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Abstract

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their
broadly recognized biological functions; however, because of their high charge and dynamic
nature, RNA structures are far more challenging to determine. We introduce an approach that
exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready
identification of A scale features in structured and unstructured RNAs. Previously unrecognized
structural signatures of RNA secondary and tertiary structures are identified through wide angle
solution scattering experiments. With millisecond time resolution, we observe an RNA fold from
a dynamically varying single strand through a base paired intermediate to assume a triple helix
conformation. While the backbone orchestrates the folding, the final structure is locked in by
base stacking. This method may help to rapidly characterize and identify structural elements in
nucleic acids in both equilibrium and time-resolved experiments.

Teaser

Dynamically changing RNA structures are visualized in time-resolved, high-resolution solution
scattering experiments.
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Introduction

The majority of genomic DNA is transcribed into RNA, yet only a small fraction is translated into
proteins (/). Although the biological roles of much of this untranslated RNA have yet to be
elucidated, non-coding RNA is increasingly linked to vital cellular functions (2) and has great
potential as a therapeutic (3). Advances in assigning biological roles to these transcripts, or in
improving the targeted design of drugs, may be accelerated if their structures can be deduced.
Macromolecular structures can be directly measured, simulated, or derived from sequence by
solving the folding problem (4), using computational tools (5), or applying artificial intelligence
(6). Because of the highly charged and dynamic nature of its backbone, as well as the similarity
of its nucleotide building blocks, RNA structures are far more challenging to solve than protein
structures, by either experiment (7-9) or all atom simulation (/0, /7) The paucity of measured
structures limits our ability to advance the field (/2), especially when compared to the state-of-
the-art in protein structure prediction (6) .

X-ray scattering from biomolecules in solution has great potential to advance RNA structure
characterization. Small angle X-ray scattering (SAXS) has been frequently applied to measure
RNA structure (/3-15) and informs about global, nanometer level molecular structures (/6).
Scattering to large angles (wide angle X-ray scattering, WAXS), enhances measurement resolution
to the single A (17, 18). Recent WAXS studies (/9-23) have begun to connect distinctive peaks in
scattering profiles with real space features of DNA and RNA, including backbone geometries,
structural building blocks (duplexes), and base stacking.

Here, we demonstrate a new approach to characterizing RNA structures. Time-resolved WAXS
studies, with millisecond time resolution and single A spatial resolution, provide information
about the transient structures that populate an RNA folding pathway. WAXS profiles,
acquired milliseconds after initiation of folding, are interpreted by comparison with profiles
of known motifs acquired in static measurements. These latter data were acquired at higher
scattering angles (e.g. resolution) than reported in previous studies (/9, 24) and display
distinctive experimental signatures.

WAXS signals from biomolecules are 100-1000 times smaller than SAXS signals. Seconds-long
exposures of typical millimeter or sub-millimeter sized solution samples, with volumes of 10’s of
microliters, are required for measurement at high flux synchrotron sources (/9). Rapid fluidic
mixers facilitate the millisecond scale time-resolved measurements relevant for detection of RNA
folding reactions (25). X-ray illuminated sample volumes within these flow cells can be 100 to
1000 times smaller than used for equilibrium measurement (26), depending on the desired time
resolution. Thus, these time-resolved WAXS measurements are beyond the current-state-of-the-

art at synchrotrons.

X-ray free electron laser (XFEL) sources present a unique opportunity to illuminate micron scale,
10’s of femtoliter sample volumes with high flux beams. At the Linac Coherent Light Source
(LCLS, SLAC National Accelerator Lab), beam intensities at the sample are ~1000 times higher
than at state-of-the-art synchrotron beamlines, enabling measurement of previously impossible-
to-detect signals using time-resolved WAXS (27-30). We dramatically expand this field
by introducing mixing injectors (37, 32) to perform the first, to our knowledge, chemically
triggered time-resolved solution scattering experiments on biomolecules at an XFEL. This
experiment follows the dynamic acquisition of secondary and tertiary structure of an
unstructured, single strand of RNA, as it folds to a triple helical final state. Synchrotron acquired,
equilibrium WAXS profiles of related RNAs, in single strand, duplex, and triplex molecular
forms, allow us to interpret the distinctive experimental signatures revealed in the time-resolved
experiments. These findings advance our understanding of how RNA molecules fold.
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Results

High resolution features in solution scattering profiles provide incisive information about
RNA’s molecular state

The wide angle scattering regime, q > 0.5 A' (q = 4nsin6/A, where 0 is half the scattering angle
and A is the x-ray wavelength) is information-rich for nucleic acid samples. Figure 1, panels A-C
shows measured scattering profiles of three different RNA motifs, along with a cartoon
representation of the structures they reflect. These curves were acquired at synchrotrons. Panel A
shows WAXS profiles of RNA single strands, both unstructured chains of 30 uracil nucleotides,
rU30, and minimally structured chains of 30 adenosine nucleotides, rA30. Structures derived
from SAXS studies (measured for q < 0.25 A") of rU30 and rA30 (24) are shown below the
WAXS profiles. Panel B shows the scattering profile of a designed duplex that terminates in a
loop. Panel C shows scattering profiles of RNA triplexes with different lengths, constructed by
adding a third, triplex forming strand to a hairpin duplex. Lower q portions of these data (for q <
1.0 A"") were previously published (/9) and best-fit structures were determined by comparison
with all atom simulations. Measurements acquired at higher q, reported here, shows the distinct
features of each profile that can be associated with structural patterns that characterize single,
double, or triple-stranded RNA. These connections, highlighted by colored, dashed bars in
panels B, C, E, and F, are explained in more detail below and in Figure S1.

Single strands. Figure 1 panel A shows the measured scattering profile of two single stranded
constructs rU30 and rA30 in buffered solutions containing 100 mM NaCl. Single stranded RNA
molecules are dynamic and highly flexible, thus their molecular structures are best recapitulated
by an ensemble whose properties (and summed scattering profiles) are consistent with
experimental measurements from a variety of probes (24). Typical structures from a best-fit
ensemble are shown below the scattering profiles of panel A (24). The intensity of scattering from
these disordered molecules decreases monotonically from low q to about qg=0.8 A"!, where a broad
peak is visible for both rU30 and rA30. This peak occupies a range of q values corresponding to
length scales between about 3 and 8 A. As noted in prior work on DNA (23), well defined peaks
in this range are derived from the phosphate backbone. In contrast, the broad peak seen here
reflects the lack of structured elements on these length scales, hence the structural heterogeneity
of the ensemble. Within it, signs of structure emerge for rA30, in the form of two loosely separated,
broad peaks near q= 1.1 and 1.5 A"' , but not for rU30, consistent with base stacking induced
ordering present in the former and absent in the latter (24). Both curves decay at larger q.
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Figure 1. WAXS features associated with structural motifs of RNA. A) scattering profiles of single stranded
constructs rU30 and rA30 shown as intensity vs. q. Representative structures in the experimentally determined
ensemble of rU30 (top) and rA30 (bottom) are shown below. B) scattering profile of designed RNA hairpin duplex
from Ref. (/9), with a model of one duplex conformation shown below. C) scattering profile of RNA hairpin triplexes
from Ref. (/9) with a model of triplex from Ref. (/9) shown below. The inset emphasizes the rich information content
of the WAXS region. The colored lines in panels B and C link the features in the scattering profile with their
corresponding real space structures. D) scattering profile of the t=0, Mg?" free starting state of the time resolved
experiment, acquired at LCLS, with a cartoon representation of unfolded UAU12. Blue lines indicate dynamic motion.
E) scattering profile of designed hairpin duplex with UA base pairs, with a cartoon duplex shown below. F) scattering
profile of folded UAUI12 triplex, 1 second after the addition of Mg?" to trigger folding, acquired at LCLS, with a
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Duplexes. Figure 1 panel B shows the scattering profile of a 62 nucleotide RNA hairpin, consisting
of a 29 base-paired duplex, terminated by a four nucleotide loop from Ref. (/9). Prior studies
examined the scattering out to q =1.25 A"! and used molecular dynamics simulations (/9) in
conjunction with machine learning (27) to confirm that the small, but notable peak at q= 0.8 A is
connected with the helical major groove, a repeated spatial dimension in the duplex structure. A
red bar in the figure connects these reciprocal and real space features. At higher angle, 1 <q <2
A, a broad peak appears. Although better articulated than in panel A, the sharp peaks
characteristic of DNA duplexes (23) are absent, suggesting that this duplex has some
conformational variation. This observation is consistent with other studies of RNA duplexes (20,
22). A single molecular conformation from the simulations of Ref. (/9) is pictured just below the
profile.

