verify that there would not be problems with hash collisions or
memory usage, even by doubling the database size, without the need
to resort to more eficient data structures. KARGVA accepts as input
both uncompressed and compressed FASTQ files (recognized
automatically through file extension, or as indicated by the user in the
command line). The source code is hosted in GitHub® and publicly
available at: https://github.com/DatalntellSystLab/KARGVA under
MIT license. The GitHub folder includes a detailed README with
information about database version, set up of input parameters (k-mer
length, number of random queries to determine false positive

5 https://www.java.com
6 https://github.com/
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threshold, ARGV reference file, read file, single vs. multiple ARGV
scoring per read), and output file description.

2.4. Experimental setup

Four semi-synthetic datasets are made by simulating high-
throughput metagenomic sequencing experiments in different
settings, and are used for parameter optimization, performance
evaluation and robustness assessment. Specifically, KARGVA is
optimized on different values of & (between 21 and 45 nucleotides), to
determine the best tradeoff between the false positive rate and the false
negative rate, with respect to non-ARGV sequences, and ARGV
sequences that may carry non-ARGV mutations, gene rearrangements,
or sequencing errors.

2.4.1. First simulated dataset

The first simulated dataset consists of FASTQ files made of: (i)
reads drawn from ARGV databases with non-ARGV mutations or
sequencing errors up to a 15% rate; (ii) reads from ARGV databases
with a two-point transposition (with/without reversion), each 50% of
the read length; and (iii) non-ARG reads, generated uniformly
at random.

2.4.2. Second simulated dataset (RaBaGe)

The second read set (semi-synthetic) is generated from 5,000
randomly picked RefSeq (O’Leary et al., 2016) bacterial genes
(RaBaGe) that did not match any sequence in MEGARes with a
BLAST search (e-value=10), putatively susceptible to all antibiotics.

2.4.3. Third and fourth simulated datasets (BeSu
and TeSu)

The third semi-synthetic dataset is a specific betalactam-
susceptible (BeSu) dataset obtained from PATRIC (Pathosystems
Resource Integration Center) web repository (Davis et al., 2020),
where an antibiotic susceptibility test is available, made by clipping
genes of bacterial genomes that (1) are among the top 10% in terms of
the numbers of different betalactam antibiotics they were resistant
against; and (2) exhibit medium-high similarity to MEGARes genes
(BLAST e-value<0.01, percent identity between 70 and 90%). The
fourth semi-synthetic dataset is a specific tetracycline-susceptible
(TeSu) dataset, collated in the same way as BeSu.

In summary, the first dataset is used to assess the classification
performance on different error rates as well as gene rearrangements;
while RaBaGe, BeSu, and TeSu are all “negative” datasets according to
the antibiotic susceptibility testing or (non)match with MEGARes. An
ARGV classifier should therefore not find antibiotic resistance genes
in these datasets, unless the genes were present but not expressed.
RaBaGe covers the spectrum of all genes, while BeSu focus on genes
that are very similar to ARGVs but present different mutations. With
all datasets we assess and optimize the false positive rate of KARGVA
by varying k and gene coverage threshold. The semi-synthetic datasets
are simulated using InSilicoSeq software (v 1.4.4) with presets for
[llumina (read length 151; Gourl¢ et al., 2019).

We finally evaluate KARGVA on real experimental data, using
metagenomic experiments from samples collected by the MetaSUB
consortium (Mason et al., 2016). MetaSUB is an international
project that collects surface samples from public transportation
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systems, and collates metagenomic sequencing of urban
microbiomes with the goal “7o build a molecular profile of cities
around the globe to improve their design, functionality, and impact
on health.” We replicate in part the work presented by Danko et al.
(2021), who applied AMRPIlusPlus to detect both ARGs and
ARGVs, and provided an abundance, density and correlation
analysis among sampled cities’ metagenomes in relation to their
distance and distribution of resistance genes. To extract the species
present in each sample, we utilize Kraken2 (Wood et al., 2019) and
its standard database version as of September 04, 2019. In addition
to correlation and density maps for sample characteristics by ARGs
and ARGVs, we fit a random forest (RF) to evaluate how much
variance in ARGVs is explained by the sample attributes —the city
of origin, surface material (manually curated, grouping materials
that are not present in at least five cities and in a total of 25 samples
into an “other” category), type of sample (air, environmental, and
unknown), number of total reads per sample, and bacterial species,
classified with Kraken2. We use R’ with packages caret and ranger,
optimizing the number of trees and number of splits at each tree
node via grid search. RF variable importance is evaluated via
permutation. Prediction performance is assessed through 10-fold
cross validation, measuring the root mean squared error (RMSE)
and mean absolute error (MAE).

