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Abstract

Spatial patterns of precipitation in the southwestern United States result in a complex gradient from winter-to-summer mois-
ture dominance that influences tree growth. In response, tree growth exhibits seasonal-to-annual variability that is evident in
the growth of whole tree rings, and in sub-annual sections such as earlywood and latewood. We evaluated the influence of
precipitation and temperature on the growth of Pinus ponderosa trees in 11 sites in the southwestern US. Precipitation dur-
ing the year of growth and the prior year accounted for about half of the climate influence on annual growth, with the other
half reflecting conditions 2—4 years prior to growth, indicating that individual trees do indeed exhibit multi-year “memory”
of climate. Trees in wetter sites exhibited weaker influence of past precipitation inputs, but longer memory of climatic vari-
ability. Conversely, trees in dry sites exhibited shorter memory of long-term climatic variability, but greater sensitivity to past
precipitation effects. These results are consistent with the existence of complex interactions between endogenous (phenotype)
effects and exogenous (climate) effects in controlling climate memory in trees. After accounting for climate, residual vari-
ability in latewood growth was negatively correlated with earlywood growth, indicating a potential tradeoff between latewood
versus earlywood growth. This study provides new insights that will assist the accurate prediction of woody biomass growth
and forest carbon sequestration across a southwestern US precipitation gradient.
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at sub-annual to multi-year time scales (Fritts 1976; Salzer
and Kipfmueller 2005; Stahle et al. 2009; Griffin et al. 2013;
Peltier et al. 2016, 2018). The responsiveness of tree-ring
widths to climate during the year of ring formation, and
often during the prior year, has enabled their use in recon-
structing past patterns of climate variables, such as precipi-
tation and temperature (e.g., Salzer et al. 2005; Stahle et al.
2009; Griffin et al. 2011, 2013; Esper et al. 2018). However,
annual ring widths are also influenced by climate over mul-
tiple years, whereby climate signals from several seasons
prior to ring formation are detectable (Ogle et al. 2015; Pel-
tier et al. 2016, 2018; Marqués et al. 2021).

Within individual annual rings in trees from temperate
ecosystems, particularly conifers, there is variation in wood
cell structure that reflects seasonal climate variations. Light-
colored earlywood consists of large, thin-walled cells formed
early in the growing season. Darker-colored latewood is
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formed later in the growing season and is characterized by
smaller lumen area with thicker cell walls. Sub-annual pat-
terns of earlywood and latewood can be used to inform intra-
annual climate-growth relationships, particularly in regions
with strong seasonal climatic patterns (Griffin et al. 2013;
Babst et al. 2016; Monson et al. 2018; Szejner et al. 2016).
Earlywood growth can be related to temperature (e.g., Zhang
et al. 2021) but is often correlated with the amount of winter
and spring precipitation received (for example, November
through May; [Stahle et al. 2009]). Latewood width has been
found to record a summer precipitation signal, especially if
its dependence on earlywood growth is statistically removed
(Stahle et al. 2009; Griffin et al. 2013; Szejner et al. 2018). It
has been thought that earlywood and latewood are dependent
on different sources of water because ring widths and sea-
sonally recorded oxygen isotopes in the two types of wood
have been found to correlate with precipitation in different
seasons: winter precipitation for earlywood, and summer
rainfall for latewood (Belmecheri et al. 2018; Ziaco et al.
2018; Szejner et al. 2018). However, there has been little
research on the extent to which the growth of earlywood and
latewood in the current year integrates climate over multiple
prior years, or potential carbon allocation trade-offs between
tree investment in earlywood versus latewood growth once
climate-specific effects have been reconciled.

Summer rains in the southwestern United States (here-
after, “Southwest”) are delivered by the North American
Monsoon (NAM) climate system (Fig. 1). The NAM is char-
acterized by frequent convective rain events that generally
begin in early July in the Southwest and continue through
September, following very dry conditions in May and June
(Adams and Comrie 1997; Higgins et al. 1997). There is
high variability in NAM precipitation at seasonal, annual,
and decadal time-scales (Higgins et al. 2003; Adams et al.
2014), and in the annual timing of NAM onset (Higgins et al.
1999). Geographically, there is a northwest-to-southeast

gradient from winter-to-summer moisture dominance in the
Southwest, with summer rainfall dominant in the southeast
and winter precipitation dominant in the northwest (Fig. 1a).
At the extreme of the gradient, >70% of annual rainfall is
contributed by the NAM in parts of southern Arizona and
New Mexico (Douglas et al. 1993; Szejner et al. 2016).
Thus, depending on location, the NAM provides a signifi-
cant moisture resource that potentially influences the growth,
structure, and community composition of vegetation in the
Southwest (Neilson 1987).

However, there are other patterns in precipitation across
the region as well. There is a gradient in total annual precipi-
tation from east-to-west, with greater precipitation in eastern
New Mexico, grading to less precipitation in western Ari-
zona. Within these regional patterns, precipitation increases
with elevation (Fig. 1b). Variability of annual precipitation
amount is highly correlated with total annual precipitation
amount—i.e., there is generally a higher standard devia-
tion in precipitation among years in areas with higher mean
annual precipitation (Fig. 1¢). Because of the strong gradi-
ents in summer and annual precipitation across the region
and the variability in precipitation inherent in the regional
climate system, the Southwest represents an excellent loca-
tion to test the influence of seasonal precipitation as well as
its variability on tree growth, including in the sub-annual
components of tree rings.