Triplexes. Figure 1 panel C illustrates the unique and never-before-reported triplet of peaks
associated with triple helical backbones, indicated by a purple bar in the figure. Measured
scattering profiles from two triplexes are shown. Both were constructed by adding a triplex
forming single strand to a hairpin duplex. The shorter/longer construct consists of loop terminated
17/29 base paired duplexes, with an added 12/24 nucleotide single strand that binds to form base
triples over much of the length of the molecule. A model of this latter structure is shown just below
the plot, taken from Ref. (/9). Its increased length reinforces the features that uniquely identify the
triplex structure by WAXS: three sharp peaks at q=1.0, 1.4 and 1.7 A"'. By analogy with the DNA
fingerprinting studies of Ref. (23), and structural modeling (SI: Modeling connects features in the
scattering profile with molecular structures and Figure S1), these peaks reflect the regular spacing
of atoms along the backbone in a helical conformation. This cluster of three peaks is flanked by
additional peaks on either side. At lower g, a weak reflection of the major groove peak can be seen.
Figure S2 shows that this peak is substantially reduced and shifted to lower q between the duplex
and triplex states. As previous x-ray fiber diffraction studies of a pure RNA triplex suggest that it
is roughly cylindrical, lacking grooves (33), this reduced peak may reflect a small amount of
duplex that is present in the construct shown below panel C. At higher q (1.93 A™"), the small but
distinct peak (dark blue bar, Figure 1C) reflects the 3.26 A distance between stacked base triples
(Figure Sland Ref. (/9)). The sharpness of the peaks indicates that triplex molecular dimensions
are well defined, with less conformational variation than either the duplex or single strands.

These curves reveal five distinct features of WAXS (q > 0.5 A™!) scattering profiles of RNA
structures, only one of which has been previously identified (/9). The peak at g= 0.8 A™! reflects
the existence of a major groove. The three peaks at q= 1.0, 1.4 and 1.7 A! represent regularly
positioned atoms in the three RNA backbones of the triplex and the tiny peak at q= 1.9 A" reflects
stacking of base triples (Figure S1 and length scales extrapolated from structures of Ref. (/9)).
Additional information can be gleaned from lower q, SAXS features (SI: Low g changes and Figure
S2). In particular, when unstructured single strands combine to form a duplex, a peak appears near
q=0.4 A!. According to machine learning models (21), the position of this peak reflects the radius
of the helical structure. It shifts slightly to lower q for the triplex relative to the duplex, reflecting
the larger helical radius of the former. Although this work highlights higher angle features, the
lower q peak also contributes to our understanding of RNA structure and serves as an important
milestone in folding studies.

Starting and ending states of the mixing experiment. For folding studies, we used a 46 nucleotide
RNA with sequence 12U-5C-12U-5C-12A. This construct is a long single strand of RNA, in
contrast to the triplexes shown in panel C, which were each created from two separate RNA
molecules. This design is based on a well-characterized triplex forming sequence (34, 35). We
refer to it as UAUI12, to highlight the capture of the A12 strand between the two U12 strands.
Measured scattering profiles of the starting and ending states of the folding experiment are shown
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in Figure 1, panels D and F. These data were acquired at the XFEL. In the initial, unfolded state
the RNA is in a low ionic strength buffer. Folding is initiated by the addition of MgCl..

Structural details about the RNA during the time resolved experiment can be gleaned by
comparison with the profiles of the reference systems in panels A-C. For example, the similarity
of the scattering profiles of panels D and A suggests that the initial state of the time resolved
experiment is unstructured. This assessment is based on the absence of distinct features in its
scattering profile. A cartoon that suggests this conformation is shown below the profile of panel
D; here, the blue lines indicate dynamics.

Figure 1 panel E shows the measured scattering profile of a related hairpin duplex (12U-5C-12A,
the first 29 nucleotides of the full UAU12 construct), folded by adding Mg?* to the solution of
single strands of this construct. This profile was acquired to identify a potential folding

intermediate, a 12 base pair A-U duplex. Because RNA duplexes are length (20), sequence (36)
and salt (/7) dependent, it was critical to measure the structure of a molecule where an rA12 strand
binds to an rU12 strand to form a 12 base pair duplex. The duplex of panel B is much longer, and
of mixed sequence, hence will have better defined structures. Collections of rA and rU strands tend
to form triplexes when combined, in addition to duplexes (37), but the mixed sequence 29
nucleotide strands formed duplexes: the scattering profile of panel E displays comparable features
to the duplex profile of panel B. A peak detected near q=0.8 A", indicated by the red bar, reflects
the formation of a duplex major groove (21, 22).

Finally, the ending state of the experiment (UAU12 with added Mg?"), shown in panel F, displays
the characteristic three-peak structure of a triplex (purple bar), as well as the higher q peak of panel
C (blue bar). The major groove peak (at g=0.8"") is absent from this measured profile, consistent
with third strand filling the major groove. The cartoon schematically indicates the conformation
of the folded triplex.

