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Abstract—The Artificial Intelligence (AI) disruption continues
unabated, albeit at extreme compute requirements. Neuromor-
phic circuits and systems offer a panacea for this extravagance. To
this effect, event-based learning such as spike-timing-dependent
plasticity (STDP) in spiking neural networks (SNNs) is an active
area of research. Hebbian learning in SNNs fundamentally
involves synaptic weight updates based on temporal correlations
between pre- and post- synaptic neural activities. While there are
broadly two approaches of realizing STDP, i.e. All-to-All versus
Nearest Neighbor (NN), there exist strong arguments favoring
the NN approach on the biologically plausibility front. In this
paper, we present a novel current-mode implementation of a
postsynaptic event-based NN STDP-based synapse. We lever-
age transistor subthreshold dynamics to generate exponential
STDP traces using repurposed log-domain low-pass filter circuits.
Synaptic weight operations involving addition and multiplications
are achieved by the Kirchoff current law and the translinear
principle respectively. Simulation results from the NCSU TSMC
180 nm technology are presented. Finally, the ideas presented
here hold implications for engineering efficient hardware to meet
the growing AI training and inference demands.

Index Terms—analog computation, STDP, learning, local
synaptic plasticity, three-factor, neuromorphic

I. INTRODUCTION

Engineering efficient hardware to address the growing arti-
ficial intelligence (AI) demands in our time is of immense
interest. State-of-the-art AI models such as large language
models [1] are extremely profligate in their training com-
pute consumption [2]. While delivering phenomenal gains in
recognition, their advancement using existing hardware such
as graphics processing units (GPUs) or tensor processing units
(TPUs), are economically and environmentally unsustainable
[3]. To address this challenge, neuromorphic engineers have
been emulating neural physiology in silicon with a motivation
of arriving at computational primitives that possess brain-level
energy efficiency (∼ 20 W) [4], [5]. In this light, we sought to
implement a spike-timing-dependent plasticity (STDP) circuit
suitable for adoption in analog/ mixed-signal neuromorphic
systems. STDP is a hebbian learning mechanism that leads to
synaptic weight changes as a function of the temporal corre-
lations between the pre- and post- synaptic neuron activities.
The causal (acausal) weight updates decay exponentially with
increasing pre-post (post-pre) spike intervals as shown in eq.1.

∆w(∆t) =

{
A+e

− ∆t
τ+ ∆t > 0

A−e
∆t
τ− ∆t < 0

(1)

where, ∆t = tpost − tpre, A+ and A− are the intial expo-
nential intensities for the potentiating and depressive regimes
respectively. Similarly, τ+ and τ− are the respective time
constants. tpre (tpost) is the pre- (post-) event time. STDP
can be implemented in two main ways, i.e. the classical All-
to-All (A2A) approach involving the pairing of all pre- (post-)
synaptic activity with all possible past and future post- (pre-
) synaptic activity and the Nearest Neighbor (NN) approach
where parings of pre- (post-) activity are only with respect to
the nearest post- (pre-) activity. There are strong arguments
[6] favoring the biological plausibility of the NN approach.
These include the reset of the membrane potential in the
dendritic spine by the latest postsynaptic spike thus overriding
the contribution of all preceeding postsynaptic spike. Other
plausible reasons include calcium saturation along with AMPA
receptor desensitization arising synaptic glutamate overload
from bursting presynaptic activity [7]. But also from an
implementation standpoint, the A2A approach is impractical
for online learning due to the dependence on future informa-
tion. Secondly, naively pairing all pre-post activity presents
a memory allocation challenge for time spikes in the case
of an epoch-based weight update. An online STDP requires
the generation of causal and acausal STDP traces, which
are typically exponential [8]. Conveniently, there exists an
exponential current-voltage relationship for the MOS transistor
operating in subthreshold. A literature review on the exer-
cise of designing analog synaptic circuits that realize non-
integrative pulse extension and log-domain filtering can be
found in [9].

In this paper, we present a post-synaptic event-driven nearest
neighbor STDP synapse circuit using analog current-mode
subthreshold principles. We show simulation results using the
NCSU TSMC 180 nm technology (Vdd = 1.8 V). In our
previous work [10], we implemented a digital NN STDP that
kept track of the earliest and latest presynaptic events in a
postsynaptic spike interval and also made accomodation for
a time-constant based linear approximation of the exponential
STDP trace. While tracking only two presynaptic events may
seem like an oversimplification, it gets around an indefinitely
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large memory allocation caveat for all possible presynaptic
events within an interval. Furthermore, preliminary exploration
of the algorithm showed promise on a spatiotemporal feature
extraction task. Herein, with the help of analog current-mode
circuits, we advance to letting capacitor saturation determine
the number of presynaptic event ∆w contributions to consider.
We also include additional parameters to potentially allow
transcending the two-factor learning (involving only pre and
post STDP trace contributions) to three or even four factor
and continual learning rules which may incorporate other local
factors such as the stochastic synaptic neurotransmitter release
probability or even meta/ global influences such as homeostatic
[9] control and dopaminergic reward [11]. In what follows,
we discuss each of the subcircuits, and then a top level circuit
combining all these units.