The stochastic antecedent modeling (SAM) framework
was developed to evaluate antecedent factors (e.g., climate
drivers) and their influence on physiological processes such
as tree growth (Ogle et al. 2015; Peltier et al. 2018). The
SAM framework provides a quantitative method of analyz-
ing the importance of “ecological memory”—that is, the
influence of antecedent conditions on current processes
(Ogle et al. 2015). An advantage of the SAM approach is
that the strength and temporal lags of each variable driv-
ing growth can be evaluated simultaneously. Thus, we can
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Fig.1 Eleven sites where Pinus ponderosa trees were sampled in
the southwestern USA (UT: Utah, AZ: Arizona, NM: New Mexico,
CO: Colorado). Color gradient represents a % precipitation that falls
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reconstruct the roles of multiple exogenous and endogenous
processes in the ecophysiological memory of trees. In the
current study, we applied this approach to annual and intra-
annual tree growth increments using Pinus ponderosa trees
distributed across a broad geographic precipitation gradi-
ent selected specifically to study variation in tree growth
processes across varied precipitation conditions. In doing
so, we addressed three primary questions: (1) Over what
time scales (e.g., past monthly, seasonal, or annual periods)
are climate influences on tree growth evident? (2) Do tree
growth sensitivity to climate and ecological memory vary
across the precipitation gradient? (3) Do earlywood and
latewood growth differ in their sensitivities to climate and
climatic memory? Addressing these questions will provide
insight into the complexities of the responses of earlywood,
latewood, and whole rings to antecedent climate, helping us
to disentangle the endogenous and exogenous mechanisms
underlying tree growth responses to variation in climate. Our
study has implications for understanding drought impacts
and forest functioning, in general, given current and future
climatic variation, and within the more specific context of
regional climate attributes.

Methods
Data description

To answer our questions, we used a set of tree cores previ-
ously collected for a related tree-ring isotope study (Szejner
et al. 2016). Tree cores with at least 5 decades of growth
were collected from ponderosa pine trees (Pinus ponderosa
Dougl. ex Laws.) in 11 sites, with five sites in AZ, four in
NM, and two in UT (Fig. 1; Szejner et al. 2016). Sites were
located in ponderosa pine-dominated landscapes with low
tree-to-tree canopy competition. Healthy, medium-sized
trees were selected at each site (Szejner et al. 2016). Using
a 5 mm increment borer, 2—3 cores were taken from each
of 128 selected trees for a total of 266 cores (Table S1). In
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temperature), but exploratory analyses of relationships
between ring widths and these alternative indices led us to
focus on simple precipitation and temperature variables. Pre-
cipitation and temperature, while not wholly representative
of drought stress, are consistently and reliably measured and
widely interpreted, and they include no built-in time-lags
(such as those within PDSI).

Statistical model description

We used the stochastic antecedent modeling (SAM)
approach developed by Ogle et al. (2015), which has been
used in multiple applications (e.g., Liu et al. 2019; Guo
et al. 2020), including several applications to estimate the
effects that climatic variables have on tree growth as well as
the time scales over which such variables influence growth
(Peltier et al. 2018, 2022; Peltier and Ogle 2019; Marqués
et al. 2021). This model regresses ring widths (growth) on
antecedent climate variables, while simultaneously estimat-
ing the time-scales over which the antecedent variables are
defined, thus providing insight into lags and memory effects.
That is, climatic variables affecting growth, as well as previ-
ous ring-width values, are used to construct antecedent vari-
ables, which themselves are defined as weighted averages
of past observed values. The antecedent variables serve as
covariates in the regression model, where each antecedent
variable has its own effect parameter.

We assumed that observed, log-transformed ring widths,
r=log(ring width + 1), for each core, c, and year, y, were
normally distributed around the mean, My, s with variance, ¢

ye ™ Normal(yy’c, 02) 1)

Note that 1 was added to each ring width before log
transforming to account for zero values due to missing rings
(0.4% of rings were missing). We modeled y as a function of
ring age (A), antecedent precipitation (P*™; see Eq. 5), ante-
cedent maximum temperature (7°"; see Eq. 5), the P x T*™
two-way interaction, and log-scale prior ring width (rw™™):

ant ant
X Ty’s(c) + Uy 6T Wy o o)

the laboratory, cores were crossdated using standard den-
drochronology techniques (Stokes and Smiley 1968), and
total ring, earlywood, and latewood widths of each ring were
measured (Szejner et al. 2016).

Monthly precipitation and mean maximum monthly tem-
perature data from 1895 to 2014 for each site were extracted
from the PRISM gridded climate dataset (PRISM 2018) at
the 30-m pixel resolution representing each site location. We
considered using other climate indices (e.g., Palmer Drought
Severity Index, vapor pressure deficit, minimum monthly

The nested notation #(c) and s(c) denote the tree, ¢, and
site, s, corresponding to core c, respectively. Again, the
model for u in Eq. (2) is essentially a linear regression, con-
ditional on the antecedent covariates and ring age (hence,
detrending for age is accomplished simultaneously within
the model). Because p represents log-transformed ring
widths, the “linear age” effect on the log scale actually rep-
resents an exponential age function. The model includes a
core-level intercept, or random effect (e,), that is modeled
hierarchically around a tree-level intercept term, a, ;:
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Table 1 Summary of

Definition

coefficients in the stochastic Symbol
antecedent modeling (SAM) Tree-level Site-level
regression model (Eq. 2)

A As 1

%) Asn

%3 A3

X4 Asg

A5 A5

73 As6

A7 2%

Intercept; predicted growth at average age and climate

Age effect

Antecedent precipitation effect

Antecedent temperature effect

Antecedent precipitation X antecedent temperature effect

Prior ring width effect

Effect of earlywood on latewood growth (only in latewood model)

The subscripts 7 and s denote tree ¢ and site s

€, ~ Normal(a, |, 65). 3)

See Table 1 for a summary of the parameters (coeffi-
cients) in Egs. (2) and (3).