Mixing injectors target time scales from the single millisecond to the single second

To capture WAXS profiles with sensitivity to millisecond scale conformational changes, time-
resolved data were collected from micron-sized liquid jets at the CXI beamline at LCLS. Mixing
injectors (schematically shown in Figure 2) were used to initiate the Mg?" mediated folding of
UAUI12. A full description of the fabrication and operation of the injectors, including design
parameters, can be found in Ref. (37). Three different injector geometries were used to access the
broad range of time points of interest to this folding experiment: t=0, 6, 10, 60, 100, 500 and 1000
milliseconds. By varying the flow rates of the sample and buffer, each injector can be used to
acquire data at multiple, closely spaced time points. On average, about 16,000 good quality single
shot profiles are used to generate the averaged profile required to visualize the WAXS features
from RNA flowing in a sheathed, micron-sized jet. With the current XFEL repetition rate of 120
Hz, it takes just over 2 minutes of beam exposure to acquire such a profile. Given that a data point
requires both a sample-present (RNA in buffer) and a sample absent (buffer alone) exposure,
a total of 4 minutes of data acquisition yields one time point. Importantly, each profile is scaled
to account for the varying intensity of the XFEL pulse that created it. Details about
profile acquisition, computation, normalization, selection, and background subtraction are
provided in Methods and Figures S4-S7.
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Figure 2: Mixing injectors for time resolved studies at the XFEL. A solution containing RNA in low ionic strength
buffer (red liquid) is hydrodynamically focused into a thin cylindrical stream, which is surrounded/sheathed by a
buffer containing additional Mg?* ions (blue liquid). These streams flow coaxially through a constricted region, where
mixing occurs by the rapid diffusion of Mg?* ions into the thin, central, RNA-containing stream. The reaction is
initiated once the [Mg] reaches a carefully selected threshold (Figure S3). The reported time point for each
measurement corresponds to the time it takes for the molecule to flow to reach the beam. This delay time is carefully
determined for each experiment. The dashed green circle illustrates the intersection point of the beam with the jet,
and is expanded at the bottom right of the figure to indicate the relative size of the jet (7 um average over all time
points probed) and the beam (~1 pm yellow dot). Detailed parameters for injectors, including dimensions, jet widths
and flow conditions, can be found in Methods and Tables S1-2.

Time resolved studies reveal folding intermediates; a transient duplex forms before the triplex

Time-resolved experiments were performed at RNA concentrations of 1 mM and 0.5 mM.
Different amounts of Mg?" were required to quickly reach the reaction initiation threshold for each
[RNA] (SI: Determining the proper [Mg*] level to initiate the reaction and Figure S3). Figure 3
shows the time series for the higher concentration experiment. These curves show the time
progression of scattering profiles from the form shown in panel 1D to that of panel 1F. For this
series, we acquired good quality data at t= 6 ms, 10 ms, 60 ms and 1000 ms. The curves are shown
along with the t=0 state (acquired at [RNA]=0.5 mM). Four features are visible at the earliest time
point acquired, 6 ms after the initiation of folding (orange). A shoulder appears near q=0.4 A" and
the major-groove associated peak appears near q = 0.8 A"'. Two higher q peaks also appear, though
they are not well resolved. On this short time scale, the lower q data indicate that some fraction of
the sample is in the duplex state. The appearance of triplex-associated peaks also suggests partial,
but not yet full structuring of the triple helical backbone. It is unclear whether all molecules fold
through a mandatory duplex intermediate, or whether some fold directly to triplex. This distinction
will require measurements at shorter time points. Nonetheless, it is clear that the RNA shows some
duplex and some weak triplex features within 6 ms of folding initiation.
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Figure 3 Time resolved WAXS data following the formation of an RNA triplex from a minimally structured
single strand. The measured time series following folding of the UAU12 construct from single strand to triplex is
shown for the initial (t=0) and final folded (t=1000 ms) states, along with three intermediate time points. Data were
acquired 6, 10 and 60 ms after folding initiation. Distinct features in the scattering profiles, identified in conjunction
with equilibrium measurements, modeling and machine learning studies shown in Figure 1 and indicated here with
dashed lines and Figure 1’s color code, aid in the interpretation of the dynamically evolving structures that populate
the folding landscape. Features of disordered, partially ordered and fully ordered RNA are observed as the reaction
proceeds. Together, they reveal the folding strategy of this molecule.

In the 10 ms profile (yellow), diminished duplex features are observed: the major groove peak is
reduced. The triplex peaks are better articulated, and a small, but not quite resolvable, perturbation
in intensity appears near the highest g, base stacking peak. Sixty ms after the initiation of folding
(purple curve), the triplex peaks, as well as the base stacking peak are firmly established. These
trends are further underscored at 1000 ms after folding (green). Here, the lower q shoulder near
q=0.4 A" has settled into a form that resembles that of the static triplex (Figure S2). At this time
point, the scattering profile displays all of the SAXS/WAXS peaks seen in an equilibrium,
folded curve, acquired on our lab source (Figure S8). Deviations in the baseline levels can be
explained by temperature variations (SI: The effect of temperature on scattering profiles of
nucleic acids and Figures S9-S10). The signal-to-noise ratio of each curve depends on the flow
rate of the sample, which determines the total amount of RNA in the beam-illuminated sample
volume, and more critically on the beam power. In some cases, ice crystals formed in the jet (or
at the nozzle) creating
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some very intense diffraction spots on the detector. We attenuated the beam to protect against
damage. The fraction of beam power used to collect data for each time point is provided in Tables
S3-4.

Discussion

Overall, the RNA’s folding strategy can be established directly from the curves shown in Figure
3. The triplex folds from a mostly unstructured single strand, through a duplex intermediate, to a
state where the three backbone strands form the outline of the triplex. Finally, base stacking
appears at longer times, locking the molecule into its final structure. This strategy is suggested in
Figure 4.
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Figure 4. Schematic cartoon depicting folding dynamics from single strand to triplex as read directly off the
scattering profiles. The left-most cartoon depicts the dynamic variation of the low ionic strength starting state: a
mostly unstructured and dynamic (indicated by blue marks) single strand of 46 nucleotides. The next cartoon is a
representation of a transiently detected state in which one 12 base paired A-U duplex forms. The duplex is identified
by the ‘major groove feature’ that appears in the t=6 ms scattering profile. The third panel represents a state in which
the backbones have formed a loose triplex structure, defined by the appearance of a triplet of peaks at higher q. The
final structure, at right, appears to have a less dynamic structure, and shows strong evidence of stacking of base triples
that lock the molecule into a more rigid structure. The sharp peaks of the WAXS profile suggest that the molecule is
less dynamic in this state; the triplex structure is well-defined with much less variation than RNA duplex structure.

The order of appearance of all of the peaks is recapitulated by the measured time series at
[RNAJ=0.5 mM, where data points were acquired at 0, 6, 100 and 500 ms (SI: RNA folding at
reduced concentration: 0.5 mM and Figure S11). Most significantly, the transient duplex
intermediate again appears at 6 ms, and vanishes at all later times. Slight deviations were seen in
the amount of triplex present at 6 ms, likely a result of mixing conditions.

This distinctive view of dynamic structural changes from single strand to triplex underscores the
highly dynamic nature of the RNA backbone, even in the duplex state, until it captures a third
strand in the proper triplex geometry. Once the proper backbone arrangement is assumed, the
structure is locked into place by base stacking. This experiment provides direct evidence that the
RNA backbone drives folding, a conclusion that was previously hypothesized by comparison with
MD simulations (25), but not directly observed until now.
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In summary, WAXS reveals numerous features of secondary and tertiary RNA structures, which
are instantly identifiable as the data are acquired. Our studies reveal the dynamic appearance and
disappearance of helical grooves, backbone ordering and base stacking. This structurally detailed
information is trivially extracted by inspection of profiles of equilibrium (static) states, as well as
from transient states during a folding reaction. When coupled with lower angle data that reveal the
relative spatial arrangement of these structural elements, this work highlights the potential of
solution scattering to uniquely and directly characterize both static and dynamic RNA structures.

