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Bandgaps, or frequency ranges of forbidden wave propagation, are a hallmark of phononic
crystals (PnCs). Unlike their lattice counterparts, PnCs taking the form of continuous struc-
tures exhibit an infinite number of bandgaps of varying location, bandwidth, and distribu-
tion along the frequency spectrum. While these bandgaps are commonly predicted from
benchmark tools such as the Bloch-wave theory, the conditions that dictate the patterns
associated with bandgap symmetry, attenuation, or even closing in multi-bandgap PnCs
remain an enigma. In this work, we establish these patterns in one-dimensional rods under-
going longitudinal motion via a canonical transfer-matrix-based approach. In doing so, we
connect the conditions governing bandgap formation and closing to their physical origins in
the context of the Bragg condition (for infinite media) and natural resonances (for finite
counterparts). The developed framework uniquely characterizes individual bandgaps
within a larger dispersion spectrum regardless of their parity (i.e., odd versus even band-
gaps) or location (low versus high-frequency), by exploiting dimensionless constants of the
PnC unit cell which quantify the different contrasts between its constitutive layers. These
developments are detailed for a bi-layered PnC and then generalized for a PnC of any
number of layers by increasing the model complexity. We envision this mathematical devel-
opment to be a future standard for the realization of hierarchically structured PnCs with

prescribed and finely tailored bandgap profiles. [DOI: 10.1115/1.4063815]
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1 Introduction

A bandgap, in solid-state physics, is an energy gap in the elec-
tronic band structure in which no electronic states exist [1].
Nearly four decades ago, the birth of photonic crystals gave
way to photonic bandgaps, frequency ranges in which all
optical modes are absent [2,3]. Several years later, phononic crys-
tals (PnCs)—a class of periodic elasto-acoustic structures exhibit-
ing forbidden wave propagation within given frequency
regimes—extended the definition of bandgaps to the structural
dynamics field [4]. Ever since, phononic bandgaps have played
a central role in several engineering applications ranging from
vibroacoustic control [5] and tunable materials [6], to topological
mechanics [7] and nonreciprocal wave phenomena [8].
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In its basic form, a PnC is a multi-layered composite where the
layers self-repeat over an extended spatial domain. Rooted in the
origins of periodic structure theory, studies depicting the unique
wave propagation properties of PnCs predate the use of the term
itself [9]. The most common one-dimensional PnC configuration
involves two alternating materials (or a single material with alternat-
ing cross sections) forming a unit cell, often denoted as a diatomic
or bi-layered PnC, in which bandgaps arise from Bragg scattering
effects at the material (or geometric) interfaces. For an infinite
medium, these Bragg bandgaps are a direct function of the structural
periodicity and span one or more well-defined frequency ranges
which can be predicted by a Bloch-wave analysis of the unit cell
[10]. Increasing the number of unit cell layers (or atoms) gives
rise to additional features which are uniquely defined by the
sequencing and permutations of these individual layers [11].
Bandgap engineering, the science of manipulating phononic param-
eters within the infinite design space to achieve bandgaps of pre-
scribed characteristics (e.g., bounds, location, attenuation level,
targeted modes, directionality, and topological nature, among
others) has significantly evolved [12]. In pursuit of such goal,
studies have utilized geometric properties [13,14], material anisot-
ropy [15,16], damping [17,18], viscoelasticity [19], inertance
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[20], pillared surfaces [21], topology optimization [22], and
machine learning [23] as tunable knobs in an attempt to tune and
achieve maximum control over the bandgap emergence process.

While the applications and utility of these bandgaps in novel and
imaginative realizations of PnCs remain an active research area,
especially with recent advances in manufacturing and fabrication,
the physics underpinning the existence, formation mechanisms,
and evolution of phononic bandgaps show intriguing phenomena
which continue to be separately explored. Notable among these is
the underlying connection between the dispersion relation of an
infinite PnC relating the wavenumber of a wave to its frequency,
and dictating the frequency-dependent phase and group velocities
of a dispersive medium (of which a PnC is one) [24], and the struc-
tural resonances of a finite PnC where size and boundary effects
become intrinsic to the dynamical problem [25,26]. This interplay
between the mathematical description of infinite and finite media,
and the ability to recover one from the other [27], was used to
develop the theory of truncation resonances in finite PnCs by iden-
tifying a set of unique natural frequencies which avert dispersion
branches at the infinite limit of the constitutive unit cell [28,29].
Furthermore, understanding the origination process of bandgaps
in PnCs and the different ways in which wave attenuation manifests
itself in finite periodic media has enabled phononic bandgaps to be
artificially emulated in non-periodic lattices [30], or generated
through radically different mechanisms such as inertial amplifica-
tion [31,32].

Phononic bandgaps are accurately predicted from the conven-
tional Bloch-wave analysis. However, PnCs made of solid continua
exhibit a large number of bandgaps which vary in width, strength,
and distribution, thus giving rise to the notion of “bandgap pat-
terns.” As this work will show, these patterns are not random and
bandgap arrangements in continuous PnCs are far from arbitrary.
More importantly, bandgaps that obey certain conditions can be
made to vanish (i.e., close by virtue of the preceding and following
dispersion branches touching each other), thus rendering the mere
existence of such bandgaps in phononic crystals not guaranteed.
Instead of deploying numerical tools to seek bandgaps of desirable
parameters, this work develops a generalized analytical framework
which derives and unravels bandgap patterns and closing conditions
in one-dimensional PnC rods undergoing longitudinal motion. This
framework is then used to establish general rules which govern
bandgap widths and folding frequencies, and connects deforma-
tional mode shapes of the culminating PnC to its constitutive
layers. In doing so, we explain the conditions driving bandgap
closing and connect them to physical origins in the context of the
Bragg condition (for infinite media) and natural resonances (for
finite counterparts). These developments are detailed for a
bi-layered PnC and then generalized for a PnC of any number of
layers by increasing the mathematical complexity, while retaining
the fully-analytical nature of the model. The need to tailor phononic
dispersion profiles have already been shown to play an instrumental
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role in metamaterial applications [33-36]. As such, we envision this
mathematical development to be a future standard for designing
bandgaps in PnCs with versatile and precisely targeted bandgap
profiles.