To account for the field sampling scheme, where trees
were sampled in 11 sites, we specified hierarchical priors for
the tree-level a parameters, which varied around site-level
means (a); site-level means were modeled as varying around
a population- or species-level mean (a"). Thus, for parameter
k=1,2, ..., 6, tree t, and site s:

2
a,, ~ Normal(ay ;. aak),

“

a,; ~ Normal(a;, ajk).

where s(¢) denotes site s associated with tree 7. The vari-
ance terms o, and ¢,> describe how parameter k varies
among trees within each site and among sites, respectively.
Finally, we assigned relatively non-informative priors to the
population-level means and all standard deviation terms (¢
in Eq. (1), o, in Eq. (3), and ¢, and ¢, in Eq. (4)). That is,
each ;" was assigned a wide, normally distributed prior
with mean 0 and standard deviation 10,000; each standard
deviation term was assigned a wide, uniform prior between
0 and 100.

Defining the model covariates

The age of each tree ¢ at the time of coring (i.e., the “final
age”) was not always known given that many cores did not
include the pith. Thus, we treated the final age, Afinal of each
tree as unknown, resulting in unknown age for each ring (4)
such that:
Ao = A =5, ®)
where 6, is the number of rings produced after year
y; e.g., if the most recent ring is 2012, then 5y=0, 1, 2,
..., when y corresponds to 2012, 2011, 2010, ..., respec-
tively. Again, A" is treated as an unknown quantity that is

@ Springer

estimated for each tree (6 is known data). Thus, we assigned
a vague (wide) uniform prior to each A?“al with the lower
limit set equal to the number of rings measured in tree ¢ and
the upper limit set to 1000.

We centered covariates to improve parameter interpre-
tation and model convergence. Ring age, A, was centered
about the estimated average ring age, A (~120 years), in all
cores across all 11 sites; the antecedent climate variables
were centered about the mean monthly values for each site
(I_’ and T); and the antecedent ring widths, rw®™, were cen-
tered about the average ring width recorded for each tree
(rw). Thus, the intercept (e.g., , in Eq. (3)) is the pre-
dicted, log-scale growth of tree ¢ at an age of 120 years under
average climatic and growth conditions (Table 1).

Furthermore, the antecedent variables (P*™, 7°™, and
rw™™) are defined as weighted averages of past monthly (P*™
and 7*™) and yearly (rw*™) values. For X=P or T, the ante-
cedent climate variables are defined as:

4 12
ant __
X,v,s - Z Z O s XKy—jms* 6)

=0 m=1

The antecedent importance weights, w, are unknown and
determined by fitting the model to the tree-ring and climate
data. The importance weights can reveal time scales in the
influences of past climate. Each climate variable at each site
gets its own set of importance weights, as indicated by the s
(site) and X subscripts on w. The term X ; , . is the precipita-
tion total or maximum temperature for month m (m=1, 2,
..., 12 for Jan., Feb., ..., Dec.), j years prior to the current
year y, in site s. The weighted monthly climate values are
summed over all months (m=1, 2, ...., 12), from j=0 (year
of ring formation) to j=4 (4 years prior). The weights for
current-year October through December (m =10, 11, 12;
j=0) were set to 0 since we assumed the climate in these
months occurred after growth ended and had no effect on
current-year ring widths (McDowell et al. 2010). Monthly
importance weights were estimated individually for the year
of ring formation and 1 year prior (j=0 and 1), but estimated
in blocks of 2 months for two years prior to growth (j=2)
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and in blocks of 3 months for 3 and 4 years prior to growth
(j=3 and 4; see fig.2 in Peltier et al. 2018). This results in a
total of 35 importance weights, which were constrained to
sum to 1 for each climate variable within each site; hence,
each w; ,  y indicates the relative importance of climate vari-
able X at site s in a particular time period (j and m).
Antecedent ring width, rw*™ in Eq. (2), was calculated
similarly to the antecedent climate variables, but since ring

widths are only reported at an annual scale, rw™™ is given by:

4
ant __
Wy = Z Wi Wy e 7)
=1
The rw, ;. term denotes the annual ring width (not log

transformed) grown j years (j=1, 2, 3, 4) prior to the current
year’s growth in year y. Here, w; ; denotes the relative impor-
tance of growth (ring width) j years prior to the current year
at site s. Again, these antecedent weights were constrained
to sum to 1 for each site s.

We assigned each group of antecedent importance
weights—for precipitation, temperature, and past ring
widths—a vague Dirichlet prior, Dirichlet(1,1,...,1), result-
ing in the prior expectation that all weights were the same
(Ogle et al. 2015; Peltier et al. 2018). This prior also ensures
that the weights sum to 1 and are each between 0 and 1.

Model implementation and further analyses

We implemented the above model, Eqgs. (1)—(7), separately
for whole-ring, earlywood, and latewood ring widths. The
model structure was the same for the whole-ring and early-
wood analyses, but it was modified for the latewood model
by incorporating the earlywood ring width of the same year
as a predictor in Eq. (2), with its corresponding effect param-
eter, a7 (e.g., Griffin et al. 2011), which was also assigned
a hierarchical prior following Eq. (4). This was done so that
we could estimate the conditional effect of earlywood growth
given that climate, ring age, and past ring width effects are
simultaneously accounted for. We centered earlywood ring
widths about the average value reported for each tree z.

