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Flows in porous media in the low-Reynolds number regime are often modeled by the

Brinkman equations. Analytical solutions to these equations are limited to standard geome-

tries. Finite volume or element schemes can be used in more complicated geometries, but

become cumbersome when there are moving boundaries that require frequent remeshing

of the domain. In Newtonian fluids, the method of regularized Stokeslets has gained

popularity due to its ease of implementation, including for moving boundaries, especially

for swimming and pumping problems. While the corresponding method of regularized

Brinkmanlets can be used in a domain consisting entirely of Brinkman medium, many

applications would benefit from an easily implemented representation of flow in a domain

with heterogeneous regions of Brinkman medium and Newtonian fluid. In this paper, we

model flows in porous media by placing many static regularized Stokeslets randomly in

three dimensions to emulate the forces exerted by the rigid porous structure. We perform

numerical experiments to deduce the correspondence between the chosen density and blob

size of regularized Stokeslets in our model, and a Brinkman medium. We demonstrate our

model for two scenarios of microswimmers near porous media.

DOI: 10.1103/PhysRevFluids.7.104102

I. INTRODUCTION

Flow through porous media is encountered in many natural and industrial systems [1]. A

quantitative description of flows in porous media is extremely important for understanding flow

phenomena or designing such systems. Mathematical modeling of such flows has been an active

area of research in many fields, including, but not limited to, medicine [2], fluid mechanics [3],

hydrology [4], geophysics [5], and soil mechanics [6]. A volume-averaged description of flow

parameters and global description of porous structure (e.g., porosity, permeability) helps avoid

the characterization of spatially intricate flows through small-scale porous structures. Attempts to

derive equations describing flows through porous media date back to 1856 when Darcy [7] reported

empirical relations based on experimental observations relating the averaged fluid velocity to the

pressure drop via a linear relationship. This model presumes that the averaged flow field is uniform

in the domain and the drag offered by the porous structure dominates viscous shear forces in the

fluid. It fails to model flows in a highly porous domain and near boundaries [8]. For nonuniform

flows through porous media, the Brinkman equation was proposed in 1949 [9] to describe flows

past a dense swarm of static spherical particles. Here, the viscous forces due to velocity gradients

in the fluid flow become comparable to the drag force exerted by the porous structure leading to the

Brinkman equations [9],

−∇p = −µ∇2u + µα2u, ∇ · u = 0, (1)
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where p is the averaged pressure, u is the averaged fluid velocity, and µ is an effective viscosity.

Various theoretical studies have shown that this model accurately describes the flow in dilute

porous media [8,10–15]. In this dilute limit, the effective viscosity is related to the viscosity of

the fluid phase alone (µ0) by µ = µ0/φ, where φ is the porosity (volume fraction of fluid) in the

medium [16]. The parameter α is called the resistance of the porous medium and, in the limit

φ → 1, α−2 is the permeability of the medium. The value of α sets the length scale (α−1), called

the Brinkman screening length, over which the fluid flow decays in a given porous medium. In

the absence of porous structure in the fluid flow, α → 0 and the Brinkman equation reduces to the

Stokes equation (−∇p + µ∇2u = 0).

The Brinkman equation has been used in a variety of applications to mathematically model

flows through undeformed gels [17], arrays of fixed fibers [18], blood clots [19], and particles in

a microfluidic channel [20], as well as how porous media damp flows [21], and confine active

swimmers [22–24]. Analytical solutions for the flows obeying Brinkman equations can be derived

for problems involving simple geometries such as two-dimensional waving sheets, spheres, or cylin-

ders [22,23,25,26], but they are generally not available for flows involving complicated geometries.

For domains of arbitrary shapes, numerical solutions can be obtained via finite volume or element

schemes, for which the resolution of the discretization dictates the accuracy and computational

cost of these numerical solutions. Implementation of these schemes becomes cumbersome when

there are moving boundaries, such as the surface of a swimming bacterium, as it requires frequent

remeshing of the domain. If the medium around the moving boundary is a homogeneous Brinkman

medium, the method of regularized Brinkmanlets is quite useful [27,28], and Green’s functions for

anisotropic but spatially homogeneous permeability are also available [29]. However, these Green’s

function based approaches are not valid when there is a heterogeneity involved. An example of

such a heterogeneous mixture is a porous medium next to a Stokes fluid, as encountered by the

bacterium Helicobacter pylori swimming in a fluid pocket surrounded by gastric mucus [22,23], or

around growing blood clots inside a microfluidic channel [19]. Such heterogeneous domains can

be treated using finite volume schemes, but that can become cumbersome as it requires frequent

remeshing of the domain and accounting for complicated boundary conditions along the interface

of two fluids. Here we present a computational framework to address fluid flows in such situations

using regularized Stokeslets.

Our basic approach is to model a porous medium by a random arrangement of many static

regularized Stokeslets in three dimensions to emulate a rigid (stationary) porous structure. This

is similar in spirit to many past approaches which model flows through porous media as flows

around discrete stationary obstacles [12,30–33]. In a heterogeneous domain, only the portion

containing the porous medium is represented by a random spatial arrangement of static regularized

Stokeslets. In some ways, such a model with discrete obstacles is a more direct representation

of a porous medium than the macroscopic continuum Brinkman model, but it is still useful to

be able to connect these two models of porous media. The parameter that defines a porous

medium via Brinkman equations is the resistance, α. On the other hand, in our proposed model,

we define a porous medium using the number density of regularized Stokeslets, ρ, and the

blob parameter (size of each regularized Stokeslet), ε. To quantify the relationships between

the parameters α and {ρ, ε} in describing the same porous medium, we perform numerical

experiments using our proposed model and compare to analytical solutions for the Brinkman

model.

This paper is organized as follows: In Sec. II, we review the method of regularized Stokeslets.