Presently, less than 2000 RNA structures are deposited in the protein data bank. If a substantial
database of structures can be built, either directly or by solving the folding problem, new deep
learning techniques (/2) can potentially provide a structural revolution in the RNA world
comparable the one recently provided for proteins by Alpha Fold (6). High angle solution x-ray
scattering reports distinct features in scattering profiles which, in conjunction with models (e.g.
(19)), can be linked with real space RNA structures. When coupled with lower angle data that
articulate the relative arrangement(s) of these motifs, this technique can help address this unmet
need to characterize RNA structures.

In addition to enhancing structure solving methods, this work highlights the unique ability of
highly brilliant, XFEL x-rays to provide the exceptional sensitivity needed to observe subtle
structural changes in macromolecular systems. Although there is already much to learn from this
now demonstrated technique, XFEL technology is rapidly advancing. The increasing pulse
repetition rates at XFELs worldwide (from hundreds to millions of pulses per second (38)),
coupled with the development of fast framing detectors to handle these data rates, will enable the
visualization of even higher q (sharper spatial resolution) features in solution scattering. Once
these upgrades are realized, atomic resolution in solution structures, at room temperature, and on
biologically relevant time scales is imminent.

Materials and Methods
Nucleic acid samples

All RNA and DNA samples were purchased from Integrated DNA Technologies (Coralville, 1A)
as single strands. Molecular reconstitution, including buffers and annealing protocols are distinct
for each sample, and are described in detail in SI: Materials and Methods.

Mixing Injectors

Mixing injectors (as described in (37, 39)) were designed and fabricated for the time-resolved
experiments. These devices utilize a flow-focused diffusive mixer coupled to a Gas Dynamic
Virtual Nozzle (GDVN) to initiate reactions just prior to producing a freely flowing liquid jet for
data collection. Design parameters, fabrication details, and specifications for each mixer used are
described in SI: Materials and Methods.

Data collection and analysis at XFEL

Time resolved RNA folding data, as well as data on the AT duplex were collected at the Coherent
X-ray Imaging (CXI) instrument at the LCLS (40) (SLAC National Accelerator Lab, Menlo Park,
CA), using the 1 micron sample environment. The mixing nozzles were loaded into the vacuum
chamber on a nozzle rod (Standard Configuration 1). X-rays were delivered at 120 Hz frequency
with a pulse energy of 2 mJ and beam size of ~1 um (FWHM). Scattering was collected on the
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Jungfrau-4M detector (41). The X-ray energy was 6 keV and the detector was positioned 106 mm
from the sample resulting in a q range of 0.12 — 2.4 A"!. Calibration of the detector distance and
geometry was performed using silver behenate. Newly developed protocols for acquiring fully
background subtracted solution scattering data at XFELs are provided in SI: Materials and
Methods.

Data collection and analysis at NSLS 11

Solution X-ray scattering measurements on single stranded rU30 and rA30 RNA were performed
at the 16-ID Life Science X-ray Scattering beamline at the National Synchrotron Light Source II
(NSLS-II) of Brookhaven National Laboratory (42). Scattering from the small-angle (q=0.01-
0.3A"") and wide-angle (q=0.3-3.2A"") regimes were read simultaneously using two Pilatus 1M
detectors (Dectris, Switzerland, EU) arranged in series. The transmitted X-ray beam intensity was
also recorded during each measurement. Centering and calibration of the beam on both detectors
was performed using a silver behenate standard in BioXTAS RAW, as well as masking, radial
averaging and buffer subtraction (43). Previously published data (79), reproduced here in Figure
1 panels B and C, were also acquired at NSLS II on the LiX beamline.

Data collection and analysis on lab source

Measurements on the rUA duplex hairpin, as well as on the temperature dependence of the DNA
AT duplex were performed using a BioXolver with Genics source (Xenocs, Holyoke, MA) using
the setting WAXS STD. Data collected from the BioXolver are analyzed using BioXTAS RAW,
as described above. The quoted sample temperatures, when noted, were achieved by temperature
controlling the sample capillary.

Statistical Analysis

Time-resolved data were acquired from ~ 16000 frames for each sample present and sample absent
(buffer) profile. The number of frames for each data point, for all data shown in Figures 3 and S11
are provided in Tables S3 and S4. At a frame rate of 120 per second, this corresponds to just over
two minutes of data acquisition for each condition.
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Supporting Information Text

Sample Preparation

Single stranded RNA sample preparation

RNA samples were prepared as described in (24). Briefly, 30 nucleotide poly-uridine (rU30) and
poly-adenine (rA30) RNA were purchased from Integrated DNA Technologies (Coralville, IA,
USA), reconstituted in a storage buffer of 20 mM NaCl, | mM MOPS pH 7.0, 10 um EDTA, and
subsequently desalted and buffer exchanged into 100 mM NaCl, I mM MOPS pH 7.0, 10 pm
EDTA for data collection. For samples containing magnesium, a small volume of 1M MgCl, was
spiked into the sample shortly before the measurement. RNA concentrations of 600, 200, 50 uM
were prepared, with the highest concentration aimed toward obtaining sufficient wide-angle
scattering signal. All RNA samples were annealed by heating to 90°C for 3 minutes and snap
cooling at 4°C for 20 minutes before measurements. Molecular structures were reproduced from
SASBDB files: SASDFB9 for rA30 and SASDFK9 for rU30.

Hairpin duplex and hairpin triplex preparation

These scattering profiles were reproduced from Reference (/9) and the SASBDB entries
SASDKXS5 for the hairpin duplex in 5 mM Mg?*, and SASDK26 for the hairpin triplex in 5 mM
Mg**. Molecules were prepared as described in that publication; no new profiles were measured
for this work.

A-U duplex preparation

The 29 nucleotide construct U12-C5-A12 was purchased from Integrated DNA Technologies
(IDT) and reconstituted in low salt buffer (1mM NaMOPS, 50uM EDTA and 2mM NacCl). It was
buffer exchanged into a Mg?* containing buffer (ImM NaMOPS, 50uM EDTA, 2mM NaCl and
2.5 mM MgCl2) three times using 3k MWCO spin column at 14k xg for 10min at 4°C. The sample
was heated to 85°C for 3 mins and cooled on ice. Data shown in Figure 1 were acquired on a
sample with [RNA]=1mM, at T=10°C; lower concentration samples acquired at room temperature
show identical features in their scattering profiles.

Triplex construct preparation

The RNA construct, UAU12, with sequence 12U-5C-12U-5C-12A was purchased as a lyophilized
powder from Integrated DNA Technologies, Inc. (Coralville, IA). The powder was reconstituted
in a low salt buffer (1 mM NaMOPS, 2 mM NaCl, 50 uM EDTA at pH 7) for 15 minutes to
maximize the yield. The sample was then buffer exchanged six times using a 10 kDa cutoff filter
by spinning at 3600 G for 15 minutes at 4°C to remove any impurities. A thermal heat block was
used to anneal the sample by heating it to 92-94°C for 5 minutes. The sample was removed from
the heat and cooled to room temperature in about 15 minutes. Finally, the sample concentration
was measured by UV-Vis absorbance and adjusted to either 1 mM or 0.5 mM for data collection.
During all sample handling, gloves were worn, and other precautions were taken to prevent RNase
contamination.
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A-T duplex preparation

AT duplexes were comprised by base pairing dT25 with dA25. Both strands were purchased from
Integrated DNA Technologies, Inc. (Coralville, IA). They were annealed at 95°C for 5 minutes
and slowly cooled to 22 °C in an hour. This duplex was buffer exchanged to a solution containing
150mM NaCl, 10mM NaMOPS and 50uM EDTA at pH7. The [DNA] for all experiments was 1
mM.