For the climate variables, we performed several calcula-
tions with the importance weights to provide greater insight
into time-scales of influence and memory. For example, we
computed annual importance weights by summing monthly
importance weights, ; , . x in Eq. (6), over all months m
within each year j. For each climate variable, we also deter-
mined the number of months it took for each site to reach
50% of its cumulative monthly importance weight, which
we refer to as My, following the definition in Ogle et al.
(2015). My, provides an index of the length of the climate
memory (Ogle et al. 2015). Since months 10—12 (Oct-Dec)
of the current year are assigned importance weight values
of zero, this restricts My, to be greater than 3 months. These

quantities are computed within the model code (see below),
enabling posterior estimates of each.

Using a high-performance computing cluster, we ran
the model via the Bayesian software JAGS 4.2.0 (Plummer
2003) in R (R Core Team 2021) with the packages ‘rjags’
(Plummer 2013) and ‘coda’ (Plummer et al. 2006). Follow-
ing standard practice to use multiple chains, we assigned
different initial values to three parallel Markov chain Monte
Carlo (MCMC) sequences and ran the sequences until they
converged (>100,000 iterations). After convergence, we
used a posterior sample size of >3000 relatively independ-
ent posterior samples after thinning to obtain parameter esti-
mates, including the posterior mean, standard deviation, and
95% credible interval (CI), defined by the 2.5th and 97.5th
percentiles of the posterior samples.

Post-analysis growth responses across climatic
gradients

We used the posterior parameter estimates to explore rela-
tionships between parameters describing the sensitivity of
growth to climate (i.e., the site-level a3, a4, and ag s effects;
Table 1) and factors related to the variability in precipitation
across the Southwest such as average precipitation, % of pre-
cipitation that falls in the summer, and annual, summer, and
winter precipitation variability. For seasonal climate vari-
ables, we defined winter as December through March, and
summer as July through September (Higgins et al. 1997). We
performed a simple model comparison among these post-hoc
models with single variables, which were linear regressions
of the site-specific posterior parameter means versus site-
level covariates.

Results

Model fit

A regression of observed versus mean predicted values
of r=log(ring width + 1) resulted in coefficients of deter-
mination (Rz) of 0.86, 0.84, and 0.74 for the whole ring,
earlywood, and latewood models, respectively (Fig. S1).
A regression of observed versus predicted values of raw
ring widths resulted in R? values of 0.84, 0.82, and 0.70,
respectively (Fig. S1). Site-level R? ranged from 0.40 to 0.92
(Table S2), with the best model fits occurring for sites in the
northern portion of the study area (sites 1, 2, 3, and 4, but
also site 9; Table S2 and Fig. 1).

Parameter estimates

Based on the population of sites studied here, overall, tree
growth was positively associated with precipitation (Fig.
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S2c), the precipitation X temperature interaction (Fig. S2e),
and prior growth (Fig. S2f). Conversely, overall tree growth
was negatively associated with age (Fig. S2b) and earlywood
growth (for the latewood model; Fig. S2g). Given the large
variation in site-specific responses to temperature (Fig. 2d),
the overall temperature effect tended towards negative, but
was non-significant (Fig. S2d).

Focusing on the site-specific parameter estimates (e.g.,
Fig. 2), baseline annual growth (a,; back-transformed to
mm) under average climate conditions varied by a factor
of 2.4, ranging from 1.68 mm +0.08 (posterior mean + SD;
site 4, northern Arizona [AZ]) to 4.00 mm +0.22 (site 7,
southern AZ) for the whole ring (Fig. 2a). Baseline early-
wood growth was slightly less than whole-ring growth, and
varied by a factor of 1.9 (range 1.53 mm +0.08 [site 4] to

2.91 mm+0.14 [site 8, southern New Mexico (NM)]), but
baseline latewood growth was more consistent across sites
with a mean of 0.37 mm (range 0.32 +0.03 [site 1, northern
Utah (UT)] to 0.47 +0.03 [site 8]) (Fig. 2a). As expected,
ring widths decreased with age for whole rings and early-
wood (a,,<0in 9 sites in each model), but a smaller age
effect was obvious in latewood widths (a,, <0 for 5 sites
and no significant relationship, a,, =0, for 6 sites; Fig. 2b).
Prior growth had a significant positive effect (a,¢>0) on
ring width in all sites for all ring types (Fig. 2f). While
earlywood and latewood widths were positively correlated
with each other on initial study (Fig. S3), once the effects
of climate, ring age, and prior ring width were accounted
for, latewood width was significantly and negatively related
to earlywood width (a, ; <0) of the same year in every site

Fig.2 Posterior means (sym- (a) ® Whole ring
bols) and 95% Bayesian credible g,‘ o Earlywood 5 E
intervals (whiskers) for study- 8 A Latewood o of 2 E
level parameters, including a g 1.51 a ) b4 =
baseline growth (intercept; aj ;) ° &® 2 Py u} d [, g
and the effects of b age (4; a,,), g 1.0 2 g e g L 15 ©
¢ antecedent precipitation (P*™; £ L4 g
ay3), d antecedent temperature 9 0571 A L 05 @
(T*; a, ), e the P"™ X T*" inter- S &8 48 A T
action (ags), f prior ring-width 00 0
(ay), and g earlywood width for T T -
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by mean annual precipitation % ’ @ c & a A A @ 4
(low to high) o S 4 A A A
2 4 T 0.00 4 %
. s
-0.010 S & ¢
<
12}
N : F o0 @
E g 0% g2 !
~ LA e a & ~ o i
= 00-—'%—A—_.;|L_A_A_|.A_A = 2 A $ *
<
o P ) 0y 2 A% Aa @
o » o A A
© ¢ 5 0.00+—% A—
S -02- 2 4
r :
o 8 > ';
€ o
[} — — T
'_
() . @
0.3 A g 017
P aAé L, &2, -
3 d P o o o 8
5 02{a 8 & } 1 G a4
(0] o o -0.21
® 4 ® 8 + A
£ 01- S A A A A A
T e £ a ?
= W 0.3
o 9 3101 2 8 4 5 6 117 9 3101 2 8 4 5 6 117
Site Site