In Sec. III, we perform numerical experiments involving the proposed model of porous media and

match results with the analytical solution obtained using the Brinkman equation. We then connect

the input parameters from our model to the resistance of Brinkman medium. In Sec. IV, we apply

our model to some example cases of microswimmers moving in heterogeneous scenarios with both

fluid and porous medium domains. In Sec. V, we discuss the applicability of the proposed porous

medium framework to model flows in porous media.

104102-2



MODELING CREEPING FLOWS IN POROUS MEDIA USING …

II. REVIEW OF REGULARIZED STOKESLETS

The method of regularized Stokeslets, introduced in 2001 by Cortez [34], computes the

Stokes flow at any point in a domain as the superposition of flow fields generated by forces

distributed at material points in a fluid. It uses a Green’s function solution, (uε, pε), of Stokes

equations in the presence of a force (f0) distributed around position x0 according to the function

ψε(x − x0) = 15ε4

8π (|x−x0|2+ε2 )7/2 . ψε is a radially symmetric, smooth approximation to a three-

dimensional δ distribution with the property that
∫

ψε(x)dx = 1, so that ψε(x − x0) is concentrated

near x = x0. The approximate size of the distribution is set by the value of the “blob parameter” ε.

Thus, uε and pε satisfy

−∂i p
ε + µ∂2uε

i = − f 0
i ψε, ∂ ju

ε
j = 0, (2)

where pε is the pressure, and uε is the fluid velocity. In this and other equations, we use indicial

notation, where i, j = 1, 2, 3 denotes Cartesian components and repeated indices are implicitly

summed over. The flow field uε and pressure field pε at a point x are called the regularized Stokeslet

and are specified by

uε
i (x) = Sε

i j (x − x0) f 0
j , (3)

pε(x) = Pε
j (x − x0) f 0

j , (4)

where

Sε
i j (r) =

1

8πµ

(

δi j (r
2 + 2ε2) + rir j

(r2 + ε2)3/2

)

, (5)

Pε
j (r) =

2r2 + 5ε2

8π (r2 + ε2)5/2
r j, (6)

δi j is the Kronecker delta, and r = |r|. Crucially, regularizing the point force (f0) removes any sin-

gularity at x0, thus simplifying the numerical implementation. The linearity of Stokes equations lets

us obtain a solution for multiple forces of the same form, acting at N different locations xq, for

q = 1, 2, . . . , N , by superposition of flow fields generated by each of those forces independently.

Thus the flow field (u) and pressure (p) at a point x are given by

ui(x) =
N

∑

q=1

Sε
i j (x − xq) f j (xq), (7)

p(x) =
N

∑

q=1

Pε
j (x − xq) f j (xq). (8)

Representing the flow external to a body using a surface distribution of regularized Stokeslets is

an accurate approximation to the representation of the flow via a single-layer representation of

the boundary integral equations in the limit of small ε [35]. Our implementation of the method of

Regularized Stokeslets for three-dimensional bodies has been previously described [36,37].

Due to the ease of its implementation even in intricate three-dimensional domains, the method

of regularized Stokeslets has become a popular choice to numerically model flows governed by the

Stokes equations for swimming microorganisms [35,38–40], human sperm [41], flexible filaments

[42], microrobots [43–50], tumor tissues [51], micropumps [52–54], phoretic flows [55], and plasma

membranes [56]. An interconnected lattice network of regularized Stokeslets has been used to

develop a computational framework to represent a viscoelastic fluid [57].

In this paper, we model porous media by filling the domain occupied by porous media with

randomly placed regularized Stokeslets, and connect it with a Brinkman equation description of the

same medium.
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FIG. 1. (a) Box-shaped domain for a portion of the Couette flow driven by the top surface sliding to the

right with velocity U . (b) Plot showing the ratio of standard deviation to the mean for estimates of α for a

given combination of {ρ, ε}, and box height H . (c) Plot showing the dependence of nondimensional Brinkman

medium resistance αε on nondimensional density ρε3 of regularized Stokeslets. Results are independent of the

box height H .

III. NUMERICAL EXPERIMENTS

The parameter that defines a porous medium via Brinkman equations is the resistance, α. On

the other hand, in our proposed model, we define a porous medium using the number density

per unit volume of regularized Stokeslets (ρ) and the Stokeslet blob parameter (ε). The average

spacing between these regularized Stokeslets is given by the length scale ρ−1/3. In order to establish

a relation between the two models, we perform two numerical experiments using our proposed

model and compare to analytical solutions for the Brinkman model to quantify and validate the

relationships between α and {ρ, ε}. A dimensional analysis suggests that the relationship can be

written in the form αε = f (ρε3, l1/ε, l2/ε, . . . ), where the li are length scales defining the geometry

of an experiment.

A. Couette flow between two plates

In the first experiment, we consider a steady-state flow between two infinitely long plates

separated by distance H , filled with a dilute porous medium of resistance α. The top plate moves to

the right with velocity U , while the bottom plate is fixed in place.

1. Analytical solution

Following the Brinkman equation, the resistance α can determine the velocity field in the volume

bounded by the plates, as shown below. The fluid flow between the plates is governed by the

Brinkman equations [Eq. (1)] and must also satisfy the velocity boundary conditions of u = U x̂

at height y = H , and u = 0 at y = 0. By symmetry, there is only an x component of the flow which

obeys

−
∂ p

∂x
= −µ

(

∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2
− α2ux

)

, (9)

where ux is the component of the velocity field in the x direction. The left-hand side of the equation is

zero as there is no pressure gradient imposed in the x direction. The first and third terms on the

right-hand side are zero by symmetry since u only depends on y. Solving for the velocity field from

the balance of the remaining terms subject to the boundary conditions (ux = U at y = H and ux = 0

at y = 0) gives the steady-state flow profile,

ux(y) =
U sinh(αy)

sinh(αH )
. (10)
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The resultant steady-state volume flow rate Q through a central cross section [as shown in Fig. 1(a)]

with width L can be computed by integration of the flow field, Q =
∫ H

y=0
ux(y)Ldy, to obtain

Q = ULH

[

1

αH
tanh

(αH

2

)

]

. (11)

In the above, note that ULH is an expected scale for a volumetric flow, while the expression in

brackets is a nondimensional correction factor.

