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On the Fundamental Limits of Coded Caching With
Correlated Files of Combinatorial Overlaps
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Abstract— This paper studies the fundamental limits of the
shared-link coded caching problem with correlated files, where a
server with a library of N files communicates with K users who
can locally cache M files. Given an integer r ∈ [N], correlation
is modelled as follows: each r-subset of files contains a unique
common block. The tradeoff between the cache size and the
average transmitted load over the uniform demand distribution is
studied. First, a converse bound under the constraint of uncoded
cache placement (i.e., each user directly stores a subset of the
library bits) is derived. Then, a caching scheme for the case
where every user demands a distinct file (possible for N ≥ K)
is shown to be optimal under the constraint of uncoded cache
placement. This caching scheme is further proved to be decodable
and optimal under the constraint of uncoded cache placement
when (i) KrM ≤ 2N or KrM ≥ (K − 1)N or r ∈ {1, 2,N −
1,N}, and (ii) when the number of distinct demanded files is
no larger than four. Finally, a new delivery scheme based on
interference alignment which jointly serves the users’ demands
is shown to be order optimal to within a factor of 2 under
the constraint of uncoded cache placement. As an extension, the
above exact and order optimal results can be extended to the
worst-case load. As by-products, an extension of the proposed
scheme for M = N/K is shown to reduce the load of state-of-the-
art schemes for the coded caching problem where the users can
request multiple files; the proposed scheme for distinct demands
can be extended to the coded distributed computing problem
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with a central server, which achieves the optimal transmission
load over the binary field.

Index Terms— Coded caching, correlated files, interference
alignment.

I. INTRODUCTION

CACHE is a network component that leverages the device
memory to store data so that future requests for that data

can be served faster. Two phases are included in a caching
system: i) the cache placement phase: content is pushed into
each cache without knowledge of future demands; ii) the
delivery phase: after each user has made its request and
according to the cache contents, the server transmits coded
packets in order to satisfy the users’ demands. As in the
classical setting in [2], we consider that the placement is
performed offline, and the goal is to minimize the number
of transmitted bits (load) from the server to the users during
the delivery phase.

Information theoretic coded caching was originally pro-
posed by Maddah-Ali and Niesen (MAN) in [2] for a
shared-link caching system containing a server with a library
of N equal-length files, connected to K users through a
noiseless shared link. Each user can store M files in its local
cache without knowledge of later demands. In the delivery
phase, each user demands one file. The MAN scheme uses a
combinatorial design in the cache placement phase such that,
during delivery, multicast messages simultaneously satisfy the
demands of different users. Under the constraint of uncoded
cache placement (i.e., each user directly caches a subset of
the library bits) and for worst-case load, the MAN scheme
was proved to be optimal when N ≥ K [3], [4]. On the
observation that some MAN linear combinations are redundant
if there exist files demanded by several users, the authors
in [4] improved the MAN delivery scheme and characterized
the optimal worst-case load (and also the average load over
the uniform demand distribution) under the constraint of
uncoded cache placement for any K, N. The same authors
proved in [5] that the multiplicative gap between the opti-
mal caching scheme with uncoded cache placement and any
caching scheme with coded cache placement is at most 2.

Coded caching strategies have been applied to several
different models, such as decentralized systems [6], device-to-
device (D2D) systems [7], topological networks [8], [9], [10],
and various types of demands, such as linear functions [11],
[12], matrix multiplication [13], secure demands [14], private
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demands [15], [16]. The above works assume that the file in
the library are mutually independent; i.e., they are realiza-
tions of statistically independent random variables. However,
in practice there may be some correlations among differ-
ent files (e.g., videos, image streams, etc.). Coded caching
with correlated files was originally considered in [17], where
correlation-aware coded caching schemes were proposed.
In this work, we consider a coded caching problem with
correlated files, where different files have common parts (i.e.,
overlaps).1 In the following, we will review the literature of
coded caching with correlated files, and then introduce our
main contributions in this paper.

A. Related Previous Works

1) Coded Caching With Correlated Files: In [17], the files
are divided into two sets, referred to as I-files and P -files,
where the I-files are composed of some entire files and P -
files are composed of inter-compressed files with respect to
their corresponding I-files. By treating the delivery phase as
an index coding problem with multiple requests, the authors
in [17] proposed a delivery scheme based on graph coloring.
In [19], after the Gray-Wyner source coding, the authors
modelled correlation as each subset of files has an exclu-
sively common part, which is then treated as an independent
block/file in a coded multicast problem. Caching schemes
for two-file K-user system (proved to be optimal) and three-
file two-user system (optimal for the large cache case) were
proposed. In [21], the caching problem with correlated files of
combinatorial overlaps, where the length of the common part
among each ℓ ∈ {1, . . . , N} files (referred to as a ‘ℓ-block’) is
the same, was considered; each file contains

(
N−1
ℓ−1

)
ℓ-blocks.2

By using the MAN cache placement to store each ℓ-block at
the user sides, [21] proposed a delivery phase which contains
N steps. In Step ℓ, only ℓ-blocks are transmitted. In addition,
there are

(
N−1
ℓ−1

)
rounds for the transmission of Step ℓ, and each

round is treated as an MAN caching problem with K users,
each of which should decode exactly one ℓ-block. Then the
caching scheme in [4] was used to transmit packets for each

1Common information between correlated files may be defined in different
contexts, such as Gács–Körner–Witsenhausen common information, mutual
information, Wyner’s common information. These three quantities coincide
if common information between some files is represented by the overlaps
of these files [18, Section 14.2]. In addition, as stated in [19], for any
file correlation model, by compressing the library using the Gray-Wyner
network [20], the resulting description of the library reduces to an overlap
model, where each subset of compressed files contains a common part.

2While obviously an idealization, this symmetric combinatorial overlap
model can capture several interesting scenarios. For example, suppose that
each file is a collection of subfiles, e.g., a photo album, and some photos are
in common between different albums (same can be said for playlists, where
some songs are common to different playlists). Note that in information theory,
ideally symmetric combinatorial models are considered in several problems
in order to get clean theoretic results. For example, in the literature of coded
caching, symmetric combinatorial models are widely considered to make
the problems theoretically tractable, such as two-hop combination networks
with relays [9], [10], [22], [23], [24], [25], combinatorial combinatorial
multi-access networks [26], [27], coded caching with combinatorial file
demand sets [28], Map-Reduce coded distributed computation models [29],
etc. In addition, lack of perfect symmetry in the combinatorial file overlap
topology, converse bounds should be derived case-by-case and the proposed
achievable scheme for the symmetric case can be still used by adding some
virtual common parts.

round. The caching schemes in [19] and [21], were extended
in [30] and [31] to caching problems with correlated files
where the correlation is dynamic and the channel is a Gaussian
broadcast channel, respectively.

2) Coded Caching With Multiple Requests: Each step of
the caching problem with correlated files of combinatorial
overlaps in [21] is a special case of coded caching with
multiple requests originally proposed in [32] and [33], where
the library contains N equal-length and independent files and
each user demands L files from the library.3 By using the
MAN placement and an index coding delivery, the achieved
worst-case load in [32] is order optimal to within a factor of
18, while the achieved average load over the uniform demand
distribution in [33] is order optimal to within a factor of
12 when the numbers of files and users go to infinity. With the
MAN placement, a multi-round delivery scheme was proposed
in [34], where the delivery phase is divided into L rounds and
in each round the MAN delivery scheme in [2] is used to let
each user decode one file. The worst-case load of this multi-
round scheme was proved to be order optimal to within a
factor of 11 [34].

Instead of using the MAN scheme in each round, the authors
in [35] proposed to use the caching scheme in [4] to leverage
the multicast opportunities. In addition, by considering all
the L rounds, an overall transmission coding matrix can be
generated. If the coding matrix is not full-rank, the caching
scheme in [35] then takes the full-rank sub-matrix. This
delivery scheme was proved to be optimal under the constraint
of the MAN placement for demands with K ≤ 4, M = N/K,
and L = 2, with the exception of one demand for K = 3 and
three demands for K = 4.

Coded caching with multiple requests where the users
demand different numbers of files, was considered in [36],
[37], [38], [39], [40], [41], [42], [43], and [44].4 The caching
schemes in [36], [38], [39], [40], and [37] are based on the
round-division strategy as described above while the schemes
in [41], [42] use coded cache placements for some small
memory size regimes and the schemes in [43] and [44] are
based on a combinatorial structure referred to as placement
delivery array (PDA) originally proposed in [45].

Most of the existing works divide the multi-request problem
into a sequence of single-request problems (as in [21], [34],
[35], [36], [37], [38], [39], [40]). There are three main limi-
tations in dividing the delivery into single-request problems,
namely (1) the same file may exist in different rounds and this
round-division method may miss some multicast opportunities,
(2) even if there does not exist file overlap cross different
rounds, this round-division method still cannot fully leverage
the multicast opportunities (as illustrated in Example V-A),

3This is because in [21] the ℓ-blocks in Step ℓ are assumed to be
independent and to have the same length. Thus we can treat each block as one
independent file in the coded caching problem with multiple requests, while
each user requests

(N−1
ℓ−1

)
blocks.

4The coded caching problem with shared caches was considered in [38],
[39], [40], [41], [42], [43], and [44], where the model contains a central server
and U cache-nodes. Each cache-node i is connected to Li cache-less users,
where each user can access to only one cache-node. This problem can be seen
as a special case of the coded caching problem with multiple requests, where
each user i demands Li files.
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and (3) finding the best division of the users’ demands into L
groups is computationally hard.

B. Contributions

If one directly considers the most general problem of cor-
related files, it is very challenging to make general optimality
statements. In this paper, as in [21] we consider a symmetric
combinatorial version of the problem; in addition, the consid-
ered correlation model is the following simplification of the
correlation model in [21]: we fix one r ∈ [N] and assume
each file only contains r-blocks,5 for which we propose a new
interference alignment based delivery scheme, which jointly
serves the users’ demands instead of dividing the delivery
into single-request problems. Our main contributions are as
follows:

1) We derive a converse bound on the minimal average
load over the uniform demand distribution under the
constraint of uncoded cache placement, by leveraging
the acyclic index coding converse bound in [46].

2) By jointly serving the users’ demands, we propose a
caching scheme for the case where every user demands
a distinct file. The achieved load matches our proposed
converse bound under the constraint of uncoded cache
placement.

3) By combining the above achievable scheme with an
interference alignment idea, we then propose a delivery
scheme for general demands containing two sub-phases,
where the first sub-phase is the same as the one for dis-
tinct demand case and the additional second sub-phase
is used to align interference at the various users. The
proposed caching scheme is proved to be order optimal
to within a factor of 2 in terms of the average load over
the uniform demand distribution.

4) By further cancelling interference, we prove that the
second sub-phase in the delivery is not necessary,
thus resulting in the exact optimal average load under
the constraint of uncoded cache placement and uni-
form demand distribution, for the following two cases:
(i) KrM ≤ 2N or KrM ≥ (K − 1)N or r ∈ {1, 2, N −
1, N}, and (ii) the number of distinct demanded files is
no larger than four.

5) As an extension, the above exact and order optimal
results can be extended to the worst-case loads.

6) As a by-product, an extension of the proposed scheme
for M = N/K is optimal under the constraint of
MAN placement for the four cases left open in [35]
of the coded caching problem with multiple requests.
As another by-product, the proposed scheme for distinct
demands can be extended to the coded distributed com-
puting problem with a central server, which achieves the
optimal transmission load over the binary field.

C. Paper Organization

The rest of the paper is organized as follows. The system
model for the considered coded caching problem with cor-

5Clearly, the proposed achievable schemes could be directly applied into
the correlation model in [21].

related files of combinatorial overlaps is given in Section II.
In Section III, our main results and some numerical evaluations
are presented. The proofs of the proposed converse bound
and achievable schemes are given in Sections IV and V,
respectively. Section VI concludes the paper. The proofs of
some auxiliary results can be found in Appendices.

D. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors, and sans-serif symbols denote system parameters.
We use |·| to represent the cardinality of a set or the length of a
vector; [a : b] := {a, a + 1, . . . , b} and [n] := [1, 2, . . . , n]; ⊕
represents bit-wise XOR. We let

(
x
y

)
= 0 if x < 0 or y < 0 or

x < y.

II. SYSTEM MODEL

In an (N, K, r, M) shared-link caching problem with corre-
lated files of combinatorial overlaps, a server has access to a
library of N ∈ N files (each of which contains B ∈ N iid bits)
denoted by F1, . . . , FN. The server is connected to K ∈ N
users through a shared error-free link. Each file is composed
of
(
N−1
r−1

)
independent and equal-length blocks, where r ∈ [N];

we denote

Fi = {WS : S ⊆ [N], |S| = r, i ∈ S}, ∀i ∈ [N], (1)

where the block WS represents the exclusive common part
across the files indexed by S . Hence, in the whole library
there are

(
N
r

)
independent blocks, each of which has B/

(
N−1
r−1

)
bits. A coded caching scheme has two phases: placement and
delivery.

A. Placement Phase

During the cache placement phase, user k ∈ [K] stores
information about the N files in its cache of size MB bits,
where M ∈ [0, N/r]. This phase is done without knowledge
of the users’ demands. We denote the content in the cache of
user k ∈ [K] by Zk, where

H(Zk|F1, . . . , FN) = 0, ∀k ∈ [K]. (2)

We let Z := (Z1, . . . , ZK).

B. Delivery Phase

During the delivery phase, user k ∈ [K] demands file Fdk

where dk ∈ [N]. The demand vector d := (d1, . . . , dK) is
revealed to all nodes. Given (d,Z), the server broadcasts a
message X(d,Z) of B · R(d,Z) bits to all users, where

H(X(d,Z)|d, F1, . . . , FN) = 0, ∀d ∈ [N]K. (3)

User k ∈ [K] must recover its desired file Fdk
from Zk and

X(d,Z), where

H(Fdk
|Zk, X(d,Z),d) = 0, ∀k ∈ [K]. (4)
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C. Load

For each demand vector d, we define Nd(T ) := {dk :
k ∈ T } as the set of demanded files by users in T , where
T ⊆ [K]. A demand vector d is said to be of type DNe(d) if it
has Ne(d) := |Nd([K])| distinct entries. Based on the uniform
demand distribution, the objective is to determine the optimal
average load among all demands of the same type; that is

R⋆(M, s) := min
Z

Ed∈Ds

[
min

X(d,Z)
R(d,Z)

]
, (5)

for all s ∈ [min{K, N}], and the optimal average load among
all possible demands; that is

R⋆(M) := min
Z

Ed∈[N]K

[
min

X(d,Z)
R(d,Z)

]
. (6)

Note that, R⋆(M) ̸= Es[R⋆(M, s)] in general, unless the
same cache placement policy optimizes the load in (5) for
all s ∈ [min{K, N}]. In addition, in this paper when we
discuss the average load, we only consider the uniform demand
distribution; thus for the sake of conciseness, we will not
specify the demand distribution in the rest of the paper.

In addition, we also define the optimal worst-case load over
all possible demands as

R⋆
worst(M) := min

Z
max
d∈[N]K

min
X(d,Z)

R(d,Z). (7)

D. Uncoded Cache Placement

The cache placement policy is said to be uncoded if each
user directly copies some library bits into its cache. The
optimal loads under the constraint of uncoded cache placement
are denoted by R⋆

u(M, s), R⋆
u(M), and R⋆

u,worst(M) are defined
similarly to (5), (6), and (7), respectively.

Note that, in this paper we mainly focus on the average
loads and then extend the obtained results to the worst case.

Remark 1 (Special Cases): Our model reduces to the MAN
coded caching problem when r = 1, and to the case of a library
with a single file when r = N. Both cases are either solved
exactly or to within a factor of 2 in [5]. □

Remark 2 (Relation to the More General Coded Caching
Problem with Correlated Files of Combinatorial Overlaps):
In this paper, in order to make fundamental progress on
the problem of caching correlated content, we simplify the
model [21] as follows. In [21] a certain parameter ℓ ranges
from 1 to the number of files in the system (each ℓ1 files have
a common part, each ℓ2 files also have a common part, etc.),
while in our model ℓ is fixed to a single value r. Our model
is thus a special case of the one in [21]. Using our models
however, we can make conclusive statements (either exact
capacity results, or capacity to within a constant multiplicative
gap) which were not in [21]. □

Remark 3 (Relation to the Coded Caching Problem with
Multiple Requests): If we identify the

(
N
r

)
independent blocks

as files of a library, and allow each cache-equipped user
to request

(
N−1
r−1

)
such blocks/files, the considered caching

problem with correlated files of combinatorial overlaps relates
to the symmetric coded caching problem with multiple requests
considered in [32], where ‘symmetric’ means that each user

requests the same number of files, which is equal to
(
N−1
r−1

)
.

However, there is a strong structure of the users’ demands in
our problem, while in [32] each user can demand arbitrary L
files.

The relationship among the two problems can be also
explained as follows. For the case of multiple requests, assume
that the

(
N
r

)
independent files are equally popular. On average,

each of such independent files will appear on average the
same number of times over the ensemble of all possible
multiple request configurations. We construct N such multiple
request configurations, each of which is formed by

(
N−1
r−1

)
independent files (in fact, each multiple request configuration
corresponds to a ‘file’ in the correlated file library of our
problem). It follows that each independent file appears on
average N

(
N−1
r−1

)
/
(
N
r

)
= r times in the ensemble of possible

multiple requests configurations. If instead of random multiple
requests, we consider the deterministic symmetric case, where
the possible multiple requests configurations are all and only
those for which each independent files appears exactly r times
(and not on average r times), we have the exact equivalence of
our problem with the case of multiple requests of independent
files. With this interpretation, the proposed results in this paper
also shed light into the very relevant and intricate problem of
how to handle optimally the case where each user makes a
sequence of requests of independent files (blocks). The fact
that there are repeated elements in such sequence of requests
is a ‘fundamental’ aspect of caching (also in practice), where
one needs to devise schemes that take advantage of previous
requests and do not send the same coded bits multiple times.