II. SUB-CIRCUITS & THEORY

A. Non-Integrative Postsynaptic Pulse Extender

The set-discharge synapse circuit first presented by [12] is
a compact (3T) non-integrative pulse extender with transistors
operating in subthreshold (shown in Fig. 1). On an input event
(active low), the switching transistor Mϕ sets the capacitive
node, Vc(t) to Vα− for the duration of the pulse. Upon pulse
removal, transistor Mτ linearly leaks Vc(t) to Vdd by a rate
defined by Vτ− . This causes the Mo drain current to decay
exponentially as shown in eq.2.

I∆wa(t) = Io · exp
(
− κ

VT
(Vc(t)− Vdd)

)
(2)

where κ is subthreshold slope factor [13], VT is thermal
voltage (25 mV at room temperature). Transistor size of
W/L = 8/8 and a diode-connected load are used throughout
this paper unless otherwise specified. We use this circuit for
generating acausal STDP trace (I∆wa

), which do not require
integration, i.e. every postsynaptic event initiates a new phase
of ∆w computation. Ultimately, the time course definition of
the I∆wa is given by,

I∆wa
(t) =

{
Iα− (set)

Iα− · exp
(
− t

τ−

)
(discharge) (3)

where Iα− = Io · exp
(
− κ

VT
(Vα− − Vdd)

)
and τ− = VTC

κIτ−
.

Thus, A− and τ− from eq. 1 are made voltage-dependent free
parameters such that, I∆wa

∼ f
(
A−(Vα−), τ−(Vτ−)

)
. This

dependence is demonstrated in Fig 1.

B. Integrative Presynaptic Pulse Extender

For providing pulse integration, we chose the differential
pair integrator (DPI) synapse circuit [9] due to its accompa-
nying linearity improvement, as well either the ability to scale
capacitor charging to allow smaller pulse widths or relative
compactness compared to other linear LPF circuits [14], [15]
and [16] respectively. We use the DPI for generating a causal
integrative STDP trace (I∆wc

). Except the switching transis-
tors Mϕ and Mr, all transistors have size-matching enforced as

Fig. 1. A. The non-integrative set-discharge circuit schematic by [12] used for
generating acausal ∆w contribution, I∆wa .B: Schematic symbol. Simulation
results for intensity, A−(Vα− ) variation in C. Vα− was swept from 1.33 V
to 1.45 V in steps of 30 mV for Vτ− = 1.55 V. D shows the time-constant,
τ−(Vτ− ) variation by sweeping Vτ− from 1.5 to 1.7 V in steps of 50 mV
while Vα− = 1.33 V. Common parameters values used in C and D: C =
100 fF, pulse width of 100 ns and 10 µs period.

Fig. 2. A. Circuit schematic of the DPI circuit by [9] modified to include a
postsynaptic event-controlled reset transistor Mr necessary for realizing the
nearest neighbor feature. The corresponding schematic symbol is shown in
B. The influence of Vα+ and Vthr are shown in C and D respectively for
Vτ+ = 1.5 V. In C, the more sensitive Vα+ is swept from 410 mV to
420 mV in steps of 2.5 mV, while Vthr = 1.34 V. In D, Vthr is swept
from 1.34 V to 1.5 V in steps of 40 mV. E depicts current integration Vτ+
is varied from 1.5 V to 1.7 V in steps of 50 mV. Common parameter values
for C, D and E are C = 100 fF, pulse width of 100 ns, ϕr

post period of
40 µs and ϕpre period of 4 µs

well as operate in subthreshold. The DPI operates as follows:
an input event completes the path from Vdd to ground through
transistors Min, Mα and Mϕ and ultimately sets the initial
amplitude of the exponential trace. This amplitude is a function
of Vthr and Vα+ , which intuitively controls the strength of
the current Iin. An elevated Vthr chokes the Iin differential
pair branch of the tail current set by Vα+

. Exploiting the
exponential drain current and gate voltage relationship in
transistor Mo along with capacitor current relation, the first
order differential LPF equation shown in eq. 4 can be obtained.