Mixer Design and Fabrication

The mixer portion of these devices is made of concentric capillaries; a central, sample-carrying
fused silica capillary supply line (Polymicro Technologies, Phoenix, AZ) is held inside a larger
glass tube (320 pm inner diameter, Polymicro Technologies, Phoenix, AZ) with custom Kapton
centering spacers. The supply line is polished and beveled to a tip and an additional capillary,
which acts as a mixing constriction and delay line, is held just downstream with a 50-100 pm gap.
In this gap, the sample is flow-focused to a narrow stream and becomes fully sheathed by a Mg?*
-containing buffer, which diffuses into the sample stream to initiate the reaction. With a single
mixer, flowrates are varied to reach multiple timepoints, typically with a factor of two total range.
The length and inner diameter of the mixing constriction is also changed to reach different
timepoint ranges. A total of three different injectors were designed to reach timepoints from 6 ms
to 1000 ms (Table S1).

The entire mixer is encapsulated in a larger glass shroud (750 pm inner diameter, Sutter
Instrument), which is flame polished to create the nozzle opening. The end of the mixing
constriction is held with another set of Kapton centering spacers, and as the liquid exits the
capillary, it is exposed to a helium gas sheath (30 mg/min flowrate) which further thins and
accelerates the stream to create a free-standing jet.

To achieve good signal-to-noise data for S/WAXS, it is crucial to have a pathlength that is as large
as possible to maximize the scattering signal. Typical GDVN jets are only a few microns in
diameter. To create thicker jets, closer to a target of a 10 pum diameter, the glass shrouds were
flame polished to create wider openings of 110-150 pm, instead of the more typical 80-90 um. Jet
widths were measured 150 um downstream of the nozzle opening at each flowrate condition with
a liquid-jet imaging microscope equipped with backlight illumination and a Zyla CMOS camera
(ANDOR, Oxford Instruments, Abingdon, UK; (39)). The overall nozzle geometry (tip of mixing
constriction, shape of nozzle opening, distance between the constriction and the nozzle aperture)
influence the size and stability of the jet, but generally wider apertures result in wider jets. Within
a single nozzle, higher flowrates result in thicker jets. Additionally, since the sample is fully
sheathed, only the center of the jet contains RNA. The following formula approximates the sample

stream width:
djet1 ’ V;am

Vtot

dsam -
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where dgqpm, is the sample stream diameter, d, is the total jet width for that flow condition, Veam

is the volumetric flowrate of the sample, and V,,, is the total volumetric flowrate (sample and
buffer sheath combined). When designing the mixers, the sample flowrate was maximized to give
as wide of a sample stream as possible, while balancing timing dispersion and sample consumption
concerns. As the sample flowrate increases, it creates a wider sample stream, which increases the
uncertainty in the measurement as the Mg?* ions need to diffuse further for complete mixing. These
ions, however, diffuse extremely quickly, so timing dispersion concerns were mostly limited to
the 6 ms and 10 ms timepoints. Table S2 details the jet width for each measurement.

Data Collection and Real-Time Analysis at CXI

Acquiring the time series at CXI

The initial state (0 ms, before mixing) of the RNA was taken with a Mg-free buffer sheath of 1
mM NaMOPS, 2 mM NaCl, 50 uM EDTA at pH 7. Similarly, the scattering profile of an AT
DNA duplex was acquired with a Mg-free buffer sheath of 150mM NaCl, 10mM NaMOPS and
50uM EDTA at pH 7. Time-resolved data were acquired from RNA at either ] mM or 0.5 mM in
1 mM NaMOPS, 2 mM NaCl, 50 uM EDTA at pH 7. For mixing experiments, the sheath contained
I mM NaMOPS, 2 mM NaCl, 50 uM EDTA, 25 mM MgCl, at pH 7 for [RNA]= 1 mM
experiments, or 1 mM NaMOPS, 2 mM NaCl, 50 uM EDTA, 15 mM MgCl, at pH 7 for
[RNA]=0.5 mM experiments. Background profiles for subtraction were acquired by flowing Mg-
free buffer in the sample stream and the appropriate Mg?" containing buffer in the sheath. High
pressure reservoirs (1.2 mL for sample,Neptune Fluid Flow Systems, LLC., Knoxville, TN), 10-
40 mL for buffer (KNAUER Variloop, KNAUER Wissenschaftliche Gerite GmbH, Berlin,
Germany)) and home built switch boxes (using VICI valves, Valco Instruments Co. Inc., Houston,
TX) facilitated an easy transition between sample and buffer.

Sample present and sample absent profiles were collected in succession. The RNA absent sample
(buffer background) was acquired either immediately before or after the RNA present sample. In
the best case, no adjustments were made at any time during these two experiments. Measurements
at different [RNA] were interleaved to reduce nozzle changes. For the case of buffer background
before sample data collection, a typical experiment proceeds as follows. The sample line was set
to the Mg-free buffer, and the appropriate Mg-containing buffer was loaded into the sheath line.
Flow rates were set for the desired time point. Once the jet stabilized, as assessed optically and
with real time X-ray data analysis feedback with OM (see below), 5 minutes of data were collected.
The sample stream was then switched to flow RNA, and flowed for about 5 minutes to purge the
~2 meter long supply line (necessitated by the CXI vacuum chamber design). The presence of
RNA was assessed by the appearance of a visible scattering signal on the detector. Five minutes
of data were collected from this point. After acquisition of the sample-present point, the flowrates
were adjusted for the next timepoint, and another 5 minute acquisition began for the sample
measurement of the next dataset. Following acquisition, the sample stream was switched to the
Mg-free buffer and another 5 minute transition was allowed to clean the supply line. Subsequently,
the buffer match was collected for 5 minutes. This buffer, sample, sample, buffer pattern allowed
for maximum efficiency by minimizing buffer/sample transitions, while ensuring accurate buffer
background matches. As discussed below, data quality depends on acquiring the buffer/sample
sequence while flow conditions and beam position are as identical as possible.
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Key to ensuring smooth data collection was the use of OnDA (online data analysis) Monitor (OM)
(44). After subtraction of the detector dark image, each image was analyzed by an azimuthal
integration around the beam center. Masks were created to remove spurious scattering flares from
the jet as well as inactive pixels. Different masks were created for each run, as the jet widths were
not constant, as discussed in Table S2.

This software provided real time scattering profiles, which helped judge jet stability and when
supply lines were purged for buffer to sample transitions. Jet stability using the OM live-feedback
software was assessed by visualizing radial stacks of WAXS profiles within seconds of X-ray
illumination, monitoring continuity of the diffuse water peak at high-q values as well as stability
of the overall scattering intensity.

