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Abstract
Spatial patterns of precipitation in the southwestern United States result in a complex gradient from winter-to-summer mois-
ture dominance that influences tree growth. In response, tree growth exhibits seasonal-to-annual variability that is evident in 
the growth of whole tree rings, and in sub-annual sections such as earlywood and latewood. We evaluated the influence of 
precipitation and temperature on the growth of Pinus ponderosa trees in 11 sites in the southwestern US. Precipitation dur-
ing the year of growth and the prior year accounted for about half of the climate influence on annual growth, with the other 
half reflecting conditions 2–4 years prior to growth, indicating that individual trees do indeed exhibit multi-year “memory” 
of climate. Trees in wetter sites exhibited weaker influence of past precipitation inputs, but longer memory of climatic vari-
ability. Conversely, trees in dry sites exhibited shorter memory of long-term climatic variability, but greater sensitivity to past 
precipitation effects. These results are consistent with the existence of complex interactions between endogenous (phenotype) 
effects and exogenous (climate) effects in controlling climate memory in trees. After accounting for climate, residual vari-
ability in latewood growth was negatively correlated with earlywood growth, indicating a potential tradeoff between latewood 
versus earlywood growth. This study provides new insights that will assist the accurate prediction of woody biomass growth 
and forest carbon sequestration across a southwestern US precipitation gradient.
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Introduction

Annual tree-ring growth integrates the interactions of 
numerous physiological processes with climate variability 
at sub-annual to multi-year time scales (Fritts 1976; Salzer 
and Kipfmueller 2005; Stahle et al. 2009; Griffin et al. 2013; 
Peltier et al. 2016, 2018). The responsiveness of tree-ring 
widths to climate during the year of ring formation, and 
often during the prior year, has enabled their use in recon-
structing past patterns of climate variables, such as precipi-
tation and temperature (e.g., Salzer et al. 2005; Stahle et al. 
2009; Griffin et al. 2011, 2013; Esper et al. 2018). However, 
annual ring widths are also influenced by climate over mul-
tiple years, whereby climate signals from several seasons 
prior to ring formation are detectable (Ogle et al. 2015; Pel-
tier et al. 2016, 2018; Marqués et al. 2021).

Within individual annual rings in trees from temperate 
ecosystems, particularly conifers, there is variation in wood 
cell structure that reflects seasonal climate variations. Light-
colored earlywood consists of large, thin-walled cells formed 
early in the growing season. Darker-colored latewood is 
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formed later in the growing season and is characterized by 
smaller lumen area with thicker cell walls. Sub-annual pat-
terns of earlywood and latewood can be used to inform intra-
annual climate-growth relationships, particularly in regions 
with strong seasonal climatic patterns (Griffin et al. 2013; 
Babst et al. 2016; Monson et al. 2018; Szejner et al. 2016). 
Earlywood growth can be related to temperature (e.g., Zhang 
et al. 2021) but is often correlated with the amount of winter 
and spring precipitation received (for example, November 
through May; [Stahle et al. 2009]). Latewood width has been 
found to record a summer precipitation signal, especially if 
its dependence on earlywood growth is statistically removed 
(Stahle et al. 2009; Griffin et al. 2013; Szejner et al. 2018). It 
has been thought that earlywood and latewood are dependent 
on different sources of water because ring widths and sea-
sonally recorded oxygen isotopes in the two types of wood 
have been found to correlate with precipitation in different 
seasons: winter precipitation for earlywood, and summer 
rainfall for latewood (Belmecheri et al. 2018; Ziaco et al. 
2018; Szejner et al. 2018). However, there has been little 
research on the extent to which the growth of earlywood and 
latewood in the current year integrates climate over multiple 
prior years, or potential carbon allocation trade-offs between 
tree investment in earlywood versus latewood growth once 
climate-specific effects have been reconciled.

Summer rains in the southwestern United States (here-
after, “Southwest”) are delivered by the North American 
Monsoon (NAM) climate system (Fig. 1). The NAM is char-
acterized by frequent convective rain events that generally 
begin in early July in the Southwest and continue through 
September, following very dry conditions in May and June 
(Adams and Comrie 1997; Higgins et al. 1997). There is 
high variability in NAM precipitation at seasonal, annual, 
and decadal time-scales (Higgins et al. 2003; Adams et al. 
2014), and in the annual timing of NAM onset (Higgins et al. 
1999). Geographically, there is a northwest-to-southeast 

gradient from winter-to-summer moisture dominance in the 
Southwest, with summer rainfall dominant in the southeast 
and winter precipitation dominant in the northwest (Fig. 1a). 
At the extreme of the gradient, >70% of annual rainfall is 
contributed by the NAM in parts of southern Arizona and 
New Mexico (Douglas et al. 1993; Szejner et al. 2016). 
Thus, depending on location, the NAM provides a signifi-
cant moisture resource that potentially influences the growth, 
structure, and community composition of vegetation in the 
Southwest (Neilson 1987).

However, there are other patterns in precipitation across 
the region as well. There is a gradient in total annual precipi-
tation from east-to-west, with greater precipitation in eastern 
New Mexico, grading to less precipitation in western Ari-
zona. Within these regional patterns, precipitation increases 
with elevation (Fig. 1b). Variability of annual precipitation 
amount is highly correlated with total annual precipitation 
amount—i.e., there is generally a higher standard devia-
tion in precipitation among years in areas with higher mean 
annual precipitation (Fig. 1c). Because of the strong gradi-
ents in summer and annual precipitation across the region 
and the variability in precipitation inherent in the regional 
climate system, the Southwest represents an excellent loca-
tion to test the influence of seasonal precipitation as well as 
its variability on tree growth, including in the sub-annual 
components of tree rings.

