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Abstract— This paper studies the fundamental limits of the
shared-link coded caching problem with correlated files, where a
server with a library of N files communicates with K users who
can locally cache M files. Given an integer r € [N], correlation
is modelled as follows: each r-subset of files contains a unique
common block. The tradeoff between the cache size and the
average transmitted load over the uniform demand distribution is
studied. First, a converse bound under the constraint of uncoded
cache placement (i.e., each user directly stores a subset of the
library bits) is derived. Then, a caching scheme for the case
where every user demands a distinct file (possible for N > K)
is shown to be optimal under the constraint of uncoded cache
placement. This caching scheme is further proved to be decodable
and optimal under the constraint of uncoded cache placement
when (i) KrM < 2N or KrM > (K —1)Norr € {1,2,N —
1,N}, and (ii) when the number of distinct demanded files is
no larger than four. Finally, a new delivery scheme based on
interference alignment which jointly serves the users’ demands
is shown to be order optimal to within a factor of 2 under
the constraint of uncoded cache placement. As an extension, the
above exact and order optimal results can be extended to the
worst-case load. As by-products, an extension of the proposed
scheme for M = N /K is shown to reduce the load of state-of-the-
art schemes for the coded caching problem where the users can
request multiple files; the proposed scheme for distinct demands
can be extended to the coded distributed computing problem
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with a central server, which achieves the optimal transmission
load over the binary field.

Index Terms— Coded caching, correlated files, interference
alignment.

I. INTRODUCTION

ACHE is a network component that leverages the device

memory to store data so that future requests for that data
can be served faster. Two phases are included in a caching
system: i) the cache placement phase: content is pushed into
each cache without knowledge of future demands; ii) the
delivery phase: after each user has made its request and
according to the cache contents, the server transmits coded
packets in order to satisfy the users’ demands. As in the
classical setting in [2], we consider that the placement is
performed offline, and the goal is to minimize the number
of transmitted bits (load) from the server to the users during
the delivery phase.

Information theoretic coded caching was originally pro-
posed by Maddah-Ali and Niesen (MAN) in [2] for a
shared-link caching system containing a server with a library
of N equal-length files, connected to K wusers through a
noiseless shared link. Each user can store M files in its local
cache without knowledge of later demands. In the delivery
phase, each user demands one file. The MAN scheme uses a
combinatorial design in the cache placement phase such that,
during delivery, multicast messages simultaneously satisfy the
demands of different users. Under the constraint of uncoded
cache placement (i.e., each user directly caches a subset of
the library bits) and for worst-case load, the MAN scheme
was proved to be optimal when N > K [3], [4]. On the
observation that some MAN linear combinations are redundant
if there exist files demanded by several users, the authors
in [4] improved the MAN delivery scheme and characterized
the optimal worst-case load (and also the average load over
the uniform demand distribution) under the constraint of
uncoded cache placement for any K,N. The same authors
proved in [5] that the multiplicative gap between the opti-
mal caching scheme with uncoded cache placement and any
caching scheme with coded cache placement is at most 2.

Coded caching strategies have been applied to several
different models, such as decentralized systems [6], device-to-
device (D2D) systems [7], topological networks [8], [9], [10],
and various types of demands, such as linear functions [11],
[12], matrix multiplication [13], secure demands [14], private
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demands [15], [16]. The above works assume that the file in
the library are mutually independent; i.e., they are realiza-
tions of statistically independent random variables. However,
in practice there may be some correlations among differ-
ent files (e.g., videos, image streams, etc.). Coded caching
with correlated files was originally considered in [17], where
correlation-aware coded caching schemes were proposed.
In this work, we consider a coded caching problem with
correlated files, where different files have common parts (i.e.,
overlaps).! In the following, we will review the literature of
coded caching with correlated files, and then introduce our
main contributions in this paper.