Background subtraction and acquiring solution scattering data at an XFEL

Accurate solution scattering experiments require subtraction of a background (sample absent)
scattering profile from a sample present scattering profile. Under normal conditions, where a fixed
path sample cell is used (as is the case for all of the synchrotron and lab source data reported here),
both profiles are acquired from samples that are sequentially loaded into the same sample holder.
Corrections for any variations in beam intensity are made following standard practices, which
usually involves scaling by the transmitted beam intensity (45). However, at the XFEL, the
solutions are flowing in liquid jets whose size depends on the details of the injector design as well
as the flow rates. In the absence of rarely occurring nozzle freezing events, the jet size remained
stable for each sample condition, assessed via optical monitoring and using OM to view WAXS
profiles and total scattering intensity. We developed the following protocol to perform accurate
background subtraction from profiles acquired in flowing jets at the CXI beamline.

As a first step, it was important to assess the contribution to the scattering profile from the beamline
alone (the beamline background). Because of the vacuum environment at CXI, the scattering from
the chamber, and from the nozzle inside the chamber with its helium sheath, are more than a
thousand times smaller than the scattering from the buffer jet (Figure S4), so this contribution is
safely neglected.

To perform accurate buffer background requires careful normalization of each measured profile.
Each profile must be individually scaled to account for all sources of variation. Three critical
parameters were required to perform accurate background subtraction. We had to account for: the
changing x-ray pulse intensity, variations in the sample thickness, to which the WAXS signal is
directly proportional, as well as the sample temperature at the intersection point. We consider each
of these factors in turn.

First, because of the stochastic way in which XFEL pulses are generated, pulse to pulse variations
in energy are expected; most pulses fall within a factor of 4 of the mean intensity. Because the
strength of the scattering is proportional to the pulse intensity that generates it, each profile must
first be normalized by the intensity. For most solution scattering experiments, the profile is
normalized to the transmitted beam intensity; however, because the flowing jet is so thin,
transmission is nearly 100%. Thus, we recorded the intensity of each pulse using a Wave8 monitor
which consists of a thin Si3N4 target and 8 photodiodes that collect backscattered X-rays. The X-
ray pulse intensity is linearly proportional to the sum of the diode intensities. The beam position
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is calculated by the relative intensities of the 8 diodes (46). This value was recorded for each trace,
and each profile was normalized to account for variations.

Second, a fixed path length is ideally maintained in solution scattering experiments. Typically, a
fixed thickness sample holder contains the sample, however our liquid jets are freely flowing.
Thus, we must account for the jet’s thickness at the point where it intersects the beam, especially
because the jet naturally thins out as it approaches its droplet breakup region and because there
can be small motions of the beam, resulting in illumination of a different spot on the jet (either at
a different height or a different width, which can result in being off center of the jet). After each
profile is scaled to account for variations in XFEL pulse intensity, it was subsequently scaled to
account for sample thickness. We chose to scale each profile to the integrated intensity of the first
water peak. With the water peak intensity maximum located near q = 1.9 A !, we integrated the
profile over a q range from 1.6 to 2.25 AL,

To validate this method for normalizing with sample thickness, we tested it at NSLS II because it
assumes that the nucleic acid scattering is insignificant when integrated over this region. We
acquired WAXS data on the single strands (rU30 and rA30) in a cell with a fixed sample
thickness. Data were normalized either using the traditional approach (transmitted beam monitor)
or by scaling to the integrated intensity of the water peak. Figure S5 shows that both
normalization methods yielded results that are the same within noise fluctuation, suggesting that
scattering derived from the RNA macromolecules is negligible in the g~2.0 A ! regime.

Finally, proper background subtraction requires that the sample-present and sample-absent profiles
are acquired at the same temperature. Because the liquid jet is flowing into the CXI vacuum
chamber it is rapidly supercooled (47, 48) at a rate that depends both on jet speed (in this case ~10-
50 m/s), thickness, and distance from nozzle. Evaporative cooling of the water occurs at rates of
up to 107 K/s under these conditions (47, 49). Temperature has a dramatic effect on water
scattering, it alters the water structure factor throughout the curve. The water temperature can be
readily ascertained by measuring the position of the first water peak near ¢ =2 A -, which reports
on the structural ordering of water (50). Measurements of I(q) at room temperature, acquired on
our lab source, locate this peak at qg=2.05 A" at 25°C, and q= 2.03 A at 9°C. At LCLS, the peak
is found near q=1.9 A -'. Comparing this to values from (47), which report the peak of the structure
factor, we estimate that our sample temperatures are just below 260 K, in the supercooled regime.

Temperature also affects the water scattering profile at lower q. Here, the detailed shape of the
scattering profile reflects changing thermodynamic parameters of the water including isothermal
compressibility and correlation length (50). Changes at lower q are particularly significant for our
experiment, as they may be comparable in size to the time-resolved signals we seek to measure.

As part of our data analysis algorithm, we first selected profiles whose water peaks fell within a
given q range for each run. We imposed an additional requirement to limit variations in
temperature through the run, perhaps resulting from relative motions of the beam and the jet. We
integrated the intensity in the low q portion of the curve, (from 0.3 to 0.9 A"!, a region where we
detected variations in our control samples), and divided this sum by the integral over the water
peak, discussed above. This ratio was computed for each beam and water peak height normalized
profile, and over the course of a run, traced out a nearly gaussian curve. We selected curves for
further analysis that fell within one sigma of the mean. Once this ‘temperature’ selection was made,
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the previously scaled azimuthal traces are summed and an average is computed to represents the
either ‘sample present’ or ‘sample absent—buffer background’ trace for each condition. Note that
if the nozzle was moved or replaced in between the buffer and sample collection, the data could
not be properly scaled due to variation in temperature, and the point was discarded.

Once both the buffer and sample curves are thickness normalized and are acquired at a single
temperature, the data point for each condition is derived by direct subtraction of the buffer from
that of the sample under identical flow and nozzle conditions. Typical profiles are shown in Figure
S6. Once the subtracted profile was obtained, other standard corrections were applied to account
for solid angle in the WAXS regime, as well as beam polarization (47). These are the curves shown
in Figure 3 of the paper. Offsets were applied for display purposes.

For one of the data points reported in the paper (t=60 ms), we acquired 36920/37503 pulses for the
RNA present/RNA absent sample, 36192/36734 had acceptable pulse energies, 34372/35717
intercepted the jet, and 22511/27539 were similar in temperature. Overall, 71% of the data
acquired for this point met our criteria, and this corresponded to between 3 and 4 minutes of data
acquisition for this condition. Figure S7 illustrates this process as a flow chart.

Modeling connects features in the scattering profiles with molecular structures.