□

III. MAIN RESULTS AND NUMERICAL EVALUATIONS

In this section, we state our main results and present
numerical evaluations of the proposed converse and achievable
bounds. We shall use the subscripts ‘u,conv’ and ‘u,ach’ for
converse (conv) and achievable (ach) bounds, respectively,
under the constraint of uncoded cache placement (u).

A. Converse Bound

Inspired by [3], we use the acyclic index coding converse
bound from [46] to derive the following converse bound under
the constraint of uncoded cache placement for our problem.
The proof can be found in Section IV.

Theorem 1 (Converse): For an (N, K, r, M) shared-link
caching problem with correlated files of combinatorial over-
laps, R⋆

u(M, s), s ∈ [min{K, N}], is lower bounded by the
lower convex envelope of the following (M, R) pairs(

Nt

Kr
, cs

t

)
u,conv

, ∀t ∈ [0 : K], (8)

where

cs
t :=

∑
j∈[min{s,N−r+1,K−t}]

(
N−j
r−1

)(
K−j

t

)(
N−1
r−1

)(
K
t

) . (9)
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In addition, R⋆
u(M) is lower bounded by the lower convex

envelope of the following (M, R) pairs(
Nt

Kr
, Ed∈[N]K

[
c
Ne(d)
t

])
u,conv

, ∀t ∈ [0 : K]. (10)

□
Theorem 1 for r = 1 recovers the converse result for the

MAN scheme under uncoded placement in [4]; in particular
the worst-case load is obtained for s = min{K, N} in (8),
while the average load is given by (10). Theorem 1 for r = N
recovers the converse result for the MAN scheme with a single
file in the library; that is, cs

t = 1 − t/K ⇐⇒ R⋆(M) = 1 − M
for M ∈ [0, 1].

B. Achievable Schemes

Let M = Nt
Kr for some integer t ∈ [0 : K]. Recall that we

denote by Ne(d) the number of distinct files in the demand
vector d. For each demanded file, we pick a leader user
demanding this file. The set of chosen leader users for the
demand vector d is denoted by L(d) = {u1, . . . , uNe(d)}.
For each subset of users T ⊆ [K], the set of leader users
demanding the files Nd(T ) is denoted by Ld(T ).

We propose the following achievable scheme, which is
analyzed in Section V.

Block subdivision: ∀S ⊆ [N] : |S| = r, let
WS = {WS,V : V ⊆ [K], |V| = t}. (11a)
Placement Phase: ∀k ∈ [K], let
Zk = {WS,V : S ⊆ [N], |S| = r,V ⊆ [K], |V| = t, k ∈ V}.

(11b)
Delivery sub-phase 1:
∀j ∈ [min{Ne(d), N − r + 1, K − t}], (11c)
∀J ⊆ [K] \ {u1, . . . , uj−1} : |J | = t + 1, uj ∈ J , (11d)
∀B ⊆ [N] \ {du1 , . . . , duj} : |B| = r − 1, (11e)

send a multicast message CJ ,B as defined in (28).
(11f)

Delivery sub-phase 2:
∀j ∈ [min{Ne(d), N − r + 1, K − t}], (11g)
∀q ∈ [j + 1 : min{N − r + 2, K − t + 1, Ne(d)}], (11h)
∀J ⊆ [K] \ {u1, . . . , uq−1} ∪ {uj} : |J | = t + 1,

{uj , uq} ⊆ J ,J ∩ {uq+1, . . . , uNe(d)} ̸= ∅, (11i)
∀B ⊆ [N] \ {du1 , . . . , duq} : |B| = r − 2,

B ∩Nd([K]) ̸= ∅, (11j)
send a multicast message CJ ,B as defined in (28).

(11k)

In the rest of this section we analyze the above proposed
scheme in various settings with an increasing order of com-
plexity. Since the scheme is highly combinatorial, we shall
start with a case that is the simplest to analyze and that brings
to bear some of the key ideas. We shall then show that the
a similar analysis applies also to more complex scenarios.
In the following, optimality is understood under the constraint

of uncoded cache placement. In particular, we develop these
concepts in the following order:

• In Section III-C we show that the general scheme in (11)
with only the first delivery sub-phase allows each leader
user to decode its desired file. We also show that the
first sub-phase alone is exactly optimal when the users
request different files; that is, all users are leaders, which
is possible when Ne(d) = K ≤ N.

• In Section III-D we show that the scheme in (11), with
both delivery sub-phases, can satisfy every user regardless
of the demand type, where the transmissions in sub-phase
2 are used to cancel the interferences experienced by the
non-leader users. We also show its optimality to within a
factor of 2 for any demand type.

• In Section III-E we show that for some cases (such as, for
example, the case of either small or large memory size),
each non-leader can reconstruct its required transmitted
multicast messages in sub-phase 2 by performing linear
combinations of the transmitted multicast messages in
sub-phase 1; that is, sub-phase 2 is redundant. For these
cases, we show the exact optimality.

• In Section III-F we show how the scheme in (11) can
be used for other caching problems, by either offering
simpler codes for the delivery phase than those known
in the literature, or by providing an optimal scheme
outperforming state-of-the-art schemes.

• In Section III-G we present some numerical evaluations
of the proposed bounds.

C. Optimality of (11) for Demand Type Ds Where
s = K ≤ N

We consider the case where each user makes a distinct
request, which requires K ≤ N and demand type Ds with
s = K = Ne(d). We propose a caching scheme where we
jointly serve the users’ demands. Existing methods approach
the problem by serving requests in multiple rounds [21], [34],
[35], where each round is a single-request MAN scheme. Our
scheme is as in (11), but where only the first sub-phase of
the delivery phase takes place. In particular, for M = Nt

Kr and
s = Ne(d) = K ≤ N, our proposed delivery phase contains
min{N − r + 1, K − t} steps, where in each step we transmit
multicast messages to satisfy one leader user at a time. After
all steps are done, the remaining K − min{N − r + 1, K − t}
users (who are also leaders, since here we consider a distinct
request for each user) can also recover their desired files. The
achieved load is presented in the following theorem, whose
proof can be found in Section V-B.

Theorem 2 (Optimality for Distinct Requests): For an
(N, K, r, M) shared-link caching problem with correlated
files of combinatorial overlaps where N ≥ K, R⋆

u(M, K) is
the lower convex envelop of the points

(
Nt
Kr , c

K
t

)
u,conv where

t ∈ [0 : K] and cK
t is defined in (9), which is achieved by the

scheme in (11) with only the first delivery sub-phase. □

D. Performance of (11) for Any Demand Type

We analyze here the scheme in (11) with two sub-phases
in the delivery phase, and show that it is able to satisfy
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general demands. The main ingredients of the scheme are as
follows. In the first delivery sub-phase, we generate multicast
messages in (11f) so that each leader user can recover its
desired file by the end of this sub-phase; in the second delivery
sub-phase, we transmit some additional multicast messages
in (11k), so that each non-leader user can cancel all non-
intended (aligned interference) sub-blocks from the received
multicast messages useful to it and thus can eventually recover
its desired file. The achieved load is presented in the following
theorem, whose proof can be found in Section V-C.

Theorem 3 (Interference-Alignment Based Delivery Scheme):
For an (N, K, r, M) shared-link caching problem with
correlated files of combinatorial overlaps, for any
s ∈ [min{K, N}], R⋆

u(M, s) is upper bounded by the by
the lower convex envelope of the following (M, R) pairs(

Nt

Kr
, cs

t + es
t

)
u,ach

, ∀t ∈ [0 : K], (12)

where cs
t is defined in (9) and es

t is defined in (13), shown at
the bottom of the next page.
In addition, R⋆

u(M) is upper bounded by the lower convex
envelope of the following (M, R) pairs(

Nt

Kr
, Ed∈[N]K

[
c
Ne(d)
t + e

Ne(d)
t

])
u,ach

, ∀t ∈ [0 : K]. (14)

□

By comparing the converse bound in Theorem 1 and the
achievable bound in Theorem 3, we have the following result,
whose proof can be found in Section V-E.

Theorem 4 (Order Optimality for Theorem 3): For an
(N, K, r, M) shared-link caching problem with correlated files
of combinatorial overlaps, under the constraint of uncoded
cache placement, the achieved average loads in (12) and (14)
are order optimal to within a factor of 2, for any demand
type Ds where s ∈ [min{K, N}] and all possible demands,
respectively. □

E. Optimality of (11) for r ∈ {1, 2, N − 1, N} or
t ∈ {0, 1, 2, K − 1, K} or s ∈ [min{N, K, 4}]

In Theorem 3, cs
t in (9) is the load for the first delivery

sub-phase while es
t in (13) is the load for the second deliv-

ery sub-phase. Hence, compared to the converse bound in
Theorem 1, es

t is the term leading to the sub-optimality. In The-
orem 2, where we showed the exact optimality for distinct
demands, the second sub-phase is not needed. We investigate
here the other cases where the second sub-phase is not needed.
In these cases, each non-leader user can reconstruct its
required multicast messages sent in sub-phase 2 by linearly
combining multicast messages sent in sub-phase 1. Thus
we obtain the following exact optimality result proved in
Section V-F.

Theorem 5 (Exact Optimality for Some Cases): For an
(N, K, r, M) shared-link caching problem with correlated files
of combinatorial overlaps, we have that R⋆

u(M, s) and R⋆
u(M)

are equal to the lower convex envelops of
(

Nt
Kr , c

s
t

)
and of(

Nt
Kr , Ed∈[N]K

[
c
Ne(d)
t

])
, respectively, where cs

t is defined
in (9), in the following cases:

1) Case 1 (small or large file correlation): when r ∈
{1, 2, N − 1, N}, where the optimality holds for any
s ∈ [min{K, N}] and any t ∈ [0 : K];

2) Case 2 (small or large cache size): when t ∈
{0, 1, 2, K − 1, K}, where the optimality holds for any
s ∈ [min{K, N}] and any r ∈ [N];

3) Case 3 (small number of distinct requests): when s ∈
[min{K, N, 4}], where the optimality holds for any r ∈
[N] and any t ∈ [0 : K]. In this case, no claim can be
made on R⋆

u(M) as only some values of s are exactly
characterized.

□
From Theorem 5 we immediately have the following corol-

lary, which can be proved straightforwardly by noting that
Theorem 5.Case 3 covers all possible values of s when
min(N, K) ≤ 4.

Corollary 1: For an (N, K, r, M) shared-link caching prob-
lem with correlated files of combinatorial overlaps, the
converse bounds in (8) and (10) are achievable when
min(N, K) ≤ 4 by the scheme in (11) with only the first
delivery sub-phase.

□
As a result of Theorems 2, 3, and 5, the best achievable

bound by the proposed schemes is the lower convex envelop
of the following (M, R) pairs(

Nt

Kr
, cs

t + es
t · 1s∈[5:K−1],t∈[3:K−2],r∈[3:N−2]

)
u,ach

, ∀t ∈ [0 : K].

(15)

Note that where 1 is the indicator function: 1event = 1 if event
is true and 1event = 0 otherwise.

F. Extensions

Our results can be used in models other than the one
considered in this paper. Examples are as follows.

1) Extension to the Worst-Case Load: The proposed achiev-
ability, converse, and optimality results can be also extended
to the case of worst-case load, since the optimal worst-case
load under uncoded cache placement is also lower bounded
by (8) for any s ∈ [min{N, K}] and cs

t increases with s.
Corollary 2: For an (N, K, r, M) shared-link caching prob-

lem with correlated files of combinatorial overlaps, under the
constraint of uncoded cache placement, the optimal worst-case
load over all possible demands under uncoded cache placement
R⋆

u,worst(M) is upper bounded by the lower convex envelope
of the following (M, R) pairs(

Nt

Kr
, max
s∈[min{N,K}]

cs
t + es

t · 1s∈[5:K−1],t∈[3:K−2],r∈[3:N−2]

)
,

(16)

and lower bounded by the lower convex envelope of the
following (M, R) pairs(

Nt

Kr
, c

min{N,K}
t

)
. (17)

The achieved worst-case load in (16) is order optimal to
within a factor of 2 under the constraint of uncoded cache
placement. In addition, the achieved worst-case load in (16)
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is optimal under uncoded cache placement in the following
cases: Theorem 5.Case 1, Theorem 5.Case 2, and Corollary 1.

□
Remark 4 (Average and Worst-Case Loads): Most past

works only aimed to design schemes that minimize the
worst-case load, such as those in [21] (for caching with
correlated files of combinatorial overlaps) and in [32] and
[34] (for caching with multiple requests). Order optimality
results (to within factors 11 and 18) on the worst-case load
were derived in [32] and [34] for caching with multiple
requests. The order optimality on the average load over
the uniform demand distribution for caching with multiple
requests was characterized to within a factor of 12 when
the numbers of files and users go to infinity [33]. To the
best of our knowledge, (except the cases of two files and
three files) no specific order optimality results are known
specifically for caching with correlated files of combinatorial
overlaps. Therefore, a major contribution of this paper,
besides sharpening existing results for caching with multiple
requests, is to have derived (exact or order) optimality results
for caching with correlated files of combinatorial overlaps
for any demand type or over all possible demands, under the
constraint of uncoded cache placement. □

2) Extension to the More General Coded Caching Problem
With Correlated Files: As already mentioned earlier, in this
paper we simplify the model [21] by fixing the parameter ℓ
in [21] to be equal to r (as opposed to let it be in a range).
We can extend our results to the case where ℓ is in a range
as follows. If ℓ is in a range as considered in [21], we can
construct a caching scheme by ‘memory-sharing’ among the
proposed scheme in Theorems 2, 3, and 5 as follows.

• Library. Assume that the length of each block WS , where
S ⊆ [N] and |S| = ℓ, is pℓB/

(
N
ℓ

)
. Let pℓ ∈ [0, 1] and∑

ℓ∈[N] pℓ = 1. The values (pℓ : ℓ ∈ [N]) are assumed to
be fixed system parameters.

• Placement. Choose integers tℓ ∈ [K] for ℓ ∈ [N], We
partition block WS into

(
K

t|S|

)
equal-length sub-blocks

and denote WS = {WS,V : V ⊆ [K], |V| = t|S|}. User
k ∈ [K] caches sub-block WS,V if k ∈ V , which requires
a cache of size

M =
∑
ℓ∈[N]

Ntℓpℓ

Kℓ
. (18)

• Delivery. For demand vector d, if Ne(d) = K (i.e., each
user demands a distinct file) or Ne(d) ∈ [min{K, N, 4}],
we use the proposed caching scheme only with the first
delivery sub-phase and the achieved load is

R =
∑
ℓ∈[N]

pℓc
K
tℓ

. (19)

If min{K, N, 4} < s = Ne(d) < K, we have two cases:
(i) if either ℓ ∈ {1, 2, N−1, N} or tℓ ∈ {0, 1, 2, K−1, K},

we use the proposed caching scheme only with the first
delivery sub-phase to encode all blocks; (ii) otherwise,
we use the proposed caching scheme with two delivery
sub-phases. Hence, the achieved load is

R =
∑

ℓ1∈{1,2,N−1,N}

pℓ1c
s
tℓ1

+
∑

ℓ2∈[3:N−2]

(
pℓ2c

s
tℓ2

+ pℓ2e
s
tℓ2
1tℓ2 /∈{0,1,2,K−1,K}

)
.

(20)

• The achievable memory-load tradeoff is the lower convex
envelope of the above points for all possible t := (tℓ :
ℓ ∈ [N]).

3) Extension to the Coded Caching Problem With Multiple
Requests: Our proposed strategy which jointly serves the
users’ demands is different from the existing works that divide
the multi-request problem into a sequence of single-request
problems. We can also apply the proposed strategy to the
coded caching problem with multiple requests. By doing so,
we can give an optimal scheme for the four cases that were
left open in [35] for the coded caching problem with multiple
requests, where the setting includes up to four users and each
user with memory size M = N/K demands at most two files.
The details of how to modify our proposed scheme (so as to
account for the lack of symmetry of the multi-request problem)
are given in Appendix G.

4) Extension to Coded Distributed Computing: When N =
K and each user demands a distinct file, the (N, K, r, M)
shared-link caching problem with correlated files of combi-
natorial overlaps is related to the coded distributed computing
problem in [29]. The only difference is that in [29] the link
is D2D (i.e., workers/users communication among each other
without a central master/server), as opposed to the shared-link
case (with a central server broadcasting messages) considered
here. In [29], the authors proposed an optimal scheme that
requires to exchange messages where symbols are from a
large finite field size. In contrast, for the shared-link case, the
proposed scheme for Theorem 2 is optimal, whose operations
are simpler in that they are on the binary field.

G. Numerical Evaluations

In the following, we provide some numerical evaluations to
illustrate the proposed converse and achievable bounds, which
are also compared with the achievable bound in [21].

