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Flows in porous media in the low-Reynolds number regime are often modeled by the
Brinkman equations. Analytical solutions to these equations are limited to standard geome-
tries. Finite volume or element schemes can be used in more complicated geometries, but
become cumbersome when there are moving boundaries that require frequent remeshing
of the domain. In Newtonian fluids, the method of regularized Stokeslets has gained
popularity due to its ease of implementation, including for moving boundaries, especially
for swimming and pumping problems. While the corresponding method of regularized
Brinkmanlets can be used in a domain consisting entirely of Brinkman medium, many
applications would benefit from an easily implemented representation of flow in a domain
with heterogeneous regions of Brinkman medium and Newtonian fluid. In this paper, we
model flows in porous media by placing many static regularized Stokeslets randomly in
three dimensions to emulate the forces exerted by the rigid porous structure. We perform
numerical experiments to deduce the correspondence between the chosen density and blob
size of regularized Stokeslets in our model, and a Brinkman medium. We demonstrate our
model for two scenarios of microswimmers near porous media.
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I. INTRODUCTION

Flow through porous media is encountered in many natural and industrial systems [1]. A
quantitative description of flows in porous media is extremely important for understanding flow
phenomena or designing such systems. Mathematical modeling of such flows has been an active
area of research in many fields, including, but not limited to, medicine [2], fluid mechanics [3],
hydrology [4], geophysics [5], and soil mechanics [6]. A volume-averaged description of flow
parameters and global description of porous structure (e.g., porosity, permeability) helps avoid
the characterization of spatially intricate flows through small-scale porous structures. Attempts to
derive equations describing flows through porous media date back to 1856 when Darcy [7] reported
empirical relations based on experimental observations relating the averaged fluid velocity to the
pressure drop via a linear relationship. This model presumes that the averaged flow field is uniform
in the domain and the drag offered by the porous structure dominates viscous shear forces in the
fluid. It fails to model flows in a highly porous domain and near boundaries [8]. For nonuniform
flows through porous media, the Brinkman equation was proposed in 1949 [9] to describe flows
past a dense swarm of static spherical particles. Here, the viscous forces due to velocity gradients
in the fluid flow become comparable to the drag force exerted by the porous structure leading to the
Brinkman equations [9],

—Vp=—nuViu+puc’u, V-u=0, (1)
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where p is the averaged pressure, u is the averaged fluid velocity, and u is an effective viscosity.
Various theoretical studies have shown that this model accurately describes the flow in dilute
porous media [8,10-15]. In this dilute limit, the effective viscosity is related to the viscosity of
the fluid phase alone (uo) by = wo/@, where ¢ is the porosity (volume fraction of fluid) in the
medium [16]. The parameter « is called the resistance of the porous medium and, in the limit
¢ — 1, a~? is the permeability of the medium. The value of « sets the length scale («~!), called
the Brinkman screening length, over which the fluid flow decays in a given porous medium. In
the absence of porous structure in the fluid flow, « — 0 and the Brinkman equation reduces to the
Stokes equation (—Vp + uV>u = 0).

The Brinkman equation has been used in a variety of applications to mathematically model
flows through undeformed gels [17], arrays of fixed fibers [18], blood clots [19], and particles in
a microfluidic channel [20], as well as how porous media damp flows [21], and confine active
swimmers [22-24]. Analytical solutions for the flows obeying Brinkman equations can be derived
for problems involving simple geometries such as two-dimensional waving sheets, spheres, or cylin-
ders [22,23,25,26], but they are generally not available for flows involving complicated geometries.
For domains of arbitrary shapes, numerical solutions can be obtained via finite volume or element
schemes, for which the resolution of the discretization dictates the accuracy and computational
cost of these numerical solutions. Implementation of these schemes becomes cumbersome when
there are moving boundaries, such as the surface of a swimming bacterium, as it requires frequent
remeshing of the domain. If the medium around the moving boundary is a homogeneous Brinkman
medium, the method of regularized Brinkmanlets is quite useful [27,28], and Green’s functions for
anisotropic but spatially homogeneous permeability are also available [29]. However, these Green’s
function based approaches are not valid when there is a heterogeneity involved. An example of
such a heterogeneous mixture is a porous medium next to a Stokes fluid, as encountered by the
bacterium Helicobacter pylori swimming in a fluid pocket surrounded by gastric mucus [22,23], or
around growing blood clots inside a microfluidic channel [19]. Such heterogeneous domains can
be treated using finite volume schemes, but that can become cumbersome as it requires frequent
remeshing of the domain and accounting for complicated boundary conditions along the interface
of two fluids. Here we present a computational framework to address fluid flows in such situations
using regularized Stokeslets.

Our basic approach is to model a porous medium by a random arrangement of many static
regularized Stokeslets in three dimensions to emulate a rigid (stationary) porous structure. This
is similar in spirit to many past approaches which model flows through porous media as flows
around discrete stationary obstacles [12,30-33]. In a heterogeneous domain, only the portion
containing the porous medium is represented by a random spatial arrangement of static regularized
Stokeslets. In some ways, such a model with discrete obstacles is a more direct representation
of a porous medium than the macroscopic continuum Brinkman model, but it is still useful to
be able to connect these two models of porous media. The parameter that defines a porous
medium via Brinkman equations is the resistance, «. On the other hand, in our proposed model,
we define a porous medium using the number density of regularized Stokeslets, p, and the
blob parameter (size of each regularized Stokeslet), €. To quantify the relationships between
the parameters « and {p, ¢} in describing the same porous medium, we perform numerical
experiments using our proposed model and compare to analytical solutions for the Brinkman
model.