@ Springer



Oecologia (2022) 198:933-946

939

(Fig. 2g). Although sites were modeled hierarchically, which
allows for sites with small sample sizes to be informed by
other sites, those sites with fewer trees sampled were typi-
cally associated with more uncertain parameter estimates
(wider Cls). This illustrates that the model is accounting for
the unbalanced sample design.

Antecedent precipitation (P*™) had a significant positive
effect (a,3> 0) on whole-ring growth at eight sites and a sig-
nificant negative effect (a, ; <0) in site 6, the most southern
site (Fig. 2¢c). Conversely, the direction of the antecedent
temperature (T*") effects varied, with a significant positive
effect (a, 4> 0) occurring in three sites and a significant neg-
ative effect (a, ,<0) in six sites (Fig. 2d). While some sites
were associated with non-significant P*" (sites 4 and 5) or
T (sites 2 and 11) main effects, the P*" x T*" interaction
effect (a, 5) was significant across all sites (Fig. 2e), indicat-
ing that P* and T*" are significant predictors of growth,
either via their direct (main) effects and/or via their interac-
tion with each other. In particular, the P*™x T*" interaction
effect for whole rings was significantly different from zero
for all sites; in all sites except one, the effect was positive,
and in site 6 (southern AZ), it was negative. The generally
positive P*" x T*" effect indicates that warmer conditions
(higher T*") increase the (positive) sensitivity of growth to
P*™ or, alternatively, drier conditions (lower P*™) enhance
the negative effect of 7°" on growth. Effects of P*™, T*", and
P> x T*" on earlywood growth were similar to the whole-
ring effects in sign, magnitude, and significance, but they
were generally of lower magnitude for latewood growth
(Fig. 2c—e).

Antecedent importance weights

For most sites, the year of ring formation and the prior year
had the highest annual precipitation weights for all three
models (whole ring, earlywood, and latewood), indicating
that growth is primarily governed by fairly recent precipita-
tion inputs (Fig. S4). However, there were some exceptions;
precipitation 2 years prior to growth was most important
for whole-ring widths in sites 6 and 7 (southern AZ) (Fig.
S4a) and for earlywood at those two sites as well as site 4
(northern AZ) (Fig. S4b). In site 5 (central AZ), precipi-
tation received in all 5 years had nearly equal influence
(weights) on whole ring and earlywood growth. Precipita-
tion received in the year prior to growth was more important
than the year of growth for predicting latewood width in
10 sites; only in site 2 (central Utah [UT]) was the annual
weight highest in the year of growth (Fig. S4c). Temperature
weights were also generally highest for the year of growth
in all three models, with some exceptions (Fig. S4d—f). It
is worth noting that if we had defined the annual period
as October through September, annual weights would have
been even higher for the current year.

Consistent with the annual importance weights, indi-
vidual monthly weights were also generally highest in the
year of and the year prior to ring formation, but variation in
the monthly weights points to specific periods that are most
important for predicting growth (Figs. S5a, S5b, S5¢). In
sites 1, 2, 3, and 4 (UT and northern AZ), which are among
the coolest sites with the lowest annual precipitation, winter
precipitation in the year of growth was important for whole
ring (Fig. S5a) and earlywood growth (Fig. S5b), while in
sites 5 and 6 (southern AZ), which are among the warmest
sites, with most annual precipitation, winter precipitation
two years prior to growth was more important than winter
precipitation in the year of growth. For whole-ring and ear-
lywood widths, temperature in the spring months during the
year of ring formation was influential in most sites (Fig. S5a,
S5b). For latewood widths (Fig. S5c¢), precipitation in the
winter prior to ring formation was often as or more impor-
tant than summer precipitation during the current growing
season. Temperature during the spring and summer of the
current growing season was influential in most sites.

At the sites with the highest precipitation and variability
in precipitation (sites 5, 6, and 7 in southern AZ; Table S1),
whole-ring widths had the longest climatic memory as meas-
ured by the My, index for P*™ (Fig. 3a, Fig. S6a). Climatic
memory of earlywood growth was similar to that of the
whole-ring, although site 4 (northern AZ), which is charac-
terized by moderate precipitation variability, had the long-
est earlywood My, (31 months) for P*™ (Fig. 3d, Fig. S6b).
There was less variation among sites in the latewood Mj,
values, which were generally unrelated to site-level precipi-
tation variability (Fig. 3d, Fig. S6c).

Sites with short climatic memory tended to have a posi-
tive, strong sensitivity to precipitation, but a negative sensi-
tivity to temperature (Fig. S7). With increasing My, for P*™,
the precipitation effects (P*™; a, 3) took on smaller, less posi-
tive values or even negative values. However, with increas-
ing My, for T*, the T*" effects (a,4) took on less negative
values or even positive values. In summary, the magnitudes
of the P and T°" main effects, which are indices of the
climate sensitivities of growth, tended to be larger (more
sensitive) for sites characterized by shorter memory (lower
My, (Fig. S7).