The stochastic antecedent modeling (SAM) framework 
was developed to evaluate antecedent factors (e.g., climate 
drivers) and their influence on physiological processes such 
as tree growth (Ogle et al. 2015; Peltier et al. 2018). The 
SAM framework provides a quantitative method of analyz-
ing the importance of “ecological memory”—that is, the 
influence of antecedent conditions on current processes 
(Ogle et al. 2015). An advantage of the SAM approach is 
that the strength and temporal lags of each variable driv-
ing growth can be evaluated simultaneously. Thus, we can 

Fig. 1   Eleven sites where Pinus ponderosa trees were sampled in 
the southwestern USA (UT: Utah, AZ: Arizona, NM: New Mexico, 
CO: Colorado). Color gradient represents a % precipitation that falls 

in summer (July, August, and September), b mean total annual pre-
cipitation, and c standard deviation of precipitation. See Table S1 for 
details on each site
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reconstruct the roles of multiple exogenous and endogenous 
processes in the ecophysiological memory of trees. In the 
current study, we applied this approach to annual and intra-
annual tree growth increments using Pinus ponderosa trees 
distributed across a broad geographic precipitation gradi-
ent selected specifically to study variation in tree growth 
processes across varied precipitation conditions. In doing 
so, we addressed three primary questions: (1) Over what 
time scales (e.g., past monthly, seasonal, or annual periods) 
are climate influences on tree growth evident? (2) Do tree 
growth sensitivity to climate and ecological memory vary 
across the precipitation gradient? (3) Do earlywood and 
latewood growth differ in their sensitivities to climate and 
climatic memory? Addressing these questions will provide 
insight into the complexities of the responses of earlywood, 
latewood, and whole rings to antecedent climate, helping us 
to disentangle the endogenous and exogenous mechanisms 
underlying tree growth responses to variation in climate. Our 
study has implications for understanding drought impacts 
and forest functioning, in general, given current and future 
climatic variation, and within the more specific context of 
regional climate attributes.

Methods

Data description

To answer our questions, we used a set of tree cores previ-
ously collected for a related tree-ring isotope study (Szejner 
et al. 2016). Tree cores with at least 5 decades of growth 
were collected from ponderosa pine trees (Pinus ponderosa 
Dougl. ex Laws.) in 11 sites, with five sites in AZ, four in 
NM, and two in UT (Fig. 1; Szejner et al. 2016). Sites were 
located in ponderosa pine-dominated landscapes with low 
tree-to-tree canopy competition. Healthy, medium-sized 
trees were selected at each site (Szejner et al. 2016). Using 
a 5 mm increment borer, 2–3 cores were taken from each 
of 128 selected trees for a total of 266 cores (Table S1). In 

the laboratory, cores were crossdated using standard den-
drochronology techniques (Stokes and Smiley 1968), and 
total ring, earlywood, and latewood widths of each ring were 
measured (Szejner et al. 2016).

Monthly precipitation and mean maximum monthly tem-
perature data from 1895 to 2014 for each site were extracted 
from the PRISM gridded climate dataset (PRISM 2018) at 
the 30-m pixel resolution representing each site location. We 
considered using other climate indices (e.g., Palmer Drought 
Severity Index, vapor pressure deficit, minimum monthly 

temperature), but exploratory analyses of relationships 
between ring widths and these alternative indices led us to 
focus on simple precipitation and temperature variables. Pre-
cipitation and temperature, while not wholly representative 
of drought stress, are consistently and reliably measured and 
widely interpreted, and they include no built-in time-lags 
(such as those within PDSI).

Statistical model description

We used the stochastic antecedent modeling (SAM) 
approach developed by Ogle et al. (2015), which has been 
used in multiple applications (e.g., Liu et al. 2019; Guo 
et al. 2020), including several applications to estimate the 
effects that climatic variables have on tree growth as well as 
the time scales over which such variables influence growth 
(Peltier et al. 2018, 2022; Peltier and Ogle 2019; Marqués 
et al. 2021). This model regresses ring widths (growth) on 
antecedent climate variables, while simultaneously estimat-
ing the time-scales over which the antecedent variables are 
defined, thus providing insight into lags and memory effects. 
That is, climatic variables affecting growth, as well as previ-
ous ring-width values, are used to construct antecedent vari-
ables, which themselves are defined as weighted averages 
of past observed values. The antecedent variables serve as 
covariates in the regression model, where each antecedent 
variable has its own effect parameter.

We assumed that observed, log-transformed ring widths, 
r = log(ring width + 1), for each core, c, and year, y, were 
normally distributed around the mean, µy,c, with variance, σ2:

Note that 1 was added to each ring width before log 
transforming to account for zero values due to missing rings 
(0.4% of rings were missing). We modeled μ as a function of 
ring age (A), antecedent precipitation (Pant; see Eq. 5), ante-
cedent maximum temperature (Tant; see Eq. 5), the Pant × Tant 
two-way interaction, and log-scale prior ring width (rwant):

The nested notation t(c) and s(c) denote the tree, t, and 
site, s, corresponding to core c, respectively. Again, the 
model for μ in Eq. (2) is essentially a linear regression, con-
ditional on the antecedent covariates and ring age (hence, 
detrending for age is accomplished simultaneously within 
the model). Because μ represents log-transformed ring 
widths, the “linear age” effect on the log scale actually rep-
resents an exponential age function. The model includes a 
core-level intercept, or random effect (εc), that is modeled 
hierarchically around a tree-level intercept term, αt,1:

(1)ry,c ∼ Normal(�y,c, �
2)

(2)�y,c = �c + �t(c),2Ay,c + �t(c),3P
ant

y,s(c)
+ �t(c),4T

ant

y,s(c)
+ �t(c),5P

ant

y,s(c)
× Tant

y,s(c)
+ �t(c),6rw

ant

y,c
.
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See Table 1 for a summary of the parameters (coeffi-
cients) in Eqs. (2) and (3).