2. Numerical setup

Next we model this flow using our proposed model with static regularized Stokeslets between the

plates, and compute the volume flow rate through the central cross section. Since the expression for

volume flow rate [Eq. (11)] depends on the resistance α, this will establish a relation between α and

{ρ, ε} of our proposed model. In order to be able to include the regularized Stokeslets numerically,

we model the flow situation using a boundary element method (BEM) [58]. In Appendix, we present

results of the validation of the BEM for a Newtonian fluid between two plates.

First consider a box-shaped domain D of width and length L [see Fig. 1(a)] between the two

infinitely long parallel plates. The top and bottom surfaces of this domain move with velocity

U x̂ and 0, respectively. The right, left, front, and back surfaces move with the local fluid velocity.

According to the BEM, the Stokes flow at x0 inside a bounded domain D or its boundary ∂D (faces

of the box in our case) can be expressed in terms of surface forces (F) and velocities (u) on the

boundary via boundary integral equations [58],

u j (x0)

β
=

1

8πµ

∫

∂D

Si j (x − x0)Fi(x)dA −
1

8π

∫

∂D

ui(x)Ti jk (x − x0)nkdA, (12)

where

β =
{

1 for x0 ∈ D,

2 for x0 ∈ ∂D.
(13)

Here, µ is the fluid viscosity, Si j (r) = (δi j/|r| + rir j/|r|3) is the (singular) Stokeslet,

Ti jk (r) = −6r jr jrk/|r|5 is the stresslet, and nk is the unit normal of the boundary pointing into the

domain. We discretized the domain boundary (∂D) into triangular elements [59] and use Gaussian

quadrature rules to numerically compute the surface integrals in the above equation. When there are

Np regularized Stokeslets in the fluid domain, the fluid velocity at a point x0 is then calculated as

u j (x0)

β
=

1

8πµ

Nb
∑

b=1

Ng
∑

g=1

w
(g)Si j (x

(b,g) − x0)Fi(x
(b,g))�A(b)

−
1

8π

Nb
∑

b=1

Ng
∑

g=1

w
(g)ui(x

(b,g))Ti jk (x(b,g) − x0)nk�A(b) +
Np
∑

p=1

Sε
i j (x

(p) − x0) f ε
i (x(p)),

(14)

where Nb is the number of boundary elements, Ng is the number of Gaussian quadrature points

with weights w
(g), the value of β depends on the position x0 according to Eq. (13), x(b,g) is the gth

quadrature point of the bth triangulated boundary element, �A(b) is the area of the bth boundary

element, Np is the number of regularized Stokeslets representing the proposed porous medium

model, x(p) is the position of the pth regularized Stokeslet, and fε(x(p)) is the force acting on the

pth regularized Stokeslet. We used Nb = 2480 boundary elements and Ng = 33 Gaussian quadrature

points generated using the algorithm in [59] and projected onto the surface as described in [60], and

assumed constant force and velocity on each boundary element.
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Applying Eq. (14) with x0 at the centers of each boundary element yields 3Nb equations in

terms of the 3Nb components of boundary forces, 3Nb components of boundary velocities, and

3Np regularized Stokeslet forces. Applying Eq. (14) at the locations of the regularized Stokeslets

(x0 = x(p)) yields 3Np additional equations in terms of the same variables, once the velocities at the

regularized Stokeslet locations are set to zero to satisfy the static condition. Note that setting the

velocity at the position of the Stokeslet to zero would not be possible if singular Stokeslets were

used instead. Physically, as the regularized Stokeslets are fixed in place, the forces required to keep

them stationary produces the effect of the porous medium on the flow. The solution to the above

system of equations then requires 3Nb additional conditions, which can be obtained by specifying

three of the force and velocity components {Fx, Fy, Fz, ux, uy, uz} for each boundary element, as

described in what follows.

First, from the problem definition, the top plate moves to the right with velocity U and the bottom

plate is stationary. Thus, at the top face of the box,

ux = U, uy = 0, uz = 0, (15)

and at the bottom face of the box,

ux = 0, uy = 0, uz = 0. (16)

Furthermore, as there is no imposed pressure gradient, we choose the value of pressure such that

Fx = 0 on the right and left faces. Strictly speaking, the force Fx which is zero is the volume-

averaged force (similar to the volume-averaged velocities and pressures in the Brinkman equation),

not the microscopic force affected by the randomly placed regularized Stokeslets. Below, we also

prescribe the rest of the boundary conditions in terms of volume-averaged, macroscopic quantities.

This is justified post hoc by the independence of the results from the surface placement, i.e., the

geometry of the box.

The symmetries of the problem determine enough of the remaining boundary forces and ve-

locities to solve the problem. The box-shaped domain is an arbitrary portion of width and length

L between the two infinite plates. Thus the solution in the box has translational symmetry in the

x and z directions, and is also symmetric when reflected about the xy plane. Due to translational

symmetry, the velocity field only depends on y, so the incompressibility condition (∇ · u = 0) and

the boundary conditions at the top and bottom plates imply that uy is zero all along the right, left,

front, and back faces. Together, reflection and translational symmetry imply that uz is zero on the

right and left faces of the box: for a uz at some point on the right or left face, reflection about the

xy plane implies that the velocity at its reflected image location is −uz, but the velocity at the image

location is also uz by translation symmetry, and hence must be zero. The same argument applies to

Fz on the right and left faces, and to uz on the front and back faces. Translation symmetry in the z

direction implies that the stress tensor is the same on front and back faces. Since the direction of

normal changes sign for these faces, the direction of traction forces on the faces also changes sign.