We further compare KARGVA with AMRPlusPlus 2.0, RGI 5.1.1
and PointFinder 4.2. AMRPlusPlus is an alignment-based method
that identifies ARGs as well as candidate ARGVs (that require
confirmation of mutations) from high-throughput read data using
MEGARes. RGI is also alignment-based, but it uses protein-translated
queries and CARD. PointFinder is a hybrid method that uses
alignment and &-mers. In order to evaluate RGI and PointFinder, the
raw read files are assembled using metaSPAdes 3.15.3 (recommended
parameters), after quality control, filtering and adapter trimming
preprocessing (Nurk et al., 2017). Furthermore, as PointFinder
requires to specify an input species, we run it for all the supported
species, merging its output and removing duplicates. For comparing
ARGV predictions in this work — since ARGV classification tools may
use different ontology — we manually review all the antibiotic
resistance ontology/prediction annotations of KARGVA, RGI, and
PointFinder, using MEGARes classes as a common reference. All
terminology for which we are able to find a correspondence is retained
(see Supplementary material).

All tests are run on University of Florida’s HiPerGator computing
cluster®* on nodes with 4 Intel Xeon CPUs at 2.00 Ghz with
16 GB RAM.

3. Results
3.1. Characteristics of the merged database
The KARGVA ARGV database integrates 1,159 single-point, and

95 multiple-point ARGVs from CARD (January 2021 release); and
654 single-point ARGVs from NDARO 3.10, respectively. In

7 https://www.r-project.org/
8 https://www.rc.ufl.edu/
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MEGARes, ARGVs are not provided with information on the variant
location, but we are able to align 1,173 MEGARes” ARGVs with
CARD, and 147 with NDARO. After merging identical sequences, the
final KARGVA database includes 1,781 ARGVs. Out of the total,
95.5% of sequences contain just one point mutation conferring
antibiotic resistance, 3.3% contain two, 1.1% contain three or four, and
2.5% contain stop codons. KARGVA reports ARGV annotations in
accordance with all original database ontologies; in the case of a
sequence that is present in more than one database, all individual
annotations are provided together.

3.2. Benchmarks on semi-synthetic data

The first semi-synthetic dataset is used to optimize the & value and
to assess the single best match performance across different
sequencing error rates (or more in general as any nucleotide change
from the original ARGV sequence, including an actual mutation from
a different bacterial strain). Each simulation comprises 25,000 reads
of length of 151 bases. Figure 2A displays the accuracy curves (with
95% confidence intervals drawn across simulations) stratified by &
value. Numbers are reported in the Supplementary material. Larger k
values are more accurate at lower error rates, and vice-versa. The best
tradeoff is given by £ =9 amino acids (i.e., 27 nucleotides), yielding
accuracies well over 80% for error or base change rates up to 2.5%.
Figure 2C illustrates the distribution of scores for the single best match
across all experimental configurations, stratified by the classification
correctness. The distributions clearly indicate that the proposed score
has very high discriminative ability, yielding a median (IQR) value of
0.83 (0.59-0.99) for the correctly identified genes vs. 0.41 (0.21-0.60)
for the wrongly/non-identified entries. As explained, more than one
ARGV can have optimal score, so we can evaluate all best scoring
ARGVs. Figure 2B shows the performance of our method using the
best k and the top scoring matches. The accuracy is 99.2% for error
rates up to 1, 93.5% at 2.5, 79.8% at 5, 50.3% at 10, and 26.9% at 15%.
For 2-point gene rearrangements, the overall accuracy is 98.2%. Note
that the accuracy statistics are calculated on ARGV (either with a
given error rate or 2-point rearrangement) upon the false positive
testing, which filters out the non-ARGYV reads randomly generated.
Our method correctly identified 100% of random reads. Thus, the
accuracy is indeed a sensitivity with ideal 100% specificity.