To account for the field sampling scheme, where trees 
were sampled in 11 sites, we specified hierarchical priors for 
the tree-level α parameters, which varied around site-level 
means (a); site-level means were modeled as varying around 
a population- or species-level mean (a*). Thus, for parameter 
k = 1, 2, …, 6, tree t, and site s:

where s(t) denotes site s associated with tree t. The vari-
ance terms σα

2 and σa
2 describe how parameter k varies 

among trees within each site and among sites, respectively. 
Finally, we assigned relatively non-informative priors to the 
population-level means and all standard deviation terms (σ 
in Eq. (1), σε in Eq. (3), and σα and σa in Eq. (4)). That is, 
each ak

* was assigned a wide, normally distributed prior 
with mean 0 and standard deviation 10,000; each standard 
deviation term was assigned a wide, uniform prior between 
0 and 100.

Defining the model covariates

The age of each tree t at the time of coring (i.e., the “final 
age”) was not always known given that many cores did not 
include the pith. Thus, we treated the final age, Afinal, of each 
tree as unknown, resulting in unknown age for each ring (A) 
such that:

where δy is the number of rings produced after year 
y; e.g., if the most recent ring is 2012, then δy = 0, 1, 2, 
…, when y corresponds to 2012, 2011, 2010, …, respec-
tively. Again, Afinal is treated as an unknown quantity that is 

(3)�c ∼ Normal(�t(c),1, �
2

�
).

(4)
�t,k ∼ Normal(as(t),k, �

2

�k
),

as,k ∼ Normal(a∗
k
, �2

ak
).

(5)Ay,c = Afinal

t(c)
− �y,

estimated for each tree (δ is known data). Thus, we assigned 
a vague (wide) uniform prior to each Afinal

t
 with the lower 

limit set equal to the number of rings measured in tree t and 
the upper limit set to 1000.

We centered covariates to improve parameter interpre-
tation and model convergence. Ring age, A, was centered 
about the estimated average ring age, A (~120 years), in all 
cores across all 11 sites; the antecedent climate variables 
were centered about the mean monthly values for each site 
( P and T  ); and the antecedent ring widths, rwant, were cen-
tered about the average ring width recorded for each tree 
( rw ). Thus, the intercept (e.g., αt,1 in Eq. (3)) is the pre-
dicted, log-scale growth of tree t at an age of 120 years under 
average climatic and growth conditions (Table 1).

Furthermore, the antecedent variables (Pant, Tant, and 
rwant) are defined as weighted averages of past monthly (Pant 
and Tant) and yearly (rwant) values. For X = P or T, the ante-
cedent climate variables are defined as:

The antecedent importance weights, ω, are unknown and 
determined by fitting the model to the tree-ring and climate 
data. The importance weights can reveal time scales in the 
influences of past climate. Each climate variable at each site 
gets its own set of importance weights, as indicated by the s 
(site) and X subscripts on ω. The term Xy-j,m,s is the precipita-
tion total or maximum temperature for month m (m = 1, 2, 
…, 12 for Jan., Feb., …, Dec.), j years prior to the current 
year y, in site s. The weighted monthly climate values are 
summed over all months (m = 1, 2, …., 12), from j = 0 (year 
of ring formation) to j = 4 (4 years prior). The weights for 
current-year October through December (m = 10, 11, 12; 
j = 0) were set to 0 since we assumed the climate in these 
months occurred after growth ended and had no effect on 
current-year ring widths (McDowell et al. 2010). Monthly 
importance weights were estimated individually for the year 
of ring formation and 1 year prior (j = 0 and 1), but estimated 
in blocks of 2 months for two years prior to growth (j = 2) 

(6)Xant

y,s
=

4
∑

j=0

12
∑

m=1

�j,m,s,XXy−j,m,s.

Table 1   Summary of 
coefficients in the stochastic 
antecedent modeling (SAM) 
regression model (Eq. 2)

The subscripts t and s denote tree t and site s

Symbol Definition

Tree-level Site-level

αt,1 as,1 Intercept; predicted growth at average age and climate
αt,2 as,2 Age effect
αt,3 as,3 Antecedent precipitation effect
αt,4 as,4 Antecedent temperature effect
αt,5 as,5 Antecedent precipitation × antecedent temperature effect
αt,6 as,6 Prior ring width effect
αt,7 as,7 Effect of earlywood on latewood growth (only in latewood model)
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and in blocks of 3 months for 3 and 4 years prior to growth 
(j = 3 and 4; see fig.2 in Peltier et al. 2018). This results in a 
total of 35 importance weights, which were constrained to 
sum to 1 for each climate variable within each site; hence, 
each ωj,m,s,X indicates the relative importance of climate vari-
able X at site s in a particular time period (j and m).

Antecedent ring width, rwant in Eq. (2), was calculated 
similarly to the antecedent climate variables, but since ring 
widths are only reported at an annual scale, rwant is given by:

The rwy-j,c term denotes the annual ring width (not log 
transformed) grown j years (j = 1, 2, 3, 4) prior to the current 
year’s growth in year y. Here, wj,s denotes the relative impor-
tance of growth (ring width) j years prior to the current year 
at site s. Again, these antecedent weights were constrained 
to sum to 1 for each site s.

We assigned each group of antecedent importance 
weights—for precipitation, temperature, and past ring 
widths—a vague Dirichlet prior, Dirichlet(1,1,…,1), result-
ing in the prior expectation that all weights were the same 
(Ogle et al. 2015; Peltier et al. 2018). This prior also ensures 
that the weights sum to 1 and are each between 0 and 1.