In Fig. 1, we consider the (N, K, r) = (20, 20, 5) shared-
link caching problem with correlated files of combinatorial
overlaps for distinct demands. In Fig. 2, we consider the
(N, K, r) = (20, 30, 2) problem, where in Fig. 2a we plot the
average load for the demand type D20 and in Fig. 2b we plot
the average load over all possible demands. It can be seen
from in Fig. 1 and Fig. 2 that the proposed schemed coincide

es
t :=

∑
j∈[min{s,N−r+1,K−t}]

∑min{N−r+2,K−t+1,s}
q=j+1

((
N−q
r−2

)
−
(
N−s
r−2

))((
K−q
t−1

)
−
(
K−s
t−1

))(
N−1
r−1

)(
K
t

) . (13)
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Fig. 1. The memory-load trade-off for the (N, K, r) = (20, 20, 5)
shared-link caching problem with correlated files of combinatorial
overlaps for distinct demands.

with the proposed converse bound, and outperform the scheme
in [21] for all memory sizes.

In Fig. 3, we plot the average load for the demand type
D20 (Fig. 3a) and the average load over all possible demands
(Fig. 3b) for the (N, K, r) = (20, 30, 3) shared-link caching
problem with correlated files of combinatorial overlaps. When
t = KMr/N ∈ {0, 1, 2, 29, 30} or Ne(d) ≤ 4, only the first
sub-phase of the delivery scheme is necessary as stated in
Theorem 5. For other values of the parameters t and Ne(d),
we use both sub-phases of the delivery scheme as stated in
Theorem 3. Fig. 3 shows that our proposed achievable schemes
outperform the scheme in [21] for a large range of memory
sizes.

IV. CONVERSE BOUND

Under the constraint of uncoded cache placement, we can
partition each block WS where S ⊆ [N] and |S| = r, into
sub-blocks as

WS = {WS,V : V ⊆ [K]}, ∀S ⊆ [N] : |S| = r, (21)

where WS,V represents the bits of WS exclusively cached by
users indexed by V .6

A. Proof of Theorem 1

The delivery phase with uncoded cache placement is equiva-
lent to a multicast index coding problem [47]. Such a problem
can be represented on a directed graph. In this graph, each
sub-block demanded but not cached by a user is a node;
a directed edge exists from node a to node b if the user
demanding the sub-block represented by node b has the
sub-block represented by node a in its cache. As in [3], we use
the acyclic index coding converse bound from [46] to lower
bound the number of transmitted bits needed to satisfy all the
nodes/users in this index coding problem as follows.

For a demand vector d with Ne(d) demanded files,
we choose Ne(d) users (i.e., leaders) each of which demands

6Note that V can be the empty set and WS,∅ represents the bits of WS
not cached by any user.

Fig. 2. The memory-load trade-off for the (N, K, r) = (20, 30, 2)
shared-link caching problem with correlated files of combinatorial
overlaps.

a distinct file. We then draw a graph where each sub-block
demanded but not cached by some of these Ne(d) users is a
node. We then consider a permutation of these Ne(d) users,
denoted by u = (u1, u2, . . . , uNe(d)). The set of sub-blocks⋃
k∈[min{Ne(d),N−r+1}]

⋃
S⊆[N]\{du1 ,...,duk−1}:

|S|=r,duk
∈S

⋃
V⊆[K]\{u1,...,uk}

WS,V ,

(22)

does not contain a directed cycle.7 This can be seen as follows,
similar to [3, Lemma 1]. We classify the sub-blocks/nodes
in the set (22) into levels. More precisely, we say that sub-
block/node WS,V is in level i if S ⊆ [N] \ {du1 , . . . , dui−1},
dui ∈ S and V ⊆ [K] \ {u1, . . . , ui}. Each node in level i is
a sub-block that is demanded by user ui and is not cached
by any user in {u1, . . . , ui}, and corresponds to a user in the
index coding problem that has the same side information as
user ui in our caching problem (i.e., each node in level i only

7Note that in (22), k should be no more than N − r + 1. This is because,
du1 , . . . , duk−1 are distinct; thus, if k > N − r + 1, there does not exist
such S ⊆ [N] \ {du1 , . . . , duk−1} where |S| = r.
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Fig. 3. The memory-load trade-off for the (N, K, r) = (20, 30, 3)
shared-link caching problem with correlated files of combinatorial
overlaps.

knows the nodes WS,V where ui ∈ V). So each node in level
i knows neither the nodes in the same level, nor the nodes in
the higher levels. As a result, the proposed set in (22) does
not contain a directed cycle.

By the acyclic index coding converse bound, the number of
transmitted bits is not less than the total number of bits of the
sub-blocks in the set in (22); that is,

R⋆
u(M, Ne(d)) ≥

∑
k∈[min{Ne(d),N−r+1}]

∑
S⊆[N]\{du1 ,...,duk−1}:

|S|=r,duk
∈S∑

V⊆[K]\{u1,...,uk}

|WS,V |
B

, (23)

where |WS,V | represents the length of WS,V in bits.
For a fixed s ∈ [min{K, N}], consider all the demands of

type Ds, all sets of s users with different s distinct demands,
and all permutations of those users. By summing together all
the resulting inequalities as in (23) we obtain the lower bound
on R⋆

u(M, s) in (24), shown at the bottom of the next page.
To obtain (24), the number of possible leader sets including s
leaders equals

(
K
s

)
, the number of demand vectors where a set

of s users can serve as leader set equals N! sK−s

(N−s)! , the number of
permutations of a leader set equals s!. By the symmetry of the
problem, in (24) the coefficient of each sub-block stored by
exactly t users is identical, for each t ∈ [0 : K]. In (24), there
are

∑
j∈[min{s,N−r+1,K−t}]

(
N−j
r−1

)(
K−j

t

)
sub-blocks known by

exactly t users. We also note that in the whole library there are(
N
r

)(
K
t

)
sub-blocks known by exactly t users. Hence, we have

R⋆
u(M, s) ≥

K∑
t=0

(∑
j∈[min{s,N−r+1,K−t}]

(
N−j
r−1

)(
K−j

t

)(
N
r

)(
K
t

)
·
∑

S⊆[N]:|S|=r

∑
V⊆[K]:|V|=t |WS,V |
B

)

=
K∑

t=0

(∑
j∈[min{s,N−r+1,K−t}]

(
N−j
r−1

)(
K−j

t

)(
N−1
r−1

)(
K
t

)
·
∑

S⊆[N]:|S|=r

∑
V⊆[K]:|V|=t r|WS,V |
NB

)

=
K∑

t=0

cs
t · xt, (25a)

xt :=
∑

S⊆[N]:|S|=r

∑
V⊆[K]:|V|=t

r|WS,V |
NB

, (25b)

cs
t :=

∑
j∈[min{s,N−r+1,K−t}]

(
N−j
r−1

)(
K−j

t

)(
N−1
r−1

)(
K
t

) ,

(as already defined in (9)), (25c)
x0 + x1 + . . . + xK = 1, (file size constraint),

(25d)

x1 + 2x2 + . . . + txt + . . . + KxK ≤ KMr

N
,

(memory size contraint), (25e)

where xt in (25b) represents the fraction of all the bits in the
library that are cached exactly by t users.

As in [4], we can lower bound (25a) by using Jensen’s
inequality and the monotonicity of Conv(cs

t ) (i.e., the convex
lower envelope of cs

t in terms of t),

R⋆
u(M, s) ≥ Conv(cs

t ). (26)

By considering all the demand types, and from (26), we also
have

R⋆
u(M) ≥ Es∈[min{N,K}] [R⋆

u(M, s)] ≥ Es∈[min{N,K}][Conv(cs
t )].

(27)

Since cs
t is convex in t, we can change the order of the

expectation and the ‘Conv’ in (27). Thus we prove the converse
bound in Theorem 1.

Notice that we could also use Fourier-Motzkin elimination
to eliminate the parameters {xt}t∈[0:K] in (25a) and derive the
bound in (26), as done in [3].

B. Discussion

We conclude this session with some observations on the
proposed converse bound, which we shall use as a guideline
to design our achievable scheme.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on November 08,2023 at 23:24:46 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: ON THE FUNDAMENTAL LIMITS OF CODED CACHING WITH CORRELATED FILES 6385

1) The corner points of our converse bound are of the form(
Nt
Kr , c

s
t

)
, where cs

t is defined in (9). The converse bound
may suggest the following placement. We partition each
block WS into

(
K
t

)
equal-length sub-blocks of length

B

(N−1
r−1)(K

t)
and indicate WS = {WS,V : V ⊆ [K], |V| = t}.

Each user k ∈ [K] stores the sub-block WS,V if k ∈ V .

Hence, user k ∈ [K] caches
B(K−1

t−1)(N
r)

(N−1
r−1)(K

t)
= BNt

Kr bits in
total.
We will use this interpretation to design the file parti-
tioning and the cache placement of our proposed caching
scheme, which is the same as in [21].

2) If the above placement is used, each sub-block is
cached by t users. In the proof of Theorem 1, for
each demand d, we choose a set of leader users (each
demanding a different file) and consider a permutation
u = (u1, . . . , uNe(d)) of these Ne(d) leader users.
For the permutation u, we find an acyclic set of∑

j∈[min{Ne(d),N−r+1,K−t}]
(
N−j
r−1

)(
K−j

t

)
sub-blocks, and

the load is lower bounded by the total length of these
sub-blocks. In addition, in this acyclic set of sub-blocks,
there are

(
N−j
r−1

)(
K−j

t

)
sub-blocks desired by user uj

where j ∈ [min{Ne(d), N − r + 1, K − t}]; these
sub-blocks are not cached nor desired by any user uj1

where j1 < j. This may suggest a delivery scheme with
min{Ne(d), N− r +1, K− t} steps, where in Step j we
transmit

(
N−j
r−1

)(
K−j

t

)
linear combinations such that each

linear combination contains one of the
(
N−j
r−1

)(
K−j

t

)
sub-

blocks desired by user uj , and thus at the end of this
step user uj is satisfied.
We will use this interpretation to design the first
sub-phase of our general delivery scheme in (11), which
we shall introduce next in Section V.

V. ACHIEVABLE SCHEMES

In this section, we focus on the achievable scheme in (11)
and prove the statements of Theorems 2, 3 and 5. Notice that
when r ∈ {1, N}, the considered problem is equivalent to the
MAN problem (solved under the constraint of uncoded cache
placement in [4]). Hence, the novelty of our scheme is for
r ∈ [2 : N − 1]. The scheme we propose was summarized
in (11); Theorems 2 and 5 only use the first sub-phase of the
delivery, while Theorem 3 uses both sub-phases.

The rest of this section is organized as follows.
In Section V-A we give an example of the first sub-phase
of the proposed delivery scheme in (11); the objective is
to highlight how the multicast messages sent in sub-phase
1 enable all leaders to decode their desired file. Then in

Section V-B we show which user can decode which sub-blocks
after receiving the multicast messages in sub-phase 1, regard-
less of the demand type. In Section V-C we show that every
user can decode its desired message by also receiving the
multicast messages sent in sub-phase 2. In Section V-D we
give an example of the second sub-phase of the proposed
delivery scheme in (11). In Section V-E we prove the order
optimality results in Theorems 4 for general case. Finally,
in Section V-F we prove the exact optimality results in
Theorem 5 by observing each non-leader can reconstruct its
required multicast messages in sub-phase 2 by performing
linear combinations of the received multicast messages in sub-
phase 1.

A. An Example of (11) With Only Sub-Phase 1 for the
Delivery Scheme

First, we study an example where N ≥ K and each user
demands a distinct file (i.e., s = K). In particular, we consider
the (N, K, r, M) = (4, 4, 2, 1/2) shared-link caching problem
with correlated files of combinatorial overlaps. There are(
N
r

)
= 6 blocks denoted as W{1,2}, W{1,3}, W{1,4}, W{2,3},

W{2,4}, and W{3,4}. The files are

F1 = {W{1,2}, W{1,3}, W{1,4}},
F2 = {W{1,2}, W{2,3}, W{2,4}},
F3 = {W{1,3}, W{2,3}, W{3,4}},
F4 = {W{1,4}, W{2,4}, W{3,4}}.

1) Block Subdivision: Here t = KMr
N = 1. We partition

each block into
(
K
t

)
= 4 equal-length sub-blocks and denote

WS = {WS,V : V ⊆ [K], |V| = t = 1} = {WS,{k} : k ∈ [K]}.
Hence, each sub-block contains B/

((
N−1
r−1

)(
K
t

))
= B/12 bits.

2) Placement Phase: The cache placement is inspired by
the converse bound (see discussion in Section IV-B). User
k ∈ [K] caches WS,V if k ∈ V ; that is, Zk = {WS,{k}, ∀S ⊆
[N] : |S| = r = 2}.

3) Delivery Phase: Assume d = (1, 2, 3, 4), which has
Ne(d) = 4 distinct demanded files. Pick one user demanding
a distinct file, and refer to it as the leader among those
users demanding the same file. Since each user has a distinct
request in this example, each user is a leader, and the leader
set is [1 : 4]. Consider a permutation u of the leaders, say
u = (u1, u2, u3, u4) = (1, 2, 3, 4).

Our proposed first sub-phase of the general delivery scheme
contains min{Ne(d), N− r +1, K− t} = 3 steps; after the jth

step, the jth element/leader in the permutation can decode its
desired file; after finishing all steps, the remaining leaders can
also decode their desired file. We next describe, one by one, the

R⋆
u(M, s) ≥ 1(

K
s

) ∑
L⊆[K]:|L|=s

(N − s)!
N! sK−s

∑
d∈Ds:L are leaders

1
s!

∑
u∈{permutations of L}∑

k∈[min(s,N−r+1)]

∑
S⊆[N]\{du1 ,...,duk−1}:

|S|=r,duk
∈S

K−k∑
t=0

∑
V⊆[K]\{u1,...,uk}:|V|=t

|WS,V |
B

; (24)
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three steps for this example. Recalling (11f), the transmitted
multicast messages are of the type

CJ ,B := ⊕
k∈J

⊕
S⊆Nd(J )∪B:

|S|=r,B⊆S,dk∈S

WS,J\{k}, (28)

for all J ⊆ [K] \ {u1, . . . , uj−1} where |J | = t + 1, and
uj ∈ J , and all B ⊆ [N] \ {du1 , . . . , duj

} where |B| = r − 1.
Note that Nd(J ) is the set of demanded files by the users
in J . In (28), the role of J is to select whose demanded
blocks are included in the sum CJ ,B and the role of B is to
select which demanded blocks by the users in J are included
into the sum. In plain words, the multicast message CJ ,B
in (28) is the XOR of sub-blocks WS,J\{k}, where k ∈ J ,
S ⊆ (Nd(J )∪B), dk ∈ S and B ⊆ S . Note that, when r = 1
(in which case our model reduces to the MAN system in [2]),
CJ ,∅ in (28) is equivalent to the MAN multicast message

CJ ,∅ = ⊕
k∈J

W{dk},J\{k}. (29)

Delivery sub-phase 1.Step 1. In this step we aim to satisfy
leader user u1 = 1, who misses three sub-blocks of the three
blocks in F1 (recall that du1 = 1); that is, user 1 must recover
nine sub-blocks. Each time we consider one set of users J ⊆
[K] where |J | = t + 1 = 2 and u1 ∈ J (recall that u1 = 1),
and one set of files B ⊆ [N]\{du1} where |B| = r−1 = 1, and
transmit CJ ,B. For example, for J = {1, 2} and B = {2},
we transmit

C{1,2},{2} = W{1,2},{2} ⊕ W{1,2},{1}. (30a)

In C{1,2},{2}, user 1 knows W{1,2},{1} and can thus decode
W{1,2},{2}. Similarly, user 2 knows W{1,2},{2} and can thus
decode W{1,2},{1}. Similarly, we transmit

C{1,2},{3} = W{1,3},{2} ⊕ W{2,3},{1}; (30b)
C{1,2},{4} = W{1,4},{2} ⊕ W{2,4},{1}; (30c)
C{1,3},{2} = W{1,2},{3} ⊕ W{2,3},{1}; (30d)
C{1,3},{3} = W{1,3},{3} ⊕ W{1,3},{1}; (30e)
C{1,3},{4} = W{1,4},{3} ⊕ W{3,4},{1}; (30f)
C{1,4},{2} = W{1,2},{4} ⊕ W{2,4},{1}; (30g)
C{1,4},{3} = W{1,3},{4} ⊕ W{3,4},{1}; (30h)
C{1,4},{4} = W{1,4},{4} ⊕ W{1,4},{1}. (30i)

From (30) and its cached content, user u1 = 1 can recover
W{1,2}, W{1,3}, and W{1,4}. Thus, user 1 is satisfied after this
step (i.e., it has recovered the missing nine sub-blocks from
the nine received multicast messages in the first step).

Let us then focus on user u2 = 2. User 2 can
directly recover W{1,2},{1} from (30a), W{2,3},{1} from (30b),
W{2,4},{1} from (30c). Since user 2 has recovered W{2,3},{1},
it then can recover W{1,2},{3} from (30d). Since user 2 has
recovered W{2,4},{1}, it then can recover W{1,2},{4}
from (30g). In conclusion, after Step 1, user 2 can
recover W{1,2} and also recover W{2,3},{1} and W{2,4},{1}.
User u2 = 2 after Step 1 still misses four sub-blocks, namely
{W{2,3},{k}, W{2,4},{k} : k ∈ [3, 4]}.

Similar to user u2 = 2, each user k ∈ {3, 4} can recover
WS where {du1 , dk} ⊆ S , and can also recover WS1,V1 where

dk ∈ S1 and u1 ∈ V1 after Step 1. Each of these users still
misses four sub-blocks after Step 1.