This paper is organized as follows: In Sec. II, we review the method of regularized Stokeslets.
In Sec. III, we perform numerical experiments involving the proposed model of porous media and
match results with the analytical solution obtained using the Brinkman equation. We then connect
the input parameters from our model to the resistance of Brinkman medium. In Sec. IV, we apply
our model to some example cases of microswimmers moving in heterogeneous scenarios with both
fluid and porous medium domains. In Sec. V, we discuss the applicability of the proposed porous
medium framework to model flows in porous media.
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II. REVIEW OF REGULARIZED STOKESLETS

The method of regularized Stokeslets, introduced in 2001 by Cortez [34], computes the
Stokes flow at any point in a domain as the superposition of flow fields generated by forces
distributed at material points in a fluid. It uses a Green’s function solution, (u®, p%), of Stokes
equations in the presence of a force (f°) distributed around position X according to the function

Ye(X —Xg) = m Y. is a radially symmetric, smooth approximation to a three-
dimensional § distribution with the property that f Ve (X)dx = 1, so that ¥ (x — Xq) is concentrated
near X = Xo. The approximate size of the distribution is set by the value of the “blob parameter” ¢.

Thus, u® and p® satisfy
—0ip° + po’u = —fPY°,  dub =0, (2)

where p° is the pressure, and u® is the fluid velocity. In this and other equations, we use indicial
notation, where i, j = 1,2, 3 denotes Cartesian components and repeated indices are implicitly
summed over. The flow field u® and pressure field p°® at a point x are called the regularized Stokeslet
and are specified by

Ui (%) = S5;(x —%0) [}, 3)
pP(x) = P{(x —xo)f}, 4)
where
o i 1 Bij(r2+2£2)+r,~rj
Sij () = 871,u( (72 + 62)32 )’ ®)
. 212 4+ 582
B = sy e ©)

8;j is the Kronecker delta, and r = |r|. Crucially, regularizing the point force (f°) removes any sin-
gularity at X, thus simplifying the numerical implementation. The linearity of Stokes equations lets
us obtain a solution for multiple forces of the same form, acting at N different locations x,, for
qg=1,2,...,N, by superposition of flow fields generated by each of those forces independently.
Thus the flow field (u) and pressure (p) at a point x are given by

N

wi(x) = ) 85X = X,)fi(Xy), (7)
=1
qN

px) =Y P(x — X)) (%) (®)
g=1

Representing the flow external to a body using a surface distribution of regularized Stokeslets is
an accurate approximation to the representation of the flow via a single-layer representation of
the boundary integral equations in the limit of small & [35]. Our implementation of the method of
Regularized Stokeslets for three-dimensional bodies has been previously described [36,37].

Due to the ease of its implementation even in intricate three-dimensional domains, the method
of regularized Stokeslets has become a popular choice to numerically model flows governed by the
Stokes equations for swimming microorganisms [35,38—40], human sperm [41], flexible filaments
[42], microrobots [43—-50], tumor tissues [51], micropumps [52-54], phoretic flows [55], and plasma
membranes [56]. An interconnected lattice network of regularized Stokeslets has been used to
develop a computational framework to represent a viscoelastic fluid [57].

In this paper, we model porous media by filling the domain occupied by porous media with
randomly placed regularized Stokeslets, and connect it with a Brinkman equation description of the
same medium.
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FIG. 1. (a) Box-shaped domain for a portion of the Couette flow driven by the top surface sliding to the
right with velocity U. (b) Plot showing the ratio of standard deviation to the mean for estimates of « for a
given combination of {p, ¢}, and box height H. (c) Plot showing the dependence of nondimensional Brinkman
medium resistance ae on nondimensional density pe*® of regularized Stokeslets. Results are independent of the
box height H.

III. NUMERICAL EXPERIMENTS

The parameter that defines a porous medium via Brinkman equations is the resistance, «. On
the other hand, in our proposed model, we define a porous medium using the number density
per unit volume of regularized Stokeslets (p) and the Stokeslet blob parameter (¢). The average
spacing between these regularized Stokeslets is given by the length scale p~!/3. In order to establish
a relation between the two models, we perform two numerical experiments using our proposed
model and compare to analytical solutions for the Brinkman model to quantify and validate the
relationships between « and {p, ¢}. A dimensional analysis suggests that the relationship can be
written in the form ae = f(pe3, li/e, /e, ...), where the [; are length scales defining the geometry
of an experiment.

A. Couette flow between two plates

In the first experiment, we consider a steady-state flow between two infinitely long plates
separated by distance H, filled with a dilute porous medium of resistance «. The top plate moves to
the right with velocity U, while the bottom plate is fixed in place.

1. Analytical solution

Following the Brinkman equation, the resistance « can determine the velocity field in the volume
bounded by the plates, as shown below. The fluid flow between the plates is governed by the
Brinkman equations [Eq. (1)] and must also satisfy the velocity boundary conditions of u = UX
at height y = H, and u = 0 at y = 0. By symmetry, there is only an x component of the flow which
obeys

22 _ — oPu, 9
0x 0x2 + 9y? oz ©)

_Bp B (82ux 3%u, N 9%u, ) >,
where u, is the component of the velocity field in the x direction. The left-hand side of the equation is
zero as there is no pressure gradient imposed in the x direction. The first and third terms on the
right-hand side are zero by symmetry since u only depends on y. Solving for the velocity field from
the balance of the remaining terms subject to the boundary conditions (#, = U aty = H and u, =0
at y = 0) gives the steady-state flow profile,

U sinh(ay)

sinh(aH) * (10)

Mx()’) =
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The resultant steady-state volume flow rate Q through a central cross section [as shown in Fig. 1(a)]
with width L can be computed by integration of the flow field, O = fy io u,(y)Ldy, to obtain

1 oaH
0= ULH[E tanh (7)} (1)

In the above, note that ULH is an expected scale for a volumetric flow, while the expression in
brackets is a nondimensional correction factor.