The other three semi-synthetic datasets help us determine the
robustness of KARGVA with respect to false positive rate on more
realistic bacterial metagenomics data. For RaBaGe, we select over
5,000 genes with length >500 nucleotides that meet the antibiotic
susceptibility criteria, and generate 500,000 reads, for BeSu we obtain
4.2 million reads, while for TeSu 355,170 reads. We benchmark
KARGVA over multiple parameter combinations, varying the minimal
required gene fraction coverage between 0.00 and 0.95, and
considering k equal to 7, 9, 15 (i.e., 21, 27, 45 nucleotides). For each
parameter configuration and dataset, we calculate the false positive
score (FPS), measured as # of detected ARGVs/# of reads. As shown
in Figure 3, even at low coverage thresholds and small & values, the
FPS is low. With any coverage fraction and k=7, the FPSis 3.7 x 10 *in
RaBaGe, 1.5x10™ in BeSu, and 1.7x10™* in TeSu. With the most
conservative coverage of 0.95 and £ =15 (i.e., long conserved
stretches), FPSsis 2x 1076, 3.8 x 10°%, and 1.1 x 10 for RaBaGe, BeSu,
and TeSu, respectively. We then set the KARGVA to default
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are provided in the Supplementary material.

KARGVA performance on semi-synthetic data (varying error/nucleotide change rates and gene rearrangements) in identifying genes of bacteria
conferring antibiotic resistance through point mutations. (A) shows performance for a single best match, stratified by parameter k value; (B) shows
performance after k optimization, using all optimal best scoring matches; (C) shows box-and-whisker plot distribution of algorithm’s scores on all test
configurations, stratified in accordance with ground truth. Shaded areas and whiskers represent 95% confidence intervals. Numbers used for this figure
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Assessment of KARGVA's false positive rate on semi-synthetic data by varying k-mer length and gene coverage threshold. The X-axis represents the k
value (in amino acids, e.g., k=9 means 27 nucleotides), the Y-axis represents the gene coverage portion (%), and the bubble size represent the false
positive counts. RaBaGe, BeSu, and TeSu are synthetic datasets assembled by random bacterial genes (RaBaGe), and PATRIC genome fragments exhibit
ingmedium-high similarity to MEGARes betalactamase (BeSu) or tetracycline (TeSu) genes.

configuration with coverage of 0.8 and k=9, which yields FPS rates all
below 5 in 100,000, specifically 4% 107¢, 4.5x 1075, and 4.2 x 10~ for
RaBaGe, BeSu, and TeSu. We expect real metagenomics data to
be in-between the “easy” (RaBaGe) and “hard” (BeSu, TeSu) negative
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datasets, and therefore we estimate the expected KARGVA FPS on
metagenomics data to be in the [107%, 10°°] range when used with
default settings. We also test RGI and PointFinder on these three
negative datasets. RGI shows a worse FPS, yielding at least twice false
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positives than KARGVA. Over RaBaGe, BeSu, and TeSu, RGI FPSs are
6x107°9%1073, and 1.2 x 107*, while PointFinder shows the best FPSs
with 4.8x107,3.3x 107, and less than 2.8 x 107, i.e., no findings over
TeSu. Note that both RGI and PointFinder are run on contigs
assembled by metaSPAdes, and not on the original read sets.

3.3. Evaluation on real metagenomics data

Next, we run KARGVA, AMRPlusPlus, metaSPAdes+RGI and
metaSPAdes+PointFinder on the metagenomics global data (surface
samples from public transportation) from the MetaSUB project. The
MetaSUB FASTQ files available for public download are filtered for
human DNA. Of 4,305 paired short read files, 3,758 come with a
matched metadata record and belong to a city with at least 25 samples,
and can thus be processed (i.e., provide an output) by all the
algorithms we used. Table 1 shows sample/isolate characteristics for
the MetaSUB files selected and analyzed, considering the top-10 cities
in terms of total number of samples, with summaries of the top-5 most
frequent species as classified by Kraken2, and the mean, median
(interquartile) number of ARGs detected by AMRPlusPlus and of
ARGVs detected by KARGVA. Figure 4 shows the relationships
between species abundance and city, considering the top-5 species.
Out of 5,053 unique species detected, 22 make the top-5. Cutibacterium
acnes is the most abundant in terms of average per-sample reads in
eight of the top-10 cities. Of note, a considerable fraction of the reads
(28-55%) cannot be assigned to a species using the standard
Kraken?2 database.