Model implementation and further analyses

We implemented the above model, Eqs. (1)–(7), separately 
for whole-ring, earlywood, and latewood ring widths. The 
model structure was the same for the whole-ring and early-
wood analyses, but it was modified for the latewood model 
by incorporating the earlywood ring width of the same year 
as a predictor in Eq. (2), with its corresponding effect param-
eter, αt(c),7 (e.g., Griffin et al. 2011), which was also assigned 
a hierarchical prior following Eq. (4). This was done so that 
we could estimate the conditional effect of earlywood growth 
given that climate, ring age, and past ring width effects are 
simultaneously accounted for. We centered earlywood ring 
widths about the average value reported for each tree t.

For the climate variables, we performed several calcula-
tions with the importance weights to provide greater insight 
into time-scales of influence and memory. For example, we 
computed annual importance weights by summing monthly 
importance weights, ωj,m,s,X in Eq. (6), over all months m 
within each year j. For each climate variable, we also deter-
mined the number of months it took for each site to reach 
50% of its cumulative monthly importance weight, which 
we refer to as M50, following the definition in Ogle et al. 
(2015). M50 provides an index of the length of the climate 
memory (Ogle et al. 2015). Since months 10–12 (Oct–Dec) 
of the current year are assigned importance weight values 
of zero, this restricts M50 to be greater than 3 months. These 

(7)rwant

y,c
=

4
∑

j=1

wj,srwy−j,c.

quantities are computed within the model code (see below), 
enabling posterior estimates of each.

Using a high-performance computing cluster, we ran 
the model via the Bayesian software JAGS 4.2.0 (Plummer 
2003) in R (R Core Team 2021) with the packages ‘rjags’ 
(Plummer 2013) and ‘coda’ (Plummer et al. 2006). Follow-
ing standard practice to use multiple chains, we assigned 
different initial values to three parallel Markov chain Monte 
Carlo (MCMC) sequences and ran the sequences until they 
converged (>100,000 iterations). After convergence, we 
used a posterior sample size of ≥3000 relatively independ-
ent posterior samples after thinning to obtain parameter esti-
mates, including the posterior mean, standard deviation, and 
95% credible interval (CI), defined by the 2.5th and 97.5th 
percentiles of the posterior samples.

Post‑analysis growth responses across climatic 
gradients

We used the posterior parameter estimates to explore rela-
tionships between parameters describing the sensitivity of 
growth to climate (i.e., the site-level as,3, as,4, and as,5 effects; 
Table 1) and factors related to the variability in precipitation 
across the Southwest such as average precipitation, % of pre-
cipitation that falls in the summer, and annual, summer, and 
winter precipitation variability. For seasonal climate vari-
ables, we defined winter as December through March, and 
summer as July through September (Higgins et al. 1997). We 
performed a simple model comparison among these post-hoc 
models with single variables, which were linear regressions 
of the site-specific posterior parameter means versus site-
level covariates.

Results

Model fit

A regression of observed versus mean predicted values 
of r = log(ring width + 1) resulted in coefficients of deter-
mination (R2) of 0.86, 0.84, and 0.74 for the whole ring, 
earlywood, and latewood models, respectively (Fig. S1). 
A regression of observed versus predicted values of raw 
ring widths resulted in R2 values of 0.84, 0.82, and 0.70, 
respectively (Fig. S1). Site-level R2 ranged from 0.40 to 0.92 
(Table S2), with the best model fits occurring for sites in the 
northern portion of the study area (sites 1, 2, 3, and 4, but 
also site 9; Table S2 and Fig. 1).

Parameter estimates

Based on the population of sites studied here, overall, tree 
growth was positively associated with precipitation (Fig. 
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S2c), the precipitation × temperature interaction (Fig. S2e), 
and prior growth (Fig. S2f). Conversely, overall tree growth 
was negatively associated with age (Fig. S2b) and earlywood 
growth (for the latewood model; Fig. S2g). Given the large 
variation in site-specific responses to temperature (Fig. 2d), 
the overall temperature effect tended towards negative, but 
was non-significant (Fig. S2d).

Focusing on the site-specific parameter estimates (e.g., 
Fig. 2), baseline annual growth (as,1, back-transformed to 
mm) under average climate conditions varied by a factor 
of 2.4, ranging from 1.68 mm ± 0.08 (posterior mean ± SD; 
site 4, northern Arizona [AZ]) to 4.00 mm ± 0.22 (site 7, 
southern AZ) for the whole ring (Fig. 2a). Baseline early-
wood growth was slightly less than whole-ring growth, and 
varied by a factor of 1.9 (range 1.53 mm ± 0.08 [site 4] to 

2.91 mm ± 0.14 [site 8, southern New Mexico (NM)]), but 
baseline latewood growth was more consistent across sites 
with a mean of 0.37 mm (range 0.32 ± 0.03 [site 1, northern 
Utah (UT)] to 0.47 ± 0.03 [site 8]) (Fig. 2a). As expected, 
ring widths decreased with age for whole rings and early-
wood (as,2 < 0 in 9 sites in each model), but a smaller age 
effect was obvious in latewood widths (as,2 < 0 for 5 sites 
and no significant relationship, as,2 ≅ 0, for 6 sites; Fig. 2b). 
Prior growth had a significant positive effect (as,6 > 0) on 
ring width in all sites for all ring types (Fig. 2f). While 
earlywood and latewood widths were positively correlated 
with each other on initial study (Fig. S3), once the effects 
of climate, ring age, and prior ring width were accounted 
for, latewood width was significantly and negatively related 
to earlywood width (as,7 < 0) of the same year in every site 

Fig. 2   Posterior means (sym-
bols) and 95% Bayesian credible 
intervals (whiskers) for study-
level parameters, including a 
baseline growth (intercept; as,1) 
and the effects of b age (A; as,2), 
c antecedent precipitation (Pant; 
as,3), d antecedent temperature 
(Tant; as,4), e the Pant × Tant inter-
action (as,5), f prior ring-width 
(as,6), and g earlywood width for 
latewood (as,7); see Eq. (2) and 
Table 1. Parameters with CIs 
not crossing zero are interpreted 
as reflecting important (“signifi-
cant”) effects. Sites are ordered 
by mean annual precipitation 
(low to high)
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(Fig. 2g). Although sites were modeled hierarchically, which 
allows for sites with small sample sizes to be informed by 
other sites, those sites with fewer trees sampled were typi-
cally associated with more uncertain parameter estimates 
(wider CIs). This illustrates that the model is accounting for 
the unbalanced sample design.