A. Related Previous Works

1) Coded Caching With Correlated Files: In [17], the files
are divided into two sets, referred to as I-files and P-files,
where the [-files are composed of some entire files and P-
files are composed of inter-compressed files with respect to
their corresponding [-files. By treating the delivery phase as
an index coding problem with multiple requests, the authors
in [17] proposed a delivery scheme based on graph coloring.
In [19], after the Gray-Wyner source coding, the authors
modelled correlation as each subset of files has an exclu-
sively common part, which is then treated as an independent
block/file in a coded multicast problem. Caching schemes
for two-file K-user system (proved to be optimal) and three-
file two-user system (optimal for the large cache case) were
proposed. In [21], the caching problem with correlated files of
combinatorial overlaps, where the length of the common part
among each £ € {1,...,N} files (referred to as a ‘¢-block’) is
the same, was considered; each file contains ('2':11) ¢-blocks.2
By using the MAN cache placement to store each ¢-block at
the user sides, [21] proposed a delivery phase which contains
N steps. In Step ¢, only ¢-blocks are transmitted. In addition,

there are ('2'__11) rounds for the transmission of Step ¢, and each

round is treated as an MAN caching problem with K users,
each of which should decode exactly one ¢-block. Then the
caching scheme in [4] was used to transmit packets for each

'Common information between correlated files may be defined in different
contexts, such as Gacs—Korner—Witsenhausen common information, mutual
information, Wyner’s common information. These three quantities coincide
if common information between some files is represented by the overlaps
of these files [18, Section 14.2]. In addition, as stated in [19], for any
file correlation model, by compressing the library using the Gray-Wyner
network [20], the resulting description of the library reduces to an overlap
model, where each subset of compressed files contains a common part.

2While obviously an idealization, this symmetric combinatorial overlap
model can capture several interesting scenarios. For example, suppose that
each file is a collection of subfiles, e.g., a photo album, and some photos are
in common between different albums (same can be said for playlists, where
some songs are common to different playlists). Note that in information theory,
ideally symmetric combinatorial models are considered in several problems
in order to get clean theoretic results. For example, in the literature of coded
caching, symmetric combinatorial models are widely considered to make
the problems theoretically tractable, such as two-hop combination networks
with relays [9], [10], [22], [23], [24], [25], combinatorial combinatorial
multi-access networks [26], [27], coded caching with combinatorial file
demand sets [28], Map-Reduce coded distributed computation models [29],
etc. In addition, lack of perfect symmetry in the combinatorial file overlap
topology, converse bounds should be derived case-by-case and the proposed
achievable scheme for the symmetric case can be still used by adding some
virtual common parts.
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round. The caching schemes in [19] and [21], were extended
in [30] and [31] to caching problems with correlated files
where the correlation is dynamic and the channel is a Gaussian
broadcast channel, respectively.

2) Coded Caching With Multiple Requests: Each step of
the caching problem with correlated files of combinatorial
overlaps in [21] is a special case of coded caching with
multiple requests originally proposed in [32] and [33], where
the library contains N equal-length and independent files and
each user demands L files from the library.> By using the
MAN placement and an index coding delivery, the achieved
worst-case load in [32] is order optimal to within a factor of
18, while the achieved average load over the uniform demand
distribution in [33] is order optimal to within a factor of
12 when the numbers of files and users go to infinity. With the
MAN placement, a multi-round delivery scheme was proposed
in [34], where the delivery phase is divided into L rounds and
in each round the MAN delivery scheme in [2] is used to let
each user decode one file. The worst-case load of this multi-
round scheme was proved to be order optimal to within a
factor of 11 [34].

Instead of using the MAN scheme in each round, the authors
in [35] proposed to use the caching scheme in [4] to leverage
the multicast opportunities. In addition, by considering all
the L rounds, an overall transmission coding matrix can be
generated. If the coding matrix is not full-rank, the caching
scheme in [35] then takes the full-rank sub-matrix. This
delivery scheme was proved to be optimal under the constraint
of the MAN placement for demands with K < 4, M = N/K,
and L = 2, with the exception of one demand for K = 3 and
three demands for K = 4.

Coded caching with multiple requests where the users
demand different numbers of files, was considered in [36],
[371, [38], [39], [40], [41], [42], [43], and [44].* The caching
schemes in [36], [38], [39], [40], and [37] are based on the
round-division strategy as described above while the schemes
in [41], [42] use coded cache placements for some small
memory size regimes and the schemes in [43] and [44] are
based on a combinatorial structure referred to as placement
delivery array (PDA) originally proposed in [45].

Most of the existing works divide the multi-request problem
into a sequence of single-request problems (as in [21], [34],
[35], [36], [37], [38], [39], [40]). There are three main limi-
tations in dividing the delivery into single-request problems,
namely (1) the same file may exist in different rounds and this
round-division method may miss some multicast opportunities,
(2) even if there does not exist file overlap cross different
rounds, this round-division method still cannot fully leverage
the multicast opportunities (as illustrated in Example V-A),

3This is because in [21] the ¢-blocks in Step £ are assumed to be
independent and to have the same length. Thus we can treat each block as one
independent file in the coded caching problem with multiple requests, while
each user requests ('2':11) blocks.