However, reflection symmetry about the xy plane implies that Fx and Fy are the same on the front

and back faces, so they must be zero. Note that on the front and back faces, symmetry does not

prohibit a nonzero Fz, which corresponds to a normal stress difference.

Collecting these together, we know that on the right and left faces, Fx = 0, uy = 0, uz = 0, and

Fz = 0. On the front and back faces, we know that Fx = 0, Fy = 0, uy = 0, and uz = 0. To solve the

linear system, we only need to specify six of these conditions in addition to Eqs. (15) and (16). In the

following, we chose Fx = 0, uy = 0, and uz = 0 on the right and left faces, and Fx = 0, Fy = 0, and

uz = 0 on the front and back faces, and solve for all other variables. In the Appendix, we validate this

BEM and choice of conditions for the case in which there is Newtonian fluid, not porous medium,

between the plates.

The effective volume flow rate was computed by triangulating the central cross section (the

plane at x = 0) and computing the area integral of velocity using one Gaussian quadrature point

on each triangle [Eq. (14)] with β = 1, as the evaluation point is interior to the domain. The

velocity field at these locations is the summation of velocity fields due to the boundary elements,
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and the forces at regularized Stokeslets representing the porous medium. The net volume flow

rate thus computed was compared to the analytical expression in Eq. (11) to obtain a value of

the resistance α of the porous medium. A dimensional analysis reveals that the flow rate can

be expressed as Q = UL2Q∗. Due to linearity in U , Q∗ is a dimensionless function of only the

geometrical configuration of the box as well as the random distribution of regularized Stokeslets.

All geometrically similar configurations (scaled by the length scale L) have the same Q∗, so it is

sufficient to perform simulations with a single arbitrary value of each of U and L, and only vary the

geometrical parameters {ρL3, ε/L, H/L}. We performed many such numerical experiments using

different values of number densities (ρ), blob parameters (ε), and box heights (H) in the ranges

(64L−3, 800L−3), (2 × 10−4L, 1.5 × 10−2L) and (0.1L, 0.25L), respectively, to obtain an estimate

of α for each case. For the highest density and the porous media volume that we used, the number

of Stokeslets was ∼4000.

In order for a random distribution of regularized Stokeslets to adequately represent a porous

medium, we expect that the distribution must appear homogeneous on the scale of the porous

medium geometry. To investigate when this holds true, we plot in Fig. 1(b) the coefficient of

variation (ratio of standard deviation to the mean) obtained from the estimates of α as a function of

the ratio of box height H to blob size ε, and the ratio of box height H to mean Stokeslet separation

ρ−1/3. Each data point in Fig. 1(b) is obtained from five different random distributions of regularized

Stokeslets with a fixed density ρ and blob size ε. The coefficient of variation should be small if the

distribution is homogeneous on the scale of the porous medium. The plot shows that the coefficient

of variation is small (<0.05) as long as H/ε > 40 and Hρ1/3 > 2 [dashed lines in Fig. 1(b)],

i.e., as long as the blob size and Stokeslet spacing is small enough compared to the smallest

geometrical dimension, i.e., H in our simulations. Note that for a fixed large epsilon (H/ε < 40),

the coefficient of variation has nonmonotonic dependence on density, becoming large in the large-ε,

large-ρ regime. In this regime, upon closer investigation we found that if we manually remove all

regularized Stokeslets located within ε of the boundary, the coefficient of variation becomes small.

Such a procedure changes the geometry; however, this behavior indicates that the large variations in

this regime arise when regularized Stokeslets are randomly placed within a blob size of the boundary

elements of the domain, which can lead to spatial variations in the velocities and tractions at the box

surface, contrary to our prescription of boundary conditions as macroscopic quantities.

A plot of α against ρ, nondimensionalized by the length scale ε, is shown in Fig. 1(c). In this

plot, we only include data points corresponding to H/ε > 40, Hρ1/3 > 2, i.e., with coefficient

of variation <0.05. The resistance of a porous medium, α, increases with increasing density and

blob size of regularized Stokeslets. Each data point in Fig. 1(c) is obtained by averaging α values

computed from five different random distributions of regularized Stokeslets with a fixed density

ρ and blob size ε. The error bars correspond to the standard deviation of those five values.

We confirmed that the mean value did not change appreciably, i.e., by more than the error, if

more simulations were used, by computing 15 simulations for two cases. The curves obtained

for different values of H/L collapse to a single curve, indicating that the box geometry H does

not influence the value of α when the box dimensions are not comparable to the length scales

involved in the regularized Stokeslets distribution. This is a useful result, as we can estimate the

value of α (resistance in Brinkman description) from the random distribution density (ρ) and

blob size (ε) of regularized Stokeslets in three dimensions (3D). It can be seen that αε scales

according to (αε)2 ∼ ρε3 by the linear fit to the data (obtained while forcing a zero intercept) in

Fig. 1(c).

To further validate our results, we compare the flow field as a function of height y in the box

calculated from our proposed model, to the flow field obtained using the analytical solution in the

Brinkman medium [Eq. (10)] with matching resistance for one case of {ρ, ε} (Fig. 2). Note that the

velocities and pressures in the Brinkman equation are the volume-averaged quantities homogenized

over the spatial variation of the porous medium. In our numerical model, we also must compute a

volume-averaged flow to homogenize variations near regularized Stokeslets. The volume average

for our numerical model is computed over a cube of size ρ−1/3. The flow fields of our model and
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FIG. 2. Volume-averaged x component of the velocity (normalized by the top surface velocity U ) as a

function of height y (normalized with the box’s height H ) computed numerically using the proposed model,

compared to the analytically computed flow field in a Brinkman medium with corresponding resistance α. The

velocity field is computed at x = 0, the central cross section of the box. The error bars represent the standard

deviation in the flow field across five different z positions, z/L = (−1/3, −1/6, 0, 1/6, 1/3). The values of

ρL3, ε/L, αL, and H/L used to generate the data in this plot are 6400, 0.0025, 14.24, and 0.375, respectively.

the Brinkman medium agree well, with little variation among velocities calculated at different z

coordinates but the same height in the box (displayed as error bars).