2 Mathematical Foundation

2.1 Phononic Crystal Configuration. Starting with the most
general case, we consider a continuum PnC in the form of a one-
dimensional rod which consists of self-repeating unit cells, where
each cell is comprised of L material layers, as depicted in
Fig. 1(a). In this work, we exclude any flexural and torsional
waves, and focus on longitudinal motion described by the continu-
ous function u(x,t). In the proposed PnC, each layer has unique geo-
metrical and mechanical properties that do not necessarily match the
rest. The sth layer of the unit cell has a mechanical impedance z; =

A /Esp, and a sonic speed ¢; = \/E;/p,, where Ej, p,, and A, are the
elastic modulus, density, and cross-sectional area, respectively
(s=1,2,...,L). The lumped parameter (spring-mass) description
of this model is commonly referred to as a polyatomic PnC [11],
with each layer within the unit cell denoted as an “atom.” The
unit cell’s total length is ¢ =) £, which is analogous to the
lattice constant of a one-dimensional polyatomic PnC.

2.2 Transfer Matrix Method. The dispersion relation of the
aforementioned unit cell can be analytically derived via the transfer
matrix method. The transfer matrix T obtains the displacement u
and force f at the end of cell i from their counterparts at the end

of cell i — 1, such that
u; Uj-1
7=l @

where T is computed from a series multiplication of the transfer
matrices of the individual layers

T=T,T;_;...Ty 2)

Starting with the one-dimensional wave equation which describes
axial waves in the rod, the transfer matrix of the sth layer T, in
Eq. (2) can be derived as [37]

T, =|: cos (ksly) 3)

—z,w sin (kgly)

—sm(kﬁ)
cos(kﬁ)

where k, = w/c, denotes the wavenumber within an individual layer,
which is a function of the angular frequency w.

(b) Dispersion diagram
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Fig. 1 (a) Single unit cell of a multi-layered PnC rod of L layers with the geometric and material parameters indicated, (b) dis-
persion diagram of a bi-layered (L =2) PnC rod with « =2/r and g = 0.8. The linear dispersion diagram of a uniform rod (¢ = =0)
is also provided for reference. Bandgap regions are shaded depending on their parity, i.e., odd versus even.
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3 Bi-Layered Phononic Crystals

3.1 Dispersion Analysis. A special case of the aforemen-
tioned structure is the bi-layered PnC rod (i.e., L=2), which will
be considered here in detail. In such a case, the transfer matrix of
a unit cell T=T,T; is the product of the transfer matrices of the
two layers. The resultant T can be simplified by introducing w,;=
¢/l (where s=1, 2) and two non-dimensional parameters,
namely the frequency and impedance contrasts, respectively, as
follows:

1 1

_ W (00
a=T—71 (4a)

w1 (00

1 — 22
= 4b
21+ )

which both range from —1 to 1 depending on the choice of unit
cell parameters. By defining an average impedance of both layers
2=(21+2z2)/2 and using the definition of the impedance contrast
P, the impedance of each layer can be written as

22 =21%p) (&)

where +(—) is for the first (second) layer. We also define a non-
dimensional frequency Q = w/wy, where the normalization constant
@, represents the harmonic mean of @, and w,, and is given by

2
D=1 ©

w1 )
The harmonic mean can be then combined with the definition of «
to give
1 1
—=—0zxa 7
o

w12

where once again, + (—) is for the first (second) layer. Using these
definitions, the transfer matrix T of the bi-layered cell can be rewrit-

ten as
1
T= d- z(1-f%) I- ®)
—zwty dy
where
dy=— <cos Q) + fcos (ZQa)) (9a)
L= +
t, = sin (2Q) + fsin (2Qa) (9b)

Finally, the dispersion relation can be found from T via tr(T)=
2cos (g), where tr(T) is the trace of the matrix T (A detailed pro-
cess outlining the origin of the dispersion relation is provided in
Appendix A). Also, g = g¢ = gr + ig; is the non-dimensional wave-
number of the PnC rod which is a product of the wavenumber g and
the unit cell length £, and gr and ¢; denote its real and imaginary
components, respectively. Using Eq. (9a), the dispersion relation
is obtained as

cos (2Q) — % cos (2a2) — (1 — ¥ cos () =0 (10)

Note that a positive or negative value of a or  does not change the
resulting dispersion relation as long as their magnitudes remain the
same. This fact can be inferred from the dispersion relation in Eq.
(10), where a is in the argument of the even cosine function and
p is squared. Equation (10) can be depicted analytically by
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reformulating it as ¢ = cos™' [@(Q)], where
1

D(Q) =——[cos (2Q) — * cos (2Qa) | (11)

a-p9

An interesting feature of the function ®(€) is its association with

the frequencies of maximum attenuation inside Bragg bandgaps,

which can be found by evaluating the roots of the derivative

0D(€2)/0Q2 =0, analogous to lumped PnCs [11,25], yielding

sin 2Q) — fPasin 2aQ) =0 (12)

Figure 1(b) shows two dispersion diagrams for a bi-layered PnC rod
(with a=2/z and #=0.8) and a uniform rod with two identical
layers (i.e., = =0). The uniform rod exhibits linear dispersion,
a hallmark feature of longitudinal elastic waves in rods [38],
while the PnC’s dispersion relation is nonlinear culminating in
a dispersive behavior. The bandgaps in the PnC case align with
q1 #0 regions. Odd and even-numbered bandgaps are color-coded
for easier interpretation. Their analytical derivation and emergence
conditions are established next.