In order to assess the reliability of ARGV findings, we compare in
detail the ARGV detection by KARGVA with respect to that of
AMRPIlusPlus, RGI, and PointFinder. In Figure 5, we calculate ARGV
counts for all algorithms overall (i.e., total number of ARGVs,
independently from the class) and per-class. Through the ontology/
annotation mapping described in the methods, we identify 11
MEGARes classes that can be predicted by all three algorithms:
amingoglycosides; betalactam; fluoroquinolones; fusidic acid,;
lipopeptides; macrolide, lincosamide and streptogramin (MLS);
mupirocin; oxazolidnone; rifampin; sulfonamides; and tetracyclines.
For this reason, the per-class comparison must be limited to the
classes all algorithms can predict. Of note, while by design KARGVA
has a single MEGARes class assigned to each prediction, RGI and
PointFinder might have multiple, i.e., multiple output terms can match
the same MEGARes class in a sample. We therefore allow RGI and
PointFinder to count multiple times if the annotation terms of their
predictions match with more than one class (see
Supplementary material). Overall, KARGVA finds 43,846 ARGVs,
~4.8 times more than PointFinder (9,185) and ~6.8 more than RGI
(6,472). KARGVA retrieves the highest number of ARGVs in § out of
11 considered classes, the exceptions being aminoglycosides (highest:
PointFinder), MLS (highest: RGI), and Oxazolidinone (highest:
PointFinder). Although it is not possible to directly transpose the FPS
from the synthetic datasets to the MetaSUB results, we expect RGI to
find more false positives then the other two algorithms, and
PointFinder to be the most conservative. For a reference, AMRPlusPlus
yields over 100,000 ARGVs that need SNP confirmation; KARGVA,
RGI, and PointFinder are all well below this value.

We then analyze how KARGVA’s ARG Vs relate to the ecological
characteristics of the samples and the ARG distributions. Using the
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top-10 city set, the per-sample median and mean number of retrieved
ARGs by AMRPlusPlus (mean range: 2—31.5; median range: 5.18—
71.53) are comparable to the retrieved ARGVs by KARGVA (mean
range: 2—13; median range: 3.9-91.7), and they are strongly correlated
(Spearman’s correlation for mean and median, respectively: 0.63;
0.89). Note that we cannot achieve a perfect replication of the original
ARG analysis presented by Danko et al. (2021), since the original
MetaSUB analysis used MEGARes 1.0.1 and Bowtie 2.3.0. Instead,
we apply filtering criteria on the cities based on sample size, and use
the most up-to-date AMRPlusPlus 2.0 pipeline, which employs
MEGARes 2.0 and BWA, along with specific preprocessing
(Trimmomatic) and post-processing (Bedtools, SNPfinder), finalizing
with the ResistomeAnalyzer. Nonetheless, there is consistency in the
overall output, with more positive identifications expected, since
MEGARes 2.0 contains more genes than the prior release.

By stratifying the distribution of ARG and ARGV findings per city
and antibiotic class, we check if there are relevant correlations between
city and class or between classes. Figure 6 shows: the per-city ARG and
ARGV (panels B and E) distributions, the per-city ARG and ARGV
(panels A and D) class profiles — defined as the fraction of the per-class
counts over the total counts of a city — and the per-class correlation
(Spearman) based on the 10 city profiles. Large fractions of ARG
counts per-city come from MLS, betalactam, and aminoglycoside
classes, while the highest fractions of ARGV counts come from
fluoroquinolones. The class-to-class correlation structures are different
between ARGs and ARGVs. For instance, fluoroquinolones and
lipopeptides, as well as MLS and aminoglycosides ARGs are found
often together, while the correlation is low in ARGVs, where
fluoroquinolones and aminoglycosides tend to cluster apart from the
others. Of note, there are differences among the ARG/ARGYV classes
reported. Some resistance classes, such as Oxazolidinone, are not
present as ARGs, since MEGARes and KARGVA annotations have
only a partial overlap.