4The coded caching problem with shared caches was considered in [38],
[39], [40], [41], [42], [43], and [44], where the model contains a central server
and U cache-nodes. Each cache-node 7 is connected to L; cache-less users,
where each user can access to only one cache-node. This problem can be seen
as a special case of the coded caching problem with multiple requests, where
each user ¢ demands L; files.
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and (3) finding the best division of the users’ demands into L
groups is computationally hard.

B. Contributions

If one directly considers the most general problem of cor-
related files, it is very challenging to make general optimality
statements. In this paper, as in [21] we consider a symmetric
combinatorial version of the problem; in addition, the consid-
ered correlation model is the following simplification of the
correlation model in [21]: we fix one r € [N] and assume
each file only contains r-blocks,’ for which we propose a new
interference alignment based delivery scheme, which jointly
serves the users’ demands instead of dividing the delivery
into single-request problems. Our main contributions are as
follows:

1) We derive a converse bound on the minimal average
load over the uniform demand distribution under the
constraint of uncoded cache placement, by leveraging
the acyclic index coding converse bound in [46].

2) By jointly serving the users’ demands, we propose a
caching scheme for the case where every user demands
a distinct file. The achieved load matches our proposed
converse bound under the constraint of uncoded cache
placement.

3) By combining the above achievable scheme with an
interference alignment idea, we then propose a delivery
scheme for general demands containing two sub-phases,
where the first sub-phase is the same as the one for dis-
tinct demand case and the additional second sub-phase
is used to align interference at the various users. The
proposed caching scheme is proved to be order optimal
to within a factor of 2 in terms of the average load over
the uniform demand distribution.

4) By further cancelling interference, we prove that the
second sub-phase in the delivery is not necessary,
thus resulting in the exact optimal average load under
the constraint of uncoded cache placement and uni-
form demand distribution, for the following two cases:
(i) KrM < 2N or KrtM > (K—1)N or r € {1,2,N —
1,N}, and (ii) the number of distinct demanded files is
no larger than four.

5) As an extension, the above exact and order optimal
results can be extended to the worst-case loads.

6) As a by-product, an extension of the proposed scheme
for M = N/K is optimal under the constraint of
MAN placement for the four cases left open in [35]
of the coded caching problem with multiple requests.
As another by-product, the proposed scheme for distinct
demands can be extended to the coded distributed com-
puting problem with a central server, which achieves the
optimal transmission load over the binary field.

C. Paper Organization
The rest of the paper is organized as follows. The system
model for the considered coded caching problem with cor-

5Clearly, the proposed achievable schemes could be directly applied into
the correlation model in [21].
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related files of combinatorial overlaps is given in Section II.
In Section III, our main results and some numerical evaluations
are presented. The proofs of the proposed converse bound
and achievable schemes are given in Sections IV and V,
respectively. Section VI concludes the paper. The proofs of
some auxiliary results can be found in Appendices.

D. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors, and sans-serif symbols denote system parameters.
We use || to represent the cardinality of a set or the length of a
vector; [a: b] :={a,a+1,...,b} and [n] :=[1,2,...,n]; &
represents bit-wise XOR. We let (7)) = 0if z <0ory <0 or
T <y.

II. SYSTEM MODEL

In an (N, K, r, M) shared-link caching problem with corre-
lated files of combinatorial overlaps, a server has access to a
library of N € N files (each of which contains B € N iid bits)
denoted by Fi,..., Fn. The server is connected to K € N
users through a shared error-free link. Each file is composed
of ('?':11) independent and equal-length blocks, where r € [N];
we denote

Fi={Ws:SCIN|IS|=r,ie S} Vie [N, (1)

where the block W represents the exclusive common part
across the files indexed by S. Hence, in the whole library
there are ('?') independent blocks, each of which has B/ (':':11)
bits. A coded caching scheme has two phases: placement and
delivery.

A. Placement Phase

During the cache placement phase, user k € [K] stores
information about the N files in its cache of size MB bits,
where M € [0,N/r]. This phase is done without knowledge
of the users’ demands. We denote the content in the cache of
user k € [K] by Zj, where

H(Zy|Fy, ..., Fn) =0, Vk € [K]. 2)

We let Z := (Z,.. ., Zx).