3.2 Bandgap Closing in Bi-Layered Phononic Crystals.
Bandgap limits for odd and even-numbered bandgaps can be
found by substituting g =z and g = 0, respectively, in the dispersion
relation shown in Eq. (10), resulting in the following expressions:

(cos (Q) — fcos (a€)) ( cos (Q) + fcos (aQ)) =0 (13a)

( sin (©2) — fsin (aQ)) ( sin () + fsin (aQ)) =0 (13b)

which amount to a multiplication of two terms, each of which
giving one bandgap limit. It is also evident that a bandgap only
emerges if the roots of each of these terms are different. Thus, by
equating both terms in each equation, the conditions that render a
bandgap width equal to zero can be obtained (commonly referred
to as zero-width bandgaps [39]). These conditions are summarized
by the following equations:

pcos(aQ)=0 (14a)

psin(a€2) =0 (14b)

for odd and even-numbered bandgaps, respectively. Consider the
cases that satisfy Eq. (14) when ##0. Starting with odd-numbered
bandgaps, a zero-width bandgap needs to satisfy cos (af2)=0, a
condition which is guaranteed at the following frequencies:

@r -1
20

for r € N*, where N* are all natural numbers without zero. The
second requirement is that such frequencies in Eq. (15) have to
satisfy the dispersion relation at g =z, which can be checked by
plugging Eq. (15) in Eq. (10), and setting g = &, which, after simpli-
fication, gives

Q= for a #0 (15)

7
cos(;(zr— 1)) -1 (16)
Solving for a, we arrive at the following expression:
gz 2r="b (17)
ag (2p-1)

for p € N*, indicating that some odd-numbered bandgaps close
when « is a rational number of odd integers. The frequencies at
which the bandgap closes can be found by combining Eqs. (17)
and (15), yielding

Q,,:%(zp— 1 (18)
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It should be noted, however, that if a specific ratio of a=a,/a, is
imposed, only select combinations of r and p will maintain such
ratio. In this scenario, not every p € N* is guaranteed to fulfill
this ratio of a, and Eq. (18) needs to be updated to

Q,,:gad(Zp—l); for p € N* (19)

to guarantee bandgap closing. To illustrate, consider the case where
a=1/3 (i.e., ay=3). A combination of r=1 and p=2 therefore
closes one bandgap at €,=32/2, while a combination of r=2
and p=35 closes another bandgap at €,=9x/2. However, even
though p =3 belongs to p € N*, there exists no » € N* that satis-
fies the chosen a. As a result, plugging p=3 into Eq. (18) would
not result in a bandgap closing frequency for the PnC described
by this @, making it prudent to use Eq. (19) instead.

Similarly, we analyze even-numbered bandgaps to find a values
at which they vanish. Knowing that sin (@€2) =0 must be met for
such a case, we have a=0 and

Q=" foraz0 (20)
a
Plugging Eq. (20) back in Eq. (10), and setting g = 0, the values of
that correspond to zero-width even-numbered bandgaps are also
rational and given by
a=2=" 1)
ad P
It should be noted that all rational values of @ will close even-
numbered bandgaps, occurring at the following frequencies:
Q, =apay; forpeN* (22)
Figure 2 shows examples of dispersion relations with f=—0.75 and
different values of a, namely, (a) a=0, (b) a=1/3, (¢c) a=1/2, and

Dispersion diagram

(d) a=2/3. The left panel of the figure displays the full dispersion
diagrams, while the right panel graphically represents the bandgap
width of all eleven bandgaps in the range Q € [0, 67]. In all of the
shown cases, even-numbered bandgaps that occur at the frequencies
described in Eq. (22) are expected to close for all @ values that are
rational. The first case of a =0, however, is a special case where all
even-numbered bandgaps close, while all odd-numbered bandgaps
remain open and maintain identical widths, as can be inferred from
the right subplot of Fig. 2(a). Note that for ¢=0 and S#0, the
maximum attenuation can be found in closed form at the frequen-
cies Q=rn/2 (see Appendix B for more details on the a=0
case). For the second case of @ = 1/3, the numerator and denomina-
tor of a are odd integers. It is therefore expected to see odd and
even-numbered bandgaps calculated from Egs. (19) and (22)
closed. The closing takes place at multiples of Q=1.5z. The third
and fourth cases of @ =1/2 and a = 2/3, respectively, have numera-
tor and denominator values with different parities. As a result, only
even-numbered bandgaps are expected to close, which takes place
at Q=2x, 4z, and Q =3z, respectively.

As can be observed from the right panel of Fig. 2, bandgap width
profiles exhibit a wave-like behavior for all considered values of a,
which perfectly repeats itself. Additionally, these profiles are noted
to be mirror-symmetric around the closing points. Finally, we
emphasize that the order of the bandgaps that close is always
related to a, except for the special case of a=0. Specifically, the
order of closed bandgaps is equal to multiples of a if both numer-
ator and denominator are odd, while equal to twice the multiples of
a, otherwise.