B. Source flow

We carried out a second numerical experiment to further corroborate the results obtained in

Sec. III A. Consider a source at the origin forcing a spherically symmetric flow through a shell

of porous medium [Fig. 3(a)]. A point source with constant volume outflow Q and viscosity µ is

placed at the center of a porous shell of inner radius R and thickness t . Due to the porous medium’s

resistance, constant pressure is generated inside the shell after a steady flow is established.

FIG. 3. (a) A point source with constant volume outflow Q is surrounded by a shell of porous medium,

generating a pressure inside the shell. (b) Plot showing the ratio of standard deviation to the mean for estimates

of α for a given combination of {ρ, ε}, and shell thickness t . (c) Plot showing the dependence of nondimensional

Brinkman medium resistance αε on the nondimensional density ρε3 of regularized Stokeslets. The results are

independent of the shell geometry.
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1. Analytical solution

The resistance α of the Brinkman medium determines the pressure developed inside the shell, as

shown below. We solve Eq. (1) in the spherical coordinate system, where only the radial component

is nonzero,

−
∂ p

∂r
= −µ

[

1

r2

∂

∂r

(

r2 ∂ur

∂r

)

−
2ur

r2

]

+ µα2ur, (17)

where ur is the radial component of the velocity u and r is the radial distance. The solution is

ur = Q/(4πr2), which is the same as in a Newtonian fluid due to incompressibility. Substituting

the value of ur into Eq. (17) and integrating from R to R + t gives an expression for the pressure

generated across the thickness of the shell, �p. This expression can be used to compute the value

of α:

α2 =
1

R2

[

4π

(

1 +
R

t

)R3�p

µQ

]

. (18)

2. Numerical setup

Numerically, we represent the Brinkman medium by placing static regularized Stokeslets in the

thickness of the spherical shell. To do so, we first randomly distributed Stokeslets at an appropriate

density in the smallest cube that fits the spherical shell. Then, we removed the Stokeslets that

are not in the thickness of the shell. The constant volume outflow from the point source located at

the center of the shell pushes these regularized Stokeslets radially outward with local fluid velocity,

and consequently an opposing force is required to keep each of these regularized Stokeslets static.

The flow field u at x0 is

u j (x0) =
Q

4π |x0|3
x0 j +

Np
∑

p=1

Sε
i j (x

(p) − x0) f ε
i (x(p)), (19)

where Np is the number of regularized Stokeslets, xp is the location of the pth regularized Stokeslet,

and fε(x(p)) is the force acting on the pth regularized Stokeslet. Forces acting on each regularized

Stokeslet can be computed by solving the system of equations obtained by applying the above

equation with x0 at the center of each regularized Stokeslet and imposing zero velocity on them

[u(x(p)) = 0]. These forces develop pressure P at the center of the shell found by evaluating Eq. (8)

at the origin [34],

P =
Np
∑

p=1

2|x(p)|2 + 5ε2

(|x(p)|2 + ε2)
5/2

x
(p)
i f ε

i (x(p)). (20)

The pressure in the far field outside the spherical shell is zero. The numerical value of the

pressure difference across the porous shell thus obtained was compared to the analytical expression

in Eq. (18). A dimensional analysis reveals that the pressure difference can be expressed as

�p = (µQ/R3)�p∗. Due to linearity in µ and Q, �p∗ is a dimensionless function of only the

geometrical configuration of the shell as well as the random distribution of regularized Stokeslets.

All geometrically similar configurations (scaled by the length scale R) have the same �p∗, so it is

sufficient to perform simulations with a single arbitrary value of each of Q, µ, and R, and only vary

the geometrical parameters {ε/R, ρR3, t/R}.
In Fig. 3(b), we plot the coefficient of variation (ratio of standard deviation to the mean) obtained

from the estimates of α as a function of the ratio shell thickness t to blob size ε, and mean

Stokeslet separation ρ−1/3 for different values of ρ, ε, and t in the range (0.125R−3, 160R−3),

(10−3R, 0.12R), and (0.1R, 3R), respectively. For the highest density and the porous media volume

that we used, the number of Stokeslets was ∼7000. Each data point is obtained from five different

random distributions of regularized Stokeslets with a fixed density ρ and blob size ε. The coefficient
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of variation should be small if the distribution is homogeneous on the scale of the porous medium.

It can be seen that the coefficient of variation is small (<0.05) as long as t/ε > 20 and tρ1/3 > 3

[dashed lines in Fig. 3(b)]. Again, this shows that a random distribution of regularized Stokeslets

can adequately describe the shell geometry as long as the blob size and Stokeslet spacing is small

enough compared to a typical length scale of the geometry; otherwise, the distribution of Stokeslets

is not sufficiently uniform to represent a Brinkman medium.

Using ε as the length scale, α and ρ are nondimensionalized and plotted in Fig. 3(c). In this

plot, we only include data points corresponding to t/ε > 20, and tρ1/3 > 3, i.e., with coefficient of

variation <0.05. Each data point is obtained by averaging α values computed from five different

random distributions of regularized Stokeslets with a fixed density ρ and blob size ε. The error bars

correspond to the standard deviation of those five values. As for the Couette flow, all the results

from different geometries collapse onto a single curve, showing that the thickness t and radius R do

not influence the nondimensional α. In other words, the experimental geometry does not influence

the value of α, and we get an estimate of the resistance of porous medium from only the density

and blob size of the regularized Stokeslets arrangement. It can be seen from Fig. 3(c) that αε scales

according to (αε)2 ∼ ρε by the linear fit to the data (forcing a zero intercept).

IV. EXAMPLES

In this section, we demonstrate our proposed method using two examples of microswimmers

swimming in heterogeneous environments. The first explores how swimming is affected by the

approach towards a particle made of porous media. The second examines how swimming is affected

by confinement by the porous media.