Antecedent precipitation (Pant) had a significant positive 
effect (at,3 > 0) on whole-ring growth at eight sites and a sig-
nificant negative effect (at,3 < 0) in site 6, the most southern 
site (Fig. 2c). Conversely, the direction of the antecedent 
temperature (Tant) effects varied, with a significant positive 
effect (at,4 > 0) occurring in three sites and a significant neg-
ative effect (at,4 < 0) in six sites (Fig. 2d). While some sites 
were associated with non-significant Pant (sites 4 and 5) or 
Tant (sites 2 and 11) main effects, the Pant × Tant interaction 
effect (at,5) was significant across all sites (Fig. 2e), indicat-
ing that Pant and Tant are significant predictors of growth, 
either via their direct (main) effects and/or via their interac-
tion with each other. In particular, the Pant × Tant interaction 
effect for whole rings was significantly different from zero 
for all sites; in all sites except one, the effect was positive, 
and in site 6 (southern AZ), it was negative. The generally 
positive Pant × Tant effect indicates that warmer conditions 
(higher Tant) increase the (positive) sensitivity of growth to 
Pant, or, alternatively, drier conditions (lower Pant) enhance 
the negative effect of Tant on growth. Effects of Pant, Tant, and 
Pant × Tant on earlywood growth were similar to the whole-
ring effects in sign, magnitude, and significance, but they 
were generally of lower magnitude for latewood growth 
(Fig. 2c–e).

Antecedent importance weights

For most sites, the year of ring formation and the prior year 
had the highest annual precipitation weights for all three 
models (whole ring, earlywood, and latewood), indicating 
that growth is primarily governed by fairly recent precipita-
tion inputs (Fig. S4). However, there were some exceptions; 
precipitation 2 years prior to growth was most important 
for whole-ring widths in sites 6 and 7 (southern AZ) (Fig. 
S4a) and for earlywood at those two sites as well as site 4 
(northern AZ) (Fig. S4b). In site 5 (central AZ), precipi-
tation received in all 5 years had nearly equal influence 
(weights) on whole ring and earlywood growth. Precipita-
tion received in the year prior to growth was more important 
than the year of growth for predicting latewood width in 
10 sites; only in site 2 (central Utah [UT]) was the annual 
weight highest in the year of growth (Fig. S4c). Temperature 
weights were also generally highest for the year of growth 
in all three models, with some exceptions (Fig. S4d–f). It 
is worth noting that if we had defined the annual period 
as October through September, annual weights would have 
been even higher for the current year.

Consistent with the annual importance weights, indi-
vidual monthly weights were also generally highest in the 
year of and the year prior to ring formation, but variation in 
the monthly weights points to specific periods that are most 
important for predicting growth (Figs. S5a, S5b, S5c). In 
sites 1, 2, 3, and 4 (UT and northern AZ), which are among 
the coolest sites with the lowest annual precipitation, winter 
precipitation in the year of growth was important for whole 
ring (Fig. S5a) and earlywood growth (Fig. S5b), while in 
sites 5 and 6 (southern AZ), which are among the warmest 
sites, with most annual precipitation, winter precipitation 
two years prior to growth was more important than winter 
precipitation in the year of growth. For whole-ring and ear-
lywood widths, temperature in the spring months during the 
year of ring formation was influential in most sites (Fig. S5a, 
S5b). For latewood widths (Fig. S5c), precipitation in the 
winter prior to ring formation was often as or more impor-
tant than summer precipitation during the current growing 
season. Temperature during the spring and summer of the 
current growing season was influential in most sites.

At the sites with the highest precipitation and variability 
in precipitation (sites 5, 6, and 7 in southern AZ; Table S1), 
whole-ring widths had the longest climatic memory as meas-
ured by the M50 index for Pant (Fig. 3a, Fig. S6a). Climatic 
memory of earlywood growth was similar to that of the 
whole-ring, although site 4 (northern AZ), which is charac-
terized by moderate precipitation variability, had the long-
est earlywood M50 (31 months) for Pant (Fig. 3d, Fig. S6b). 
There was less variation among sites in the latewood M50 
values, which were generally unrelated to site-level precipi-
tation variability (Fig. 3d, Fig. S6c).

Sites with short climatic memory tended to have a posi-
tive, strong sensitivity to precipitation, but a negative sensi-
tivity to temperature (Fig. S7). With increasing M50 for Pant, 
the precipitation effects (Pant; as,3) took on smaller, less posi-
tive values or even negative values. However, with increas-
ing M50 for Tant, the Tant effects (as,4) took on less negative 
values or even positive values. In summary, the magnitudes 
of the Pant and Tant main effects, which are indices of the 
climate sensitivities of growth, tended to be larger (more 
sensitive) for sites characterized by shorter memory (lower 
M50) (Fig. S7).