τ+
dI∆wc

dt
+ I∆wc

=
IgainIα+

Iτ+
(4)

where Igain = Io · exp
(
− κ

VT
(Vthr − Vdd)

)
. The reader

Authorized licensed use limited to: Johns Hopkins University. Downloaded on November 08,2023 at 16:50:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. A. Circuit Schematic for the dual-phase Dynamic Current Mirror used
in memorizing input current. B. Schematic Symbol. C. shows the events ϕ as
the switching signal. The initialization control signal Vinit is also shown.
D. shows the initialization in the first 30 µs (Iout(0) = 50 nA ) and
subsequent input (ramp) current memorization. Parameter values are follows:
C = 100 fF, pulse width of 100 ns and period of 10 µs

may refer to [9] for derivation and operating conditions.
Ultimately, the time course definition of I∆wc

is given by:

I∆wc(t) =


IgainIα+

Iτ+
+ Iδ∆wc

(t) (charge)

I+∆wc
· exp

(
− t−t+i

τ+

)
(discharge)

(5)

where Iδ∆wc
(t) =

(
I−∆wc

− IgainIα+

Iτ+

)
exp(− t−t−i

τ+
) is the

transient response and τ+ = CVT

κIτ+
. t−i and t+i are the pulse

start and end times respectively and I−∆wc
and I+∆wc

are
the corresponding output current values. Similarly, A+ and
τ+ from eq. 1 are voltage dependent free parameters such
that, I∆wc

∼ f
(
A+(Vα+

, Vthr), τ+(Vτ+)
)

This dependence
is demonstrated in Fig.2.

C. Supporting Circuits

1) Dynamic Current Mirror: The dynamic current mirror
(DCM) acts as a current-mode memory element deployed in
latching synaptic weight and weight update current values in
this work. The dual-phase DCM is suitable for simultaneous
input memorizing (reading) and output sourcing (writing).
Transfer of learned input current to the output is facilitated
via switching ϕ1 and ϕ2 in a complementary non-overlapping
manner. For simplicity, we set ϕ1 = ϕ and ϕ2 = ϕ, where
ϕ is a postsynaptic-event-derived pulse. PMOS transistors are
used here, hence switching is active low. The reader may refer
to [17] for a detailed description of the DCM. We include a
branch on the output to switch between sourcing a user-defined
initial current, Iout(0) and the learned current from MC1 post-
initialization. Initialization is set by Vinit high. In all (see Fig
6), two DCMs are used in the STDP cell – one for achieving
I∆w(i+1) from I∆w(i) and the other for achieving Iw(i+1)
from Iw(i). i is the postsynaptic interval index. See the current
initialization and memorization in Fig.3.

Fig. 4. A. Circuit Schematic for Translinear Multiplier. B. Schematic Symbol.
C. shows simulation results of a dc sweep for IA over the range of 0−100 nA
with IB = 1 nA. The effect of Inorm on Iout is demonstrated by stepping
1 nA to 10 nA in 1 nA increment

Fig. 5. The Pulse edge detection circuit shown in A (symbol in B) used for
generating two non-overlapping edge-coupled daughter pulses for separating
the DCM output current update and net STDP trace reset. C. shows how
the two pulselets can be narrowed by increasing the bias voltage Vb1 set
by current mirror input current Ib1 . Ib1 is swept from 100 nA to 300 nA
in 40 nA steps while ∆V = 0.7 V. The effect of this on the decay time
constant of follower-integrator output, Vdiff is shown in D. E: A widening
effect on the pulselets can also be achieved by increasing ∆V . Ib1 is set to
100 nA while ∆V is swept from 0.4 V to 0.8 V in steps of 80 mV steps.
Common paramters are as follows: C = 100 fF, Vp = 0.9 V, pulse width
of 1 µs and period 4 µs.

2) Translinear Multiplier: This 4T circuit translates the
log-domain voltage addition (from a translinear loop) into a
normalized current multiplication of input currents IA and IB .
i.e, Iout ≈ IA·IB

Inorm
. The reader may refer to [18] for details on

the circuit operation. Fig.4 shows the circuit schematic and DC
response. The required normalization current, Inorm, offers an
extra free parameter for realizing beyond the classical two-
factor learning.

3) Pulse Edge Detector: We adopted a follower-
differentiator (diff1) circuit [4], [13] for detecting rising and
falling edge of the postsynaptic events. This was necessary for
performing Iw updates and resets on separate phases – update
on first and reset on second phase respectively. The idea here
is to leverage the bipolar exponential potential decays arising
from switching. By thresholding at ∆V and ∆V = Vdd−∆V
with the help of two comparators, the rising and falling edge-
induced decays produce two edge-coupled daughter pulses
ϕu
post and ϕr

post from the original postsynaptic pulse ϕpost

(See Fig.5).