3.3 Rational Versus Irrational a Values. Following this dis-
cussion of the role of rational a values in bandgap closure, it is
imperative to understand the different consequences of PnCs
with rational and irrational a values that are close in magnitude.
Consider two bi-layered unit cells of an identical impedance

Bandgap Width
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Fig.2 Dispersion diagram (left) and the corresponding width (AQ) of the first 11 bandgaps (right) for a bi-layered PnC
rod with (a) =0, (b) a=1/3, (c) a=1/2, and (d) a=2/3. p=—0.75 is used for all cases. Regions of the same shading
indicate bandgaps of identical width at a given a, while the labeled frequencies (e.g., =, 2, etc.) denote bandgap

closings.
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contrast f=—0.75 with a=2/3 for the first, which is the rational
value that corresponds to the dispersion diagram shown in
Fig. 2(d), and a=2/r for the second, which is the irrational value
used to construct the dispersion diagram shown in Fig. 1(b).
The bandgap widths for the first 120 bandgaps of both PnCs
are computed in Fig. 3. It is immediately noticed that the rational
(a=2/3) case maintains a perfectly periodic pattern of bandgap
widths that repeats itself every six bandgaps (which is twice a, as
explained earlier). On the other hand, the bandgap widths corre-
sponding to the irrational (a=2/x) case clearly move further
away from zero as the bandgap number increases, indicating the
absence of a bandgap closing pattern due to @ not being an exact
rational number. Despite the absence of a bandgap closing
pattern, Fig. 3(b) still shows a near-periodic profile with a period
of 11 bandgaps. This is understandable because the closest rational
approximation of a=2/rx2/(22/7)~7/11 (using the known
approximation of x) reveals that this system should closely mimic
one which exhibits bandgap closing at multiples of a;=11.

3.4 Physical Implication of Rational & Values. Consider a
finite uniform rod made of one of the two bi-layered PnC unit
cell layers, that has a sonic speed ¢, and a length £,. Excluding
the rigid body mode at @ =0, the natural frequencies of this rod
in the unconstrained form (i.e., with free-free boundary conditions)
can be found by setting the lower off-diagonal element of the trans-
fer matrix in Eq. (3) equal to zero. If the same rod is fixed from both
ends, the natural frequencies can be obtained by setting the upper
off-diagonal element of the transfer matrix in Eq. (3) equal to
zero. Both cases yield sin (k,{;) =0, which in turn provides the fol-
lowing set of natural frequencies [28]:

ng=1,2,3,... (23)

w = TNy,

where 7, indicates the order of the vibrational mode in the complete
set of non-zero natural frequencies. Using Eq. (7) and the substitu-
tion a = a,/a,, combined with Eq. (23), we arrive at

(aq — apng = (aq + ap)ns (24)

Equation (24) captures the physical meaning behind rational values
of a in a concise manner. It indicates that for any rational « value, a
natural frequency of the first of the two layers of the order (a; — ;)
n; matches a natural frequency of the second layer of the order
(ag + a,)ny, since a, and a,, are integers. These natural frequencies
must satisfy €, in Egs. (19) and (22). Consequently, along with the
harmonic mean in Eq. (6), these two equations can be utilized to
find an exact solution for n; and n, for a prescribed rational

value of a. Rearranging Eq. (6), it can be seen that

2L 20_s 25)
W @2

which, in conjunction with Eq. (23) at @ = (€2, becomes
w(ny +np) =29, (26)

Solving Eqgs. (24) and (26) simultaneously and plugging in the
expressions for €, in Egs. (19) and (22), we arrive at the following
expressions for n; 5:

ny = % @p - D(aq + ay) @7a)

ny = plag + ) (27b)
for odd and even-numbered bandgaps, respectively, and with + (—)
denoting the solution for s=1 (s=2). Note that if the sign of a
flips, the solutions corresponding to the first PnC layer become
those of the second layer and vice versa. Interestingly, this discus-
sion of the physical meaning of rational « values also has a connec-
tion to the “Bragg condition,” as will be derived next.

3.5 Connection to Bragg Condition. Bandgaps in PnCs are
known to be size-dependent and initiate near frequencies described
by the Bragg condition, which provides the proportional relation-
ship between the size of a PnC and the wavelength [40,41]. A
Bragg condition can also be defined for each of the individual
layers of a bi-layered PnC (since the individual layer can be
thought of as a special PnC unit cell with zero-width bandgaps) as

A

ls=ns > (28)
where A, =2n/k; is the wavelength. Recalling that k, = w/c; for rods
and rearranging Eq. (28) in terms of the angular frequency w, it can
be seen that the frequencies corresponding to the Bragg condition
are given by w = zn,w;,, which perfectly align with the frequencies
derived in Eq. (23). In other words, the frequencies corresponding
to the Bragg condition of an individual layer are also the natural fre-
quencies of a finite uniform rod comprised of that particular layer
with free-free or fixed-fixed boundaries. By making use of
Eq. (7), anon-dimensional form of the Bragg condition of each indi-
vidual layer in a bi-layered PnC can be written as a function of the

(@) ™2
a S rational
3 ™4 (a=23)
0_
(b) T[/z_ 0 Q 0 Q o) Q 0 Q 0 Q 0 Q 0 Q 0 Q ®) Q ®) Q ®) Q
'. .- 0. -- .. .- -' .- -' .o n. ‘0 c. .' .. .0 o. .0 oY " oY .'
QO QO 04 0d 04 04 o4 o) Q Q O j 3 1
C: _ o O o) l/rratlona
47[/4 Q Q Q Q Q Q Q Q Q Q Q \a:Z/n‘J
0 T T T T - 1
0 20 40 60 80 100 120

Bandgap number

Fig. 3 Bandgap width for the first 120 bandgaps of a bi-layered PnC rod with: (a) a rational
value of a=2/3 and (b) an irrational value of «=2/z. $=—-0.75 is used for both cases. The
PnC with the rational @ maintains a perfectly periodic pattern of bandgap widths that
repeats itself every six bandgaps. The PnC with the irrational ¢ has an aperiodic profile of
bandgap widths which can be observed by tracking the changes in the widths of the 5th,
6th, and 11th bandgap every cycle of 11 bandgaps.
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frequency contrast between the two layers a, as follows:

N7

Q:
lta

(29)
where + (—) is for s=1 (s=2). Recalling that a bandgap of a
bi-layered PnC can only close if @ is a rational number (as proven
in Sec. 3.2), it can be seen that a rational « is guaranteed if the fre-
quencies of the Bragg condition for the individual layers 1 and 2 are
matched, i.e., when Q in Eq. (29) becomes identical for both the
plus and minus solutions. As a result of this matching, a takes the
following expression:

a= m—n2 (30)

ny +ny

thus ensuring that « is a rational number, and further cementing the
connection between the Bragg condition and the bandgap closing
condition in a bi-layered PnC rod.