2. Numerical setup

Next we model this flow using our proposed model with static regularized Stokeslets between the
plates, and compute the volume flow rate through the central cross section. Since the expression for
volume flow rate [Eq. (11)] depends on the resistance «, this will establish a relation between « and
{p, e} of our proposed model. In order to be able to include the regularized Stokeslets numerically,
we model the flow situation using a boundary element method (BEM) [58]. In Appendix, we present
results of the validation of the BEM for a Newtonian fluid between two plates.

First consider a box-shaped domain D of width and length L [see Fig. 1(a)] between the two
infinitely long parallel plates. The top and bottom surfaces of this domain move with velocity
UX and 0, respectively. The right, left, front, and back surfaces move with the local fluid velocity.
According to the BEM, the Stokes flow at x¢ inside a bounded domain D or its boundary oD (faces
of the box in our case) can be expressed in terms of surface forces (F) and velocities (u) on the
boundary via boundary integral equations [58],

Mj(Xo): 1
B 8 Jap

1
Siy(x — x0)F,(x)dA — — / Ui T, (% — Xo)riedA, (12)
87 Jap

where

1 forxg € D,
b= {2 for xo € dD. (13)
Here, p is the fluid viscosity, S;;(r)= (§;;/Ir|+ rl-rj/|r|3) is the (singular) Stokeslet,
Tiji(r) = —6rjrjr/ Ir|’ is the stresslet, and n; is the unit normal of the boundary pointing into the
domain. We discretized the domain boundary (dD) into triangular elements [59] and use Gaussian
quadrature rules to numerically compute the surface integrals in the above equation. When there are
N, regularized Stokeslets in the fluid domain, the fluid velocity at a point X is then calculated as

N, N

u;i(x 1
j(X0) _ I3 ws, (xP0 — xg)Fx*9) AL
ﬁ 87[“ b=1 g=1
1 N, Ng Ny
_§_§:§:w®m@mﬁmﬂ@“9—XMWANM+§:$ﬂﬂm—X®ﬁ@wu
T
b=1 g=1 p=1

(14)

where N, is the number of boundary elements, N, is the number of Gaussian quadrature points
with weights w'®, the value of 8 depends on the position X, according to Eq. (13), x*# is the gth
quadrature point of the bth triangulated boundary element, AA® is the area of the hth boundary
element, N, is the number of regularized Stokeslets representing the proposed porous medium
model, x” is the position of the pth regularized Stokeslet, and £¢(x) is the force acting on the
pth regularized Stokeslet. We used &, = 2480 boundary elements and N, = 33 Gaussian quadrature
points generated using the algorithm in [59] and projected onto the surface as described in [60], and
assumed constant force and velocity on each boundary element.
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Applying Eq. (14) with x, at the centers of each boundary element yields 3N, equations in
terms of the 3N, components of boundary forces, 3N, components of boundary velocities, and
3N, regularized Stokeslet forces. Applying Eq. (14) at the locations of the regularized Stokeslets
(xo = xP) yields 3N,, additional equations in terms of the same variables, once the velocities at the
regularized Stokeslet locations are set to zero to satisfy the static condition. Note that setting the
velocity at the position of the Stokeslet to zero would not be possible if singular Stokeslets were
used instead. Physically, as the regularized Stokeslets are fixed in place, the forces required to keep
them stationary produces the effect of the porous medium on the flow. The solution to the above
system of equations then requires 3N, additional conditions, which can be obtained by specifying
three of the force and velocity components {F;, Fy, F7, uy, uy, u.} for each boundary element, as
described in what follows.

First, from the problem definition, the top plate moves to the right with velocity U and the bottom
plate is stationary. Thus, at the top face of the box,

u,=U, u,=0, u =0, (15)
and at the bottom face of the box,
u, =0, u,=0, u,=0. (16)

Furthermore, as there is no imposed pressure gradient, we choose the value of pressure such that
F, = 0 on the right and left faces. Strictly speaking, the force F, which is zero is the volume-
averaged force (similar to the volume-averaged velocities and pressures in the Brinkman equation),
not the microscopic force affected by the randomly placed regularized Stokeslets. Below, we also
prescribe the rest of the boundary conditions in terms of volume-averaged, macroscopic quantities.
This is justified post hoc by the independence of the results from the surface placement, i.e., the
geometry of the box.

The symmetries of the problem determine enough of the remaining boundary forces and ve-
locities to solve the problem. The box-shaped domain is an arbitrary portion of width and length
L between the two infinite plates. Thus the solution in the box has translational symmetry in the
x and z directions, and is also symmetric when reflected about the xy plane. Due to translational
symmetry, the velocity field only depends on y, so the incompressibility condition (V - u = 0) and
the boundary conditions at the top and bottom plates imply that u, is zero all along the right, left,
front, and back faces. Together, reflection and translational symmetry imply that u, is zero on the
right and left faces of the box: for a u, at some point on the right or left face, reflection about the
xy plane implies that the velocity at its reflected image location is —u_, but the velocity at the image
location is also u; by translation symmetry, and hence must be zero. The same argument applies to
F, on the right and left faces, and to u, on the front and back faces. Translation symmetry in the z
direction implies that the stress tensor is the same on front and back faces. Since the direction of
normal changes sign for these faces, the direction of traction forces on the faces also changes sign.
However, reflection symmetry about the xy plane implies that F and F, are the same on the front
and back faces, so they must be zero. Note that on the front and back faces, symmetry does not
prohibit a nonzero F;, which corresponds to a normal stress difference.