After correlation and density analysis, we fit the RF model to
predict the number of ARGVs per samples given the city of origin (24
cities), surface material, type of sample, total reads, and bacterial
species (5,054 species by Kraken2). Using 250 trees and varying the
number of attributes considered at each split, performance varies from
34.6+1.41 (RMSE) and 14.2+1.41 (MAE) with 2 splits per node, to
12+2.3 (RMSE) to 4.3+0.38 (MAE) with 5,089 splits per node, i.e.,
considering all the variables at each split like in a regular decision tree
bagging algorithm. Both RMSE and MAE can be considered very high
compared to the median numbers of ARGVs found in each sample,
i.e., 2—13 across all cities. In terms of variable importance, the number
of ARGs holds the highest predictive value, which matches the high
univariate correlation of this feature with the number of ARGVs,
followed by bacterial species (top-3 are: Rahmella spp. Y9602,
Chlamydia spp. 2742.308, and Chlamydia gallinacea); the first
non-species variable is the number of reads, ranked 24th.

3.4. Data processing speed

In regards to data processing speed, we compared KARGVA
and AMRPIlusPlus on a benchmark obtained by clipping a
MetaSUB sample (haibl7CEM4890 H2NYMCCXY SL254773) to
12.5, 6.25, and 3.125 million read pairs (approximatively 8, 4, and
2 GB). KARGVA processes on average 1GB of FASTQ data in
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TABLE 1 Summary of MetaSUB study data stratified by city (top-10 by number of isolates, others aggregated).

No. of Top-5 species Mean; Mean; Median (IQR)
samples Median (IQR) Median (IQR) % of unaligned
no. of ARGs per no. of ARGVs reads per sample
sample per sample
Hong Kong 770 Cutibacterium acnes; Bradyrhizobium sp. 21.28; 3.9; 33.02 (26.59,42.87)
BTAil; Micrococcus luteus; Cupriavidus 17 (9, 28) 2(2,3)
metallidurans; Janibacter indicus
London 635 Cutibacterium acnes; Staphylococcus simulans; 18.57; 23.85; 42.18 (32.85,48.41)
Micrococcus luteus; Kocuria rosea; 4(1,14) 2(2,4)
Staphylococcus aureus
New York City 493 Cutibacterium acnes, Pseudomonas stutzeri; 36.92; 25.01; 28.14 (18.42,43.07)
Micrococcus luteus, Stenotrophmonas sp. 20(9,41) 4(2,23)
LM091; Kocuria indica
Tlorin 264 Pseudomonas stutzeri; Cutibacterium acnes; 57.9; 36.5,; 43.38(25.79, 55.16)
Pseudomonas balearica,; Bradyrhizobium sp. 31.5(9.75,75.75) 13(2,56.5)
BTAil; Acinetobacter sp. ACNIHI
Singapore 179 Cutibacterium acnes; Bradyrhizobium sp. 18.58; 12.75; 43.19 (32.68, 54.12)
BTAil; Micrococcus luteus; Bradyrhizobium sp. 9(4,17.5) 22,4
SK17;
Kocuria rosea
Tokyo 148 Cutibacterium acnes; Bradyrhizobium sp. 40.29; 26.23; 32.53(22.33,55.41)
BTAil; Cupriavidus metallidurans;; 13.5 (6, 32.5) 2(2,8)
Bradyrhizobium sp. SK17; Moraxella osloensis;
Barcelona 116 Acinetobacter junii; Staphylococcus aureus: 71.53; 91.7; 36.49 (18.89, 59.49)
Enterococcus faecium; Cutibacterium acnes; 10 (2.75, 24.5) 4(2,15)
Salmonella enterica
Stockholm 110 Cutibacterium acnes; Bradyrhizobium sp. 5.18; 2.07; 54.55 (48.58, 58.99)
BTAil; Micrococcus luteus, Pseudomonas 2(0,6) 2(2,2)
stolaasi;
Kocuria rosea
Porto 107 Cutibacterium acnes; Staphylococcus simulans; 5.8; 23.52; 53.11(45.77,61.76)
Staphylococcus epidermis; Cupriavidus 2(0,6) 2(2,2)
oxalaticus;
Staphylococcus aureus
Fairbanks 95 Cutibacterium acnes, Staphylococcus 26.44; 7.59; 43.55(25.61, 55.05)
epidermidis; Micrococcus luteus;, Moraxella 13 (4,35.5) 2.5(2,15)
Osloensis; Staphylococcus haemoliticus
Other 841 Pseudomonas stutzeri; Cutibacter iumacnes, 32.58; 20.02; 45.44 (32.16, 53.57)
(aggregated) Bradyrhizobium sp. BTAil; Acinetobacter 11(4,25) 2(2,5)
wofii; Moraxella osloensis