Evaluation of site-level responses across climatic
gradient

Site-level sensitivity of growth to antecedent precipitation
(i.e., as quantified by a; 3; Table 1) varied in relation to site-
level climate characteristics (Fig. 4). Notably, the sensitivity
of whole-ring growth to antecedent precipitation at aver-
age temperature conditions, as described by the site-level
P main effect (a,;), was not related to the proportion
of precipitation falling in the summer months (Table S3).
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Fig.3 Linear regressions between site-level precipitation memory
(Msq; the month prior to December of the current year at which
the cumulative weights first exceed 0.5) and a winter precipitation,
b summer precipitation, ¢ elevation, d yearly precipitation standard
deviation (SD), e winter precipitation SD, f summer precipitation SD,

However, the antecedent precipitation (a, ;) effect for whole-
ring widths was negatively correlated with annual (Fig. 4a),
winter (Fig. 4b), and summer (Fig. 4c) precipitation totals
(R2= 0.60, 0.69, and 0.27, respectively). The site-level ear-
lywood and latewood precipitation (a, ;) effects were also
negatively correlated with annual, summer, and winter pre-
cipitation (earlywood R*=0.48, 0.15, and 0.70, respectively;
latewood RZ=0.72, 0.54, and 0.46, respectively).

@ Springer

6 8 10

Winter temperature

g annual temperature, and h winter temperature. Only significant rela-
tionships are shown: symbols indicate p<0.01, and regression lines
indicate p <0.05 (Table S4). Black circles/lines represent whole-ring
widths (RW), white squares/dashed lines represent earlywood (EW),
and gray triangles/lines represent latewood (LW)

Sites with higher annual and winter precipitation also had
higher variability in annual and winter precipitation (Fig.
S8), and the antecedent precipitation (P*™) main effect (ay3)
was strongly and negatively correlated with this variabil-
ity (measured as standard deviation) in all three ring type
models. That is, the higher the standard deviation in annual
and winter precipitation, the less important antecedent pre-
cipitation was for growth (Table S3, Fig. 4d, e). The pre-
cipitation effect (a, ;) for latewood growth was negatively
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Fig.4 Linear regressions between site-level antecedent precipitation
(P main effects (a,3) and a annual, b winter, ¢ summer precipita-
tion, d annual, e winter, and f summer precipitation standard devia-
tion. All relationships with regression lines are significant (p <0.05;

correlated with the standard deviation of summer precipita-
tion (Table S3, Fig. 4f). The antecedent temperature (7°™)
main effect (a,4) and the P*" x T*" interaction effect (a,5)
generally did not correlate with indices of annual and sea-
sonal precipitation amount or variation (Table S3), except
for that the temperature effect (a; 4) for whole ring and ear-
lywood growth was negatively correlated with summer tem-
perature (p <0.1, Table S3).

Discussion

Over what time scales are climate influences on tree
growth evident?

The trees in this study were sampled “ecologically” rather
than for climate reconstruction, which means they were not
in particularly harsh conditions or near the edge of their
range (Nehrbass-Ahles et al. 2014), although they still
occurred in semi-arid sites in the southwestern US. Across
all sites, the climate memory of tree growth was relatively
long; while climate conditions in the year of ring formation
and 1 year prior were generally most important for annual

Table S3). Black circles/lines represent whole-ring widths, white
squares/dashed lines represent earlywood, and gray triangles/lines
represent latewood. Blue lines cross the y-axis at 0. Whiskers depict
95% Bayesian credible intervals

and sub-annual growth, climate conditions two, three, and
four years prior to ring formation were also influential.
These results are consistent with other studies in the South-
west that used International Tree-Ring Data Bank ITRDB)
records, from trees often collected for climate reconstruction
purposes, to examine relationships between tree growth and
climate at comparable time scales (Peltier et al. 2018). Using
conifer tree-ring records from the ITRDB in the Southwest,
Peltier et al. (2018) employed the SAM approach and also
found that precipitation and temperature importance weights
were highest in the year of growth (accounting for nearly
half the total weight) and the year prior to growth, but condi-
tions 2—4 years prior to growth still continued to influence
growth. It is significant that we found similar evidence for
long climatic memory in trees using a different dataset col-
lected for a different purpose, suggesting that long climatic
memory in trees is a widespread phenomenon not limited
to highly “sensitive” trees often chosen for paleo-climate
reconstructions (Esper et al. 2015). We note evidence for
long memory of past climate in tree growth has been found
worldwide, with examples including Pinus brutia in the east-
ern Mediterranean, P. pinea in Italy, and multiple species in
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the Spanish Pyrenees (Mazza and Manetti 2013; Marqués
et al. 2021).

It is also worth pointing out that Szejner et al. (2020)
found shorter legacies in carbon isotope ratios and ring-
width index in these same sites, using Superposed Epoch
Analysis (SEA) and detrended chronologies. There are sev-
eral aspects that could explain these differences. First, our
analytical model focused on individual core and tree-level
patterns rather than within-site integration of individual
chronologies, as used in Szejner et al. (2020). This dif-
ference likely rendered our analysis more sensitive to the
responses of individual tree phenotypes (i.e., endogenous
factors), whereas the Szejner et al. (2020) analysis was more
sensitive to site-to-site and year-to-year climate variability
(i.e., exogenous factors). Second, Szejner et al. (2020) found
that current year conditions were most important for tree
growth, which our analysis also generally shows (Fig. S4),
but we also find that conditions during previous years are
important. In our study, the high importance of prior year’s
climate also captured the influence of the winter months
just preceding ring formation, which have been found to be
important predictors of tree growth in other studies (e.g.,
Martin et al. 2018). Finally, we did not focus on the most
extreme droughts as “key events” in this study, which is
required in SEA. Rather, we analyzed the influence of cli-
mate on tree growth across the entire period of the record,
including all drought events. It is possible that evidence of
memory in drought sensitivity is most likely to be detected
when assessed across many droughts of variable intensity,
rather than when focused on the most extreme droughts.
In analyses relying on the most extreme droughts, exoge-
nous (climate-determined) lags might be so dominant as to
obscure endogenous (phenotype-determined) lags. The latter
might only emerge in analyses that include a broad range of
climate system states assessed across many years.