3.6 Mode Shapes at Bandgap Closing. It is now established
that the Bragg bandgaps of a bi-layered PnC close when the Bragg
condition frequencies of the two constitutive layers match. As a
direct consequence of that condition, the natural frequencies of
the bi-layered PnC unit cell become those of the individual layers
at bandgap closing. We therefore formulate analytical expressions
for the deformational mode shapes of the bi-layered PnC (often
referred to as the unit cell Bloch modes [42]) which correspond
to bandgap closing frequencies, for a complete understanding of
these scenarios. The general solution of the displacement and inter-
nal force of the sth layer of the PnC rod can be written as

uy(x) = a, cos (kyx) + by sin (kgx) (3la)

fs(x) = EsAk (bs cos (ksx) — a, sin (ksx)) (31b)

To obtain solutions for the coefficients a, and b, a total of four
equations are needed which are found from the displacement and
force continuity conditions between the PnC layers. To do so in a
bi-layered PnC, we set x=0 at the interface of the two layers.
The displacement and force continuity conditions yield

a;—a, =0 (32a)

A+pbr -0 =pb,=0

By using the next interface to get the two remaining equations,
we get ui({—{)=uy(l,) and fi(€—£€)=f:(f>), which can be
expressed as u;({—¢€)=euy(—4¢,) and fi(€—¢€)=¢e"(—1¢)),
respectively, by virtue of Bloch’s theorem. At the special cases of
sin (ky,) =0, these two continuity conditions simplify to

(32b)

aj cos (nw)e' — a; cos (nym) =0 (33a)

(1 + p) cos (nmm)e'%b; — (1 — ) cos (nym)by =0 (33b)
Solving Egs. (32) and (33) simultaneously gives

(cos (nim)e¥ — cos (nam))ar =0 (34a)

(cos (nw)e — cos (nznr))bl =0 (34b)

Equation (34) represents an eigenvalue problem with the eigenvec-
tors being {a; b1} ={10}" and {a; b;}T={0 1}". As such, we
arrive at two different mode shape equations. The first corresponds
toay=a,= 1 and bl =b2=0, i.e.,

(35a)
1

ul(x)=cos<n17r%>; x€[-4¢,0]

031006-6 / Vol. 91, MARCH 2024

up(x) = cos <n2ﬂ%); x € (0, 4] (35b)
2

which, interestingly, is independent of the impedance contrast
between the two PnC layers. The mode shapes in Eq. (35)
mandate that the normalized amplitude at the interface is equal to
one. Similarly, a second solution is found by using Eq. (32b) and
applying b;=1—-p and a;=a,=0, resulting in the following
mode shape:

ul(x)=(1—ﬁ)sin<n1nei>; xel[-0,0]  (36a)
1

up(x)=(1+p) sin(nyr%); x € (0, £;] (36b)
2

showing that mode shapes from this second solution exhibit an
amplitude of zero at the interface between the layers. Upon exam-
ining the modes shapes in Eqgs. (35) and (36), it becomes clear
that the deformation “shape” of each layer is independent of the
other as inferred from the argument of the cosine and sine functions
in both equations. The “amplitude,” however, of mode shapes
obtained from Eq. (36) depends on the impedance contrast
between the two layers, as implied by the (1 F f) coefficient. The
independent deformation shapes in each layer are attributed to the
fact that Eq. (35) is merely a combination of free-free mode
shapes for layers 1 and 2 if they are to be stand-alone structures.
Likewise, Eq. (36) describes fixed-fixed mode shapes for layers 1
and 2, only scaled by the (1 F ) term. This intriguing relationship
between the mode shapes of a PnC and those of its constitutive
layers at bandgap closing is graphically summarized in Fig. 4(a).

The rightmost panel of Fig. 4(b) shows the mode shapes for the
case of lal=1/3 and =-0.75. Here, we chose ¢;/{=0.6 and thus
£>/€=0.4. The two modes derived earlier are normalized such that
the maximum amplitude is unity and they are plotted at the three fre-
quencies corresponding to bandgap closings within the range Q €
(0, 6x), namely 37/2, 3z, and 9z/2. The spatial frequency of the
mode shapes is controlled by the value of n; ;. As can be inferred
from Eq. (27), flipping the sign of a switches the values of n; and
n,. This is graphically shown in Fig. 4(b) where the deformation
shape of layer 1 at @ =1/3 becomes identical to that of layer 2 at
a=-1/3, and vice versa, at any of the three bandgap closing fre-
quencies shown (understandably, the deformation shape spans a
shorter or larger distance when the sign of a is swapped to accom-
modate for the different lengths of the individual layers). For vali-
dation, all of the analytically-obtained results shown in Fig. 4(b)
are verified via a finite element model implementing two-node
rod elements [43], and shown as dashed lines in all the plotted
mode shapes.

The leftmost panel of Fig. 4(b) shows several unique features of
the dispersion diagrams of the bi-layered PnC and its two constitu-
tive layers. The latter are given by two sets of folded lines described
by Q(1 + a) = ¢ (black and blue dashed lines). The red dashed lines
indicate the locations at which the two sets fold at the same fre-
quency, indicating a bandgap closing of the bi-layered PnC as
shown. Finally, it can also be shown that n;, indicate precisely
the number of folded lines that the dispersion relations of the indi-
vidual layers have up to each bandgap closing of the bi-layered unit
cell. For example, consider the first bandgap closing at Q =3z/2.
The dispersion relation (1 + a) = g before and up to that frequency
consists of exactly two folded lines, while Q(1 — @) =g consists of
one folded line, indicating values of n; =2 and n, = 1. Using these
values of n; », it immediately follows that a = 1/3 by using Eq. (30),
as expected.