To aid in the interpretation of the peaks that appear at high q features, we turned to models.
Beginning with a .pdb file that results from our WAXS-driven MD results of (/9) for the long
hairpin triplex in Mg?* we used WAXSIS (57, 52) to compute the scattering profiles out to q = 2
Al Results from these computations are shown in Figure S1. Panel a shows the profile computed
from the full molecule, which is a 29 base pair hairpin interfaced with a 24 base triplex forming
single strand, visualized using Chimera (53). The molecule is mostly in the triplex form, as shown
to the right of panel a. The scattering profile was computed from a single frame of the simulation.
Panel b shows the profile computed from the triplex piece of the full pdb file, extracted using
Chimera. Note the appearance of four high q peaks near q=1.05, 1.4, 1.7 and 1.9 A “!. Following
the protocol introduced in Ref. (23), the profiles of just the backbone molecules (phosphates plus
sugar) were computed and are shown in panel c. Note that the first three of the above referenced
peaks persist, while the fourth, highest q peak is absent. As noted in Ref. (23), peaks in this region
reflect the arrangements of the phosphorous and oxygen atoms along the backbone. Panel d shows
the scattering profiles of the bases alone, and the highest of the four peaks of panel b is identified
with base stacking, as concluded in Ref. (23) for a DNA duplex. Finally, panel e shows the
experimental profile of the hairpin triplex, from Ref. (/9) deposited as SASDK26 in the SASBDB.

Low q changes.

Although this paper focuses on the high q correlations that report RNA structural motifs, data at
lower q are also informative. They reflect the appearance of features with larger spatial dimensions
in the sample. A comparison of the data from the three model structures of Figure 1 (the single
strand, duplex, and triplex), shown here as Figure S2, highlights significant changes in the
scattering profiles in the form of a broad shoulder that appears just above q=0.4A"!. Past machine
learning studies of duplexes (2/) associate this peak with the molecular radius, and it shifts
between the duplex and triplex conformations. It is absent from the profiles of single stranded data,

Science Advances Manuscript Template Page 7 of 22



304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

which do not have a radius defined by the interaction of multiple strands. Importantly this shoulder
shifts to lower q as the molecule transitions from mostly duplex to mostly triplex, reflecting the
increasing radius of the triplex. The prominence of the peak depends on the exact molecular
conformations which are dynamic and depend on length salt and sequence. Changes in this q range
are seen in the XFEL data and correlate with the appearance of higher q features.

Determining the proper [Mg?'] level to initiate the reaction.

To find the proper amount of MgCl; required to initiate folding, we performed static titrations on
our lab source, beginning with the low salt starting buffer and spiking in concentrated solutions
of Mg in buffer. The goal was to determine the total Mg concentration required to fold the RNA
at its different concentrations. At 0.5 mM RNA, the molecule appeared folded (assessed by
examining the high q data, using a Kratky plot of Ig? vs. q), when the total Mg concentration
equaled 5 mM. More Mg was required to fold the | mM RNA sample. In this case, nearly 10
mM of Mg (total) was introduced.

For mixing, we used a reaction threshold of 30%, meaning the sample was considered fully
mixed when the concentration of Mg?* at the center sample stream reached 30% of the level in
the outer, sheathing solution. Thus, for the lower [RNA], we considered the reaction initiated
when the [Mg] reached 4.5 mM (30% of the 15 mM MgCls sheath), and for the higher [RNA],
we considered it initiated when [Mg]= 7.5 mM (30% of the 25 mM MgCl, sheath). It is plausible
that the reaction was initiated at a slightly earlier time in the lower concentration sample, based
on the increased ordering of the backbone visible at t=6ms. Data are shown in Figure S3.

The effect of temperature on scattering profiles of nucleic acids.

The high q scattering of nucleic acids can be strongly impacted by the nature of the solvent
around the biomolecule. As discussed above, the scattering of bulk water is temperature
dependent and we must consider the temperature dependence of the hydration water around the
biomolecule, whose interactions with the nucleic acid, or the ions around it (54), may be altered
as a result of changes in the water structure. For example, it has been established that DNA has a
chiral hydration spine (55), and the changing properties of liquid water, as described above, may
alter the nature of this ‘bound water’, resulting in a temperature dependent change in the DNA
scattering profile.

As a control, we measured the scattering profile of a model nucleic acid system, a DNA duplex
consisting of a 25 nucleotide strand of A bases, that has been annealed with a 25 base strand
composed of T bases. This A-T duplex displays numerous peaks in the high q region (23). To
explore whether temperature affects the wide angle scattering profile of this A-T duplex, we
performed experiments on the BioXolver lab source at fixed temperatures of 25°C and 9°C.
Temperature dependent changes are detected both in the buffer scattering and in the DNA (as
assessed after buffer subtraction). Figure S9 shows scattering of buffer acquired at 25°C and at
9.4°C. These profiles display a q dependent offset in the range 0.4 < q < 2.0 A", Consistent with
the above discussed reports of the temperature dependence of water scattering, made at both
SSRL and LCLS, we measure changes in both the location of the water peak and in the scattering
at lower values of q. Background subtracted profiles from the AT duplex, measured at both 9°C
and 25°C are shown in Figure S10. Changes are detected above q ~ 0.3 A. A WAXS profile
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acquired at LCLS, where the solvent is supercooled (water peak) is shown as the third line on the
figure. A significant decrease is seen in the same q region, signaling a potential temperature
dependent effect. This latter curve was acquired in a liquid jet from a mixing injector at CXI,
though no mixing was triggered (there was no difference in the buffer around the DNA and the
sheathing buffer).

Interestingly, the folded RNA trace (Figure S8) shows deviations when acquired at room
temperature and at LCLS. In both cases, the profiles ‘match’ at low q and at the highest q, but
deviate in a region that tracks with the length scales of duplex and triplex features.

RNA folding at reduced concentration: 0.5 mM.

Figure S11 shows the time series acquired with lower RNA concentration. Following the
guidance of static Mg?* titration experiments (Figure S3), and with the mixing threshold set at
30% (Methods), the [MgCl] in the sheathing buffer is 15 mM when [RNA]=0.5 mM and 25 mM
when [RNA]=1 mM. Because the exact composition of the ion atmosphere around the RNA is
unknown, e.g. the number of bound vs. free Mg ions cannot be determined from this experiment
(506), it is plausible that the free [Mg] is higher for this time series, resulting in slight variations
in folding kinetics between the two conditions. Nevertheless, the order of assembly is the same.
Duplex features appear by the first measured time point. At later time points, the major groove
peak disappears, and the triplex backbone structure strengthens. At longer times, the base
stacking peak appears, locking in the structure. These trends are exactly recapitulated in the
lower q peak (0.4 A™'): the loose shoulder becomes better defined on time scales longer than 100
ms.
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Figure S2. An important low q feature reflects the molecular radius. Arrows indicate regions
which change with molecular conformation. Scattering from an unstructured single strand is
shown in red, from a helical duplex in blue and a triplex in black. These profiles were shown in
Figure 1 of the paper, we simply emphasize a different q region here.