Delivery sub-phase 1.Step 2. In this step we aim to satisfy
leader user u2 = 2. Each time we consider one set of users
J ⊆ ([K] \ {u1}) where |J | = t+1 and u2 ∈ J , and one set
of files B ⊆ ([N] \ {du1 , du2}) where |B| = r − 1 = 1 (recall
that u1 = du1 = 1, u2 = du2 = 2), and transmit CJ ,B. For
example, for J = {2, 3} and B = {3}, we transmit

C{2,3},{3} = W{2,3},{3} ⊕ W{2,3},{2}. (31a)

From (31a), user 2 can recover W{2,3},{3} and user 3 can
recover W{2,3},{2}. Similarly, we transmit

C{2,3},{4} = W{2,4},{3} ⊕ W{3,4},{2}; (31b)
C{2,4},{3} = W{2,3},{4} ⊕ W{3,4},{2}; (31c)
C{2,4},{4} = W{2,4},{4} ⊕ W{2,4},{2}. (31d)

From (31) user u2 = 2 can recover the desired sub-blocks
that were not recovered from Step 1. User u2 = 2 is satisfied
after this step (i.e., it has recovered the missing four sub-blocks
from the four received multicast messages in the second step).

Let us then focus on user u3 = 3. User 3 can directly
recover W{2,3},{2} from (31a) and W{3,4},{2} from (31b).
Since user 3 has recovered W{3,4},{2}, it then can recover
W{2,3},{4} from (31c). User u3 = 3 after this step still misses
W{3,4},{4}.

Similar to user u3 = 3, at the end of Step 2, user k = 4 can
recover WS where dk ∈ S , {du1 , du2} ∩ S ̸= ∅, and also
recover WS1,V1 where dk ∈ S1 and {u1, u2} ∩ V1 ̸= ∅. User
4 still misses one sub-block (W{3,4},{3}) after Step 2.

Delivery sub-phase 1.Step 3. In this step we aim to satisfy
leader user u3 = 3. Each time we consider one set of users
J ⊆ ([K] \ {u1, u2}) where |J | = t+1 and u3 ∈ J , and one
set of files B ⊆ ([N] \ {du1 , du2 , du3}) where |B| = r− 1 = 1
(recall that u1 = du1 = 1, u2 = du2 = 2, u3 = du3 = 3), and
transmit CJ ,B. Hence, at this point there is one possibility,
J = {3, 4} and B = {4}, for which we transmit

C{3,4},{4} = W{3,4},{4} ⊕ W{3,4},{3}. (32)

From (32), user 3 can recover W{3,4},{4}, and user 4 can
recover W{3,4},{3}. Hence, at the end of Step 3, users 3 and
4 are satisfied.

4) Performance: Based on the above placement and deliv-
ery phases, all users are able to decode their desired blocks.
We sent

∑
j∈[3]

(
N−j
r−1

)(
K−j

t

)
= 14 linear combinations, each

of length B/12 bits. So the load is 7/6, which coincides with
the converse bound in Theorem 1 for s = 4.

5) Comparison With the State-of-the-Art ‘Round-Division’
Schemes: Let us then consider the round-division methods
in [21], [34], [35], [36], [37], [38], [39], and [40]. If there
exists some sub-block appearing in different rounds, the
round-division strategy that treats each round as an indepen-
dent single-request MAN caching problem may miss some
multicast opportunities. Here we show that the round-division
strategy is sub-optimal even if we can divide the users’
demands into multiple rounds such that there does not exist
any sub-block appearing in different rounds. More precisely,
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since each user demands 3 blocks, we can divide the delivery
into the following three rounds:

• Round 1: In the first round, users 1 and 2 demand W{1,2},
and users 3 and 4 demand W{3,4}. This is equivalent
to the MAN caching problem with 4 users and 2 files.
By using the optimal caching scheme under the constraint
of uncoded cache placement in [4], we need to transmit(
K
t

)
−
(
K−N

t

)
=
(
4
2

)
−
(
2
2

)
= 5 linear combinations, each

of which contains B/12 bits, in order to satisfy these
requests.

• Round 2: In the second round, users 1 and 3 demand
W{1,3}, and users 2 and 4 demand W{2,4}. By using
the caching scheme in [4], we need to transmit 5 linear
combinations to satisfy these requests.

• Round 3: In the third round, users 1 and 4 demand
W{1,4}, and users 2 and 3 demand W{2,3}. By using
the caching scheme in [4], we need to transmit 5 linear
combinations to satisfy these requests.

Hence, by this round-division strategy, the load is 15/12 >
7/6, which is strictly sub-optimal. In conclusion, in order to
achieve optimality in this example, we need to jointly serve
the users’ demands (as proposed in this paper) in order to fully
leverage all multicast opportunities.

B. Proof of Theorem 2

Here we shall prove that after the first sub-phase of the
delivery scheme in (11) every leader user is able to decode
its desired file (as in the example in Section V-A), and that
the load of the first sub-phase (i.e, cs

t ) matches the load of the
converse bound in (9) (i.e., R⋆

u(M, s)). Thus, for the case where
every user is a leader (i.e., every user demands a distinct file),
we have proved the exact optimality under the constraint of
uncoded cache placement of the proposed achievable scheme
as claimed in Theorem 2.

1) Decodability After Delivery Sub-Phase 1: We need to
establish which user can decode which sub-blocks at each step
of delivery sub-phase 1. The following Lemma 1, which is
proved by induction in Appendix A, describes the decoding
procedure for delivery sub-phase 1 for general demands (i.e.,
not only for distinct demands).

Lemma 1 (Decoding After Sub-Phase 1): In the
first sub-phase of the proposed delivery scheme
in (11) with leader set L(d) = {u1, . . . , uNe(d)}, in
Step j ∈ [min{Ne(d), N− r +1, K− t}], for each set of users
J where J ⊆ [K] \ {u1, . . . , uj−1} such that |J | = t+1 and
uj ∈ J , and each set of files B ⊆ [N] \ {du1 , . . . , duj} where
|B| = r − 1, we transmit CJ ,B as defined in (28).

Let ug(i) represent the leader user demanding file Fi, for
each i ∈ Nd([K]). At the end of the delivery sub-phase 1,
we have:

1) For any CJ ,B transmitted in sub-phase 1, each user in
J can recover all the sub-blocks in CJ ,B.

2) At the end of Step j ∈ [min{g(dk), N−r+1, K−t}], user
k ∈ [K] can recover WS,V if dk ∈ S and {u1, . . . , uj}∩
V ̸= ∅.

3) At the end of Step j ∈ [min{g(dk) − 1, N − r + 1, K −
t}], user k ∈ [K] can recover WS if dk ∈ S and
{du1 , . . . , duj} ∩ S ̸= ∅.

□
2) Decodability for Leader Users After Sub-Phase 1: We

use Lemma 1 to show that every leader user is able to recover
its demanded file after delivery sub-phase 1. Indeed, under
any system parameters, for leader user up where p ∈ [Ne(d)],
we have:

• Case p ≤ min{Ne(d), N − r + 1, K − t}.
By Lemma 1.Item 3, user up can recover WS , where
dup

∈ S and {du1 , . . . , dup−1} ∩ S ̸= ∅, at the end of
Step p − 1.
In addition, by Lemma 1.Item 2, user up can also recover
WS1,V1 , where dup

∈ S1 and {u1, . . . , up−1} ∩ V1 ̸= ∅,
at the end of Step p − 1.
Hence, user up still needs to recover WS2,V2 , where
dup ∈ S2, {du1 , . . . , dup−1}∩S2 = ∅ and {u1, . . . , up}∩
V2 = ∅. Such a WS2,V2 appears in CV2∪{up},S2\{dup},
which is sent in Step p. Hence, by Lemma 1.Item 1, user
up can recover WS2,V2 at the end of Step p.

• Case Ne(d) > min{N − r + 1, K − t} and min{N − r +
1, K − t} < p ≤ Ne(d).
We distinguish two sub-cases:

– N− r+1 ≤ K− t. For each desired block of user up

(assumed to be WS ), we have |S| = r and thus S ∩
{du1 , . . . , duN−r+1} ̸= ∅. Hence, user up can recover
WS at the end of the last step (Step N − r + 1) by
Lemma 1.Item 3.

– N−r+1 > K−t. For each desired sub-block of user
up (assumed to be WS1,V1 where up /∈ V1), we have
|V1| = t and thus V1 ∩ {u1, . . . , uK−t} ̸= ∅. Hence,
user up can recover WS1,V1 at the end of the last
step (Step K − t) by Lemma 1.Item 2.

This proves that each leader can recover its demanded file after
sub-phase 1.

3) Load of Sub-Phase 1: This proposed sub-phase 1 of the
delivery scheme transmits

(
N−j
r−1

)(
K−j

t

)
multicast messages in

Step j ∈ [min{Ne(d), N − r + 1, K − t}], which follows the
intuition from the proof of our converse bound (see discussion
in Section IV-B). Thus, by summing over all steps in sub-
phase 1, we get that the load of this delivery sub-phase matches
the load of the converse bound in (9).

4) Optimality for the Case of Distinct Demands: From the
above reasoning, when all users are leaders (i.e., for the case
N ≥ K and demand type DK), the claim of Theorem 2 is
proved.

C. Proof of Theorem 3

In the following, we focus on general demands and will
prove that after the two sub-phases of the delivery scheme
in (11), every user is able to decode its desired file. This
requires showing that after the second sub-phase the demands
of all non-leader users are satisfied. Sub-phase 2 of the delivery
scheme in (11) is a form of interference alignment.

The block split and the cache placement phase are as
described in (11). The delivery phase contains two sub-phases,
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where the first sub-phase is the same as in Section V-B, and the
second sub-phase is such that non-leader can align and then
cancel the non-demanded sub-blocks, in order to eventually
decode their demanded file. We specify next what each user
can decode at the end of each step.

1) First Delivery Sub-Phase: In Step j ∈ [min{Ne(d), N−
r + 1, K − t}] of the first sub-phase, for each set of users
J ⊆ [K]\{u1, . . . , uj−1} where |J | = t+1 and uj ∈ J , and
each set of files B ⊆ [N] \ {du1 , . . . , duj

} where |B| = r − 1,
we transmit CJ ,B as defined in (28). As shown in Section V-B,
at the end of this sub-phase, each leader can recover its desired
file.

By Lemma 1 (recall that ug(i) represent the leader user who
demands file Fi), each non-leader user k ∈ [K] \ L(d) can
decode WS , where dk ∈ S and {du1 , . . . , dug(dk)−1} ∩ S ̸= ∅,
and can decode WS1,V1 where dk ∈ S1 and {u1, . . . , ug(dk)}∩
V1 ̸= ∅. In addition, for each j ∈ [g(dk) + 1 : Ne(d)], user
k can recover W{dk}∪S2,{uj}∪V2 by directly reading off from
C{uj ,k}∪V2,S2 (transmitted in Step j of the first sub-phase),
where S2 ∩ {du1 , . . . , duj

} = ∅ and V2 ∩ {u1, . . . , uj} = ∅.8

The non-leader users are thus not yet satisfied, and thus we
proceed to send further multicast messages in sub-phase 2.

2) Second Delivery Sub-Phase: The second sub-phase also
contains min{Ne(d), N − r + 1, K − t} steps. In Step j, each
time we focus on one integer q ∈ [j+1 : min{N−r+2, K−t+
1, Ne(d)}]. For each J ⊆ ([K]\{u1, . . . , uq−1}∪{uj}) where
|J | = t + 1, {uj , uq} ⊆ J , and J ∩ {uq+1, . . . , uNe(d)} ̸= ∅,
and for each B ⊆ [N] \ {du1 , . . . , duq

} where |B| = r− 2 and
B ∩Nd([K]) ̸= ∅, we transmit CJ ,B as defined in (28).

In Step j of the second sub-phase, the transmitted
multicast message CJ ,B by construction satisfies J ∩
{uq+1, . . . , uNe(d)} ̸= ∅. However, non-leader user k may
also need some multicast message(s) CJ ,B where J ∩
{uq+1, . . . , uNe(d)} = ∅. It is proved in Appendix B that
each user k who demands Fduj

can reconstruct CJ ,B, where
J ∩ {uq+1, . . . , uNe(d)} = ∅ by using previously received
multicast messages, as formalized in the next lemma.

Lemma 2: For each j ∈ [min{Ne(d), N − r + 1, K − t}],
each q ∈ [j + 1 : min{N − r + 2, K − t + 1, Ne(d)}], each
J ⊆ [K] \L(d)∪{uj , uq} where |J | = t+1 and {uj , uq} ⊆
J , and each B ⊆ [N] \ {du1 , . . . , duq} where |B| = r − 2 and
B∩Nd([K]) ̸= ∅, user k with dk = duj can reconstruct CJ ,B
at the end of Step j of sub-phase 2. □

The following Lemma 3, whose proof is in Appendix C,
specifies some properties of the linear combinations CJ ,B
defined in (28).

Lemma 3: [Properties of Function CJ ,B Defined in (28)]
For each J ⊆ [K] where |J | = t + 1, and each B ⊆ [N]
where |B| = r − 1, we have

CJ ,B = ⊕
k∈J

C(J\{k})∪{ug(i)},(B\{i})∪{dk}, (33)

for any i ∈ B where ug(i) /∈ J .

8This is because in C{uj ,k}∪V2,S2 , user k caches all except
W{dk}∪S2,{uj}∪V2 , such that user k can recover W{dk}∪S2,{uj}∪V2 .

In addition, for each J ⊆ [K] where |J | = t + 1, and each
B ⊆ [N] where |B| = r − 1 and Nd(J ) ∩ B ̸= ∅, we have

CJ ,B = ⊕
i∈Nd(J )\B

CJ ,(B\{i1})∪{i}, (34)

for any i1 ∈ Nd(J ) ∩ B. □
By using the transmissions in the two sub-phases and the

properties in Lemma 3, we prove the following Lemma 4
(whose proof is in Appendix D), which is the key result for
our interference alignment based delivery scheme.

Lemma 4 (Interference Alignment Lemma): For each j ∈
[min{Ne(d), N − r + 1, K − t}] and each i ∈ {du1 , . . . , duj},
each user can reconstruct CJ∪{uj},B∪{i} where J ⊆ [K] \
{u1, . . . , uj}, |J | = t, B ⊆ [N] \ {du1 , . . . , duj

}, |B| = r − 2,
and Nd(J ∩L(d))\B ̸= ∅, at the end of Step j of sub-phase 2.

□
Lemma 4 can be understood as follows. By Lemma 1,

the remaining sub-blocks to be decoded by each non-leader
k ∈ [K]\L(d) are WS,V where dk ∈ S , {du1 , . . . , dug(dk)−1}∩
S = ∅ and {k, u1, . . . , ug(dk)} ∩ V = ∅. In Step g(dk)
of the first sub-phase, the transmitted message CJ ,B should
satisfy dg(dk) /∈ B. By Lemma 4, we show that user k
can also reconstruct some CJ ′,B′ where dg(dk) ∈ B′. Since
dug(dk) ∈ B′, each sub-block in CJ ′,B′ is desired or cached
by user k who demands Fdk

. In other words, in order to
reconstruct CJ ′,B′ , we align and then cancel the interferences
to user k. By induction, all sub-blocks except one in CJ ′,B′

have been already recovered or cached by user k such that
it can recover that sub-block. The detail of the decodability
proof is presented in Appendix E. An example of how the
interference alignment scheme works is given in Section V-D.

3) Performance: As we showed in Section V-B, in the first
sub-phase we transmit cs

t bits, with s = Ne(d). In Step j ∈
[min{s, N−r+1, K−t}] of the second sub-phase, the number
of transmitted bits is∑min{N−r+2,K−t+1,s}

q=j+1

((
N−q
r−2

)
−
(
N−s
r−2

))((
K−q
t−1

)
−
(
K−s
t−1

))(
N−1
r−1

)(
K
t

) B.

(35)

Hence, by summing the number of transmitted bits in each
step of sub-phase 2 and the number of transmitted bits in sub-
phase 1, the load equals es

t + cs
t as defined in (9) and (13),

with s = Ne(d).
This concludes the proof of Theorem 3.

D. An Example of Sub-Phase 2 in (11)

We will use the following example to illustrate our interfer-
ence alignment scheme.

Consider an (N, K, M, r) = (5, 10, 1/2, 3) shared-link
caching problem with correlated files of combinatorial over-
laps. There are

(
N
r

)
= 10 blocks, WS where S ⊆ [5] and

|S| = r = 3. The files are

F1 ={W{1,2,3},W{1,2,4},W{1,2,5},W{1,3,4},W{1,3,5}, W{1,4,5}},
F2 ={W{1,2,3},W{1,2,4},W{1,2,5},W{2,3,4},W{2,3,5}, W{2,4,5}},
F3 ={W{1,2,3},W{1,3,4},W{1,3,5},W{2,3,4},W{2,3,5}, W{3,4,5}},
F4 ={W{1,2,4},W{1,3,4},W{1,4,5},W{2,3,4},W{2,4,5}, W{3,4,5}},
F5 ={W{1,2,5},W{1,3,5},W{1,4,5},W{2,3,5},W{2,4,5}, W{3,4,5}}.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on November 08,2023 at 23:24:46 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: ON THE FUNDAMENTAL LIMITS OF CODED CACHING WITH CORRELATED FILES 6389

1) Placement Phase: Here t = KMr
N = 3. We partition

each block into
(
K
t

)
= 120 equal-length sub-blocks and denote

WS = {WS,V : V ⊆ [K], |V| = t = 3}. Each user k ∈ [K]
caches WS,V if k ∈ V .

2) Delivery Phase: Assume d = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5),
which has Ne(d) = 5 distinct demanded files. We choose as
leaders the users in u = (1, 2, 3, 4, 5).

3) First Delivery Sub-Phase: In Step j ∈ [min{Ne(d), N−
r+1, K− t}] = [3] of the first sub-phase, for each set of users
J ⊆ [K] \ [j − 1] where |J | = t+1 = 4 and j ∈ J , and each
set of files B ⊆ [N] \ [j] where |B| = r − 1 = 2, we transmit
CJ ,B.