Evaluation of site‑level responses across climatic 
gradient

Site-level sensitivity of growth to antecedent precipitation 
(i.e., as quantified by as,3; Table 1) varied in relation to site-
level climate characteristics (Fig. 4). Notably, the sensitivity 
of whole-ring growth to antecedent precipitation at aver-
age temperature conditions, as described by the site-level 
Pant main effect (as,3), was not related to the proportion 
of precipitation falling in the summer months (Table S3). 



940	 Oecologia (2022) 198:933–946

1 3

However, the antecedent precipitation (as,3) effect for whole-
ring widths was negatively correlated with annual (Fig. 4a), 
winter (Fig. 4b), and summer (Fig. 4c) precipitation totals 
(R2 = 0.60, 0.69, and 0.27, respectively). The site-level ear-
lywood and latewood precipitation (as,3) effects were also 
negatively correlated with annual, summer, and winter pre-
cipitation (earlywood R2 = 0.48, 0.15, and 0.70, respectively; 
latewood R2 = 0.72, 0.54, and 0.46, respectively).

Sites with higher annual and winter precipitation also had 
higher variability in annual and winter precipitation (Fig. 
S8), and the antecedent precipitation (Pant) main effect (as,3) 
was strongly and negatively correlated with this variabil-
ity (measured as standard deviation) in all three ring type 
models. That is, the higher the standard deviation in annual 
and winter precipitation, the less important antecedent pre-
cipitation was for growth (Table S3, Fig. 4d, e). The pre-
cipitation effect (as,3) for latewood growth was negatively 

Fig. 3   Linear regressions between site-level precipitation memory 
(M50; the month prior to December of the current year at which 
the cumulative weights first exceed 0.5) and a winter precipitation, 
b summer precipitation, c elevation, d yearly precipitation standard 
deviation (SD), e winter precipitation SD, f summer precipitation SD, 

g annual temperature, and h winter temperature. Only significant rela-
tionships are shown: symbols indicate p < 0.01, and regression lines 
indicate p < 0.05 (Table S4). Black circles/lines represent whole-ring 
widths (RW), white squares/dashed lines represent earlywood (EW), 
and gray triangles/lines represent latewood (LW)



941Oecologia (2022) 198:933–946	

1 3

correlated with the standard deviation of summer precipita-
tion (Table S3, Fig. 4f). The antecedent temperature (Tant) 
main effect (as,4) and the Pant × Tant interaction effect (as,5) 
generally did not correlate with indices of annual and sea-
sonal precipitation amount or variation (Table S3), except 
for that the temperature effect (as,4) for whole ring and ear-
lywood growth was negatively correlated with summer tem-
perature (p < 0.1, Table S3).

Discussion

Over what time scales are climate influences on tree 
growth evident?

The trees in this study were sampled “ecologically” rather 
than for climate reconstruction, which means they were not 
in particularly harsh conditions or near the edge of their 
range (Nehrbass-Ahles et  al. 2014), although they still 
occurred in semi-arid sites in the southwestern US. Across 
all sites, the climate memory of tree growth was relatively 
long; while climate conditions in the year of ring formation 
and 1 year prior were generally most important for annual 

and sub-annual growth, climate conditions two, three, and 
four years prior to ring formation were also influential. 
These results are consistent with other studies in the South-
west that used International Tree-Ring Data Bank (ITRDB) 
records, from trees often collected for climate reconstruction 
purposes, to examine relationships between tree growth and 
climate at comparable time scales (Peltier et al. 2018). Using 
conifer tree-ring records from the ITRDB in the Southwest, 
Peltier et al. (2018) employed the SAM approach and also 
found that precipitation and temperature importance weights 
were highest in the year of growth (accounting for nearly 
half the total weight) and the year prior to growth, but condi-
tions 2–4 years prior to growth still continued to influence 
growth. It is significant that we found similar evidence for 
long climatic memory in trees using a different dataset col-
lected for a different purpose, suggesting that long climatic 
memory in trees is a widespread phenomenon not limited 
to highly “sensitive” trees often chosen for paleo-climate 
reconstructions (Esper et al. 2015). We note evidence for 
long memory of past climate in tree growth has been found 
worldwide, with examples including Pinus brutia in the east-
ern Mediterranean, P. pinea in Italy, and multiple species in 

Fig. 4   Linear regressions between site-level antecedent precipitation 
(Pant) main effects (as,3) and a annual, b winter, c summer precipita-
tion, d annual, e winter, and f summer precipitation standard devia-
tion. All relationships with regression lines are significant (p < 0.05; 

Table  S3). Black circles/lines represent whole-ring widths, white 
squares/dashed lines represent earlywood, and gray triangles/lines 
represent latewood. Blue lines cross the y-axis at 0. Whiskers depict 
95% Bayesian credible intervals
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the Spanish Pyrenees (Mazza and Manetti 2013; Marqués 
et al. 2021).

It is also worth pointing out that Szejner et al. (2020) 
found shorter legacies in carbon isotope ratios and ring-
width index in these same sites, using Superposed Epoch 
Analysis (SEA) and detrended chronologies. There are sev-
eral aspects that could explain these differences. First, our 
analytical model focused on individual core and tree-level 
patterns rather than within-site integration of individual 
chronologies, as used in Szejner et al. (2020). This dif-
ference likely rendered our analysis more sensitive to the 
responses of individual tree phenotypes (i.e., endogenous 
factors), whereas the Szejner et al. (2020) analysis was more 
sensitive to site-to-site and year-to-year climate variability 
(i.e., exogenous factors). Second, Szejner et al. (2020) found 
that current year conditions were most important for tree 
growth, which our analysis also generally shows (Fig. S4), 
but we also find that conditions during previous years are 
important. In our study, the high importance of prior year’s 
climate also captured the influence of the winter months 
just preceding ring formation, which have been found to be 
important predictors of tree growth in other studies (e.g., 
Martin et al. 2018). Finally, we did not focus on the most 
extreme droughts as “key events” in this study, which is 
required in SEA. Rather, we analyzed the influence of cli-
mate on tree growth across the entire period of the record, 
including all drought events. It is possible that evidence of 
memory in drought sensitivity is most likely to be detected 
when assessed across many droughts of variable intensity, 
rather than when focused on the most extreme droughts. 
In analyses relying on the most extreme droughts, exoge-
nous (climate-determined) lags might be so dominant as to 
obscure endogenous (phenotype-determined) lags. The latter 
might only emerge in analyses that include a broad range of 
climate system states assessed across many years.