Collecting these together, we know that on the right and left faces, F, =0, u, = 0, u, = 0, and
F, = 0. On the front and back faces, we know that F, = 0, F;, = 0, u, = 0, and u, = 0. To solve the
linear system, we only need to specify six of these conditions in addition to Egs. (15) and (16). In the
following, we chose F;, = 0, u, = 0, and u, = 0 on the right and left faces, and F;, = 0, F;, = 0, and
u, = 0 on the front and back faces, and solve for all other variables. In the Appendix, we validate this
BEM and choice of conditions for the case in which there is Newtonian fluid, not porous medium,
between the plates.

The effective volume flow rate was computed by triangulating the central cross section (the
plane at x = 0) and computing the area integral of velocity using one Gaussian quadrature point
on each triangle [Eq. (14)] with B = 1, as the evaluation point is interior to the domain. The
velocity field at these locations is the summation of velocity fields due to the boundary elements,
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and the forces at regularized Stokeslets representing the porous medium. The net volume flow
rate thus computed was compared to the analytical expression in Eq. (11) to obtain a value of
the resistance o of the porous medium. A dimensional analysis reveals that the flow rate can
be expressed as Q = UL?Q*. Due to linearity in U, Q* is a dimensionless function of only the
geometrical configuration of the box as well as the random distribution of regularized Stokeslets.
All geometrically similar configurations (scaled by the length scale L) have the same QF, so it is
sufficient to perform simulations with a single arbitrary value of each of U and L, and only vary the
geometrical parameters {pL>, ¢/L, H/L}. We performed many such numerical experiments using
different values of number densities (p), blob parameters (¢), and box heights (H) in the ranges
(64L73,800L73), (2 x 107*L, 1.5 x 1072L) and (0.1L, 0.25L), respectively, to obtain an estimate
of o for each case. For the highest density and the porous media volume that we used, the number
of Stokeslets was ~4000.

In order for a random distribution of regularized Stokeslets to adequately represent a porous
medium, we expect that the distribution must appear homogeneous on the scale of the porous
medium geometry. To investigate when this holds true, we plot in Fig. 1(b) the coefficient of
variation (ratio of standard deviation to the mean) obtained from the estimates of « as a function of
the ratio of box height H to blob size ¢, and the ratio of box height H to mean Stokeslet separation
p~1/3. Each data point in Fig. 1(b) is obtained from five different random distributions of regularized
Stokeslets with a fixed density p and blob size €. The coefficient of variation should be small if the
distribution is homogeneous on the scale of the porous medium. The plot shows that the coefficient
of variation is small (<0.05) as long as H/e > 40 and Hp'/® > 2 [dashed lines in Fig. 1(b)],
i.e., as long as the blob size and Stokeslet spacing is small enough compared to the smallest
geometrical dimension, i.e., H in our simulations. Note that for a fixed large epsilon (H/e < 40),
the coefficient of variation has nonmonotonic dependence on density, becoming large in the large-¢,
large-p regime. In this regime, upon closer investigation we found that if we manually remove all
regularized Stokeslets located within ¢ of the boundary, the coefficient of variation becomes small.
Such a procedure changes the geometry; however, this behavior indicates that the large variations in
this regime arise when regularized Stokeslets are randomly placed within a blob size of the boundary
elements of the domain, which can lead to spatial variations in the velocities and tractions at the box
surface, contrary to our prescription of boundary conditions as macroscopic quantities.

A plot of « against p, nondimensionalized by the length scale ¢, is shown in Fig. 1(c). In this
plot, we only include data points corresponding to H/e > 40, Hp'/3 > 2, i.e., with coefficient
of variation <0.05. The resistance of a porous medium, «, increases with increasing density and
blob size of regularized Stokeslets. Each data point in Fig. 1(c) is obtained by averaging o values
computed from five different random distributions of regularized Stokeslets with a fixed density
o and blob size . The error bars correspond to the standard deviation of those five values.
We confirmed that the mean value did not change appreciably, i.e., by more than the error, if
more simulations were used, by computing 15 simulations for two cases. The curves obtained
for different values of H/L collapse to a single curve, indicating that the box geometry H does
not influence the value of o when the box dimensions are not comparable to the length scales
involved in the regularized Stokeslets distribution. This is a useful result, as we can estimate the
value of « (resistance in Brinkman description) from the random distribution density (p) and
blob size (¢) of regularized Stokeslets in three dimensions (3D). It can be seen that ae scales
according to (ae)?> ~ pe? by the linear fit to the data (obtained while forcing a zero intercept) in
Fig. 1(c).

To further validate our results, we compare the flow field as a function of height y in the box
calculated from our proposed model, to the flow field obtained using the analytical solution in the
Brinkman medium [Eq. (10)] with matching resistance for one case of {p, ¢} (Fig. 2). Note that the
velocities and pressures in the Brinkman equation are the volume-averaged quantities homogenized
over the spatial variation of the porous medium. In our numerical model, we also must compute a
volume-averaged flow to homogenize variations near regularized Stokeslets. The volume average
for our numerical model is computed over a cube of size p~!/3. The flow fields of our model and
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FIG. 2. Volume-averaged x component of the velocity (normalized by the top surface velocity U) as a
function of height y (normalized with the box’s height H) computed numerically using the proposed model,
compared to the analytically computed flow field in a Brinkman medium with corresponding resistance «. The
velocity field is computed at x = 0, the central cross section of the box. The error bars represent the standard
deviation in the flow field across five different z positions, z/L = (—1/3, —1/6,0, 1/6, 1/3). The values of
poL3, ¢/L, aL, and H/L used to generate the data in this plot are 6400, 0.0025, 14.24, and 0.375, respectively.

the Brinkman medium agree well, with little variation among velocities calculated at different z
coordinates but the same height in the box (displayed as error bars).