III. THE NN STDP SYNAPSE CELL (TOP LEVEL)

Bringing it all together, the to-be-latched weight update
current, I∆w(i + 1) is computed with the inclusion of a
reference current Iref to circumvent the unidirectional current
constraint. Thus yielding;

I∆w(i+ 1) = I∆wc(t) + Iref − I∆wa(t) (6)
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Fig. 6. A. Top-level NN STDP cell circuit. Simulation results: B – pre- and post- synaptic activity of periods of 20 µs and 75 µs respectively, pulse width
of 1 µs, Vα− = 1.332 V, Vτ− = 1.7 V, Vα+ = 350 mV, Vthr = 1.415 V, Vτ+ = 1.57 V, Vα(α)

= 320 mV, Vτ(α)
= 1.57 V, Vthr(α)

= 1.42 V,
Vp = 900 mV, ∆V = 700 mV, Ib1 = 100 nA, Ib2 = 100 nA, I∆w(0) = 1 nA, Iw(0) = 10 nA. All but the DCM capacitor are 100 fF, DCM
capacitor is 400 fF. The effect of Inorm1 is shown in E and F. The product of Iw and Isyn(α)

is shown in E. Similarly, Inorm2 effect is shown in F. In
both, 2 nA to 10 nA sweep at 2 nA step.

Addition is conveniently achieved by the Kirchoff Current
Law (KCL). The influence of the Iref offset on I∆w (in
eq. 6) is subtracted from the synaptic weight current, Iw as
shown in eq. 7. Iw is non-negative during operation. This is
neurophysiologically consistent – Chemical synapses are often
designated either excitatory (AMPAergic and NMDAergic) or
inhibitory (GABAergic) [11] – e.g., pyramidal cortical neurons
and chandelier cells respectively.

Iw(i+1) = Iw(i)+

(
I∆w(i)

Inorm1

)
Iw(i)−

(
Iw(i)

Inorm1

)
Iref (7)

Finally, another translinear multiplication can be performed
between Iw(i) and a preferred synaptic circuit (DPI used here)
current, Isyn(α) (eq. 8). This offers another normalization cur-
rent, Inorm2

that can be adopted in a meta-level optimization
alongside the three-factor learning.

Isyn(t) =
Iw(i) · Isyn(α)(t)

Inorm2

(8)

A top-level schematic integrating all above-mentioned sub-
circuits is presented in Fig.6A. Simulation results showing
potentiation and depression arising from pre- and post-synaptic
activity are also shown in Fig.6B-F. Post-synaptic-event-driven
sourcing of the memorized current I∆w(i) from the net STDP
trace I∆w(i + 1) can be observed in Fig.6C. The product
of the Iw(i) and a template synaptic current, Isyn(α) (in
Fig.6 D) is shown in Fig.6 E. The effects of Inorm1 and
Inorm2

,potentially useful for three-factor learning, are shown
in Fig.6E and F respectively.

Estimates for average power and energy per spike1 for
the parameter case shown in Fig.6 are 1.77 µW and
27.9 pJ/spike. For context, similar work by [19] (in TSMC
250 nm, Vdd = 3.3 V) achieved an estimated performance in
the range of 42− 83 pJ/spike. A much efficient implementa-
tion [20] (in 90 nm, Vdd = 0.6 V) reported ∼ 0.4 pJ/spike. It
is worth pointing out that energy dissipation in this study, is a

1In this work, energy/spike = average power/(#pre-spikes/s + #post-spikes/s)

function of event rate and the STDP parameters. For instance,
keeping all other parameter values used in Fig.6 and setting
pre period to 3 µs, Vτ+ = 1.5 V, and Vα+ = 320 mV yields
1.72 µW and 5 pJ/spike. Thus, finding the optimal parameters
for energy-efficient operation is subject to future work.

IV. DISCUSSION

SNNs are rivialed by conventional recurrent neural networks
and the more recent transformer networks that power the much
talked-about GPT-3 [1]. However, SNNs are well suited for
computational efficiency that arises from their biologically
plausible sparsity. This study presented a current-mode im-
plementation of a postsynaptic-event-driven NN STDP. Simu-
lation results based on the NCSU TSMC 180 nm technology
in Cadence were presented. We repurposed analog synaptic-
current-producing circuits for generating exponential STDP
traces as well as translinear multiplication which would have
otherwise been extravagant to achieve in digital logic. More so,
additional parameters arising from the required normalization
currents in the translinear multipliers offers the opportunity to
explore three-factor and meta learning rules, which are of im-
mense interest in recent times for continual learning [21], [22].
It is worth mentioning that the simulation results may suffer
non-idealities such as transistor mismatch and thermal-induced
excursions post-fabrication. Such perturbations can, however,
be leveraged to arrive at a robust learning mechanism. Future
work include circuit optimization to reduce transistor count
as well as a subsequent chip-tapeout of an array of such
synaptic units for the purpose of integration into a silicon
neural array. This will ultimately be deployed in robust event-
based recognition tasks.
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