At the end of the first sub-phase, as shown in Section V-B,
each leader user can recover its desired file.

For the non-leaders, we focus on user 6. By Lemma 1,
user 6 can decode WS1,V1 where 1 ∈ S1, 1 ∈ V1, and 6 /∈
V1, by directly reading off (because in CV1∪{6},S1\{1}, user
6 caches all but WS1,V1 ). Hence, user 6 still needs to recover
WS,V where 1 ∈ S and {1, 6} ∩ V = ∅.

In addition, for each j ∈ [g(d6) + 1 : Ne(d)] = [2 : 5], user
6 can recover W{1}∪S2,{uj}∪V2 where S2 ∩ {du1 , . . . , duj

} =
∅, V2 ∩ {u1, . . . , uj} = ∅, and 6 /∈ V2, by directly reading
off from C{uj ,6}∪V2,S2 transmitted in Step j of the first
sub-phase (because in C{uj ,6}∪V2,S2 , user 6 caches all but
W{1}∪S2,{uj}∪V2 ).

In order to let each non-leader recover the remaining
sub-blocks of its desired file, we proceed the second delivery-
phase.

4) Second Delivery Sub-Phase: In Step j ∈ [3] of the
second sub-phase, for each q ∈ [j + 1 : 4], each J ⊆
([10] \ [q − 1] ∪ {j}) where |J | = t + 1 = 4, {j, q} ⊆ J ,
J∩[q+1 : 5] ̸= ∅, and each B ⊆ [5]\[q] where |B| = r−2 = 1,
we transmit CJ ,B.

The main objective of the second delivery sub-phase is to let
the non-leaders reconstruct the messages in Lemma 4, which
are generated by interference alignment. In the following,
we focus on the decodability of user 6, and show how user
6 reconstructs the messages in Lemma 4 and how it recovers
its desired sub-blocks from those messages.

Observe that leader g(d6) = 1 also demands F1, we show
the decodability of user 6 by induction. For induction step j′ ∈
[g(d6)+1 : Ne(d)] = [2 : 5], we prove that user 6 can recover
its desired sub-blocks WS,V where duj′ ∈ S or uj′ ∈ V .

We start from j′ = 2. In the following, we show that
user 6 can recover W{1,2,3},V where {1, 6} ∩ V = ∅ by
interference alignment (i.e., W{1,2,3},{2,3,4}, W{1,2,3},{2,3,5},
W{1,2,3},{2,4,5}, and W{1,2,3},{3,4,5}). We divide the decoding
of these 4 sub-blocks of W{1,2,3} into three cases:

• We first focus on W{1,2,3},V where {1, 6} ∩ V = ∅ and
uj′ = 2 ∈ V , e.g., W{1,2,3},{2,3,4}. We will show that
user 6 can reconstruct C{1,2,3,4},{1,3},9 from which it can
recover W{1,2,3},{2,3,4}.
In Step 1 of the first sub-phase, user 6 receives

C{1,2,3,4},{2,3} = W{1,2,3},{2,3,4} ⊕ W{1,2,3},{1,3,4}

9This message is the message CJ∪{uj},B∪{i} with j = 1, i = 1,
J = {2, 3, 4}, B = {3} in Lemma 4. Note that every sub-block in
C{1,2,3,4},{1,3} is desired by user 6.

⊕ W{1,2,3},{1,2,4} ⊕ W{2,3,4},{1,3,4}

⊕ W{2,3,4},{1,2,4} ⊕ W{2,3,4},{1,2,3};
(36)

C{1,2,3,4},{3,4} = W{1,3,4},{2,3,4} ⊕ W{1,3,4},{1,2,4}

⊕ W{1,3,4},{1,2,3} ⊕ W{2,3,4},{1,3,4}

⊕ W{2,3,4},{1,2,4} ⊕ W{2,3,4},{1,2,3}.
(37)

By summing (36) and (37), we can obtain

C{1,2,3,4},{2,3} ⊕ C{1,2,3,4},{3,4}

= W{1,2,3},{2,3,4} ⊕ W{1,2,3},{1,3,4} ⊕ W{1,2,3},{1,2,4}

⊕ W{1,3,4},{2,3,4} ⊕ W{1,3,4},{1,2,4} ⊕ W{1,3,4},{1,2,3}
(38a)

= C{1,2,3,4},{1,3}, (38b)

which shows the property in (34) in Lemma 4. It can be
seen by summing (36) and (37), we cancel the interfer-
ences from the sub-blocks of W{2,3,4} to user 6. From
Lemma 1, user 6 can decode WS1,V1 where 1 ∈ S1 and
1 ∈ V1. In addition, in

C{2,3,4,6},{3,4} = W{1,3,4},{2,4,6} ⊕ W{1,3,4},{2,3,6}

⊕ W{1,3,4},{2,3,4} ⊕ W{2,3,4},{3,4,6}

⊕ W{2,3,4},{2,4,6} ⊕ W{2,3,4},{2,3,6},
(39)

which is transmitted in Step 2 of the first sub-phase,
user 6 caches all except W{1,3,4},{2,3,4} such that it can
recover W{1,3,4},{2,3,4} by directly reading off. Hence,
user 6 has decoded all except W{1,2,3},{2,3,4} in (38a)
such that it can recover W{1,2,3},{2,3,4}.
By similar steps, for each desired sub-block W{1,2,3},V
where {1, 6} ∩ V = ∅ and uj′ = 2 ∈ V ,
user 6 first reconstructs CV∪{1},{1,2,3}\{2} and then
recovers W{1,2,3},V from CV∪{1},{1,2,3}\{2}.

• We then focus on W{1,2,3},V where {1, 2, 6} ∩ V =
∅, e.g., W{1,2,3},{3,4,5}. We will show that user 6 can
reconstruct C{2,3,4,5},{1,3},10 from which it can recover
W{1,2,3},{3,4,5}.
In Step 1 of the first sub-phase, user 6 receives

C{1,3,4,5},{2,3} = W{1,2,3},{3,4,5} ⊕ W{1,2,3},{1,4,5}

⊕ W{2,3,4},{1,4,5} ⊕ W{2,3,4},{1,3,5}

⊕ W{2,3,5},{1,4,5} ⊕ W{2,3,5},{1,3,4};
(40)

C{1,2,3,5},{3,4} = W{1,3,4},{2,3,5} ⊕ W{1,3,4},{1,2,5}

⊕ W{2,3,4},{1,3,5} ⊕ W{2,3,4},{1,2,5}

⊕ W{3,4,5},{1,2,5} ⊕ W{3,4,5},{1,2,3};
(41)

C{1,2,3,4},{3,5} = W{1,3,5},{2,3,4} ⊕ W{1,3,5},{1,2,4}

⊕ W{2,3,5},{1,3,4} ⊕ W{2,3,5},{1,2,4}

⊕ W{3,4,5},{1,2,4} ⊕ W{3,4,5},{1,2,3}.
(42)

10This message is the message CJ∪{uj},B∪{i} with j = 2, i = 1,
J = {3, 4, 5}, B = {3} in Lemma 4. Note that every sub-block in
C{2,3,4,5},{1,3} is desired by user 6.
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In Step 1 of the second sub-phase (with j = 1, q = 2,
J = {1, 2, 4, 5}, B = {3}), user 6 receives

C{1,2,4,5},{3} = W{1,2,3},{2,4,5} ⊕ W{1,2,3},{1,4,5}

⊕ W{1,3,4},{2,4,5} ⊕ W{1,3,4},{1,2,5}

⊕ W{1,3,5},{2,4,5} ⊕ W{1,3,5},{1,2,4}

⊕ W{2,3,4},{1,4,5} ⊕ W{2,3,4},{1,2,5}

⊕ W{2,3,5},{1,4,5} ⊕ W{2,3,5},{1,2,4}

⊕ W{3,4,5},{1,2,5} ⊕ W{3,4,5},{1,2,4}. (43)

By summing (40)-(43), we have

C{1,3,4,5},{2,3} ⊕ C{1,2,3,5},{3,4} ⊕ C{1,2,3,4},{3,5}

⊕ C{1,2,4,5},{3}

= W{1,2,3},{3,4,5} ⊕ W{1,2,3},{2,4,5} ⊕ W{1,3,4},{2,4,5}

⊕ W{1,3,4},{2,3,5} ⊕ W{1,3,5},{2,4,5} ⊕ W{1,3,5},{2,3,4}
(44a)

= C{2,3,4,5},{1,3}, (44b)

which shows the property in (33) in Lemma 4. Hence,
by (44b), user 6 can reconstruct C{2,3,4,5},{1,3} while
cancelling the interferences in (40)-(43), coinciding
with Lemma 4. We then focus on each sub-block in
C{2,3,4,5},{1,3}. W{1,2,3},{2,4,5} can be recovered by
user 6 as we showed previously for W{1,2,3},{2,3,4}. For
W{1,3,4},{2,4,5}, in

C{2,4,5,6},{3,4} = W{1,3,4},{2,5,6} ⊕ W{1,3,4},{2,4,5}

⊕ W{2,3,4},{4,5,6} ⊕ W{2,3,4},{2,5,6}

⊕ W{3,4,5},{2,5,6} ⊕ W{3,4,5},{2,4,6},
(45)

which is transmitted in Step 2 of the first sub-phase,
user 6 caches all except W{1,3,4},{2,4,5} such that it can
recover W{1,3,4},{2,4,5} by directly reading off. Similarly,
user 6 can recover W{1,3,4},{2,3,5}, W{1,3,5},{2,4,5}, and
W{1,3,5},{2,3,4} from Step 2 of the first sub-phase by
directly reading off. Hence, in C{2,3,4,5},{1,3}, user 6 has
recovered all except W{1,2,3},{3,4,5} such that user 6 can
recover W{1,2,3},{3,4,5}.

• Finally, we consider W{1,2,3},{3,9,10}, where d9 = 4 and
d10 = 5. Notice that, C{1,2,9,10},{3} is not transmitted
in the second sub-phase, because none of users 9, 10 is
a leader, which contradicts the constraint on the trans-
mission of the second sub-phase (J ∩ [q + 1 : 5] ̸= ∅
with q = 2 and J = {1, 2, 9, 10}). If user 6 can recon-
struct C{1,2,9,10},{3}, by the same decoding procedure
as W{1,2,3},{3,4,5}, user 6 can recover C{2,3,9,10},{1,3},11

from which it can recover W{1,2,3},{3,9,10}. So in
the following, we will prove user 6 can reconstruct
C{1,2,9,10},{3}, as described in Lemma 2.
Notice that C{1,2,4,10},{2,3} and C{1,2,4,10},{3} are trans-
mitted in Step 1 of the first and second sub-phases,

11This message is the message CJ∪{uj},B∪{i} with j = 2, i = 1,
J = {3, 9, 10}, B = {3} in Lemma 4. Note that every sub-block in
C{2,3,9,10},{1,3} is desired by user 6.

respectively. Hence, user 6 can obtain

C{1,2,4,10},{2,3} ⊕ C{1,2,4,10},{3}

= W{1,3,4},{2,4,10} ⊕ W{1,3,4},{1,2,10} ⊕ W{1,3,5},{2,4,10}

⊕ W{1,3,5},{1,2,4} ⊕ W{3,4,5},{1,2,10} ⊕ W{3,4,5},{1,2,4}.
(46)

On the RHS of (46), W{1,3,4},{2,4,10} and
W{1,3,5},{2,4,10} can be recovered by user 6 from
C{2,4,6,10},{3,4} and C{2,4,6,10},{3,5} transmitted in
Step 2 of the first sub-phase, respectively (by directly
reading off). W{1,3,4},{1,2,10} and W{1,3,5},{1,2,4} can
be recovered by user 6 because they are cached by
user 1 and thus we can use Lemma 1.Item 2. Hence,
from (46), user 6 can recover

W{3,4,5},{1,2,10} ⊕ W{3,4,5},{1,2,4}. (47)

Similarly, user 6 can recover

W{3,4,5},{1,2,5} ⊕ W{3,4,5},{1,2,4}, (48)
W{3,4,5},{1,2,5} ⊕ W{3,4,5},{1,2,9}, (49)

from C{1,2,4,5},{2,3}⊕C{1,2,4,5},{3} and C{1,2,8,5},{2,3}⊕
C{1,2,8,5},{3}, respectively. By summing (47)-(49),
user 6 can obtain

W{3,4,5},{1,2,10} ⊕ W{3,4,5},{1,2,9}. (50)

Similar to (46), we have

C{1,2,9,10},{2,3} = C{1,2,9,10},{3} ⊕ W{1,3,4},{2,9,10}

⊕ W{1,3,4},{1,2,10} ⊕ W{1,3,5},{2,9,10} ⊕ W{1,3,5},{1,2,9}

⊕ W{3,4,5},{1,2,10} ⊕ W{3,4,5},{1,2,9}. (51)

On the RHS of (51), C{1,2,9,10},{2,3} is transmitted in
Step 1 of the first sub-phase. In addition, W{1,3,4},{2,9,10}
and W{1,3,5},{2,9,10} can be recovered by user 6 from
C{2,6,9,10},{3,4} and C{2,6,9,10},{3,5} transmitted in
Step 2 of the first sub-phase, respectively (by directly
reading off). W{1,3,4},{1,2,10} and W{1,3,5},{1,2,9} can be
recovered by user 6 because they are cached by user 1 and
thus we can use Lemma 1.Item 2. We also proved in (50)
that W{3,4,5},{1,2,10} ⊕ W{3,4,5},{1,2,9} can be recovered
by user 6. Hence, user 6 can reconstruct C{1,2,9,10},{3}
and thus it can recover W{1,2,3},{3,9,10}.
By similar steps, for each desired sub-block W{1,2,3},V
where {1, 2, 6} ∩ V = ∅, user 6 first reconstructs
CV∪{2},{1,2,3}\{2} and then recovers W{1,2,3},V from
CV∪{2},{1,2,3}\{2}.

Hence, we proved that user 6 can recover W{1,2,3}. Sim-
ilarly, we can prove that user 6 can recover WS where
{dk, duj′} = {1, 2} ⊆ S .

For each desired sub-block WS,V where duj′ = 2 /∈ S ,
{1, 6} ∩ V = ∅, and uj′ = 2 ∈ V , user 6 can recover WS,V
from CV∪{6},S\{1} transmitted in Step uj′ = 2 of sub-phase
1 by directly reading off. Hence, we finished the proof of the
decodability of user 6 for j′ = 2.

By the induction method, other desired blocks can also
be recovered by user 6 with the above decoding procedure.
Similarly, the other non-leaders can also recover their desired
file from the delivery.
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5) Performance: The achieved load is 41/36 ≈ 1.139 while
the converse bound in Theorem 1 is 707/720 ≈ 0.982 and the
achieved load in [21] is 7/6 ≈ 1.167.

E. Proof of Theorem 4

For type Ds where s ∈ [min{K, N}] and each corner point
M = Nt

Kr where t ∈ [0 : K], from Theorem 3, we can achieve
the load in (52g), shown at the bottom of the next page,
where (52d), shown at the bottom of the next page, comes
from the Pascal’s triangle and (52g) comes from the converse
bound in Theorem 1. Hence, we proved that the proposed
caching scheme in Theorem 3 is order optimal to within a
factor of 2 under the constraint of uncoded cache placement
for demand type Ds.

Similarly, we can prove that the average load among all
possible demands in Theorem 3 is order optimal to within a
factor of 2 under the constraint of uncoded cache placement.

F. Proof of Theorem 5

From the decodability proof of the proposed scheme with
two delivery sub-phases, we have the following observations,
which are proved in Appendix E-C and will help us to further
reduce the load for some special cases:

1) Observation 1: when r = 2 or t = 1, the transmission of
the second sub-phase does not exist and thus each user
can recover its desired file from the first sub-phase.

2) Observation 2: for a non-leader k, to decode WS,V
where dk ∈ S , {du1 , . . . , dug(dk)−1} ∩ S = ∅ and
{k, u1, . . . , ug(dk)} ∩ V = ∅, if there is no user in
V whose demanded file is in {du1 , . . . , dug(dk)−1}, the
multicast messages in the first sub-phase, in Step g(dk)
of the second sub-phase, and in Step g(dk) in Lemma 2,
are enough for user k.

3) Observation 3: for a non-leader k, to decode WS,V
where dk ∈ S , {du1 , . . . , dug(dk)−1} ∩ S = ∅,
{k, u1, . . . , ug(dk)} ∩ V = ∅, and (∪k′∈V{dk′}) ∩ (S \
{dk}) = ∅, user k only needs the transmission of the
first sub-phase.

In the following, we will show if r ∈ {1, 2, N − 1, N} or
t ∈ {0, 1, 2, K− 1, K} or s ∈ [min{K, N, 4}], the transmission
of the second sub-phase is not needed. Notice that the load
of the first sub-phase (i.e., cs

t ) coincides with the proposed
converse bound in Theorem 1 (i.e., R⋆

u(M, s)). Hence, for the
above cases, the transmission of the first sub-phase is optimal
under the constraint of uncoded cache placement.

When r ∈ {1, N}, the considered problem is equivalent to
the MAN caching problem, the first sub-phase is equivalent
to the caching scheme in [4], which is optimal under the
constraint of uncoded cache placement.

When t ∈ {0, K}, it is simple to achieve the optimality by
transmitting all demanded files or nothing.

When r = 2 or t = 1, as shown in Observation 1, each
non-leader can recover its desired files from the transmission
of the first sub-phase.