The long climatic memory reported here and elsewhere 
likely reflects an indirect effect of past climate, mediated 
through various physical and physiological mechanisms. 
Possible mechanisms for such lagged effects of climate on 
tree growth include retention of canopy needles for several 
years, storage of non-structural carbohydrates (NSC) over 
multiple years, hydraulic damage from prior drought, and 
pest or pathogen associations with drought-stressed trees, 
among others (Peltier et al. 2018). P. ponderosa needles are 
usually retained for 3 to 4 years (Fritts 1976), meaning that 
an abundant or poor needle crop in a particular year could 
positively or negatively impact growth for several years. The 
role of NSC in lagged growth responses to climate is not 
fully understood. However, as average NSC pool ages can be 
nine or more years old in conifer species in temperate forests 
(Richardson et al. 2012), and old NSC (>15 years) can be 
accessible (Carbone 2013), such old NSC could represent 
a functional link between antecedent climate and current 

growth. Persistent hydraulic damage could also result in 
long-lasting effects from water stress, particularly if func-
tional sapwood area is significantly reduced (Anderegg 
et al. 2015; Trugman et al. 2018; Peltier and Ogle 2019), or 
significant changes in functional canopy area occur (Jump 
et al. 2017). Finally, pests and pathogens are typically more 
successful in water-stressed trees (Jactel et al. 2012), provid-
ing another way that climate variability, coupled with insect 
outbreaks, can have long lasting consequences for tree vital-
ity and growth (Peters et al. 2017). Physical effects may also 
be important; trees have access to deep soil water resources, 
which integrate precipitation inputs over multiple seasons, 
but which may also be depleted after severe drought events 
(Kerhoulas and Kane 2012; Rempe and Dietrich 2018). 
Lagged effects of climate on tree growth are increasingly 
recognized as important (e.g., Jiang et al. 2019), but focused 
experimental work is needed to understand the mechanisms 
by which tree rings integrate climate over multiple years.

Varying climate responses at different sites across a 
precipitation gradient illustrate the diversity of conditions 
experienced by P. ponderosa across the study region. A sig-
nificant growth versus antecedent precipitation relationship, 
which we expected, was observed in eight of the 11 study 
sites (Fig. 2c). The lack of a direct effect of precipitation 
in two sites and a negative effect in one site could be due 
to a precipitation x temperature interaction, or unique pre-
cipitation distributions in the interannual sequence of the 
time series. These are both examples of possible exogenous 
influences on climate memory effects. The direct effect of 
temperature was more variable (Fig. 2d). Typically, tem-
perature has a negative effect on tree growth in the South-
west because of its link to increased drought stress (Wil-
liams et al. 2013; Adams and Kolb 2005), which appears 
to occur in six sites. However, warmer temperatures were 
positively correlated with tree growth in two sites (sites 
7 and 8), both of which are in the southern portion of the 
study area (Fig. 1) and are associated with comparatively 
high rainfall (Table S1) and high baseline growth (Fig. 2a). 
This suggests that when trees have access to greater soil 
moisture, higher antecedent temperatures lead to greater 
productivity, potentially due to the effect of warm, but not 
extreme, temperatures on physiological processes involved 
in carbon gain, allocation, and biomass production (Way 
and Oren 2010).

It is not surprising that antecedent temperature and pre-
cipitation interact to govern tree growth across the precipi-
tation gradient in the Southwest. However, the net effect 
of this interaction indicates the existence of a synergistic 
impact leading to increased sensitivity of tree growth to the 
combination of hotter and drier conditions, or what might be 
referred to as hot drought (Overpeck 2013). This has been 
documented on a temporal scale where drier sites showed 
increasing growth sensitivity to PDSI over the last century, 
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paralleled by higher mortality following the ongoing drought 
in California (Keen et al. 2022). Similar changes in growth 
sensitivity to climate have been reported across precipita-
tion gradients in different functional types (Kannenberg 
et al. 2021) and between different biomes (Hsu et al. 2012; 
Gherardi and Sala 2019; Maurer et al. 2020; O'Donnell et al. 
2021). We would expect these trends to continue given pro-
jections of rising temperatures (Zobel et al. 2017).

Do tree growth sensitivity to climate and ecological 
memory vary across the precipitation gradient?

Relationships between tree growth and climate did vary 
across the precipitation gradient, but percent summer (mon-
soon) precipitation provided little insight into spatial vari-
ation in climate-growth relationships. We suggest that the 
NAM gradient is only one gradient among several in this 
complex region that governs tree and forest productivity 
(Gutzler 2004). We did find that the total amount of pre-
cipitation and associated monthly variation were important 
in influencing tree growth. Sites 5, 6, and 7 in central and 
southern Arizona (AZ) stood out in several analyses: they 
had the highest standard deviations in monthly precipitation 
(Table S1), they are 3 of the 4 wettest sites (Table S1), and 
they had 3 of the 4 lowest precipitation main effect sizes 
(Fig. 2c). The finding that these wet sites supported P. pon-
derosa trees with lower precipitation sensitivity, under aver-
age temperature conditions, is consistent with past studies 
and was expected. For example, Adams and Kolb (2005) 
found that tree growth of several conifer species in higher, 
wetter sites in AZ was less sensitive to drought than in lower, 
drier sites. The lower precipitation sensitivity of tree growth 
under average temperature conditions in these sites suggests 
that trees are following a conservative strategy, in which 
they are not exhibiting physiological plasticity that would 
permit increased or decreased growth to track shifting condi-
tions. It is also possible that in these wetter sites something 
besides moisture (e.g., nutrient limitations or cloud cover) is 
limiting tree growth during wet periods such that additional 
precipitation does not result in high growth in very wet years 
(Chapin et al. 1987). Trees in drier sites are generally more 
sensitive to precipitation, indicating that they may be most 
affected by changes to the total amount or timing of precipi-
tation (Anderegg et al. 2019).