The long climatic memory reported here and elsewhere
likely reflects an indirect effect of past climate, mediated
through various physical and physiological mechanisms.
Possible mechanisms for such lagged effects of climate on
tree growth include retention of canopy needles for several
years, storage of non-structural carbohydrates (NSC) over
multiple years, hydraulic damage from prior drought, and
pest or pathogen associations with drought-stressed trees,
among others (Peltier et al. 2018). P. ponderosa needles are
usually retained for 3 to 4 years (Fritts 1976), meaning that
an abundant or poor needle crop in a particular year could
positively or negatively impact growth for several years. The
role of NSC in lagged growth responses to climate is not
fully understood. However, as average NSC pool ages can be
nine or more years old in conifer species in temperate forests
(Richardson et al. 2012), and old NSC (>15 years) can be
accessible (Carbone 2013), such old NSC could represent
a functional link between antecedent climate and current
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growth. Persistent hydraulic damage could also result in
long-lasting effects from water stress, particularly if func-
tional sapwood area is significantly reduced (Anderegg
et al. 2015; Trugman et al. 2018; Peltier and Ogle 2019), or
significant changes in functional canopy area occur (Jump
et al. 2017). Finally, pests and pathogens are typically more
successful in water-stressed trees (Jactel et al. 2012), provid-
ing another way that climate variability, coupled with insect
outbreaks, can have long lasting consequences for tree vital-
ity and growth (Peters et al. 2017). Physical effects may also
be important; trees have access to deep soil water resources,
which integrate precipitation inputs over multiple seasons,
but which may also be depleted after severe drought events
(Kerhoulas and Kane 2012; Rempe and Dietrich 2018).
Lagged effects of climate on tree growth are increasingly
recognized as important (e.g., Jiang et al. 2019), but focused
experimental work is needed to understand the mechanisms
by which tree rings integrate climate over multiple years.

Varying climate responses at different sites across a
precipitation gradient illustrate the diversity of conditions
experienced by P. ponderosa across the study region. A sig-
nificant growth versus antecedent precipitation relationship,
which we expected, was observed in eight of the 11 study
sites (Fig. 2c). The lack of a direct effect of precipitation
in two sites and a negative effect in one site could be due
to a precipitation x temperature interaction, or unique pre-
cipitation distributions in the interannual sequence of the
time series. These are both examples of possible exogenous
influences on climate memory effects. The direct effect of
temperature was more variable (Fig. 2d). Typically, tem-
perature has a negative effect on tree growth in the South-
west because of its link to increased drought stress (Wil-
liams et al. 2013; Adams and Kolb 2005), which appears
to occur in six sites. However, warmer temperatures were
positively correlated with tree growth in two sites (sites
7 and 8), both of which are in the southern portion of the
study area (Fig. 1) and are associated with comparatively
high rainfall (Table S1) and high baseline growth (Fig. 2a).
This suggests that when trees have access to greater soil
moisture, higher antecedent temperatures lead to greater
productivity, potentially due to the effect of warm, but not
extreme, temperatures on physiological processes involved
in carbon gain, allocation, and biomass production (Way
and Oren 2010).

It is not surprising that antecedent temperature and pre-
cipitation interact to govern tree growth across the precipi-
tation gradient in the Southwest. However, the net effect
of this interaction indicates the existence of a synergistic
impact leading to increased sensitivity of tree growth to the
combination of hotter and drier conditions, or what might be
referred to as hot drought (Overpeck 2013). This has been
documented on a temporal scale where drier sites showed
increasing growth sensitivity to PDSI over the last century,
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paralleled by higher mortality following the ongoing drought
in California (Keen et al. 2022). Similar changes in growth
sensitivity to climate have been reported across precipita-
tion gradients in different functional types (Kannenberg
et al. 2021) and between different biomes (Hsu et al. 2012;
Gherardi and Sala 2019; Maurer et al. 2020; O'Donnell et al.
2021). We would expect these trends to continue given pro-
jections of rising temperatures (Zobel et al. 2017).

Do tree growth sensitivity to climate and ecological
memory vary across the precipitation gradient?

Relationships between tree growth and climate did vary
across the precipitation gradient, but percent summer (mon-
soon) precipitation provided little insight into spatial vari-
ation in climate-growth relationships. We suggest that the
NAM gradient is only one gradient among several in this
complex region that governs tree and forest productivity
(Gutzler 2004). We did find that the total amount of pre-
cipitation and associated monthly variation were important
in influencing tree growth. Sites 5, 6, and 7 in central and
southern Arizona (AZ) stood out in several analyses: they
had the highest standard deviations in monthly precipitation
(Table S1), they are 3 of the 4 wettest sites (Table S1), and
they had 3 of the 4 lowest precipitation main effect sizes
(Fig. 2¢). The finding that these wet sites supported P. pon-
derosa trees with lower precipitation sensitivity, under aver-
age temperature conditions, is consistent with past studies
and was expected. For example, Adams and Kolb (2005)
found that tree growth of several conifer species in higher,
wetter sites in AZ was less sensitive to drought than in lower,
drier sites. The lower precipitation sensitivity of tree growth
under average temperature conditions in these sites suggests
that trees are following a conservative strategy, in which
they are not exhibiting physiological plasticity that would
permit increased or decreased growth to track shifting condi-
tions. It is also possible that in these wetter sites something
besides moisture (e.g., nutrient limitations or cloud cover) is
limiting tree growth during wet periods such that additional
precipitation does not result in high growth in very wet years
(Chapin et al. 1987). Trees in drier sites are generally more
sensitive to precipitation, indicating that they may be most
affected by changes to the total amount or timing of precipi-
tation (Anderegg et al. 2019).