We report the five most frequent bacterial species from each location (based on per sample prevalence), along with the median percentage of unclassified samples, as found by Kraken 2.0.
Antibiotic resistance genes (ARGs) are identified using AMRPlusPlus 2.0, while ARG Vs are identified using KARGVA. IQR, interquartile range.

00:02:30 hh:mm:ss with processing times of 00:04:31, 00:09:37,
and 00:17:52 for, respectively, 2, 4, and 8 GBs inputs. Importantly,
KARGVA memory usage is extremely contained, requiring less
than 512 MB RAM regardless of the FASTQ size (with 150-300 bp
read lengths). We noticed the processing time linearly increasing
with file size and the difference between processing compressed
vs. uncompressed files is minimal. On the other hand,
AMRPIlusPlus is about six times slower, with processing times of
00:31:16, 01:01:31, and 01:59:26 for, respectively, 2, 4, and
8 GB inputs.
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4. Discussion

KARGVA is a fast, multi-platform software for detection of ARGVs
from metagenomic high-throughput sequencing experiments. Its ARGV
database integrates multiple sources and is the largest available to date,
with full linkage to the original sources and their respective ontologies
for annotation of resistance class and mechanisms. Our method confirms
the detection of resistance mutations, a step that is not included in
AMRPlusPlus 2.0 and it is available only for RGI and PointFinder, which
however require assembled genomes or genes. KARGVA can thus
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FIGURE 4

Average per-sample frequency of bacterial reads, considering the
top 10 cities per number of sample, and the top-5 species per city.
The color key represents the prevalence in [0, 1] scale of each
species.

be used to complement ARG characterization software that does not
handle ARGVs, and in particular with KARGA, with which shares
strong similarities in the algorithm, command-line options, and
output formats.

On semi-synthetic data, KARGVA has high accuracy in presence of
non-resistance gene mutations, high error rates, and gene
rearrangements. The multiple matching strategy increases ARGV
detection accuracy, can report ARG Vs that share high genetic similarity,
and deal with configurations of resistance mutations not reported in
literature. For instance, if a gene G develops resistance either through
mutations {A, B, C} or {B, C, D}, and one sample presents with {A, C, D},
its k-mers align to G and pass the statistical assessment. However, one
possible issue with this approach is that — even if sequences are collapsed
— the ARGV database can still store the same ARGV twice or more if
there are different laboratory-confirmed configurations of resistance
mutations, e.g., using the example above, there would be two entries of
for gene G considering both {A, B, C} and {B, C, D} mutations separately.

We also show that KARGVA presents very low false positive rates
with respect to bacterial genes not necessarily involved in
antimicrobial resistance, as well as specific mutant chromosomal
genes that were found in antibiotic-susceptible samples. Although the
semi-synthetic data are designed in a rigorous manner, the availability
of standardized benchmark datasets from real experiments is
auspicated, as discussed by Marini et al. in regards to ARG classifiers
(Marini et al., 2022).