In our study, lower climate sensitivity was associated with 
longer climatic memory (Fig. S7). This combination of low 
effect size and long memory implies a muted response to cli-
mate; trees in these variable sites are not responsive to every 
pulse of rain but integrate climate (e.g., precipitation pulses) 
over many seasons and years. In these sites, if a tree allocates 
additional carbon resources to roots, canopy expansion, or 
wider than average rings in a wet year, the wet year could 
have a long-lasting influence on tree growth. Alternately, 

when a dry year occurs, a poor needle crop (Fritts 1976) or 
a loss of roots (Brunner et al. 2015) may necessitate a longer 
recovery time; effects may be long-lasting even if subsequent 
years have abundant rainfall (e.g., Anderegg et al. 2015). 
Trees that receive less summer precipitation might have 
the ability to “immediately” take advantage of rain events, 
making their growth more sensitive to recent conditions 
(shorter memory, lower M50). We might hypothesize that 
trees at these sites would have faster carbon cycling rates and 
younger NSC. The finding that higher climatic sensitivity 
is associated with shorter climatic memory is interesting in 
the context of the ongoing discussions about biases in the 
ITRDB (Klesse et al. 2018). First, any bias in ITRDB is 
likely in the magnitude of the climate-growth responses, and 
not in the direction or character of the relationships. In addi-
tion, short climatic memory of sensitive trees is a positive 
attribute for climate or disturbance reconstructions, since 
multi-year memory in tree rings can bias or contaminate 
climatic or disturbance signals (Esper et al. 2015, 2018).

Do earlywood and latewood growth differ in their 
sensitivities to climate and climatic memory?

For both climatic sensitivity and memory, site differences 
were readily apparent in earlywood growth attributes. How-
ever, latewood growth was fairly invariant across sites in 
terms of baseline growth under average conditions. This may 
be due to little variation in the onset of latewood formation 
in P. ponderosa, even in years with very different precipita-
tion patterns (Ziaco et al. 2018). However, the finding of 
greater variability in earlywood widths may be species-spe-
cific; in some species, latewood widths vary more than ear-
lywood widths, but in other species the opposite occurs (e.g., 
Miina 2000). Climatic memory was quite different between 
earlywood and latewood as well (Fig. S6); latewood memory 
was shorter and less variable between sites, but climate in 
years prior to growth was still important.

While climate influenced latewood growth, the strongest 
factor associated with low latewood growth was simply high 
earlywood growth (negative effect across all 11 sites). This 
should not be confused with positive correlations between 
raw earlywood and latewood widths, which are observed 
in simple bivariate plots or correlation analyses (Fig. S3, 
Meko and Baisan 2001; Griffin et al. 2011). Instead, this 
earlywood effect should be thought of as the conditional 
effect of earlywood growth given that climate, ring age, 
and past ring width effects are accounted for. This suggests 
that after accounting for the effects of climate, age, and past 
widths, which tend to have the same directional effects on 
earlywood and latewood growth, the conditional effect of 
earlywood on latewood growth is actually negative, point-
ing to a tradeoff between these two modes of radial growth. 
This tradeoff could be related to carbon resources; if a tree 
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invests a great deal of carbon in earlywood (or earlywood 
formation runs longer), there may be less carbon (or time) to 
invest in latewood growth. This idea is supported by isotopic 
analysis of the same trees used in this study; isotope signals 
in earlywood and latewood were generally positively corre-
lated (Szejner et al. 2018), suggesting that trees use the same 
resources to produce earlywood and latewood. Alternatively, 
the tradeoff could be related to xylogenesis and phenology 
mechanisms (Ziaco et al. 2018). It is thought that earlywood 
is important for water transport and latewood is important 
for tree structure; each year’s growth represents a balance 
between a tree’s maintenance of these two functions of 
xylem (Björklund et al. 2017). Future research might explore 
whether allocation between these competing functions may 
be altered by recent climate conditions, particularly drought. 
For example, an adaptive strategy would be to invest rela-
tively more carbon towards earlywood growth following 
severe cavitation events to efficiently regain pre-drought sap-
wood area (Trugman et al. 2018). Finally, the possibility of a 
carbon allocation tradeoff between earlywood and latewood 
has implications for climate reconstructions when using any 
type of tree-ring data: whole ring, earlywood, or latewood.

Conclusions

Our study of Pinus ponderosa in the Southwest showed that 
tree growth responses to climate and the time-scales over 
which growth responds to climate varied across the regional 
precipitation gradient. Severe summer drought has been 
observed over the period 2000–2018 (Williams et al. 2020) 
due to anthropogenic warming, and the North American 
Monsoon may experience changes such as a delayed onset 
and shifts in precipitation distribution to later in the season 
(Cook and Seager 2013). Our results suggest that such future 
changes to precipitation patterns will have unequal effects on 
tree growth across the regional precipitation gradient, with 
potential implications for tree growth and mortality, carbon 
storage, and regional species migrations.
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