When t = K−1, there is only one step in the first sub-phase.
By Lemma 1.Item 2, it can be seen that any non-leader can
recover its desired blocks from Step 1 of the first sub-phase.
Hence, the second sub-phase is not necessary.

We now consider r = N−1 or t = 2 and let each non-leader
k recover WS,V where dk ∈ S , {du1 , . . . , dug(dk)−1} ∩ S = ∅
and {k, u1, . . . , ug(dk)} ∩ V = ∅, by the transmission of the
first sub-phase. The fact that the first sub-phase is enough for
these two cases, is because user k can reconstruct its required
the multicast messages transmitted in the second sub-phase,
from the first sub-phase. The detail of the decodability proof
for these two cases could be found in Appendix F.

In conclusion, for the cases where r ∈ {1, 2, N − 1, N} or
t ∈ {1, 2, K − 1, K}, we proved that from the first delivery
sub-phase, each user can recover its desired file. Comparing
the converse bound in Theorem 1 and the achieved load
(given in Section V-F), we have the optimality for Theo-
rem 5.Case 1 where r ∈ {1, 2, N − 1, N}. The optimality for
Theorem 5.Case 2 where either KrM/N ≤ 2 or KrM/N ≥
K−1, is due to the fact that in the converse bound (10), c

Ne(d)
t

is convex in terms of t and when t ∈ {0, 1, 2, K − 1, K}, our
proposed scheme is optimal.

Finally, we will prove the optimality of R⋆
u(M, s) for The-

orem 5.Case 3 where s ∈ [min{K, N, 4}]. We consider the
following two cases.

1) min{K, N} ≤ 4. Theorem 5.Case 1 covers all possible
values of r when 3 ≥ N − 1, and Theorem 5.Case 2
covers all possible values of M when 3 ≥ K−1. Hence,
when min{K, N} ≤ 4, we can prove the optimality.

2) min{K, N} > 4. In this case, s = |Nd([K])| ≤ 4.
For each subset of files T ⊆ [N] \ Nd([K]) where
r − 4 ≤ |T | < r, we can gather all blocks WS where
S ⊆ [N], |S| = r, S \ Nd([K]) = T . The proposed first
delivery sub-phase on these blocks is equivalent to the
first delivery sub-phase for N ′

d([K]) = N′ = s, K′ = K,
r′ = r−|T |, and t′ = t. Since we proved the decodability
of the proposed first delivery sub-phase for the system
including up to 4 files, we can prove the blocks in this
group can be recovered by the demanding users. Hence,
we prove that each user can recover its desired file from
the first delivery sub-phase.

As a result, we proved that when s ∈ [min{K, N, 4}], each user
can recover its desired file from the first delivery sub-phase,
and thus we proved the optimality for Theorem 5.Case 3.

VI. CONCLUSION

In this paper, we studied the coded caching problem with
correlated files of combinatorial overlaps and aimed to mini-
mize the average load over the uniform demand distribution.
We proposed a converse bound under the constraint of uncoded
cache placement and a new coded caching scheme based on
interference alignment, containing two sub-phases. For any
demand type, under the constraint of uncoded cache place-
ment, our caching scheme is optimal to within a factor of 2.
For the demand type Ds where s = K or s ∈ [min{K, N, 4}],
or for the case with any demand type with r ∈ {1, 2, N−1, N}
or KrM ≤ 2N or KrM ≥ (K − 1)N, the first sub-phase of the
proposed scheme is decodable and optimal under the constraint
of uncoded cache placement. As an extension, the above exact
and order optimal results can be extended to the worst-case
loads. As by-products, we showed that the proposed strategy
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which jointly serves the users’ demands reduces the load of
existing schemes for the coded caching problem with multiple
requests; the proposed scheme for distinct demands can be also
extended to the coded distributed computing problem with a
central server, which achieves the optimal transmission load
over the binary field.

APPENDIX A
PROOF OF LEMMA 1

For a given demand vector d, let s = Ne(d), jmax =
min{s, N − r + 1, K − t}, and order the leader users as
(u1, . . . , us). Recall that in Step j ∈ [jmax] of delivery
sub-phase 1 of the scheme in (11) we satisfy the demand
of leader user uj as follows: for each set of users J ⊆
[K] \ {u1, . . . , uj−1} such that |J | = t + 1 and uj ∈ J ,
and for each set of files B ⊆ [N] \ {du1 , . . . , duj

} such that
|B| = r− 1, we transmit the multicast message in (28), which
we re-write as

CJ ,B = ⊕
k∈J :dk ̸∈B

WB∪{dk},J\{k} (53a)

⊕ ⊕
k∈J :dk∈B

(
WB∪{duj

},J\{k}

⊕ ⊕
i∈Nd(J )\(B∪{duj

})
WB∪{i},J\{k}

)
. (53b)

By construction (i.e., duj
/∈ B), CJ ,B in (53) contains only

one sub-block desired by user uj (which is WB∪{duj
},J\{uj}),

while all other sub-blocks in CJ ,B are in its cache. Based on
this observation, we introduce the following terminology:

Directly read off. The observation made for leader user uj

actually holds for every user k ∈ J where dk ̸∈ B (i.e., term
in (53a)). Thus, we say that user k ‘directly reads off’ its
desired sub-block WB∪{dk},J\{k} from the multicast message
CJ ,B.

Indirectly read off. For user k ∈ J where dk ∈ B, its
desired sub-blocks appear in CJ ,B as the linear combination

WB∪{duj
},J\{k}+ ⊕

i∈Nd(J )\(B∪{duj
})

WB∪{i},J\{k} (i.e., term

in (53b)), while the other sub-blocks appearing in CJ ,B are
cached by user k. We will prove later that user k can recover
WB∪{i},J\{k} where i ∈ Nd(J )\(B ∪ {duj

}) from other
multicast messages. Thus user k can ‘indirectly read off’ its
desired sub-block WB∪{duj

},J\{k} from the multicast message
CJ ,B.

Lemma 1 is proved by induction.

A. Step 1

Lemma 1.Item 1: We focus on one set of users J ⊆
[K] where |J | = t + 1 and u1 ∈ J , and one set of files
B ⊆ [N] \ {du1} where |B| = r − 1. We will prove that from
Step 1, each user in k ∈ J can recover all sub-blocks in CJ ,B.
We consider two cases:

• dk /∈ B: in CJ ,B user k caches all sub-blocks
except WB∪{dk},J\{k}. Hence, user k can recover
WB∪{dk},J\{k} by directly reading off.

• dk ∈ B: in CJ ,B user k caches all sub-blocks except
WB∪{i},J\{k}, where i ∈ Nd(J ) \ B.

– If i ̸= du1 , user k can recover WB∪{i},J\{k} from
CJ ,(B∪{i})\{dk} by directly reading off as the similar
reason described in the above case.

– If i = du1 , since we proved that user k can recover
all sub-blocks in CJ ,B except WB∪{du1},J\{k},
then it can be seen that user k can recover
WB∪{du1},J\{k} by indirectly reading off.

In conclusion, user k can recover all sub-blocks in CJ ,B.
Hence, we proved Lemma 1.Item 1 for Step 1.

Lemma 1.Item 2: Note that user u1 can recover WS,V
where du1 ∈ S and u1 ∈ V , from its cache. Hence, in the
following, we will prove that any user k ∈ ([K] \ {u1}) can
recover each WS,V where dk ∈ S , u1 ∈ V and k /∈ V , from
Step 1. We consider two cases:

cs
t + es

t

=
∑
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(
N−j
r−1

)(
K−j

t

)
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≤
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(
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)(
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)
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(
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)(
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)(
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)(
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(
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)(
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)(
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)(
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)(
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• du1 /∈ S . We can see that WS,V appears in
CV∪{k},S\{dk}. By Lemma 1.Item 1 for Step 1, we prove
that user k can recover WS,V .

• du1 ∈ S . We can see that WS,V appears in
CV∪{k},S\{du1}. By Lemma 1.Item 1 for Step 1, we prove
that user k can recover WS,V .

Hence, we proved Lemma 1.Item 2 for Step 1.
Lemma 1.Item 3: We then focus on one user k whose

demanded file is in [N]\{du1}, and one sub-block WS,V where
{dk, du1} ⊆ S and {u1, k} ∩ V = ∅. In CV∪{u1},S\{du1}, all
sub-blocks are desired by user k while only one of them is
desired by user u1 (which is WS,V ) and the others are cached
by user u1. From Lemma 1.Item 2 for Step 1, user k has
recovered all desired sub-blocks which are cached by user
u1, and thus user k can recover WS,V from CV∪{u1},S\{du1}.
Hence, we proved Lemma 1.Item 3 for Step 1.

In summary, we proved Lemma 1 for Step 1.

B. Step j

We focus one j ∈ [min{Ne(d), N−r+1, K−t}] and assume
that Lemma 1 holds for the first j − 1 steps. In the following,
we prove that Lemma 1 holds for Step j.

Lemma 1.Item 1: We focus on one set of users J ⊆
([K] \ {u1, . . . , uj−1}) where |J | = t + 1 and uj ∈ J , and
one set of files B ⊆ ([N] \ {du1 , . . . .duj}) where |B| = r− 1.
We will prove that from the transmission until Step j, each
user in k ∈ J can recover all sub-blocks in CJ ,B. We consider
two cases:

• dk /∈ B. In this case, in CJ ,B user k caches all
sub-blocks except WB∪{dk},J\{k}. Hence, user k can
recover WB∪{dk},J\{k} by directly reading off.

• dk ∈ B. In this case, dk /∈ {du1 , . . . , duj}. In CJ ,B user
k caches all sub-blocks except WB∪{i},J\{k}, where i ∈
Nd(J ) \ B.

– If i ∈ {du1 , . . . , duj−1}, by the induction assump-
tion, user k has already recovered the whole block
WB∪{i}.

– If i /∈ {du1 , . . . , duj
}, user k can recover

WB∪{i},J\{k} from CJ ,(B∪{i})\{dk} transmitted in
Step j by directly reading off.

– If i = duj
, in CJ ,B user k has cached or recovered

all sub-blocks except WB∪{duj
},J\{k}. Hence, user

k can recover WB∪{duj
},J\{k} by indirectly reading

off.
In conclusion, user k can recover all sub-blocks in CJ ,B, and
thus we proved Lemma 1.Item 1 for Step j.

Lemma 1.Item 2: Note that user uj can recover WS,V
where dk ∈ S and uj ∈ V , from its cache. Hence, in the
following, we will prove any user k ∈ ([K] \ {uj}) where
dk /∈ {du1 , . . . , duj−1}, can recover each WS,V where dk ∈ S ,
{du1 , . . . , duj−1} ∩ S = ∅, uj ∈ V , and {k, u1, . . . , uj−1} ∩
V = ∅, at the end of Step j. We consider two cases:

• duj /∈ S . We can see that WS,V appears in CV∪{k},S\{dk}
transmitted in Step j. By Lemma 1.Item 1 for Step j,
we prove that user k can recover WS,V .

• duj
∈ S . We can see that WS,V appears

in CV∪{k},S\{duj
} transmitted in Step j.

By Lemma 1.Item 1 for Step j, we prove that
user k can recover WS,V .

Hence, we proved Lemma 1.Item 2 for Step j.
Lemma 1.Item 3: We then focus on one user k where

dk ∈ ([N] \ {du1 , . . . , duj
}), and one sub-block WS,V

where {dk, duj} ⊆ S , {du1 , . . . , duj−1} ∩ S = ∅, and
{k, u1, . . . , uj} ∩ V = ∅. In CV∪{uj},S\{duj

} transmitted in
Step j, all sub-blocks are desired by user k, while only one of
them is desired by user uj (which is WS,V ) and the others are
cached by user uj . From Lemma 1.Item 2 for Step j, user k
has recovered all desired sub-blocks which are cached by user
uj , and thus user k can recover WS,V from CV∪{uj},S\{duj

}.
Hence, we proved Lemma 1.Item 3 for Step j.

In conclusion, we proved Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Focus on Step j ∈ [min{Ne(d), N − r + 1, K − t}] and
q ∈ [j + 1 : min{N − r + 2, K − t + 1, Ne(d)}]. We will
prove that each user k with dk = duj

can recover CJ ,B, for
each J ⊆ [K] \ (L(d) \ {uj , uq}) where |J | = t + 1 and
{uj , uq} ⊆ J , and each B ⊆ ([N] \ {du1 , . . . , duq}) where
|B| = r − 2 and B ∩ Nd([K]) ̸= ∅, at the end of Step j of
sub-phase 2.

Let J ′ = J \ {uj , uq}. It can be seen that J ′ only
contains non-leaders. Recall that Nd(T ) is the union set of
files demanded by the users in T , and Ld(T ) is the union
set of leader users demanding the files in Nd(T ). Given J ′,
we define a family of sets F (J ′) containing each set J ′ ∪
(Ld(J ′)\{uj , uq})\F , where F ⊆ J ′∪(Ld(J ′)\{uj , uq}),
|F| = |Ld(J ′)\{uj , uq}| and Nd(F) = Nd(J ′)\{duj

, duq
}.

In plain words, for each file in Nd(J ′)\{duj , duq}, we replace
one or zero user in J ′ demanding this file by the leader
user demanding this file; the resulting set is a set in F (J ′).
For example, J ′ = {5, 6, 7, 8} where duj

= 1, duq
= 2,

d5 = d6 = 3, d7 = 4, and d8 = 2. Assume that the leader user
demanding F3 is user 3 and the leader user demanding F4 is
user 4. After replacing users 5, 7 in J ′ by users 3, 4, we obtain
the set {3, 4, 6, 8} ∈ F (J ′). Similarly, in this example we
have

F (J ′) =
{
{3, 4, 6, 8}, {3, 4, 5, 8}, {3, 6, 7, 8}, {3, 5, 7, 8},

{4, 5, 6, 8}, {5, 6, 7, 8}
}
.

For each J1 ∈ F (J ′), with a slight abuse of notation,
we let

QJ1 := ⊕
k′∈J1

⊕
S⊆(Nd(J1)∪B\{duj

,duq}):
B⊆S,dk′∈S

WS,J1∪{uj ,uq}\{k′}.

(54)

In plain words, QJ1 is obtained by removing all sub-blocks
in the blocks desired by user uj or uq from CJ1∪{uj ,uq},B.
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By definition, we have

CJ1∪{uj ,uq},B ⊕ CJ1∪{uj ,uq},B∪{uq} ⊕QJ1

=

 ⊕
k′∈J1∪{uj}

⊕
S⊆(Nd(J1∪{uj})∪B)\{duq}:

B⊆S,dk′∈S

WS,J1∪{uj ,uq}\{k′}


⊕QJ1 (55a)
= ⊕

k′∈J1∪{uj}
⊕

S⊆(Nd(J1∪{uj})∪B)\{duq}:
B⊆S,{dk′ ,duj

}⊆S

WS,J1∪{uj ,uq}\{k′}.

(55b)

On the RHS of (55b), if k′ ̸= uj , WS,J1∪{uj ,uq}\{k′} is
cached by uj and by Lemma 1.Item 2, user k can recover
WS,J1∪{uj ,uq}\{k′}. We then consider k′ = uj and focus on
WS,J1∪{uj ,uq}\{k′} = WS,J1∪{uq}. Since uq /∈ S , it will be
proved later in Remark 6 that WS,J1∪{uq} can be recovered
by user k at the end of Step g(dk) = j of sub-phase 2. Hence,
user k can reconstruct the RHS of (55b) at the end of Step
g(dk) = j of sub-phase 2.

In addition, for each J2 ∈ F (J ′) where J2 ̸= J ′, since
there exists at least one leader in J2, it can be seen that
CJ2∪{uj ,uq},B∪{uq} and CJ2∪{uj ,uq},B are received in (or
before) Step j of the first and second sub-phases, respectively.
Hence, user k can reconstruct QJ2 from (55b) at the end of
Step j of sub-phase 2.

At the end of this proof, we will prove the following
equation.

⊕
J1∈F(J ′)

QJ1 = 0. (56)

In (56), all the messages except QJ ′ are recovered by user
k such that each user can reconstruct QJ ′ . In addition,
CJ ′∪{uj ,uq},B∪{uq} = CJ ,B∪{uq} is transmitted in Step j of
the first sub-phase. Hence, from (55b), user k can reconstruct
CJ ′∪{uj ,uq},B = CJ ,B at the end of Step j of sub-phase 2.

Finally, we will prove (56). We focus on any sub-block
WS,V in (56) and assume that WS,V is in QJ1 , which is
desired by user k1. Hence, k1 ∈ J1, V = J1∪{uj , uq}\{k1},
and dk1 /∈ {duj , duq}. By the construction of F (J ′), there
exists only one user in J ′ ∪ {ug(dk1 )} demanding dk1 , who
is not in J1. We assume that this user is k2. It can be
seen that WS,V desired by k2, is also in QJ2 where J2 =
J1∪{k2}\{k1}. In addition, except J1 and J2, there does not
exist other J3 ∈ F (J ′) where QJ3 contains WS,V , because
V \ {duj

, duq
} = J1 \ {k1} cannot be a subset of J3. Hence,

WS,V appears twice in (56) and we proved (56).