A. Squirmer approaching a porous sphere

Microorganisms must approach other organisms and particles in order to feed, mate, and find

new habitats [61]. However, in the low-Reynolds number microscale environment, such approach

is constrained by viscous interactions. These viscous interactions have been studied previously for

the approach to solid particles [61]. However, some objects that may be approached by microor-

ganisms are porous. In particular, sinking organic matter in the ocean,“marine snow,” is porous

[62] and attracts organisms which seek to use it as a nutrient source. Here, we investigate a simple

model investigating how the porous, instead of solid, nature of marine snow affects the ability of

microorganisms to approach it.

We calculate the swimming speed V of a spherical squirmer swimmer of radius a = 1 µm

approaching a stationary sphere of radius 2a composed of porous media. The squirmer and sphere

surfaces are separated by a distance d [Fig. 4(a)]. The squirmer swims due to the prescribed slip

velocities at its surface [63] and is a common model for the swimming of ciliated microorganisms

such as paramecia or Volvox algae. In our case, the slip velocities on the squirmer surface (relative

to the squirmer itself) are specified by

Vs =
(

B1 sin θ +
B2

2
sin 2θ

)

θ̂ (21)

in spherical coordinates {r, θ, φ} defined from the center of the squirmer sphere, where θ is

the angle from the direction towards the stationary sphere, which is also the direction of the

swimming velocity. The basis vector θ̂ points in the direction of increasing θ . We use B2/B1 =
−1. To find the swimming velocity of the squirmer, we fill the stationary sphere with a ran-

dom distribution of regularized Stokeslets, with a blob size and density that produce various

values of resistance α, as described in the previous sections. We test seven different resis-

tances: α = 0.5255 µm−1 (ρ = 20 µm−3, ε = 1 × 10−3 µm), α = 1.4393 µm−1 (ρ = 30 µm−3,

ε = 5 × 10−3 µm), α = 2.7560 µm−1 (ρ = 55 µm−3, ε = 1 × 10−2 µm), α = 4.0709 µm−1

(ρ = 60 µm−3, ε = 2 × 10−2 µm), α = 5.7571 µm−1 (ρ = 120 µm−3, ε = 2 × 10−2 µm), α =
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FIG. 4. (a) Schematic of spherical squirmer approaching a stationary spherical particle made of porous

medium. (b) Swimming velocity (V ) of squirmer approaching a porous stationary particle as a function of

separation distance d . Velocity is normalized by swimming velocity in the absence of the particle (VN ).

(c) Schematic of spherical squirmer confined in a spherical pocket of fluid bounded by porous medium.

(d) Swimming velocity of squirmer confined as in (c) as a function of confinement size.

6.4366 µm−1 (ρ = 150 µm−3, ε = 2 × 10−2 µm), α = 7.9876 µm−1 (ρ = 230 µm−3, ε = 2 ×
10−2 µm).

The velocity at the locations of the regularized Stokeslets in the stationary sphere is specified

to be zero. We discretize the surface of the squirmer with 6146 regularized Stokeslets with

ε = 2.08 × 10−2 µm, which is approximately equal to one-third of the spacing between them [36],

and we specify the velocity at the locations rq of each of these regularized Stokeslets to be

v(rq) = Vs(r
q) + V + � × rq. (22)

In this equation, V is the translational velocity of the squirmer and � is the angular velocity of the

squirmer relative to its center. The location rq is also measured relative to the center of the squirmer.

The values of V and � are determined by finding regularized Stokeslet forces such that the velocity

field satisfies the velocities specified at the locations of the regularized Stokeslets, plus force- and

torque-free conditions on the squirmer [37].

In the absence of the stationary sphere, the swimming velocity of a free squirmer is VN = 2B1/3

[61]. Figure 4(b) shows the swimming speed V calculated in the presence of the stationary sphere

with different resistances α. The plotted results do not depend on the value of B1 since the swimming

speed is normalized by the free squirmer velocity. Since V/VN < 1, the presence of the sphere

reduces the swimming speed. However, a porous obstacle does not reduce the swimming speed as

much as a solid one; as the resistance increases, the reduction also increases. Thus we expect the

approach of microorganisms to porous particles such as marine snow to be less hindered by viscous

effects than the corresponding approach to solid particles.
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B. Squirmer within spherical pocket bounded by porous medium

As mentioned in Sec. I, Helicobacter pylori swims in a fluid pocket while traversing the gastric

mucus that it generates by producing ammonia, which neutralizes its surroundings and thereby

locally fluidizes nearby mucus [22]. The effect of this type of three-dimensional confinement in a

pocket has been studied by examining spherical squirmer swimmers inside spherical domains of

fluid with either a more viscous fluid [64] or Brinkman fluid [65] outside the interior domain. Here,

we use our proposed method to solve the problem of a spherical squirmer of radius a = 1 µm at the

center of a spherical pocket of radius b [Fig. 4(c)], surrounded by a porous medium with resistance

α = 10 a−1.

We model the porous medium using a random distribution of regularized Stokeslets with blob

size ε = 0.01 µm and density ρ = 725 µm−3 to correspond with α = 10 µm−1. The porous

medium is only modeled for a spherical shell of thickness 0.9 µm. Note that this thickness

corresponds to nine Brinkman decay lengths, so the velocity field is expected to nearly entirely

diminish within the shell. The squirmer swims due to prescribed tangential velocity as described

above [Eq. (21)] and is also modeled using regularized Stokeslets in the same way as described

above. The swimming velocity of the squirmer as a function of confining sphere size b is shown in

Fig. 4(d). An analytic solution for this geometry and resistance is available from Nganguia et al.

[65] and is shown for comparison. Nganguia et al. emphasize that the confinement slows down the

squirmer, but in a nonmonotonic fashion as the pocket size increases.