B. Delivery Phase

During the delivery phase, user k € [K] demands file Fy,
where dj, € [N]. The demand vector d := (dy,...,dk) is
revealed to all nodes. Given (d,Z), the server broadcasts a
message X (d,Z) of B R(d,Z) bits to all users, where

H(X(d,Z)|d, Fy,...,Fy) =0, Vd € [N]¥. 3)
User k € [K] must recover its desired file Fy, from Zj and
X(d,Z), where

H(Fa,|Z, X(d,2),d) =0, Vk € [K]. &)
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C. Load

For each demand vector d, we define Ng(7) = {dy :
k € T} as the set of demanded files by users in 7, where
7T C [K]. A demand vector d is said to be of type Dy (q) if it
has Ne(d) := |Ng([K])| distinct entries. Based on the uniform
demand distribution, the objective is to determine the optimal
average load among all demands of the same type; that is

R*(M,s) := min Eg4ep, [Xrgjl’l%) R(d, Z)] , (5)

for all s € [min{K, N}], and the optimal average load among
all possible demands; that is

R*(M) := mzin Eqen« LI&i,I%) R(d, Z)} . (6)

Note that, R*(M) # ER*(M,s)] in general, unless the
same cache placement policy optimizes the load in (5) for
all s € [min{K,N}]. In addition, in this paper when we
discuss the average load, we only consider the uniform demand
distribution; thus for the sake of conciseness, we will not
specify the demand distribution in the rest of the paper.
In addition, we also define the optimal worst-case load over
all possible demands as
R*

Worst

M) := mi in R(d,Z).
M= e o iy KB O

D. Uncoded Cache Placement

The cache placement policy is said to be uncoded if each
user directly copies some library bits into its cache. The
optimal loads under the constraint of uncoded cache placement
are denoted by R} (M, s), Ry (M), and R} (M) are defined
similarly to (5), (6), and (7), respectively.

Note that, in this paper we mainly focus on the average
loads and then extend the obtained results to the worst case.

Remark 1 (Special Cases): Our model reduces to the MAN
coded caching problem when r = 1, and to the case of a library
with a single file when r = N. Both cases are either solved
exactly or to within a factor of 2 in [5]. O

Remark 2 (Relation to the More General Coded Caching
Problem with Correlated Files of Combinatorial Overlaps):
In this paper, in order to make fundamental progress on
the problem of caching correlated content, we simplify the
model [21] as follows. In [21] a certain parameter ¢ ranges
from 1 to the number of files in the system (each ¢; files have
a common part, each /5 files also have a common part, etc.),
while in our model / is fixed to a single value r. Our model
is thus a special case of the one in [21]. Using our models
however, we can make conclusive statements (either exact
capacity results, or capacity to within a constant multiplicative
gap) which were not in [21]. (]

Remark 3 (Relation to the Coded Caching Problem with
Multiple Requests): If we identify the (") independent blocks
as files of a library, and allow each cache-equipped user
to request (':‘__11) such blocks/files, the considered caching
problem with correlated files of combinatorial overlaps relates
to the symmetric coded caching problem with multiple requests
considered in [32], where ‘symmetric’ means that each user
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requests the same number of files, which is equal to (':':11)

However, there is a strong structure of the users’ demands in
our problem, while in [32] each user can demand arbitrary L
files.

The relationship among the two problems can be also
explained as follows. For the case of multiple requests, assume
that the (':') independent files are equally popular. On average,
each of such independent files will appear on average the
same number of times over the ensemble of all possible
multiple request configurations. We construct N such multiple
request configurations, each of which is formed by (':':11)
independent files (in fact, each multiple request configuration
corresponds to a ‘file’ in the correlated file library of our
problem). It follows that each independent file appears on
average N("~) /(") = r times in the ensemble of possible
multiple requests configurations. If instead of random multiple
requests, we consider the deterministic symmetric case, where
the possible multiple requests configurations are all and only
those for which each independent files appears exactly r times
(and not on average r times), we have the exact equivalence of
our problem with the case of multiple requests of independent
files. With this interpretation, the proposed results in this paper
also shed light into the very relevant and intricate problem of
how to handle optimally the case where each user makes a
sequence of requests of independent files (blocks). The fact
that there are repeated elements in such sequence of requests
is a ‘fundamental’ aspect of caching (also in practice), where
one needs to devise schemes that take advantage of previous
requests and do not send the same coded bits multiple times.