Science Advances Manuscript Template Page 11 of 22



396
397

398
399
400
401
402
403
404

%10 -4 [RNA]=°.5 mM

1.4
—Mg2+={}mM
127 —Mg%=1mM |
1L Mg>*=5mM i
)
o WY a2
N p MHM’J Mg2*=10mM
T 08 ik ——Mg?*=20mM
t’;,\"
06t/ ¢
0.4t .
|
02+ '
D 1 1 1 1 L 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
3 %107 [RNA] =1 mM
_M92+=Gm~|
25} ,
— Mg =1mM
Mg>*=5mM

——Mg>*=10mM

0.05 01 0.15 0.2 0.25 0.3 0.35 0.4
-1
qlA™)

Figure S3. The UAU12 construct has Mg?* dependent folding. Static data acquired with
increasing [Mg] acquired on the BioXolver source are shown. These profiles are displayed as
Kratky plots of Ig? vs. q, which emphasize the changes that indicate folding. More folded
molecules have better defined peaks near q=0.12 A" as well as lower values at large q. From
these curves, we selected the concentrations of 4.5 mM and 7.5 mM as reaction initiation
thresholds for [RNA] at 0.5 mM and 1 mM.
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Figure S4. Scattering from the chamber background (brown), beam normalized, is
compared to a single shot of buffer scattering (blue) also beam normalized. The small
contribution from the background justifies its omission from our analysis.
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Figure S5. Water peak normalization is as effective as transmitted beam normalization.
These plots show a comparison of scattering profiles of rA30 in 100mM NaCl, where alignment
of the sample and buffer scattering has been performed using alignment of the average water
peak scattering intensity versus normalization by the transmitted X-ray beam intensity.
Scattering intensities are plotted in arbitrary units. Data are plotted on semilog (left) and Kratky-
transformed (right) axes to visualize agreement of the two methods in both low and high q
regimes. All other single stranded RNA data showed similar levels of agreement.
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Figure S6. Extraction of the DNA signal occurs by buffer subtraction. This plot shows the
beam and sample thickness normalized curves before and after subtraction. This plot shows
beam and jet normalized buffer (blue), sample (red) and the difference (purple) from our control
sample: the 25 base pair AT duplex. The subtracted curve is also shown in Figure S10.
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Figure S7. Pipeline for data analysis. This flowchart illustrates the pipeline for data analysis
described in the text.
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Figure S8. Comparison of scattering profiles of unfolded and folded states of the UAU12
triplex. These plots show scattering profiles of both single stranded UAU12 and triplex UAU12,
acquired at room temperature on our lab source using a thick sample (red, exposure time 120
seconds), compared to LCLS (blue).
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Figure S9. Temperature dependent buffer scattering. Two scattering profiles are shown that
were acquired on the BioXolver lab source, at two temperatures: 9 and 25 C. These trends,
especially the q regions where there are changes, exactly echo the conclusions of Ref. (47).
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449  Figure S10. Temperature dependent scattering of a DNA duplex. The temperature dependent
450  scattering of our control molecule, a 25 base pair DNA duplex made from joining dT25 with

451  dA25 (two 25 nucleotide strands), is shown. Note the deviations from room temperature to 9 C,
452 and again, to the LCLS measured state at a lower temperature. Because they were acquired at
453 different sources using different detectors, these data were scaled to match at the lowest and

454  highest q values.
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Figure S11. The time course of RNA folding for [RNA]= 0.5 mM. For these experiments, the
sheath contains 15 mM Mg, and folding is considered initiated when the [Mg] reaches 4.5 mM.
The order of appearance of the peaks recapitulates the data shown in the paper for [RNA] =1
mM. A small, major groove associated peak appears at the fastest measurement time, t= 6 ms.
Other peaks, representing the triplex backbone also appear and stabilize at longer reaction times.
A high q peak, reflecting base stacking becomes prominent by 500 ms, though it is visible at
earlier times. Note also that the low q behavior reproduces what is measured at the higher
[RNA]. The high q background varies between this series and the previous. This may be a result
either of differences in [Mg], variations in temperature due to changing salt conditions, or
smaller signal size, due to the reduction in concentration. and are the result of either temperature
variation or the more challenged signal strength for the lower [RNA] data set.
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472 Supplementary Tables:

473
Timepoint Constriction Constriction Inner | Sample Flowrate | Sheath Flowrate
( uncertainty; ms) Length (mm) Diameter (um) (uL/min) (1uL/min)
6+1.5 17.8 50 9.6 123.3
10+2.9 17.8 50 10.3 67.3
60 £ 19.1 32 100 19.1 72.3
100 £ 28.3 32 100 16.5 41.7
500+ 34.3 25%* 100 20.6 80.4
1000 + 96.6 25%* 100 18.8 34.2
** For timepoints 500 ms and longer, an additional delay stage is added after the constriction

474  Table S1: Injector design and flow conditions for each timepoint

475
476
Timepoint Nozzle Opening Total Jet Width Sample Width Total Flowrate
( uncertainty; ms) (um) (um) (um) (uL/min)
0 127 10.2 4.6 101
6+1.54 90 6.4 1.7 132.9
10+ 2.90 90 3.8 14 77.6
60 +19.12 90 7.1 3.2 91.4
100 + 28.27 90 5.1 2.7 58.2
500 +34.3 127 10.2 4.6 101
1000 * 96.6 127 6.4 3.8 53
477  Table S2: Nozzle openings and jet widths for each timepoint
478
479
Timepoint # frames sample # frames buffer Beam power
0 13166 10660 100%
6+1.54 11448 16685 50%
10£2.90 15316 15733 50%
60 £ 19.12 22511 27539 100%
1000 £ 96.6 12076 12600 100%
480  Table S3: Frame numbers and beam power for data of Figure 3.
481
482
Timepoint # frames sample # frames buffer Beam power
0 13166 10660 100%
6+1.54 13307 23102 90%
10£2.90 27354 24655 90%
100 + 28.27 4839 10135 100%
500 + 34.3 15005 9981 90%
483  Table S4: Frame numbers and beam power for data of Figure S11.
484
485
486
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Dataset S1-S23 (separate files).

All of the scattering profiles for RNA and DNA are uploaded as text files in the Data section (or

their accession codes are given for those that are uploaded to the SASBDB).

Guide to raw data: all SAXS profiles related to structure of RNA or DNA

RNA or DNA molecule File name or identifier
rA30 rA30

ru3o ru3o

Mixed sequence duplex hairpin SASBDB entry SASDKX5
Mixed sequence triplex hairpin short SASBDB entry SADDKU5
Mixed sequence triplex hairpin long SASBDB entry SASDK26
rUA hairpin duplex rUA

Time resolved data in main text:

Time_resolved_data_t0

Time_resolved_data_téms

Time_resolved_data_t10ms

Time_resolved_data_t60ms

Time_resolved_data_t1000ms

Sl:

Mg titration, [RNA]=0.5 mM

Data_FigS3_top_OMg

Data_FigS3_top_1Mg

Data_FigS3_top_5Mg

Data_FigS3_top_10Mg

Data_FigS3_top_20Mg

Mg titration, [RNA]=1 mM

Data_FigS3_bottom_0Mg

Data_FigS3_bottom_1Mg

Data_FigS3_bottom_5Mg

Data_FigS3_bottom_10Mg

Data_FigS3_bottom_20Mg

Lab source triplex

Unfolded SI_data_unfolded_Bioxolver

Folded SI_data_folded_Bioxolver

Control duplex, dA-dT

25°C dAdT_25
9°C dAdT_9
Supercooled dAdTsupercooled

Coordinate files (.pdb format) to support Figures 1 and S1 are uploaded for one conformation of

the triplex and duplex constructs from simulations of Ref. 19.
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