Like the analytic solution, we find that the squirmer is slowed by confinement in a nonmonotonic

fashion with a minimum around b = 1.1a. However, the two models do not match quantitatively. A

key difference between our approach and the analytic solution is that the analytic model specifies

boundary conditions for the macroscopic averaged fields (continuous velocity and traction) at

the interface between the fluid and Brinkman medium, but our proposed model only involves

(continuous) microscopic flow fields.

The boundary conditions for interfaces of Brinkman media with Newtonian fluid [16,66–70] or

between two different Brinkman media [15] are a matter of current study. This example highlights

the importance of the boundary conditions for macroscopic continuum descriptions of porous media

such as the Brinkman model. Our proposed model, on the other hand, does not have any freedom in

choosing boundary conditions and may be considered a microscale model of porous medium in its

own right. Indeed, models that, like ours, represent porous media using discrete elements [71–73]

have been used to investigate both the validity of the Brinkman model as well as its associated

boundary conditions. Studying the effects of heterogeneous media using our model in comparison

with the Brinkman model can be used to clarify which effects are not dependent on the choice of

boundary conditions, such as the nonmonotonic slowing down of tangential squirmers in spherical

confinement.

V. DISCUSSION AND CONCLUSIONS

We have found that the square of Brinkman medium resistance α has a linear relation with the

density ρ and blob size ε of regularized Stokeslets that represent the same porous medium. The

results from the Couette flow and source flow experiments can be written as α = 3.72
√

ρε and α =
3.66

√
ρε, respectively. The difference in proportionality constants of these relations corresponds to

∼2% error in the estimates of α for a given ρ and ε. The agreement between the two experiments

can also be established by directly comparing the mean resistance estimates obtained from the two

experiments at the same ρ and ε. We plot the ratio of estimates from the two numerical experiments

against the parameter ρε3 for each input pair {ρ, ε} in Fig. 5. In this plot, we only include the

subset of data points from Figs. 1(c) and 3(c) which have common values of ρ and ε. The ratios in

Fig. 5 are clustered around 1, mostly within 4% error. This low difference in values of α from two

independent numerical experiments corroborates the overall relation of α to
√

ρε.
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FIG. 5. Plot showing the ratio of the resistance estimate αNE1
from the first numerical experiment to the

resistance estimate αNE2
from the second numerical experiment, for each pair of density ρ and blob size ε,

plotted as a function of ρε3.

There are multiple ways to estimate the volume fraction of the porous medium described by our

random collection of regularized Stokeslets which yield results of the same order of magnitude.

First, one can estimate the volume of regularized Stokeslets by considering each regularized

Stokeslet to have the volume of a sphere with radius given by the blob size (4πε3/3). Then the

volume fraction of fluid is (1 − 4πρε3/3). Second, the volume can be estimated from the results of

Spielman and Goren [74], who derived a formula for the volume fraction (φ) of the fluid in terms

of α for a random collection of fibers of radius ε (different from the pointlike regularized Stokeslets

we use) as

φ =
αεK0(αε) + 10K1(αε)

4αεK0(αε) + 10K1(αε)
, (23)

where K0(.) and K1(.) are the zeroth- and first-order modified Bessel functions of the second kind.

The same formula has been used [27] to compute the volume fractions of biological fluids from

values of α. The result of applying this equation to the numerical experiments is shown in Fig. 6.

From Fig. 6, it can be seen that the solid volume fraction of the first estimate (4πρε3/3) is of the

same order of magnitude as that from the second estimate (1 − φ). The error bars in the volume

fraction plot are propagated from the error in the estimates of α from Secs. III A and III B. Overall,

it can be seen that the volume fraction of solid is quite low, so that the Brinkman model is expected

to apply. However, the errors increase as the density increases, perhaps because the Brinkman

description of a porous medium becomes less valid as one leaves the dilute limit.

In this paper, we have shown that the flows inside a porous medium which obey Brinkman

equations can be described numerically by placing many static regularized Stokeslets randomly

in three dimensions. Using numerical experiments, we have shown that we can estimate the

resistance α of a corresponding Brinkman medium. The α of an equivalent Brinkman medium

can be used to compute the permeability κ (= α−2) and the porosity φ [using Eq. (23)]. Thus one

can fully characterize the Brinkman medium from the values of ρ and ε of a regularized Stokeslet

arrangement.

The main limitation on our method is that the length scales of the regularized Stokeslets distri-

bution, {ρ−1/3, ε}, should be small compared to the typical length scales of the domain of porous

media. For example, we found that sufficient homogeneity is provided when the blob size was less

than a 40th (20th) and the mean separation distance between the Stokeslets was less than one-half
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FIG. 6. Volume fraction φ of fluid inside a Brinkman medium, estimated from Eq. (23) for a given

regularized Stokeslet arrangement of density ρ and blob size ε.

(one-third) of the height of the box (shell thickness) in our first (second) numerical experiment. If

there are other boundary elements or regularized Stokeslets describing domain geometries in the

computation, one must also avoid situations where the regularized Stokeslets describing the porous

media are likely to approach them closely, which occurs when the blob size and density are both

large. We observed such issues in the Couette flow but not in the source flow, which did not have

any boundary elements describing its geometry. Such issues may be able to be ameliorated by using

regularized Stokeslets with tailored blob functions such as those with compact support [75,76], or

by using images [77,78] to reduce the influence of nearby plane boundaries. We also note that one

of our examples highlights the fact that solutions to the Brinkman model may depend on choices

for boundary conditions at the interface between the porous media and fluid.