APPENDIX C
PROOF OF LEMMA 3

A. Proof of (33)

Focus on one J ⊆ [K] where |J | = t+1, and one B ⊆ [N]
where |B| = r−1. To prove (33), it is equivalent to prove that

⊕
k∈J∪{ug(i)}

C(J\{k})∪{ug(i)},(B\{i})∪{dk} = 0, (57)

for any i ∈ B where ug(i) /∈ J . We define R = J ∪ {ug(i)}.
Since ug(i) /∈ J and |J | = t + 1, we have |R| = t + 2. Any

CT ,H in (57), should satisfy T ⊆ R and |R \ T | = 1. The
desired file of the user in R\T , is in H. In addition, if CT1,H1

and CT2,H2 are in (57), we can see that T1 ̸= T2.
We focus one sub-block WS,V in (57) and assume that CT ,H

contains WS,V . Hence, we have S ⊆ Nd(T ) ∪ H, V ⊆ T ,
|T \ V| = 1, and the user in T \ V (assumed to be user k′)
desires the sub-block WS,V . In addition, since k′ ∈ T ⊆ R
and |R\T | = 1, assuming k1 ∈ R\T , we have dk1 ∈ H and
thus WS,V is also desired by user k1. Hence, it can be seen
that CV∪{k1},H\{dk1}∪{dk′} is also in (57), and WS,V desired
by user k1 is in CV∪{k1},H\{dk1}∪{dk′}. Except CT ,H and
CV∪{k1},H\{dk1}∪{dk′}, there does not exist any other CT1,H1

in (57) containing WS,V ; this is because except T and V ∪
{k1}, there does not exist any other T1 ⊆ R where |T1| =
|R|− 1 and V ⊆ T1 (noticing that V ⊆ R and |V| = |R|− 2).

In conclusion, each sub-block in (57) appears twice in (57),
and thus we proved (57).

B. Proof of (34)

Focus on one J ⊆ [K] where |J | = t+1, and one B ⊆ [N]
where |B| = r − 1 and Nd(J ) ∩ B ̸= ∅. To prove (34), it is
equivalent to prove that, for any i1 ∈ Nd(J ) ∩ B,

⊕
i∈(Nd(J )\B)∪{i1}

CJ ,(B\{i1})∪{i} = 0. (58)

Assume that CJ ,H appears on the LHS of (58). Thus we
have (B \ {i1}) ⊆ H and |H \ (B \ {i1})| = 1. In addition,
the file in H \ (B \ {i1}), is also in (Nd(J ) \ B) ∪ {i1}.

We focus one sub-block WS,V , which is in CJ ,H. Thus
H ⊆ S and |S \ H| = 1 (we assume the file in S \ H is i′).
In addition, we have (B \ {i1}) ⊆ H and |H \ (B \ {i1})| = 1
(we assume the file in H\(B\{i1}) is i′′). As described before,
i′′ is (Nd(J ) \ B) ∪ {i1} and thus file Fi′′ is demanded by
some user in J (recall that i1 ∈ Nd(J )∩B). Hence, it can be
seen that WS,V is also in CJ ,H\{i′′}∪{i′}. Except CJ ,H and
CJ ,H\{i′′}∪{i′}, there does not exist any other CJ ,H1 in (58)
containing WS,V ; this is because except H and H\{i′′}∪{i′}
there does not exist any other H1 ⊆ S where (B \ {i1}) ⊆
H1 and |H1| = |S| − 1 (noticing that (B \ {i1}) ⊆ S and
|B \ {i1}| = |S| − 2).

In conclusion, each sub-block in (58) appears twice in (58),
and thus we proved (58).

APPENDIX D
PROOF OF LEMMA 4

We use the induction method to prove Lemma 4.
j = 1. We will prove that each user can reconstruct

CJ∪{u1},B∪{du1} where J ⊆ [K] \ {u1}, |J | = t, B ⊆
[N] \ {du1}, |B| = r − 2, and Nd(J ∩ L(d)) \ B ̸= ∅.

By (34) in Lemma 3, we have

CJ∪{u1},B∪{du1} = ⊕
i2∈Nd(J )\(B∪{du1})

CJ∪{u1},B∪{i2},

(59)

where each CJ∪{u1},B∪{i2} is transmitted in Step j =
1 of the first sub-phase. Hence, each user can reconstruct
CJ∪{u1},B∪{du1}.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on November 08,2023 at 23:24:46 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: ON THE FUNDAMENTAL LIMITS OF CODED CACHING WITH CORRELATED FILES 6395

j ∈ [2 : min{Ne(d), N−r+1, K−t}]. Assume that for each
j′ ∈ [j − 1] and i′ ∈ {du1 , . . . , duj′}, each user has recon-
structed CJ ′∪{uj′},B′∪{i′} where J ′ ⊆ [K] \ {u1, . . . , uj′},
|J ′| = t, B′ ⊆ [N] \ {du1 , . . . , duj′}, |B′| = r − 2, and
Nd(J ′ ∩ L(d)) \ B′ ̸= ∅.

Now for i ∈ {du1 , . . . , duj
}, we want to prove that each user

can reconstruct CJ∪{uj},B∪{i} where J ⊆ [K]\{u1, . . . , uj},
|J | = t, B ⊆ [N] \ {du1 , . . . , duj}, |B| = r − 2, and Nd(J ∩
L(d)) \ B ̸= ∅.

We first consider the case where i ∈ {du1 , . . . , duj−1}.
By (33) in Lemma 3, we have

CJ∪{uj},B∪{i} = ⊕
k∈J∪{uj}

CJ∪{uj ,ug(i)}\{k},B∪{dk}. (60)

For each k ∈ J ∪ {uj},
• if dk ∈ {du1 , . . . , duj−1}, each user can reconstruct

CJ∪{uj ,ug(i)}\{k},B∪{dk} by the induction assumption
(by letting j′ = ug(i), i′ = dk, J ′ = J ∪{uj}\{k}, and
B′ = B);

• if dk /∈ {du1 , . . . , duj−1} and dk /∈ B,
CJ∪{uj ,ug(i)}\{k},B∪{dk} is transmitted in Step g(i) of
the first sub-phase;

• if dk /∈ {du1 , . . . , duj−1} and dk ∈ B, since Nd(J ∩
L(d)) \B ̸= ∅, we can see that there exists one leader in
J \ {k} whose demanded file is not in B. Thus in this
case, CJ∪{uj ,ug(i)}\{k},B∪{dk} = CJ∪{uj ,ug(i)}\{k},B is
transmitted in Step g(i) of the second sub-phase.

Hence, each user can recover CJ∪{uj},B∪{i}.
We then focus on the case i = duj , and consider

CJ∪{uj},B∪{duj
}. By (34) in Lemma 3, we have

CJ∪{uj},B∪{duj
} = ⊕

i2∈Nd(J )\(B∪{duj
})

CJ∪{uj},B∪{i2}.

(61)

On the RHS of (61), if i2 ∈ {du1 , . . . , duj−1}, it has been
proved in (60) that CJ∪{uj},B∪{i2} can be reconstructed
by each user; otherwise, CJ∪{uj},B∪{i2} is transmitted in
Step j of the first sub-phase. Hence, each user can recover
CJ∪{uj},B∪{duj

}.
Remark 5: Notice that to prove Lemma 4, the condition

Nd(J ∩ L(d)) \ B ̸= ∅ and the transmission in the second
sub-phase are only used when there exists some user k ∈
J ∪ {uj} whose demanded file is in B (i.e., dk ∈ B in (60)).

Hence, for each j ∈ [min{Ne(d), N − r + 1, K − t}] and
each i ∈ {du1 , . . . , duj}, by using the transmission in the
first sub-phase, each user can recover CJ∪{uj},B∪{i}, where
J ⊆ [K] \ {u1, . . . , uj}, |J | = t, B ⊆ ([N] \ {du1 , . . . , duj

}),
|B| = r − 2, and Nd(J ) ∩ B = ∅. □

APPENDIX E
PROOF OF DECODABILITY OF THE GENERAL SCHEME IN

SECTION V-C

Now we are ready to prove the decodability of each non-
leader k. In other words, we want to prove that it can decode
WS,V where dk ∈ S , {du1 , . . . , dug(dk)−1} ∩ S = ∅ and
{k, u1, . . . , ug(dk)} ∩ V = ∅ (in Lemma 1 we showed that
the other desired sub-blocks could be decoded by user k from
the transmission of the first sub-phase). We consider two cases,
|S ∩ Nd([K])| > 1 and |S ∩ Nd([K])| = 1.

A. |S ∩ Nd([K])| > 1

Among all desired sub-blocks in this case, we use the
induction method to prove for each j ∈ [g(dk) + 1 :
min{Ne(d), N − r + 2, K − t + 1}], user k can recover its
desired sub-blocks WS,V (i.e., dk ∈ S) where duj ∈ S or
uj ∈ V .

Induction on j = g(dk) + 1. We consider three cases:
• uj ∈ V and duj /∈ S . In CV∪{k},S\{dk} transmitted in

Step j of the first sub-phase, user k caches all sub-blocks
except WS,V and thus it can recover WS,V by directly
reading off.

• uj ∈ V and duj ∈ S . Since uj ∈ V , by Lemma 4 it can
be seen that user k can reconstruct CV∪{ug(dk)},S\{duj

}

at the end of Step g(dk) of sub-phase 2.12

In CV∪{ug(dk)},S\{duj
}, all sub-blocks are desired by user

k. In addition, all sub-blocks desired by user k which are
cached by user ug(dk), can be recovered by user k by
Lemma 1.Item 2.
The sub-blocks in CV∪{ug(dk)},S\{duj

} which are not
cached by user ug(dk), are all cached by user uj (because
uj ∈ V). For each i ∈ Nd(V) \ (S \ {duj}), the sub-
block WS\{duj

}∪{i},V is in CV∪{ug(dk)},S\{duj
} which is

desired (and not cached) by user ug(dk).
If i ̸= duj

, since duj
/∈ (S \ {duj

} ∪ {i}) and
uj ∈ V , we proved in the first case that WS\{duj

}∪{i},V
can be recovered by user k; otherwise, the sub-block
WS\{duj

}∪{i},V is WS,V . Hence, in CV∪{ug(dk)},S\{duj
},

only sub-block WS,V is not recovered by user k, such that
user k can recover WS,V .

• uj /∈ V and duj ∈ S . We first prove that user k can
reconstruct CV∪{uj},S\{duj

}. From (33) in Lemma 3,
we have

CV∪{uj},S\{duj
}

= ⊕
k1∈(V∪{uj})

CV∪{uj ,ug(dk)}\{k1},(S\{duj
,dk})∪{dk1}.

(62)

For each k1 ∈ (V ∪ {uj}) in (62),
– sub-case 1: if k1 = uj , we have

CV∪{uj ,ug(dk)}\{k1},(S\{duj
,dk})∪{dk1}

= CV∪{ug(dk)},S\{dk},

which is transmitted in Step g(dk) of the first sub-
phase;

– sub-case 2: if k1 ̸= uj and dk1 /∈ {du1 , . . . , dug(dk)},
it can be seen that
CV∪{uj ,ug(dk)}\{k1},(S\{duj

,dk})∪{dk1} is transmitted
either in Step g(dk) of the first sub-phase (if |(S \
{duj , dk}) ∪ {dk1}| = r − 1) or Step g(dk) of the
second sub-phase (if |(S \{duj , dk})∪{dk1}| = r−
2 and (V \ {k1}) ∩ Nd([K]) ̸= ∅) or Step g(dk) in

12From the proof of Lemma 4 in Appendix D, to reconstruct
CV∪{ug(dk)},S\{duj

}, user k only needs to use sub-phase 1 and Step g(dk)

of sub-phase 2. This is because dk ∈ S\{duj } and {du1 , . . . , dug(dk)−1}∩
S = ∅; thus in (60), we have i = dk .
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Lemma 2 (if |(S \ {duj
, dk}) ∪ {dk1}| = r − 2 and

(V \ {k1}) ∩Nd([K]) = ∅);
– sub-case 3: if k1 ̸= uj and dk1 ∈ {du1 , . . . , dug(dk)},

by Lemma 4, CV∪{uj ,ug(dk)}\{k1},(S\{duj
,dk})∪{dk1}

can be reconstructed by user k at the end of Step
g(dk) of sub-phase 2.13

Hence, user k can recover each message on the RHS
of (62) and thus it can reconstruct CV∪{uj},S\{duj

}.
In CV∪{uj},S\{duj

}, all sub-blocks are desired by user
k. For each k2 ∈ (V ∪ {uj}), if k2 ̸= uj , the desired
sub-blocks in CV∪{uj},S\{duj

} by user k2 are stored by
user uj , which can be recovered by user k from the
transmission of the first sub-phase (as we proved above
for the case uj ∈ V and duj

/∈ S). If k2 = uj , the desired
sub-block by user k2 is WS,V . Hence, user k can recover
WS,V .

Induction on j ∈ [g(dk) + 2 : min{Ne(d), N − r + 2, K −
t + 1}]. If there exists j′ ∈ [g(dk) + 1 : j − 1], where uj′ ∈ V
or duj′ ∈ S , by the induction assumption, user k can recover
WS,V ; otherwise, we can use the similar proof by dividing
into three cases and using the induction assumption, to prove
user k can recover WS,V (for the sake of simplicity, we do
not repeat).

Remark 6: If there exists one leader in V (assumed to be
k′) where dk′ /∈ S , we can prove that user k can recover WS,V
without using Lemma 2.

More precisely, we focus on the case uj ∈ V and duj
∈ S ,

where Lemma 2 may be needed. In (62), for each k1 ∈ V
where dk1 /∈ {du1 , . . . , dug(dk)}, if k1 ̸= k′, it can be seen that
(V \ {k1}) ∩ Nd([K]) ̸= ∅ and thus Lemma 2 is not needed;
otherwise, we have k1 = k′ and |(S \ {duj , dk}) ∪ {dk′}| =
r − 1 such that Lemma 2 is not needed neither. □

B. |S ∩ Nd([K])| = 1

We can gather all blocks WS′ where S ′∩ ([N]\Nd([K])) =
S ∩ ([N] \ Nd([K])). The transmission for these blocks is
equivalent to the MAN caching problem in [2] and thus from
the transmission of the first sub-phase on these blocks which
is equivalent to the optimal caching scheme in [4], each non-
leader can recover WS,V .

C. Proof of Observations

Proof of Observation 1: Recall that in Step j ∈
[min{Ne(d), N − r + 1, K − t}] of sub-phase 2, we transmit
CJ ,B where q ∈ [j + 1 : min{N − r + 2, K − t + 1, Ne(d)}],
J ⊆ ([K]\{u1, . . . , uq−1}∪{uj}), |J | = t+1, {uj , uq} ⊆ J ,
J ∩ {uq+1, . . . , uNe(d)} ̸= ∅, B ⊆ [N] \ {du1 , . . . , duq

},
|B| = r − 2, and B ∩Nd([K]) ̸= ∅.

When r = 2, the transmission of the second sub-phase does
not exist because |B| = r−2 = 0 and B∩Nd([K]) ̸= ∅ cannot
hold simultaneously.

13From the proof of Lemma 4 in Appendix D, to reconstruct
CV∪{uj ,ug(dk)}\{k1},(S\{duj

,dk})∪{dk1}, user k only needs to use
sub-phase 1 and Step g(dk1 ) of sub-phase 2. This is because dk1 ∈
{du1 , . . . , dug(dk)} and {du1 , . . . , dug(dk)−1} ∩ S = ∅; thus in (60),
we have i = dk1 .

When t = 1, the transmission of the second sub-phase does
not exist because when |J | = t + 1 = 2, {uj , uq} ⊆ J and
J ∩ {uq+1, . . . , uNe(d)} ̸= ∅, cannot hold simultaneously.

Proof of Observation 2: We want to prove that
for a non-leader k, to decode WS,V where dk ∈ S ,
{du1 , . . . , dug(dk)−1} ∩ S = ∅ and {k, u1, . . . , ug(dk)} ∩ V =
∅, if there is no user in V whose demanded file is in
{du1 , . . . , dug(dk)−1}, user k only needs to use the transmission
of the first sub-phase, Step g(dk) of the second sub-phase and
Step g(dk) in Lemma 2.

Besides the transmission of the first sub-phase, Step g(dk)
of the second sub-phase and Step g(dk) in Lemma 2, other
steps of the second sub-phase may be needed only when we
use Lemma 4 to show that non-leader k can reconstruct (sub-
case 3 in (62))

CV∪{uj ,ug(dk)}\{k1},(S\{duj
,dk})∪{dk1}

= CV∪{uj ,ug(dk)}\{k1},(S\{duj
},

where dk1 ∈ {du1 , . . . , dug(dk)−1}, as explained in Foot-
note 13. Hence, if there is no user in V whose demanded
file is in {du1 , . . . , dug(dk)−1}, non-leader k does not need to
use the transmission of other steps of the second sub-phase;
thus we proved Observation 2.

Proof of Observation 3: We want to prove that,
for a non-leader k, to decode WS,V where dk ∈ S ,
{du1 , . . . , dug(dk)−1} ∩ S = ∅, {k, u1, . . . , ug(dk)} ∩ V = ∅,
and (∪k′∈V{dk′}) ∩ (S \ {dk}) = ∅, user k only needs the
transmission of the first sub-phase.