]

III. MAIN RESULTS AND NUMERICAL EVALUATIONS

In this section, we state our main results and present
numerical evaluations of the proposed converse and achievable
bounds. We shall use the subscripts ‘u,conv’ and ‘u,ach’ for
converse (conv) and achievable (ach) bounds, respectively,
under the constraint of uncoded cache placement (u).

A. Converse Bound

Inspired by [3], we use the acyclic index coding converse
bound from [46] to derive the following converse bound under
the constraint of uncoded cache placement for our problem.
The proof can be found in Section IV.

Theorem 1 (Converse): For an (N,K,r,M) shared-link
caching problem with correlated files of combinatorial over-
laps, R%(M,s), s € [min{K,N}], is lower bounded by the
lower convex envelope of the following (M, R) pairs

N¢ )
—.c , vt €]0: K], (8)
(Kr ! u,conv
where
oo Dielmin{s N LK) (=) () ©)
t (=0 (%)
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In addition, R%(M) is lower bounded by the lower convex
envelope of the following (M, R) pairs

N¢ Ne(d)
(Kr’EdEWW & ])
(I

Theorem 1 for r = 1 recovers the converse result for the
MAN scheme under uncoded placement in [4]; in particular
the worst-case load is obtained for s = min{K,N} in (8),
while the average load is given by (10). Theorem 1 for r = N
recovers the converse result for the MAN scheme with a single
file in the library; that is, ¢ =1 —t/K <= R*(M)=1-M
for M € [0, 1].

, Vte[0:K].

u,conv

(10)

B. Achievable Schemes

Let M = {t for some integer ¢ € [0 : K]. Recall that we
denote by N.(d) the number of distinct files in the demand
vector d. For each demanded file, we pick a leader user
demanding this file. The set of chosen leader users for the
demand vector d is denoted by L£(d) = {u1,...,un,a)}-
For each subset of users 7 C [K], the set of leader users
demanding the files Ng(7) is denoted by L4(7T).

We propose the following achievable scheme, which is
analyzed in Section V.

Block subdivision: VS C [N] : [S| =, let
Ws ={Ws,y:VCI[K]|V| =t}
Placement Phase: Vi € [K], let
Z={Wsy:SCINL|S|=r,V C [K,|V|=tkecV}.
(11b)

(11a)

Delivery sub-phase 1:
Vj € [min{Ne(d),N —r 4+ 1,K —¢}], (11c)
VI C K\ {ut,...,uj_1}: [T =t+1u; € J, (11d)
VB C [NJ\ {du,,...,duy,}: |B] =r—1, (11e)

send a multicast message C s g as defined in (28).

(11£)
Delivery sub-phase 2:
Vj € [min{Ne(d),N —r +1,K — t}], (11g)
Vge[j+1:min{N—-r+2K—t+1,N(d)}], (11h)
VT C K {uns - ugea b U {ug} s [T = £+ 1,
{uj,ugt €T, T N{ugsr, .- un @y} # 0, (111)
VB C [NJ\ {duy,...,du,}: Bl =r—2,
BN Na([K]) # 0, (11j)

send a multicast message C'7 g as defined in (28).

(1K)

In the rest of this section we analyze the above proposed
scheme in various settings with an increasing order of com-
plexity. Since the scheme is highly combinatorial, we shall
start with a case that is the simplest to analyze and that brings
to bear some of the key ideas. We shall then show that the
a similar analysis applies also to more complex scenarios.
In the following, optimality is understood under the constraint
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of uncoded cache placement. In particular, we develop these
concepts in the following order:

¢ In Section III-C we show that the general scheme in (11)
with only the first delivery sub-phase allows each leader
user to decode its desired file. We also show that the
first sub-phase alone is exactly optimal when the users
request different files; that is, all users are leaders, which
is possible when N.(d) = K < N.

¢ In Section III-D we show that the scheme in (11), with
both delivery sub-phases, can satisfy every user regardless
of the demand type, where the transmissions in sub-phase
2 are used to cancel the interferences experienced by the
non-leader users. We also show its optimality to within a
factor of 2 for any demand type.

o In Section III-E we show that for some cases (such as, for
example, the case of either small or large memory size),
each non-leader can reconstruct its required transmitted
multicast messages in sub-phase 2 by performing linear
combinations of the transmitted multicast messages in
sub-phase 1; that is, sub-phase 2 is redundant. For these
cases, we show the exact optimality.

e In Section III-F we show how the scheme in (11) can
be used for other caching problems, by either offering
simpler codes for the delivery phase than those known
in the literature, or by providing an optimal scheme
outperforming state-of-the-art schemes.

o In Section III-G we present some numerical evaluations
of the proposed bounds.