Our model is applicable wherever a Brinkman medium is involved and is easy to implement as it

just requires one to fill the volume occupied by the Brinkman medium with a random arrangement

of static regularized Stokeslets of appropriate number density and blob size creating the desired

resistance value α. For instance, self-propelled swimming in a homogeneous Brinkman medium has

been modeled using regularized Brinkmanlets for general [27] and standard geometries [65]; we can

simulate this swimming using the method of regularized Stokeslets for the swimmer geometry [35]

and place regularized Stokeslets at appropriate {ρ, ε} around the swimmer to account for the effect

of the porous medium. For swimming bacteria or sperm, the flagellum would set the length scale de-

termining the needed density of regularized Stokeslets. In order to resolve the geometry of a porous

medium between the crests of a swimmer’s flagellum, the density requirement could require many

regularized Stokeslets; however, we note that there are many cases where, for flagellar swimming in

mucus (treated as porous media), the pore sizes of the medium are actually significantly larger than

the length scales of flagella. In that case, it may be more realistic for the flagellum not to directly

interact with the media [17], suggesting that less dense (hence fewer) regularized Stokeslets could be

used. Another possible application that our method is well suited for is to model porous media with

spatially varying resistance. In that case, the density requirement for regularized Stokeslets may also

need to account for the length scale over which the resistance varies. Although the implementation

of our method is simple if one is already using regularized Stokeslets, due to the large number

of regularized Stokeslets it can quickly become computationally costly, which might require the

implementation of efficient solvers such as multipole methods [79,80]. Thus, for homogeneous

domains of porous media, the method of regularized Brinkmanlets may be more appropriate, but the

real advantage of our model can be seen when there is a heterogeneous medium around a moving
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boundary. For example, the actively self-generated confinement of bacteria swimming through gels

has only been tackled analytically using extremely simplified approaches [22,23,64] and cannot be

treated with the method of regularized Brinkmanlets. In our second example, we used our method

to numerically treat this problem by filling the volume of the porous gel with static regularized

Stokeslets, without having to account for the complicated boundary conditions near the medium

interface arising due to the change in constitutive laws. This type of approach is also similar

in spirit to the treatment of viscoelastic fluids by a lattice arrangement of regularized Stokeslets

interconnected by spring and dashpot elements [57].
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APPENDIX: BOUNDARY CONDITIONS TO MODEL

NEWTONIAN SHEAR FLOW INSIDE A BOX

When there is no porous medium between the two infinitely long plates, the fluid flow there is

governed by the Stokes equation. The velocity of the top plate sliding towards the right at velocity

U drives the fluid between the plates in a simple shear flow, uNewtonian = Uyx̂/H . As in Sec. III A 2,

we model the fluid flow in a box of width and length L via BEM where the top and bottom plate

move with the prescribed velocity (U x̂ and 0, respectively).

Similar to the main text, we discretize the boundary of the box into triangular elements and apply

Eq. (14) with x0 as the centers of each triangle, but with all regularized Stokeslet forces set to zero

since there is no porous medium between the plates. Then, we have a system of 3Nb equations, in

terms of 6Nb components of traction force and velocity on each of the triangular elements. Thus,

for each side of the box, we can only specify three of {Fx, Fy, Fz, ux, uy, uz} and the other three are

obtained from solving the system of equations. All of these quantities can be calculated from the

analytical solution, so below we test a large set of choices, of which quantities are specified, and

examine the result of the choice on the accuracy of the BEM for the flow field within the box.

On the top and bottom face of the box, ux comes from the problem definition and, motivated

by the porous media problem, we consider Fx to be an unknown output that must be calculated.

Then there are six ways to pick the remaining two input quantities from uy, uz, Fy, and Fz. On the

right and left faces of the box, we consider ux to be an unknown nonzero velocity field that must

be calculated and, since Fy is nonzero, we do not prescribe its value. Then there are four ways to

pick the three input quantities from uy, uz, Fx, and Fz. On the front and back faces, we also consider

ux to be an unknown velocity field to be calculated. Then there are 10 ways to pick the three input

quantities from uy, uz, Fx, Fy, and Fz. In total, we check 240 (6 × 4 × 10) ways to prescribe the

boundary conditions on the box in the BEM. The resulting system of equations can be arranged in

the matrix form AX = b. Here, A is the coefficient matrix whose elements are the coefficients of

unknown quantities in the BEM [Eq. (14)], X is the column matrix with unknown quantities, and

b is the column matrix computed by substituting the input quantities in the BEM [Eq. (14)]. Then

the unknown quantities are computed by solving the system of equations AX = b, and so we know

the force and velocity of each triangular element representing the sides of the box. From these, we

can compute the velocity field at different locations on the central cross section of the box using

Eq. (14) with β = 1.

Comparing the numerical solution to the analytical solution uNewtonian, we compute the norm error

of the velocity field on the central cross section as
∑Ne

n=1[|uNewtonian − u(xn)|An]2 and normalize with

(UL)2, where Ne is the number of evaluation points, xn is the location of the nth evaluation point

on the central cross section, u is computed from Eq. (14), An is the area of the nth element, and |v|
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FIG. 7. Normalized error between the analytical velocity field and that computed from the boundary

element formulation, for Newtonian Couette flow, plotted as a function of the condition number of coefficient

matrix A (see text) for different choices of boundary conditions on the box surface. We chose U and L as

velocity and length scales, respectively, to normalize the error.

is the magnitude of vector v. For each of 240 possible ways to set up the boundary conditions, we

computed the condition number of the corresponding coefficient matrix A and the resulting norm

error and plot it in Fig. 7. The region on the bottom left of the plot from condition number 5.4 × 103

to 3.1 × 104 corresponds to low condition numbers and minimum error in the velocity field. It can

be seen that the boundary condition choices leading to low condition numbers give a low error in

the velocity field. These accurate, low-condition-number choices correspond to cases when for each

side and each direction, either the velocity or force, but not both, are specified. For example, on

the right and left sides, either uz or Fz should be specified, in addition to Fx (ux was considered to

be an unknown) and uy (since Fy was nonzero so we considered it to be an unknown). We do not

know what determines which boundary conditions are more or less well conditioned, but note that

the choice of conditions used for the porous media in the main text is one of these accurate and

low-condition-number choices.
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