If |S ∩ Nd([K])| = 1, it has been proved that only the first
sub-phase is needed. Hence, in the following we consider |S∩
Nd([K])| > 1. We focus on the induction Step j ∈ [g(dk)+1 :
min{Ne(d), N − r + 2, K − t + 1}] in the decodability proof
in Appendix E-A, and consider the following cases:

• if uj ∈ V and duj /∈ S , from the proof in Appendix E-A,
the first sub-phase is only needed;

• if uj ∈ V and duj
∈ S , user k needs to reconstruct

CV∪{ug(dk)},S\{duj
}. Since (∪k′∈V{dk′})∩ (S \{dk}) =

∅, from Remark 5 we can see that CV∪{ug(dk)},S\{duj
}

can be reconstructed by user k from the transmission of
the first sub-phase;

• finally we focus on uj /∈ V and duj ∈ S . In this case,
user k needs to recover the LHS of (62). On the RHS
of (62), for each k1 ∈ (V ∪ {uj}),

– if k1 = uj , the first sub-phase is only needed;
– if k1 ̸= uj and dk1 /∈ {du1 , . . . , dug(dk)}, since

(∪k′∈V{dk′}) ∩ (S \ {dk}) = ∅, we have |(S \
{duj , dk}) ∪ {dk1}| = r − 1 and thus we only need
the first sub-phase;

– if k1 ̸= uj and dk1 ∈
{du1 , . . . , dug(dk)}, user k should reconstruct
CV∪{uj ,ug(dk)}\{k1},(S\{duj

,dk})∪{dk1}. Since
(∪k′∈V{dk′}) ∩ (S \ {dk}) = ∅, from Remark 5
we can see that user k can reconstruct
CV∪{uj ,ug(dk)}\{k1},(S\{duj

,dk})∪{dk1} from the
first sub-phase.

Hence, we proved Observation 3.
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APPENDIX F
PROOF OF THE DECODABILITY FOR r = N − 1 OR t = 2

We now consider r = N − 1 or t = 2 and prove
that each non-leader k can recover WS,V where dk ∈ S ,
{du1 , . . . , dug(dk)−1}∩S = ∅ and {k, u1, . . . , ug(dk)}∩V = ∅,
from the first sub-phase. If Nd(V)∩(S\{dk}) = ∅, by Obser-
vation 3, user k can recover WS,V from the first sub-phase.
Hence, in the following, we focus on Nd(V)∩(S \{dk}) ̸= ∅.
We consider two cases, Nd(V)∩{du1 , . . . , dug(dk)−1} = ∅ and
Nd(V) ∩ {du1 , . . . , dug(dk)−1} ̸= ∅, respectively.

A. Nd(V) ∩ {du1 , . . . , dug(dk )−1} = ∅
By Observation 2, if user k obtain the multicast messages

in the first sub-phase, in Step g(dk) of the second sub-phase,
and in Step g(dk) in Lemma 2, it can recover WS,V . In the
following, we will prove that user k can reconstruct the
multicast messages in Step g(dk) of the second sub-phase and
in Step g(dk) in Lemma 2 by using the transmission of the
first sub-phase. In other words, we will prove that for each
integer q ∈ [g(dk) + 1 : min{N − r + 2, K − t + 1, Ne(d)}],
user k can reconstruct CJ ,B from the first sub-phase, where
J ⊆ ([K] \ {u1, . . . , uq−1} ∪ {ug(dk)}), |J | = t + 1,
{ug(dk), uq} ⊆ J , B ⊆ [N] \ {du1 , . . . , duq

}, |B| = r − 2,
and B ∩Nd([K]) ̸= ∅.

If there is no user in J \ {ug(dk), uq} whose demand is
in [N] \ ({dk, duq

} ∪ B), it can be seen that all sub-blocks
in CJ ,B are from WB∪{dk,duq}. Hence, we have CJ ,B =
CJ ,B∪{duq}, which is transmitted in Step g(dk) of the first
sub-phase. Hence, in the following, we consider that there
exists some user in J \ {ug(dk), uq} whose demand is in
[N] \ ({dk, duq

} ∪ B).
For the case t = 2, we have |J \ {ug(dk), uq}| = 1; for

the case r = N − 1, we have |B| = r − 2 = N − 3 and
thus |[N] \ (B ∪ {dk, duq

})| = 1. Hence, when r = N − 1 or
t = 2, there is only one file in [N] \ ({dk, duq

} ∪ B), which
is demanded by some user in J \ {ug(dk), uq}. We assume
that this file is i. It can be seen that all interferences in CJ ,B
to user k, are from one block WB∪{duq ,i}. The sum of the
interferences in CJ ,B to user k is

I = ⊕
k1∈J\{ug(dk)}:dk1 ̸=dk

WB∪{duq ,i},J\{k1}. (63)

In addition, we also have

CJ ,B = CJ ,B∪{duq} ⊕ ⊕
k2∈J\{uq}:dk2 ̸=duq

WB∪{dk,i},J\{k2}.

(64)

We then consider the following cases:
• if i /∈ {du1 , . . . , duq−1}, in (64), CJ ,B∪{duq} is transmit-

ted in Step g(dk) of the first sub-phase.
– If k2 ̸= ug(dk), the sub-block WB∪{dk,i},J\{k2} is

desired by user k and cached by user ug(dk). Thus by
Lemma 1.Item 2, user k can recover this sub-block
from the transmission of the first sub-phase;

– if k2 = ug(dk), WB∪{dk,i},J\{ug(dk)} can be
recovered by user k from CJ∪{k}\{ug(dk)},B∪{i}
transmitted in Step q of the first sub-phase, where

in CJ∪{k}\{ug(dk)},B∪{i} user k caches all except
WB∪{dk,i},J\{ug(dk)} such that it can recover this
sub-block.

Hence, user k can reconstruct CJ ,B from the transmission
of the first sub-phase;

• if i ∈ {du1 , . . . , dug(dk)−1}, by Lemma 1.Item 3, we can
see that each sub-block WB∪{dk,i},J\{k2} in (64) is from
WB∪{dk,i}, which can be recovered by user k from the
first sub-phase. Hence, user k can reconstruct CJ ,B from
the transmission of the first sub-phase;

• if i ∈ {dg(dk)+1, . . . , duq−1}, for each user
k3 ∈ J \ {ug(dk)} where dk3 ̸= dk,
we focus on CJ∪{ug(i)}\{k3},B∪{duq} which
is transmitted in Step g(dk) of the first sub-
phase. In CJ∪{ug(i)}\{k3},B∪{duq}, since we have
|J \ {ug(dk), uq}| = 1 (for the case t = 2) or
|B| = N − 3 (for the case r = N − 1), it can be seen
that all sub-blocks are from either WB∪{duq ,dk} or
WB∪{duq ,i}, and cached by either user ug(dk) or user
ug(i).
By Lemma 1.Item 2, user k can recover the desired
sub-block cached by user ug(dk) from the first sub-phase.
Each sub-block of WB∪{duq ,dk} cached by user ug(i) and
not by ug(dk) (assumed to be WB∪{duq ,dk},V′ ), can be
recovered by user k from CV′∪{k},B∪{duq} (transmitted
in Step g(i) of the first sub-phase), because all sub-blocks
in CV′∪{k},B∪{duq} except WB∪{duq ,dk},V′ are cached
by user k. Hence, in CJ∪{ug(i)}\{k3},B∪{duq}, user k
can recover all sub-blocks of WB∪{duq ,dk}. So user k
can recover the sum of the sub-blocks of WB∪{duq ,i} in
CJ∪{ug(i)}\{k3},B∪{duq} from the first sub-phase,

I(k3) := ⊕
k4∈J∪{ug(i)}\{k3}:dk4 ̸=dk

WB∪{duq ,i},J∪{ug(i)}\{k3,k4}.

(65)

By the similar proof as (57) and (58), we can prove that

I ⊕ ⊕
k3∈J ′∪{uq}:dk3 ̸=dk

I(k3) = 0, (66)

from the fact that each sub-block in (66) appears twice
in (66). Hence, user k can recover I from the transmission
of the first sub-phase. In addition, by the definition,
we have

CJ ,B = CJ ,B∪{i} ⊕ CJ ,B∪{duq} ⊕ I, (67)

where CJ ,B∪{i} and CJ ′,B∪{duq} are transmitted in
Step g(dk) of the first sub-phase. Hence, user k can
reconstruct CJ ,B from the transmission of the first sub-
phase.

In conclusion, we proved that from the transmission of the
first sub-phase, user k can reconstruct CJ ,B.

Hence, from Observation 2, user k can recover WS,V where
Nd(V) ∩ {du1 , . . . , dug(dk)−1} = ∅, from the transmission of
the first sub-phase.

B. Nd(V) ∩ {du1 , . . . , dug(dk )−1} ̸= ∅
For the case t = 2, since Nd(V) ∩ (S \ {dk}) ̸= ∅,

Nd(V)∩{du1 , . . . , dug(dk)−1} ̸= ∅, {du1 , . . . , dug(dk)−1}∩S =
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∅, and |V| = 2, it can be seen that |Nd(V) \ S| = 1. For the
case r = N − 1, since Nd(V) ∩ {du1 , . . . , dug(dk)−1} ̸= ∅,
{du1 , . . . , dug(dk)−1} ∩ S = ∅, and |S| = r = N − 1, it can
also be seen that |Nd(V) \ S| = 1. In addition, in both two
cases, since dk ∈ S , we have dk /∈ (Nd(V)\S). Hence, when
t = 2 or r = N − 1, the interferences in CV∪{ug(dk)},S\{dk}
(transmitted in Step g(dk) of the first sub-phase) to user k are
all from the block WS∪{i}\{dk}, where we assume that i is
the element in Nd(V) \ S . The sum of the interferences in
CV∪{ug(dk)},S\{dk} to user k is

I ′ = ⊕
k′∈V:dk′ ̸=dk

WS∪{i}\{dk},V∪{ug(dk)}\{k′}. (68)

For each user k1 ∈ V where dk1 ̸= dk, we focus on
CV\{k1}∪{ug(dk),ug(i)},S\{dk} which is transmitted in Step g(i)
of the first sub-phase. In CV\{k1}∪{ug(dk),ug(i)},S\{dk}, since
|V| = 2 (for the case t = 2) or |S| = N − 1 (for the case
r = N − 1), it can be seen that all sub-blocks are from either
WS or WS\{dk}∪{i}. Each sub-block from WS is cached by
either user ug(dk) or user ug(i), which can be recovered by
user k from the first sub-phase, by Lemma 1.Item 2. Hence,
user k can recover the sum of the sub-blocks of WS\{dk}∪{i}
in CV\{k1}∪{ug(dk),ug(i)},S\{dk} as follows,

I ′(k1) := ⊕
k′∈V\{k1}∪{ug(i)}:dk′ ̸=dk

WS\{dk}∪{i},V\{k1,k′}∪{ug(dk),ug(i)}.

(69)

By the similar proof as (57) and (58), we can prove that

I ′ ⊕ ⊕
k1∈V:dk1 ̸=dk

I ′(k1) = 0, (70)

from the fact that each sub-block in (70) appears twice in (70).
Hence, user k can reconstruct the sum of all interferences I ′

in CV∪{ug(dk)},S\{dk}. Other sub-blocks in CV∪{ug(dk)},S\{dk}
are from the block WS which is desired by user k. In addition,
all these sub-blocks are cached by user ug(dk) except WS,V .
By Lemma 1.Item 2, from the transmission of first sub-phase
user k can recover the sub-blocks of WS which are cached by
user ug(dk). Hence, user k can also recover WS,V in the first
sub-phase.

APPENDIX G
CODES FOR EXTENSION TO CACHING WITH MULTIPLE

REQUESTS

For the coded caching problem with multiple requests
considered in [35] where each user demands L independent
and equal-length files, the proposed delivery scheme in [35]
was proved to be optimal under the constraint of the MAN
placement for most demands with K ≤ 4, M = N/K, and
L = 2, except one demand for K = 3 and three demands for
K = 4. Different from the considered problem in this paper,
the demands are not generally symmetric for the coded caching
problem with multiple requests. Hence, for the coded caching
problem with multiple requests, we pick a set of leaders
such that each leader has at least one specific demanded file
which is not demanded by other leaders, and the union set of
demanded files by the leaders should be equal to the union
set of demanded files by all users. In addition, the number of
leaders should be as small as possible. We can then extend the

proposed scheme for t = 1 in order to achieve the optimality
for those four exceptional demands, by satisfying the demands
of leaders subsequently and aligning the interferences to non-
leaders simultaneously.

1) d1 = {F1, F2}, d2 = {F1, F3}, and d3 = {F2, F3} (case
D7 in [35]). We use the MAN placement and divide
each file Fi where i ∈ [N] into

(
K
t

)
non-overlapping and

equal-length subfiles, Fi = {Fi,W : W ⊆ [K], |W| = t},
where t = KM/N = 1. It can be seen this case is
equivalent to our considered (N, K, M, r) = (3, 3, 1, 2)
shared-link caching problem with correlated files of
combinatorial overlaps. Hence, we can directly use the
proposed delivery phase in this paper to transmit the
linear combinations (with the permutation of leaders
(u1, u2) = (1, 2))

Step 1: F1,{2} ⊕ F1,{1}, F1,{3} ⊕ F3,{1},

F2,{2} ⊕ F3,{1}, F2,{3} ⊕ F2,{1};
Step 2: F3,{3} ⊕ F3,{2}.

Hence, the load is 5/3 which coincides with the converse
bound under the constraint of MAN placement in [35],
while the proposed caching scheme in [35] achieves 2.

2) d1 = {F1, F2}, d2 = {F1, F3}, d3 = {F2, F3}, and
d4 = {F4, F5} (case D′

15 in [35]). It can be seen that
if we only focus on the demands of users 1, 2, 3, it is
equivalent to our considered (N, K, M, r) = (3, 3, 1, 2)
shared-link caching problem with correlated files of
combinatorial overlaps. In addition, the demanded file
by user 4 are independent of any demanded file by users
1, 2, 3. Hence, we first satisfy the demands of user 4 and
then use the codes for our considered (N, K, M, r) =
(3, 3, 1, 2) shared-link caching problem with correlated
files of combinatorial overlaps. Thus we transmit (with
the permutation of leaders (u1, u2, u3) = (4, 1, 2))

Step 1: F4,{1}⊕F1,{4}, F4,{2}⊕F1,{4}, F4,{3}⊕F3,{4},

F5,{1}⊕F2,{4}, F5,{2}⊕F3,{4}, F5,{3}⊕F2,{4};
Step 2: F1,{2} ⊕ F1,{1}, F1,{3} ⊕ F3,{1},

F2,{2} ⊕ F3,{1}, F2,{3} ⊕ F2,{1};
Step 3: F3,{3} ⊕ F3,{2}.

It can be checked that at the end of Step j ∈ [3],
each leader user uj can recover its desired files by
directly reading off. The non-leader (user 3) can recover
F2,{1}, F2,{4}, F3,{1}, F3,{2}, F3,{4} by directly reading
off, and recover F2,{2} by indirectly reading off. Hence,
the load is 11/4 which coincides with the converse
bound under the constraint of MAN placement in [35],
while the proposed caching scheme in [35] achieves 3.

3) d1 = {F1, F2}, d2 = {F1, F3}, d3 = {F1, F4},
and d4 = {F2, F3} (case D′

17 in [35]). We choose
the permutation of leaders as (3, 4). Inspired from the
proposed scheme for t = 1, the delivery contains two
steps where in the first and second steps, we satisfy the
demands of users 3 and 4, respectively.
In Step 1, we first let user 3 recover F1. For each user
k ∈ {1, 2, 4}, if F1 is demanded by user k, we transmit
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F1,{k}⊕F1,{3}; otherwise, we pick one demanded file by
user k which is not F4 (assumed to be Fi), and transmit
F1,{k} ⊕ Fi,{3}.
We then let user 3 recover F4. For each user k ∈
{1, 2, 4}, if F4 is demanded by user k, we transmit
F4,{k} ⊕ F4,{3}; otherwise, we pick one demanded file
by user k which is not Fi nor F1 (assumed to be Fi′ ),
and transmit F4,{k} ⊕ Fi′,{3}.
By this way, we transmit in the the steps (with the
permutation of leaders (u1, u2) = (3, 4))

Step 1: F1,{1} ⊕ F1,{3}, F1,{2} ⊕ F1,{3},

F1,{4} ⊕ F3,{3}, F4,{1} ⊕ F2,{3},

F4,{2} ⊕ F3,{3}, F4,{4} ⊕ F2,{3};
Step 2: F3,{1} ⊕ F1,{4}, F3,{2} ⊕ F3,{4},

F2,{1} ⊕ F2,{4}, F2,{2} ⊕ F1,{4}.

It can be checked that at the end of Step j ∈ [2], each
leader user uj can recover its desired files by directly
reading off. For the non-leaders (users 1, 2), user 1 can
recover F1,{3}, F1,{4}, F2,{3}, F2,{4} by directly reading
off, and recover F1,{2}, F2,{2} by indirectly reading
off; user 2 can recover F1,{3}, F1,{4}, F3,{3}, F3,{4}
by directly reading off, and recover F1,{1}, F3,{1} by
indirectly reading off. Hence, the load is 10/4 which
coincides with the converse bound under the constraint
of MAN placement in [35], while the proposed caching
scheme in [35] achieves 11/4.

4) d1 = {F1, F2}, d2 = {F1, F2}, d3 = {F1, F3}, and
d4 = {F2, F3} (case D′

20 in [35]). It can be seen that
this case is equivalent to our considered (N, K, M, r) =
(3, 4, 1, 2) shared-link caching problem with correlated
files of combinatorial overlaps. Hence, we can directly
use the proposed delivery phase in this paper to transmit
the linear combinations (with the permutation of leaders
(u1, u2) = (1, 3))

Step 1: F1,{2} ⊕ F1,{1}, F1,{3} ⊕ F1,{1},

F1,{4} ⊕ F3,{1}, F2,{2} ⊕ F2,{1},

F2,{3} ⊕ F3,{1}, F2,{4} ⊕ F2,{1};
Step 2: F3,{2} ⊕ F2,{3}, F3,{4} ⊕ F3,{3}.

Hence, the load is 2, which coincides with the converse
bound under the constraint of MAN placement in [35],
while the proposed caching scheme in [35] achieves 9/4.
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