3.7 Bandgap Transitions With Varying « and f. The obser-
vations drawn in Secs. 3.2 and 3.3 regarding rational and irrational
values of a are in fact independent of the chosen value of . As a
demonstration, Fig. 5 shows the width AQ of the first six bandgaps
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(a) Relationship of mode shapes of bi-layered PnC to that of individual layers
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Fig. 4 (a) A graphical summary of the relationship of the mode shapes (for given boundary
conditions) of a PnC unit cell to that of its individual layers at bandgap closing frequencies,
(b) Left: dispersion diagram of a bi-layered PnC rod unit cell for the case when |a| =1/3 and
B =-0.75. Two sets of folded lines represent the dispersion diagrams of the two individual
layers of the PnC. Horizontal dashed lines indicate the locations at which the two sets fold
at the same frequency, indicating a bandgap closing of the bi-layered PnC as shown. Right:
mode shapes of a bi-layered PnC rod unit cell using the same parameters. The mode
shapes are shown for the three frequencies which correspond to bandgap closings within
the range Q € (0, 67), namely 37/2, 37, and 97/2. Repeated modes exist at the bandgap closings
due to two dispersion branches touching at that point. Changing the sign of « flips the modes
shape as illustrated in the right panel of the figure. Specifically, the deformation shape of layer
1 at @ = 1/3 becomes that of layer 2 at = —1/3, and vice versa. Mode shapes calculated via the
finite element method are superimposed as dashed lines for validation.

over the entire range of o and f values. The following observations value of a. For example, the fourth bandgap (which is even-
can be made: numbered) closes at a==+1/2 as expected, with the
closed bandgap number being twice the denominator value

(1) Confirming the bandgap closing rules observed in Fig. 2, the (ag=2). Similarly, the fifth bandgap (which is odd-
number of the zero-width bandgap is directly related to the numbered) closes at @ ==+1/5 and a=+3/5, which are both

Bandgap number

ONONONONORO,

Bandgap closing

matched impedence ff =0
----- special case of & =0

rational values of o

Bandgap width

— —
0 AQIT 0.6

-1 0 +1 -1 0 +1 =1 0 +1

Fig. 5 Contours depicting the width AQ of the first six bandgaps of a bi-layered PnC rod
across the entire design space of o and . Bandgap numbers 1-6 are placed at the right top
corner of each subplot. As can be seen, g =0 closes all bandgaps regardless of the value of
a. a=0 closes all even-numbered bandgaps. Additionally, zero-width bandgaps occur at
select rational values of « indicated by the vertical dashed lines, the location of which
depends on the bandgap number.
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ratios of odd numbers, and with the closed bandgap number
matching the denominator value (@, =15). Finally, the sixth
bandgap closes at both o =+1/3 and a = +2/3, which repre-
sent rational values of identical and different numerator—
denominator parity, respectively.

(2) Including the limiting case of lal =1, the number of times a
given bandgap closes is equal to its number plus one. For
instance, the third bandgap closes four times at a==+1/3
and a==+1.

(3) The special case of a=0 results in the closing of all even-
numbered bandgaps, further confirming the result of
Fig. 2(a).

(4) The special case of =0 forces all bandgaps to close regard-
less of the value of a (as reported in Ref. [39]).

It is also of interest to understand how bandgap limits behave as
the value of # changes at a given a, as shown in Figs. 6(a) and 6(b).

Bragg bandgaps initiate with a non-zero impedance contrast 3 at fre-
quencies at which the linear dispersion relation folds within the irre-
ducible Brillouin zone, as shown in Fig. 6(a), and grow in width
(AQ) with higher contrast values. As the contrast # approaches
the limiting value of unity, the dispersion branches become flat.
The growth of AQ with increasing magnitude of /8 is further empha-
sized in Fig. 6(b), and is shown to be symmetric about #=0. It can
be seen that even or odd-numbered bandgaps close when the two
solutions of Eq. (29) match regardless of the value of . These clos-
ings are denoted with dashed lines in Fig. 6(b).

The behavior is quite different when observing the evolution of
bandgap limits with a varying a at specific values of f, which is
depicted in Fig. 6(c). As the value of a changes, the locus of
the bandgap limits oscillates in a manner which increases at
higher frequencies. Furthermore, the amplitude (i.e., frequency
width) of these oscillations grows as the value of f increases.
These oscillatory profiles have nodal points at the locations

(a) p=0 £=025 £=0.75 p=1 ,
T Y
N (=]
qr % é
0 L 4 L
[ 1 1 T 1T 1T 1
0 Qn 20 Qm 20 QI 20 Q/n 20 Q/n Z
(b) ()
+1 +1
Bragg conditions
B0+ o a=0) (=01}0 ' e Sr0a

_l_
+19

£ 04

» Suisearou]