B. Source flow

We carried out a second numerical experiment to further corroborate the results obtained in
Sec. III A. Consider a source at the origin forcing a spherically symmetric flow through a shell
of porous medium [Fig. 3(a)]. A point source with constant volume outflow Q and viscosity u is
placed at the center of a porous shell of inner radius R and thickness 7. Due to the porous medium’s
resistance, constant pressure is generated inside the shell after a steady flow is established.

102 a
— -
[ = —(ae)*=1338 peiL;
2 101
[0 .
B
10°
1078 10°¢ . 107
pE

FIG. 3. (a) A point source with constant volume outflow Q is surrounded by a shell of porous medium,
generating a pressure inside the shell. (b) Plot showing the ratio of standard deviation to the mean for estimates
of « for a given combination of {p, €}, and shell thickness 7. (c) Plot showing the dependence of nondimensional
Brinkman medium resistance ae on the nondimensional density pe*® of regularized Stokeslets. The results are
independent of the shell geometry.
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1. Analytical solution

The resistance « of the Brinkman medium determines the pressure developed inside the shell, as
shown below. We solve Eq. (1) in the spherical coordinate system, where only the radial component

is nonzero,
0 19 ou, 2u,
9P —u|:——<r2 ! ) - } + pou, (17)

r2 or or r2

where u, is the radial component of the velocity u and r is the radial distance. The solution is
u, = Q/(4mr?), which is the same as in a Newtonian fluid due to incompressibility. Substituting
the value of u, into Eq. (17) and integrating from R to R + ¢ gives an expression for the pressure
generated across the thickness of the shell, Ap. This expression can be used to compute the value

of a:
) _ 1 R\R3Ap
o = 2 [4n(1+ ) 0 } (18)

2. Numerical setup

Numerically, we represent the Brinkman medium by placing static regularized Stokeslets in the
thickness of the spherical shell. To do so, we first randomly distributed Stokeslets at an appropriate
density in the smallest cube that fits the spherical shell. Then, we removed the Stokeslets that
are not in the thickness of the shell. The constant volume outflow from the point source located at
the center of the shell pushes these regularized Stokeslets radially outward with local fluid velocity,
and consequently an opposing force is required to keep each of these regularized Stokeslets static.
The flow field u at x; is

uj(Xo) = |3xo, + Z S5 (x P — x0) ff (xP)), (19)

where N, is the number of regularized Stokeslets, X, is the location of the pth regularized Stokeslet,
and f¢(x?) is the force acting on the pth regularized Stokeslet. Forces acting on each regularized
Stokeslet can be computed by solving the system of equations obtained by applying the above
equation with x¢ at the center of each regularized Stokeslet and imposing zero velocity on them
[u(x?) = 0]. These forces develop pressure P at the center of the shell found by evaluating Eq. (8)
at the origin [34],

NF
2|x(P2 4 5¢2 N
P) re (x(p)
"= = (xP)2 + 2)5/2 XS e

The pressure in the far field outside the spherical shell is zero. The numerical value of the
pressure difference across the porous shell thus obtained was compared to the analytical expression
in Eq. (18). A dimensional analysis reveals that the pressure difference can be expressed as

p = (LQ/R*)Ap*. Due to linearity in & and Q, Ap* is a dimensionless function of only the
geometrical configuration of the shell as well as the random distribution of regularized Stokeslets.
All geometrically similar configurations (scaled by the length scale R) have the same Ap*, so it is
sufficient to perform simulations with a single arbitrary value of each of Q, u, and R, and only vary
the geometrical parameters {¢/R, pR>,t/R}.

In Fig. 3(b), we plot the coefficient of variation (ratio of standard deviation to the mean) obtained
from the estimates of o as a function of the ratio shell thickness ¢ to blob size &, and mean
Stokeslet separation p~!'/3 for different values of p, &, and ¢ in the range (0.125R~3, 160R™3),
(1073R, 0.12R), and (0.1R, 3R), respectively. For the highest density and the porous media volume
that we used, the number of Stokeslets was ~7000. Each data point is obtained from five different
random distributions of regularized Stokeslets with a fixed density p and blob size €. The coefficient
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of variation should be small if the distribution is homogeneous on the scale of the porous medium.
It can be seen that the coefficient of variation is small (<0.05) as long as #/e > 20 and tp'/? > 3
[dashed lines in Fig. 3(b)]. Again, this shows that a random distribution of regularized Stokeslets
can adequately describe the shell geometry as long as the blob size and Stokeslet spacing is small
enough compared to a typical length scale of the geometry; otherwise, the distribution of Stokeslets
is not sufficiently uniform to represent a Brinkman medium.

Using ¢ as the length scale, o and p are nondimensionalized and plotted in Fig. 3(c). In this
plot, we only include data points corresponding to /e > 20, and p'/3 > 3, i.e., with coefficient of
variation <0.05. Each data point is obtained by averaging « values computed from five different
random distributions of regularized Stokeslets with a fixed density p and blob size ¢. The error bars
correspond to the standard deviation of those five values. As for the Couette flow, all the results
from different geometries collapse onto a single curve, showing that the thickness ¢ and radius R do
not influence the nondimensional «. In other words, the experimental geometry does not influence
the value of «, and we get an estimate of the resistance of porous medium from only the density
and blob size of the regularized Stokeslets arrangement. It can be seen from Fig. 3(c) that a¢ scales
according to (ag)> ~ pe by the linear fit to the data (forcing a zero intercept).

IV. EXAMPLES

In this section, we demonstrate our proposed method using two examples of microswimmers
swimming in heterogeneous environments. The first explores how swimming is affected by the
approach towards a particle made of porous media. The second examines how swimming is affected
by confinement by the porous media.