In our study, lower climate sensitivity was associated with
longer climatic memory (Fig. S7). This combination of low
effect size and long memory implies a muted response to cli-
mate; trees in these variable sites are not responsive to every
pulse of rain but integrate climate (e.g., precipitation pulses)
over many seasons and years. In these sites, if a tree allocates
additional carbon resources to roots, canopy expansion, or
wider than average rings in a wet year, the wet year could
have a long-lasting influence on tree growth. Alternately,

when a dry year occurs, a poor needle crop (Fritts 1976) or
aloss of roots (Brunner et al. 2015) may necessitate a longer
recovery time; effects may be long-lasting even if subsequent
years have abundant rainfall (e.g., Anderegg et al. 2015).
Trees that receive less summer precipitation might have
the ability to “immediately” take advantage of rain events,
making their growth more sensitive to recent conditions
(shorter memory, lower My;). We might hypothesize that
trees at these sites would have faster carbon cycling rates and
younger NSC. The finding that higher climatic sensitivity
is associated with shorter climatic memory is interesting in
the context of the ongoing discussions about biases in the
ITRDB (Klesse et al. 2018). First, any bias in ITRDB is
likely in the magnitude of the climate-growth responses, and
not in the direction or character of the relationships. In addi-
tion, short climatic memory of sensitive trees is a positive
attribute for climate or disturbance reconstructions, since
multi-year memory in tree rings can bias or contaminate
climatic or disturbance signals (Esper et al. 2015, 2018).

Do earlywood and latewood growth differ in their
sensitivities to climate and climatic memory?

For both climatic sensitivity and memory, site differences
were readily apparent in earlywood growth attributes. How-
ever, latewood growth was fairly invariant across sites in
terms of baseline growth under average conditions. This may
be due to little variation in the onset of latewood formation
in P. ponderosa, even in years with very different precipita-
tion patterns (Ziaco et al. 2018). However, the finding of
greater variability in earlywood widths may be species-spe-
cific; in some species, latewood widths vary more than ear-
lywood widths, but in other species the opposite occurs (e.g.,
Miina 2000). Climatic memory was quite different between
earlywood and latewood as well (Fig. S6); latewood memory
was shorter and less variable between sites, but climate in
years prior to growth was still important.

While climate influenced latewood growth, the strongest
factor associated with low latewood growth was simply high
earlywood growth (negative effect across all 11 sites). This
should not be confused with positive correlations between
raw earlywood and latewood widths, which are observed
in simple bivariate plots or correlation analyses (Fig. S3,
Meko and Baisan 2001; Griffin et al. 2011). Instead, this
earlywood effect should be thought of as the conditional
effect of earlywood growth given that climate, ring age,
and past ring width effects are accounted for. This suggests
that after accounting for the effects of climate, age, and past
widths, which tend to have the same directional effects on
earlywood and latewood growth, the conditional effect of
earlywood on latewood growth is actually negative, point-
ing to a tradeoff between these two modes of radial growth.
This tradeoff could be related to carbon resources; if a tree

@ Springer



944

Oecologia (2022) 198:933-946

invests a great deal of carbon in earlywood (or earlywood
formation runs longer), there may be less carbon (or time) to
invest in latewood growth. This idea is supported by isotopic
analysis of the same trees used in this study; isotope signals
in earlywood and latewood were generally positively corre-
lated (Szejner et al. 2018), suggesting that trees use the same
resources to produce earlywood and latewood. Alternatively,
the tradeoff could be related to xylogenesis and phenology
mechanisms (Ziaco et al. 2018). It is thought that earlywood
is important for water transport and latewood is important
for tree structure; each year’s growth represents a balance
between a tree’s maintenance of these two functions of
xylem (Bjorklund et al. 2017). Future research might explore
whether allocation between these competing functions may
be altered by recent climate conditions, particularly drought.
For example, an adaptive strategy would be to invest rela-
tively more carbon towards earlywood growth following
severe cavitation events to efficiently regain pre-drought sap-
wood area (Trugman et al. 2018). Finally, the possibility of a
carbon allocation tradeoff between earlywood and latewood
has implications for climate reconstructions when using any
type of tree-ring data: whole ring, earlywood, or latewood.

Conclusions

Our study of Pinus ponderosa in the Southwest showed that
tree growth responses to climate and the time-scales over
which growth responds to climate varied across the regional
precipitation gradient. Severe summer drought has been
observed over the period 2000-2018 (Williams et al. 2020)
due to anthropogenic warming, and the North American
Monsoon may experience changes such as a delayed onset
and shifts in precipitation distribution to later in the season
(Cook and Seager 2013). Our results suggest that such future
changes to precipitation patterns will have unequal effects on
tree growth across the regional precipitation gradient, with
potential implications for tree growth and mortality, carbon
storage, and regional species migrations.
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