C. Optimality of (11) for Demand Type Ds Where
s=K<N

We consider the case where each user makes a distinct
request, which requires K < N and demand type D, with
s = K = N.(d). We propose a caching scheme where we
jointly serve the users’ demands. Existing methods approach
the problem by serving requests in multiple rounds [21], [34],
[35], where each round is a single-request MAN scheme. Our
scheme is as in (11), but where only the first sub-phase of
the delivery phase takes place. In particular, for M = % and
s = Ne(d) = K < N, our proposed delivery phase contains
min{N — r + 1, K — ¢} steps, where in each step we transmit
multicast messages to satisfy one leader user at a time. After
all steps are done, the remaining K — min{N —r +1,K — ¢}
users (who are also leaders, since here we consider a distinct
request for each user) can also recover their desired files. The
achieved load is presented in the following theorem, whose
proof can be found in Section V-B.

Theorem 2 (Optimality for Distinct Requests): For an
(N,K,r,M) shared-link caching problem with correlated
files of combinatorial overlaps where N > K, R%(M,K) is
the lower convex envelop of the points (&, ck) where
t € [0: K] and cK is defined in (9), which is achieved by the
scheme in (11) with only the first delivery sub-phase. ]

D. Performance of (11) for Any Demand Type

We analyze here the scheme in (11) with two sub-phases
in the delivery phase, and show that it is able to satisfy
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general demands. The main ingredients of the scheme are as
follows. In the first delivery sub-phase, we generate multicast
messages in (11f) so that each leader user can recover its
desired file by the end of this sub-phase; in the second delivery
sub-phase, we transmit some additional multicast messages
in (11k), so that each non-leader user can cancel all non-
intended (aligned interference) sub-blocks from the received
multicast messages useful to it and thus can eventually recover
its desired file. The achieved load is presented in the following
theorem, whose proof can be found in Section V-C.

Theorem 3 (Interference-Alignment Based Delivery Scheme):

For an (N,K,r,M) shared-link caching problem with
correlated files of combinatorial overlaps, for any
s € [min{K,N}], R%(M,s) is upper bounded by the by
the lower convex envelope of the following (M, R) pairs

Nt
<,@+@> , Ve [0:K],
Kr u,ach

where ¢ is defined in (9) and e is defined in (13), shown at
the bottom of the next page.

In addition, R%(M) is upper bounded by the lower convex
envelope of the following (M, R) pairs

N¢ .(d .(d
(Kr’Ede[N]K [Civ( )+€t ( q)

12)

, Vte[0:K].

u,ach

(14)
]

By comparing the converse bound in Theorem 1 and the
achievable bound in Theorem 3, we have the following result,
whose proof can be found in Section V-E.

Theorem 4 (Order Optimality for Theorem 3): For an
(N, K, r, M) shared-link caching problem with correlated files
of combinatorial overlaps, under the constraint of uncoded
cache placement, the achieved average loads in (12) and (14)
are order optimal to within a factor of 2, for any demand
type Ds; where s € [min{K,N}] and all possible demands,
respectively. ]

E. Optimality of (11) for r € {1,2,N — 1,N} or
te€{0,1,2,K—1,K} or s € min{N, K, 4}]

In Theorem 3,c¢; in (9) is the load for the first delivery
sub-phase while e in (13) is the load for the second deliv-
ery sub-phase. Hence, compared to the converse bound in
Theorem 1, €7 is the term leading to the sub-optimality. In The-
orem 2, where we showed the exact optimality for distinct
demands, the second sub-phase is not needed. We investigate
here the other cases where the second sub-phase is not needed.
In these cases, each non-leader user can reconstruct its
required multicast messages sent in sub-phase 2 by linearly
combining multicast messages sent in sub-phase 1. Thus
we obtain the following exact optimality result proved in
Section V-F.