Bandgap limits
Even — Odd

e e

= Even w=m Odd

Ha=273) (B=07K

+I — . .
B0+ ’ ’ ‘ ‘ ’ | | Ha=172) (B=05K
=1~ Bandgap width

J Swiseaoug

0«

-1
0 T 2n 3n 4n Sn 6n
Q

Fig. 6 (a) Dispersion diagram of a bi-layered PnC rod with = 1/2 and the two layers having
varying impedance contrast ranging from g=0 to g=1. The =0 case, which is shown as
dashed lines in all plots for reference, represents a bi-layered PnC unit cell with zero imped-
ance contrast between its two layers (i.e., two layers with the same impedance) and shows
no bandgap emergence (i.e., AQ = 0). As g increases, bandgaps initiate at the folding frequen-
cies and the bandgap width AQ continues to grow until the dispersion branches become
completely flat at g =1. Evolution of bandgap limits of a bi-layered PnC rod for: (b) varying
at specific « values of 0, 1/3, 1/2, and 2/3, and (c) varying «a at specific g values of 0.1, 0.3,
0.5, and 0.7. In (b), the dashed lines represent frequencies where bandgap limits match the
Bragg conditions derived in Eq. (29), which are evidently not a function of 8. These conditions
are a function of « and are, therefore, tracked via the same dashed lines in (c). Whenever the
two solutions in Eq. (29) match, these dashed lines intersect resulting in identical lower and
upper bandgap frequencies, i.e., a closing of the corresponding bandgap.
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where the bandgap limit curves intersect, which represent rational
values of a. At such nodes, the curves corresponding to the Bragg
condition established in Eq. (29), and shown as dotted black lines,
also intersect, thus constituting the requisite condition for bandgap
closing.

4 Generalizing Bandgap Closing Conditions to
Multi-Layered Phononic Crystals

While the bandgap closing conditions derived thus far have
been mathematically proven for a bi-layered PnC, it is imperative
to likewise demonstrate that similar features emerge in a PnC
with an arbitrary L>2 number of layers. To generalize our find-
ings, consider a multi-layered unit cell of a PnC rod where all
of the constitutive layers have distinct mechanical and geo-
metrical properties. Analogous to the theoretical framework
developed earlier, the frequencies corresponding to the Bragg
conditions of each of the individual layers can be matched as
follows:

nwy=nywy=--+=nLwg 37

which can be alternatively written as

;s A
—=-1 (38)

w;j Ny
such that j#s. To locate the frequencies where bandgaps close,
we need to pursue a non-dimensional parameter which is remi-
niscent of the frequency contrast a in the bi-layered PnC. To

do so, a generalized harmonic mean can be introduced as
follows:

L
Ll (39)

which can be rearranged to read

L 1
—=)"— (40)
[20)] =1 Wy

Next, the frequencies wg can be rewritten as a function of the jth
frequency w; by using Eq. (38), which, after a few mathematical
manipulations, becomes

1 L n;

TSl
wj  Wo Zs:l s

(41)

Note that Eq. (40) is recovered if all the components 1/w; in Eq.
(41) are added. Also, it can be clearly seen that the last term in
Eq. (41) is a rational number and, as a result, can be written in a
form similar to « as follows:

%G __ "
a T L
d Zx:l s

giving the denominator ay; = Zle ng the same role it played in
the bi-layered PnC case, defining the frequency at which a

(42)

127

107

3(q) ++> NR(q)

ABS polymer

3(q) > R(q)

3(q) «+> NR(q)

Aluminum Brass M Magnesium Alloy [l Steel

3(q) ++> R(g) 3(q) > R(q) 3(q) ++> R(q)

O O @ Identical bandgaps at a given PnC

Fig. 7 Dispersion diagrams of PnC rods with multi-layered unit cells showing bandgap closings at LQ, = zpay. (a)—(c) three-
layered unit cells (L = 3) with the following n4-n,-n; harmonic combinations: (a) 1-1-1 (bandgap closings at LQ, = 37p), (b) 1-2-1
(bandgap closings at LQ, = 4zp), and (c) 1-2-3 (bandgap closings at LQ, = 6zp). (d)—(e) Four-layered unit cells with the following
ny-nx-nz-ny harmonic combinations: (d) 1-1-1-1 (bandgap closings at LQ, = 4zp) and (e) 1-2-2-1 (bandgap closings at LQ, = 67zp).
(f) Five-layered unit cell with the following n;-n,-nz-n;-ns; harmonic combination: 1-1-2-1-1 (bandgap closings at LQ, = 67p).

Note that p eN* represents all non-zero natural numbers.
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bandgap closes using the equation
Q ! (43)
=—7npa
D L”P( d

The numerator a;=n;, on the other hand, provides the number of
branches a linear dispersion relation of an individual layer has
between Bragg conditions. A couple of additional remarks can
be made:

(1) If a, s odd, odd and even-numbered bandgaps located at the
frequencies given by Eq. (43) will close. However, an even
ay will only close even-numbered bandgaps according to
the same equation.

(2) If the chosen values of ng have a common factor, a cancel-
ation of the common factor is required for Eq. (43) to cor-
rectly predict the frequencies at which bandgaps close. For
example, if ny=2, ny=4, and n3;=6 in a three-layered
PnC (i.e., L=3), the number 2 is a common factor. As
such, bandgap closing frequencies should be computed
using ny =1, n, =2, and n3; =3 instead.

Figure 7 shows examples of multi-layered PnC with L=3, 4, and
5. The materials used in the three-layered PnC rod are ABS, alumi-
num, and steel in that particular order. The four-layered and five-
layered PnC rods add brass and magnesium alloy, respectively.
All material properties are listed in Table 1. In all cases, the area
and total length of all layers are constant and equal to A=
400 mm? and £= 100 mm, respectively. The individual lengths of
the layers are calculated by combining ¢ = ZSL: 1 4s and w,="{/c,
with Eq. (37). These equations can be cast into a matrix form as
follows:

r1 1 1 |

1 1

N 0

cin Ccony Zl Y
1 0 [ : 0 0
ciny c3ng ’ ’ . =3 . (44)
1 : .
—_— 0

cm 159 0
1 1

_ 0 0 —-——

Lcing cng -

Starting with L=3, we show combinations of the harmonics
ny-ny-n3 of (a) 1-1-1, (b) 1-2-1, and (¢) 1-2-3. For these PnC config-
urations, we predict bandgap closings to occur at ay = Zf=1 ng
which correspond to L, =3zp, 4ap, and 6ap for (a), (b), and
(c), respectively, as shown in the respective figures. Similar beha-
vior can be seen in the L=4 (1-1-1-1 and 1-2-2-1) and L=5
(1-1-2-1-1) cases in (d)—(f). The bandgap width in all cases
(a)-(f) has a periodic pattern which repeats itself in between
bandgap closings. Additionally, the dispersion branches remain
mirror-symmetric about the bandgap closings, which is synon-
ymous with the bi-layered (L =2) case.