A. Squirmer approaching a porous sphere

Microorganisms must approach other organisms and particles in order to feed, mate, and find
new habitats [61]. However, in the low-Reynolds number microscale environment, such approach
is constrained by viscous interactions. These viscous interactions have been studied previously for
the approach to solid particles [61]. However, some objects that may be approached by microor-
ganisms are porous. In particular, sinking organic matter in the ocean,“marine snow,” is porous
[62] and attracts organisms which seek to use it as a nutrient source. Here, we investigate a simple
model investigating how the porous, instead of solid, nature of marine snow affects the ability of
microorganisms to approach it.

We calculate the swimming speed V of a spherical squirmer swimmer of radius a = 1 um
approaching a stationary sphere of radius 2a composed of porous media. The squirmer and sphere
surfaces are separated by a distance d [Fig. 4(a)]. The squirmer swims due to the prescribed slip
velocities at its surface [63] and is a common model for the swimming of ciliated microorganisms
such as paramecia or Volvox algae. In our case, the slip velocities on the squirmer surface (relative
to the squirmer itself) are specified by

B .
Vv, = <81 sin 6 + 72 sin 29)0 1)

in spherical coordinates {r, 6, ¢} defined from the center of the squirmer sphere, where 6 is
the angle from the direction towards the stationary sphere, which is also the direction of the
swimming velocity. The basis vector 0 points in the direction of increasing 6. We use B,/B| =
—1. To find the swimming velocity of the squirmer, we fill the stationary sphere with a ran-
dom distribution of regularized Stokeslets, with a blob size and density that produce various
values of resistance o, as described in the previous sections. We test seven different resis-
tances: o = 0.5255 um™' (p =20 um™>, e =1 x 107% um), @ = 1.4393 um~! (p = 30 um=3,
e=5x%x10"3um), « =2.7560 um~' (p=55pum=3, e=1x 1072 um), « =4.0709 um™!
(p=60um™3, 6 =2x102pum), « =5.7571 pm~! (p =120 um =3, e =2 x 1072 um), @ =
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FIG. 4. (a) Schematic of spherical squirmer approaching a stationary spherical particle made of porous
medium. (b) Swimming velocity (V) of squirmer approaching a porous stationary particle as a function of
separation distance d. Velocity is normalized by swimming velocity in the absence of the particle (Vy).
(c) Schematic of spherical squirmer confined in a spherical pocket of fluid bounded by porous medium.
(d) Swimming velocity of squirmer confined as in (c) as a function of confinement size.

6.4366 um~! (p =150 um™3, e =2 x 1072 um), o = 7.9876 um~! (p =230 um 3, e =2 x
1072 pm).

The velocity at the locations of the regularized Stokeslets in the stationary sphere is specified
to be zero. We discretize the surface of the squirmer with 6146 regularized Stokeslets with
& =2.08 x 1072 pm, which is approximately equal to one-third of the spacing between them [36],
and we specify the velocity at the locations r? of each of these regularized Stokeslets to be

v(r?) = Vy(r9) + V + @ x r4. (22)

In this equation, V is the translational velocity of the squirmer and €2 is the angular velocity of the
squirmer relative to its center. The location r? is also measured relative to the center of the squirmer.
The values of V and € are determined by finding regularized Stokeslet forces such that the velocity
field satisfies the velocities specified at the locations of the regularized Stokeslets, plus force- and
torque-free conditions on the squirmer [37].

In the absence of the stationary sphere, the swimming velocity of a free squirmer is Vy = 2B;/3
[61]. Figure 4(b) shows the swimming speed V calculated in the presence of the stationary sphere
with different resistances «. The plotted results do not depend on the value of B; since the swimming
speed is normalized by the free squirmer velocity. Since V/Vy < 1, the presence of the sphere
reduces the swimming speed. However, a porous obstacle does not reduce the swimming speed as
much as a solid one; as the resistance increases, the reduction also increases. Thus we expect the
approach of microorganisms to porous particles such as marine snow to be less hindered by viscous
effects than the corresponding approach to solid particles.
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B. Squirmer within spherical pocket bounded by porous medium

As mentioned in Sec. I, Helicobacter pylori swims in a fluid pocket while traversing the gastric
mucus that it generates by producing ammonia, which neutralizes its surroundings and thereby
locally fluidizes nearby mucus [22]. The effect of this type of three-dimensional confinement in a
pocket has been studied by examining spherical squirmer swimmers inside spherical domains of
fluid with either a more viscous fluid [64] or Brinkman fluid [65] outside the interior domain. Here,
we use our proposed method to solve the problem of a spherical squirmer of radius ¢ = 1 um at the
center of a spherical pocket of radius b [Fig. 4(c)], surrounded by a porous medium with resistance
a=10a"".

We model the porous medium using a random distribution of regularized Stokeslets with blob
size € =0.01 um and density p =725 um~> to correspond with o = 10 um~'. The porous
medium is only modeled for a spherical shell of thickness 0.9 um. Note that this thickness
corresponds to nine Brinkman decay lengths, so the velocity field is expected to nearly entirely
diminish within the shell. The squirmer swims due to prescribed tangential velocity as described
above [Eq. (21)] and is also modeled using regularized Stokeslets in the same way as described
above. The swimming velocity of the squirmer as a function of confining sphere size b is shown in
Fig. 4(d). An analytic solution for this geometry and resistance is available from Nganguia et al.
[65] and is shown for comparison. Nganguia et al. emphasize that the confinement slows down the
squirmer, but in a nonmonotonic fashion as the pocket size increases.

Like the analytic solution, we find that the squirmer is slowed by confinement in a nonmonotonic
fashion with a minimum around » = 1.1a. However, the two models do not match quantitatively. A
key difference between our approach and the analytic solution is that the analytic model specifies
boundary conditions for the macroscopic averaged fields (continuous velocity and traction) at
the interface between the fluid and Brinkman medium, but our proposed model only involves
(continuous) microscopic flow fields.