Theorem 5 (Exact Optimality for Some Cases): For an
(N, K, r, M) shared-link caching problem with correlated files
of combinatorial overlaps, we have that R%(M, s) and R%(M)
are equal to the lower convex envelops of (%,Cf) and of

(%,Ede[,\,]x Lciv °(d)D, respectively, where ci is defined
in (9), in the following cases:
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1) Case 1 (small or large file correlation): when r €
{1,2,N — 1,N}, where the optimality holds for any
s € [min{K,N}] and any ¢ € [0 : K];

2) Case 2 (small or large cache size): when t €
{0,1,2,K — 1,K}, where the optimality holds for any
s € min{K, N}] and any r € [N];

3) Case 3 (small number of distinct requests): when s €
[min{K, N, 4}], where the optimality holds for any r €
[N] and any ¢t € [0 : K]. In this case, no claim can be
made on R%(M) as only some values of s are exactly
characterized.

O

From Theorem 5 we immediately have the following corol-
lary, which can be proved straightforwardly by noting that
Theorem 5.Case 3 covers all possible values of s when
min(N, K) < 4.

Corollary 1: For an (N, K, r, M) shared-link caching prob-
lem with correlated files of combinatorial overlaps, the
converse bounds in (8) and (10) are achievable when
min(N,K) < 4 by the scheme in (11) with only the first
delivery sub-phase.

]

As a result of Theorems 2, 3, and 5, the best achievable
bound by the proposed schemes is the lower convex envelop
of the following (M, R) pairs

,Vt e [0: K].
15)

Note that where 1 is the indicator function: leyen = 1 if event
is true and leyen, = O otherwise.

Nt R
ke +€; - Loe[s:k—1],te[3:K—2],re[3:N—2]

u,ach

F. Extensions

Our results can be used in models other than the one
considered in this paper. Examples are as follows.

1) Extension to the Worst-Case Load: The proposed achiev-
ability, converse, and optimality results can be also extended
to the case of worst-case load, since the optimal worst-case
load under uncoded cache placement is also lower bounded
by (8) for any s € [min{N, K}] and ¢} increases with s.

Corollary 2: For an (N, K, r, M) shared-link caching prob-
lem with correlated files of combinatorial overlaps, under the
constraint of uncoded cache placement, the optimal worst-case
load over all possible demands under uncoded cache placement
R* (M) is upper bounded by the lower convex envelope

u,worst

of the following (M, R) pairs

Nt
o s s e Ko rel3:N_ ,
<Kr’se[mlﬁf{}l\(l,K}]ct +e; - Lses:k—1],te[3:K—2],re[3:N 2])
(16)

and lower bounded by the lower convex envelope of the
following (M, R) pairs

Nt min{N,K
(Kr,ct { }> .

The achieved worst-case load in (16) is order optimal to
within a factor of 2 under the constraint of uncoded cache
placement. In addition, the achieved worst-case load in (16)

a7
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is optimal under uncoded cache placement in the following
cases: Theorem 5.Case 1, Theorem 5.Case 2, and Corollary 1.
]
Remark 4 (Average and Worst-Case Loads): Most past
works only aimed to design schemes that minimize the
worst-case load, such as those in [21] (for caching with
correlated files of combinatorial overlaps) and in [32] and
[34] (for caching with multiple requests). Order optimality
results (to within factors 11 and 18) on the worst-case load
were derived in [32] and [34] for caching with multiple
requests. The order optimality on the average load over
the uniform demand distribution for caching with multiple
requests was characterized to within a factor of 12 when
the numbers of files and users go to infinity [33]. To the
best of our knowledge, (except the cases of two files and
three files) no specific order optimality results are known
specifically for caching with correlated files of combinatorial
overlaps. Therefore, a major contribution of this paper,
besides sharpening existing results for caching with multiple
requests, is to have derived (exact or order) optimality results
for caching with correlated files of combinatorial overlaps
for any demand type or over all possible demands, under the
constraint of uncoded cache placement. O
2) Extension to the More General Coded Caching Problem
With Correlated Files: As already mentioned earlier, in this
paper we simplify the model [21] by fixing the parameter ¢
in [21] to be equal to r (as opposed to let it be in a range).
We can extend our results to the case where ¢ is in a range
as follows. If 7 is in a range as considered in [21], we can
construct a caching scheme by ‘memory-sharing’ among the
proposed scheme in Theorems 2, 3, and 5 as follows.
o Library. Assume that the length of each block W5, where
S C [N] and |S| = ¢, is pr/('}‘). Let p, € [0,1] and
>_oepn) Pe = 1. The values (pg : £ € [N]) are assumed to
be fixed system parameters.
Placement. Choose integers t, € [K] for £ € [N], We
partition block Ws into (t:;) equal-length sub-blocks
and denote Ws = {Wsy : V C [K],|V| = t5}. User
k € [K] caches sub-block Ws y if k € V, which requires

a cache of size
M=
Le[N]

Nt;py
Ke -

(18)

Delivery. For demand vector d, if N.(d) = K (i.e., each
user demands a distinct file) or N.(d) € [min{K, N, 4}],
we use the proposed caching scheme only with the first
delivery sub-phase and the achieved load is

R= Z pgcg.