Finally, for completeness, we point out that the existence of two
identical layers in a multi-layered unit cell of a PnC rod affects the
calculation of a/a, in Eq. (42). This is because of a hidden common

Table 1 Material properties used in the multi-layered PnC rod
unit cells used in Fig. 7

Material Density Young’s modulus
ABS 1,040 kg/m® 2.4 GPa
Aluminum 2,700 kg/m3 69 GPa
Brass 8,530 kg/m® 110 GPa
Magnesium Alloy 1,800 kg/m® 42 GPa
Steel 7,850 kg/m? 210 GPa

031006-10 / Vol. 91, MARCH 2024

factor that exists between the chosen vibrational modes that are
intended to be matched. When faced with such a special case, the
sum of the modes of the identical layers can be calculated and
they can then be treated as a single continuous layer, even if they
are not adjacent to one another. For instance, consider a four-
layered unit cell made of aluminum-steel-aluminum-brass. We
choose n; =1, n, =8, n3=3, and n, =4 and then calculate n' =n,
+n3=4 for a collective mode for the aluminum layers. As such,
the common factor between n,, n4, and n’ is 4, and, as a result,

ag = ng/4.

5 Concluding Remarks

The qualitative and quantitative criteria governing bandgap for-
mation, distribution, and closing conditions were established in a
generalized class of rod-based PnCs undergoing longitudinal defor-
mations. A transfer matrix-based approach was used to generate the
wave dispersion profiles and develop expressions for bandgap
limits and frequencies of maximum attenuation. By implementing
two non-dimensional contrast parameters, a frequency contrast
and an impedance contrast f, which stem from the parameters of
the PnC’s constitutive layers, the conditions that lead to diminishing
bandgaps were derived in closed form, showing that a being a ratio-
nal number is a necessary condition for bandgap closing in
bi-layered PnCs. Furthermore, it was shown that, depending on
the parity of the integer numerator and denominator values of a,
the pattern and frequency location of the bandgap closing can be
predicted as a function of the rational number a. It was found that
the bandgap widths AQ of a PnC with a rational a exhibit a periodic
profile, which perfectly repeats itself every time a bandgap closes.
This pattern was correlated to the resonances of the individual
layers of the PnC, and it was proven that matching the natural fre-
quencies of the individual layers (if they were to be treated as
stand-alone entities) forces a bandgap to close at the same frequen-
cies. An additional connection was made between bandgap closing
criteria and the physics underlying the mode shapes of the individ-
ual layers forming the PnC unit cell at different boundary
conditions.

The conclusions drawn from the bi-layered case were general-
ized to a PnC comprised of three or more layers, where it was
similarly shown that the dispersion branches of the multi-layered
PnC exhibit mirror symmetry about the frequencies at which
bandgaps close. In fully analytical terms, it was also proven
that the resonance matching condition for bandgap closing is
independent of the number of layers forming the PnC’s unit
cell. Resolving the patterns and formation mechanisms of multi-
bandgap dispersion profiles is particularly useful for a wide array
of new and exciting topics, given the rising interest in exciting
applications that require an understanding of how bandgaps
close (e.g., topological transition). In tandem, the need to finely
tailor phononic band structures remains highly critical for a
broad range of elasto-acoustic metamaterials. As such, the devel-
opments established herein provide a great asset for bandgap
engineering in future configurable and tunable PnCs.
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Appendix A: Deriving the Dispersion Relation From the
Transfer Matrix

When operating under linear reciprocal conditions, the determi-
nant of the transfer matrix is unity [44]. By combining IT — Il =
0, where A is an eigenvalue of T, with IT| =1, the following charac-
teristic equation is derived

P—t(MAi+1=0 (AD)

where once again, tr(T) is the trace of T. As aresult, the eigenvalues
of T are derived from the roots of Eq. (A1), leading to

(A2)

reveals that

Examining Eq. (A2) A_+ 4, =tu(T). Upon
expressing the eigenvalues as an exponential function of the wave-
number, i.e., 1, =e*, we arrive at the following dispersion rela-
tion:

tr(T) =2 cos (q) (A3)

Appendix B: Special Case of a =0

A special configuration of the bi-layered PnC rod takes place
when the frequency contrast a is equal to zero. This is realized
when the ratio of the length of layer 1 to that of layer 2 is equal
to the sonic speed ratio between the two layers, i.e.,

Z] C1
—=— Bl
& o B1)

Upon substituting @ = 0 in the dispersion relation of Eq. (10), 2 can
be obtained analytically as follows:

Q=kn+ %cos*‘ (B + (1 = pHcos(9) (B2a)

Q=(k+ Dz - %cos_l (# + (1= cos(9) (B2b)

for k € Ny where N is the set of all natural numbers including zero.
The bandgap lower and upper limits can be respectively found using
the following expressions:

1
Q=lr+5 cos™' (287 - 1) (B3a)

Q.=+ )z - %cos"l (25 -1) (B3b)

which confirms that all bandgaps have an identical width that is
given by

AQ=rx—cos™ (26 - 1) (B4)

Finally, as stated in Sec. 3.1, setting @ =0 in Eq. (12) shows that
Q=ra/2 is the frequency of maximum attenuation inside the
bandgap. The attenuation constant corresponding to this frequency

is given by
2
+1
g = S[cos_1 (ﬁz - 1)i| (BS)
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