The boundary conditions for interfaces of Brinkman media with Newtonian fluid [16,66—-70] or
between two different Brinkman media [15] are a matter of current study. This example highlights
the importance of the boundary conditions for macroscopic continuum descriptions of porous media
such as the Brinkman model. Our proposed model, on the other hand, does not have any freedom in
choosing boundary conditions and may be considered a microscale model of porous medium in its
own right. Indeed, models that, like ours, represent porous media using discrete elements [71-73]
have been used to investigate both the validity of the Brinkman model as well as its associated
boundary conditions. Studying the effects of heterogeneous media using our model in comparison
with the Brinkman model can be used to clarify which effects are not dependent on the choice of
boundary conditions, such as the nonmonotonic slowing down of tangential squirmers in spherical
confinement.

V. DISCUSSION AND CONCLUSIONS

We have found that the square of Brinkman medium resistance « has a linear relation with the
density p and blob size ¢ of regularized Stokeslets that represent the same porous medium. The
results from the Couette flow and source flow experiments can be written as o« = 3.72,/p¢ and o =
3.66,/p¢, respectively. The difference in proportionality constants of these relations corresponds to
~2% error in the estimates of o for a given p and €. The agreement between the two experiments
can also be established by directly comparing the mean resistance estimates obtained from the two
experiments at the same p and . We plot the ratio of estimates from the two numerical experiments
against the parameter pe’ for each input pair {p, ¢} in Fig. 5. In this plot, we only include the
subset of data points from Figs. 1(c) and 3(c) which have common values of p and ¢. The ratios in
Fig. 5 are clustered around 1, mostly within 4% error. This low difference in values of « from two
independent numerical experiments corroborates the overall relation of « to ,/pe.
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FIG. 5. Plot showing the ratio of the resistance estimate ayg, from the first numerical experiment to the
resistance estimate ayg, from the second numerical experiment, for each pair of density p and blob size &,
plotted as a function of pg>.

There are multiple ways to estimate the volume fraction of the porous medium described by our
random collection of regularized Stokeslets which yield results of the same order of magnitude.
First, one can estimate the volume of regularized Stokeslets by considering each regularized
Stokeslet to have the volume of a sphere with radius given by the blob size (4we?/3). Then the
volume fraction of fluid is (1 — 47 pe3/3). Second, the volume can be estimated from the results of
Spielman and Goren [74], who derived a formula for the volume fraction (¢) of the fluid in terms
of « for a random collection of fibers of radius ¢ (different from the pointlike regularized Stokeslets
we use) as

aeKy(ae) + 10K (xe)

¢ = 4aeKy(ae) + 10K (ae)’ @

where Ky(.) and K (.) are the zeroth- and first-order modified Bessel functions of the second kind.
The same formula has been used [27] to compute the volume fractions of biological fluids from
values of «. The result of applying this equation to the numerical experiments is shown in Fig. 6.
From Fig. 6, it can be seen that the solid volume fraction of the first estimate (47 pe®/3) is of the
same order of magnitude as that from the second estimate (1 — ¢). The error bars in the volume
fraction plot are propagated from the error in the estimates of « from Secs. IIT A and III B. Overall,
it can be seen that the volume fraction of solid is quite low, so that the Brinkman model is expected
to apply. However, the errors increase as the density increases, perhaps because the Brinkman
description of a porous medium becomes less valid as one leaves the dilute limit.

In this paper, we have shown that the flows inside a porous medium which obey Brinkman
equations can be described numerically by placing many static regularized Stokeslets randomly
in three dimensions. Using numerical experiments, we have shown that we can estimate the
resistance o of a corresponding Brinkman medium. The « of an equivalent Brinkman medium
can be used to compute the permeability ¥ (= «~2) and the porosity ¢ [using Eq. (23)]. Thus one
can fully characterize the Brinkman medium from the values of p and ¢ of a regularized Stokeslet
arrangement.

The main limitation on our method is that the length scales of the regularized Stokeslets distri-
bution, {p~!/3, &}, should be small compared to the typical length scales of the domain of porous
media. For example, we found that sufficient homogeneity is provided when the blob size was less
than a 40th (20th) and the mean separation distance between the Stokeslets was less than one-half
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FIG. 6. Volume fraction ¢ of fluid inside a Brinkman medium, estimated from Eq. (23) for a given
regularized Stokeslet arrangement of density p and blob size ¢.

(one-third) of the height of the box (shell thickness) in our first (second) numerical experiment. If
there are other boundary elements or regularized Stokeslets describing domain geometries in the
computation, one must also avoid situations where the regularized Stokeslets describing the porous
media are likely to approach them closely, which occurs when the blob size and density are both
large. We observed such issues in the Couette flow but not in the source flow, which did not have
any boundary elements describing its geometry. Such issues may be able to be ameliorated by using
regularized Stokeslets with tailored blob functions such as those with compact support [75,76], or
by using images [77,78] to reduce the influence of nearby plane boundaries. We also note that one
of our examples highlights the fact that solutions to the Brinkman model may depend on choices
for boundary conditions at the interface between the porous media and fluid.