A limitation of the software is that the data structures, from a
computational point of view, are not memory efficient. While the
triple hash table design guarantees most search operations in
constant time, there is considerable memory overhead in the
padding of Java types/classes and legacy data structures (e.g., the
String type and HashMap class). Also, the file parsing/writing is
made with a standard BufferedReader and Buffered Writer, simply
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FIGURE 5
ARGVs detected in the MetaSUB metagenomics datasets (n=3,758
with available metadata) by KARGVA, RGI, PointFinder, both overall
and per class.

optimizing the buffer size, and the whole program is implemented
serially. The KARGVA database is small, therefore the impact on
processing times and memory usage is minimal, and KARGVA is
about 6.5 times faster than AMRPlusPlus, independently from the
FASTQ file size. Nonetheless, since new antibiotics and new
ARGVs are discovered every year, it is advisable to foresee more
efficient parsing and A-mer handling, considering also succinct
data structures and parallelization (Marchet et al., 2020). Also,
porting the software to mobile architectures — iOS or Android,
and ARM chipsets — is warranted, given the growth of
miniaturized, portable, point-of-care sequencing, like Nanopore
MinION (Oliva et al., 2020). Since KARGVA is written in Java, the
porting to mobile should not be a challenge (although consumer-
grade applications have 512 MB or 1 GB memory limit depending
on the operating system version), aside needs of optimization, and

device overheating issues (Milicchio and Prosperi, 2021). The
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FIGURE 6
Correlation heatmaps (fraction of counts per antibiotic resistance class over the city total) and density plots of antibiotic resistance genes (ARGs, Panels
A-C) and ARG variants (ARGVs, Panels D-F), among the top-10 cities and resistance types using the MetaSUB annotated samples (n=2,917).

periodic discovery of new ARGVs not only impacts algorithmic
design, but also requires development legacy, by maintaining the
curation of data repositories and of software releases. KARGVA
utilizes three different sources — CARD, NDARO, MegaRES — that
are strongly supported. For instance, MegaRES has been recently
updated to v.3.0. with a more advanced characterization of ARGVs
(Bonin et al., 2022), including SNP confirmation. The new
MegaRES is now being deduplicated and merged with the other
sources by the KARGVA developers for future release.

In the re-analysis of the MetaSUB data presented in Danko
et al. (2021), we confirm authors’ findings relative to percentages
of unclassified reads (41% with Kraken2, in line with our results).
We also confirm that —as ARG and ARGV databases grow — there
is the expected increase in detection of antimicrobial resistance in
the samples. The ARGV profiles retrieved by KARGVA seem more
similar across cities than the ARG profiles by AMRPlusPlus.
We find a strong correlation between number of ARGs and
ARGVs found among samples; however, the median number of
retrieved ARGVs is much larger than ARGs, even though ARG
databases contain more gene entries. KARGVA substantially
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improves the ARGV finding rate with respect to other algorithms
in the majority of the considered classes.

In accordance with Danko et al. (2021), we find very low
concordance between geographic distance among cities and
distribution patterns of ARG/ARGVs, Further analysis adding the
surface layer does not shed more insights, since there is high
heterogeneity in the ARGV city-surface profile pairs. We cautionary do
not want to draw any conclusion regarding ARGV patterns among
cities, as we expect major unmeasured confounders, and we do not
have a reference evolutionary history. The same in fact holds also if
analyzing ARGs. To our knowledge, there are no established models to
draw evolutionary relationships for metagenomes. Phylogenetic and
phylodynamic trees at the species level could be inferred by assembling
core genomes, possibly excluding any ARG or resistance mutation to
remove bias from convergent evolution, although findings might not
be insightful given that samples have been collected at the global level
within a small time period —usually such analyses are meaningful for
regional outbreaks (Prosperi et al., 2013). Nonetheless, Danko et al.
(2021) were able to predict successfully geographic origin of samples
using machine learners. Besides city-specific trends in taxa prevalence,
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ARG/ARGYV patterns among cities might be associated to a plethora of
factors, from population habits (diet, hygiene), ecological (cleaning
schedules of public transportation system, characteristics of the users,
e.g., youth, ofice workers, commuters from rural areas), public health
practices (antibiotic usage guidelines and stewardship), in a mixture of
mediators, and effects  for

common causes,

antibiotic resistance.

common

In conclusion, KARGVA provides reliable characterization of
ARGVs, suitable for large metagenomics studies as well as targeted
whole genome sequencing, and fills a current toolset and operational
gap in a field where only a few limited options are available, with high
potential for translational applications.

Data availability statement

Publicly available datasets were analyzed in this study. MEGARes
2.0 can be found here: https://www.meglab.org/megares/download/.
MetaSUB can be found here: http://metasub.org/. KARGVA code can
be found here: https://github.com/DatalntellSystLab/KARGVA.
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