Our model is applicable wherever a Brinkman medium is involved and is easy to implement as it
just requires one to fill the volume occupied by the Brinkman medium with a random arrangement
of static regularized Stokeslets of appropriate number density and blob size creating the desired
resistance value «. For instance, self-propelled swimming in a homogeneous Brinkman medium has
been modeled using regularized Brinkmanlets for general [27] and standard geometries [65]; we can
simulate this swimming using the method of regularized Stokeslets for the swimmer geometry [35]
and place regularized Stokeslets at appropriate {p, ¢} around the swimmer to account for the effect
of the porous medium. For swimming bacteria or sperm, the flagellum would set the length scale de-
termining the needed density of regularized Stokeslets. In order to resolve the geometry of a porous
medium between the crests of a swimmer’s flagellum, the density requirement could require many
regularized Stokeslets; however, we note that there are many cases where, for flagellar swimming in
mucus (treated as porous media), the pore sizes of the medium are actually significantly larger than
the length scales of flagella. In that case, it may be more realistic for the flagellum not to directly
interact with the media [17], suggesting that less dense (hence fewer) regularized Stokeslets could be
used. Another possible application that our method is well suited for is to model porous media with
spatially varying resistance. In that case, the density requirement for regularized Stokeslets may also
need to account for the length scale over which the resistance varies. Although the implementation
of our method is simple if one is already using regularized Stokeslets, due to the large number
of regularized Stokeslets it can quickly become computationally costly, which might require the
implementation of efficient solvers such as multipole methods [79,80]. Thus, for homogeneous
domains of porous media, the method of regularized Brinkmanlets may be more appropriate, but the
real advantage of our model can be seen when there is a heterogeneous medium around a moving
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boundary. For example, the actively self-generated confinement of bacteria swimming through gels
has only been tackled analytically using extremely simplified approaches [22,23,64] and cannot be
treated with the method of regularized Brinkmanlets. In our second example, we used our method
to numerically treat this problem by filling the volume of the porous gel with static regularized
Stokeslets, without having to account for the complicated boundary conditions near the medium
interface arising due to the change in constitutive laws. This type of approach is also similar
in spirit to the treatment of viscoelastic fluids by a lattice arrangement of regularized Stokeslets
interconnected by spring and dashpot elements [57].
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APPENDIX: BOUNDARY CONDITIONS TO MODEL
NEWTONIAN SHEAR FLOW INSIDE A BOX

When there is no porous medium between the two infinitely long plates, the fluid flow there is
governed by the Stokes equation. The velocity of the top plate sliding towards the right at velocity
U drives the fluid between the plates in a simple shear flow, Unewtonian = UYX/H. As in Sec. I[IT A 2,
we model the fluid flow in a box of width and length L via BEM where the top and bottom plate
move with the prescribed velocity (UX and 0, respectively).

Similar to the main text, we discretize the boundary of the box into triangular elements and apply
Eq. (14) with x, as the centers of each triangle, but with all regularized Stokeslet forces set to zero
since there is no porous medium between the plates. Then, we have a system of 3N, equations, in
terms of 6N, components of traction force and velocity on each of the triangular elements. Thus,
for each side of the box, we can only specify three of {Fy, F, F, u, uy, u;} and the other three are
obtained from solving the system of equations. All of these quantities can be calculated from the
analytical solution, so below we test a large set of choices, of which quantities are specified, and
examine the result of the choice on the accuracy of the BEM for the flow field within the box.

On the top and bottom face of the box, u, comes from the problem definition and, motivated
by the porous media problem, we consider F; to be an unknown output that must be calculated.
Then there are six ways to pick the remaining two input quantities from u,, u., F;,, and F;. On the
right and left faces of the box, we consider u, to be an unknown nonzero velocity field that must
be calculated and, since F} is nonzero, we do not prescribe its value. Then there are four ways to
pick the three input quantities from u,, u;, F;, and F;. On the front and back faces, we also consider
u, to be an unknown velocity field to be calculated. Then there are 10 ways to pick the three input
quantities from uy, u;, Fy, F;, and F;. In total, we check 240 (6 x 4 x 10) ways to prescribe the
boundary conditions on the box in the BEM. The resulting system of equations can be arranged in
the matrix form AX = b. Here, A is the coefficient matrix whose elements are the coefficients of
unknown quantities in the BEM [Eq. (14)], X is the column matrix with unknown quantities, and
b is the column matrix computed by substituting the input quantities in the BEM [Eq. (14)]. Then
the unknown quantities are computed by solving the system of equations AX = b, and so we know
the force and velocity of each triangular element representing the sides of the box. From these, we
can compute the velocity field at different locations on the central cross section of the box using
Eq. (14) with 8 = 1.

Comparing the numerical solution to the analytical solution Unewtonian, W€ compute the norm error
of the velocity field on the central cross section as Zilv”zl [|uNewtonian — W(X;) |A,,]2 and normalize with
(UL)?, where N, is the number of evaluation points, X,, is the location of the nth evaluation point
on the central cross section, u is computed from Eq. (14), A,, is the area of the nth element, and |v]|
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FIG. 7. Normalized error between the analytical velocity field and that computed from the boundary
element formulation, for Newtonian Couette flow, plotted as a function of the condition number of coefficient
matrix A (see text) for different choices of boundary conditions on the box surface. We chose U and L as
velocity and length scales, respectively, to normalize the error.

is the magnitude of vector v. For each of 240 possible ways to set up the boundary conditions, we
computed the condition number of the corresponding coefficient matrix A and the resulting norm
error and plot it in Fig. 7. The region on the bottom left of the plot from condition number 5.4 x 103
to 3.1 x 10* corresponds to low condition numbers and minimum error in the velocity field. It can
be seen that the boundary condition choices leading to low condition numbers give a low error in
the velocity field. These accurate, low-condition-number choices correspond to cases when for each
side and each direction, either the velocity or force, but not both, are specified. For example, on
the right and left sides, either u, or F;, should be specified, in addition to F; (u, was considered to
be an unknown) and u, (since F, was nonzero so we considered it to be an unknown). We do not
know what determines which boundary conditions are more or less well conditioned, but note that
the choice of conditions used for the porous media in the main text is one of these accurate and
low-condition-number choices.
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