£€[N]

19)

If min{K,N,4} < s = N.(d) < K, we have two cases:
(i) if either £ € {1,2,N—1,N} or t, € {0,1,2,K—1,K},
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we use the proposed caching scheme only with the first
delivery sub-phase to encode all blocks; (ii) otherwise,
we use the proposed caching scheme with two delivery
sub-phases. Hence, the achieved load is

>

£1€{1,2,N—1,N}

+ Z (Pzchgz + Pe,€i,, Iltg2¢{0,l,2,K—1,K}> .
£2€[3:N—2]

— S
R = Pey Ctel

(20)

The achievable memory-load tradeoff is the lower convex
envelope of the above points for all possible t := (¢, :
£ € [N)).

3) Extension to the Coded Caching Problem With Multiple
Requests: Our proposed strategy which jointly serves the
users’ demands is different from the existing works that divide
the multi-request problem into a sequence of single-request
problems. We can also apply the proposed strategy to the
coded caching problem with multiple requests. By doing so,
we can give an optimal scheme for the four cases that were
left open in [35] for the coded caching problem with multiple
requests, where the setting includes up to four users and each
user with memory size M = N/K demands at most two files.
The details of how to modify our proposed scheme (so as to
account for the lack of symmetry of the multi-request problem)
are given in Appendix G.

4) Extension to Coded Distributed Computing: When N =
K and each user demands a distinct file, the (N, K, r, M)
shared-link caching problem with correlated files of combi-
natorial overlaps is related to the coded distributed computing
problem in [29]. The only difference is that in [29] the link
is D2D (i.e., workers/users communication among each other
without a central master/server), as opposed to the shared-link
case (with a central server broadcasting messages) considered
here. In [29], the authors proposed an optimal scheme that
requires to exchange messages where symbols are from a
large finite field size. In contrast, for the shared-link case, the
proposed scheme for Theorem 2 is optimal, whose operations
are simpler in that they are on the binary field.

G. Numerical Evaluations

In the following, we provide some numerical evaluations to
illustrate the proposed converse and achievable bounds, which
are also compared with the achievable bound in [21].

In Fig. 1, we consider the (N, K,r) = (20,20,5) shared-
link caching problem with correlated files of combinatorial
overlaps for distinct demands. In Fig. 2, we consider the
(N, K,r) = (20, 30,2) problem, where in Fig. 2a we plot the
average load for the demand type Dy and in Fig. 2b we plot
the average load over all possible demands. It can be seen
from in Fig. 1 and Fig. 2 that the proposed schemed coincide

min{N—r+2,K—t+1,s}

Zje[min{s,NfrJrl,Kft}] Eq:j+1

() - =) (=0 - (=)

(13)

e :

(

N—-1

) (%)

r—1
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4 T T
—*— Scheme in [21]
35} —+—Proposed scheme in Theorem 2 R
—-&-—Proposed converse bound in Theorem 1
3l 1
251 b
°
3 2r 1
—
151 4
1r 4
0.5 J
0 \ \ \ \ \ \ |
0 0.5 1 1.5 2 25 3 35 4

Fig. 1. The memory-load trade-off for the (N, K,r) = (20,20, 5)
shared-link caching problem with correlated files of combinatorial
overlaps for distinct demands.

with the proposed converse bound, and outperform the scheme
in [21] for all memory sizes.

In Fig. 3, we plot the average load for the demand type
Doy (Fig. 3a) and the average load over all possible demands
(Fig. 3b) for the (N,K,r) = (20,30, 3) shared-link caching
problem with correlated files of combinatorial overlaps. When
t = KMr/N € {0,1,2,29,30} or N.(d) < 4, only the first
sub-phase of the delivery scheme is necessary as stated in
Theorem 5. For other values of the parameters ¢ and N.(d),
we use both sub-phases of the delivery scheme as stated in
Theorem 3. Fig. 3 shows that our proposed achievable schemes
outperform the scheme in [21] for a large range of memory
sizes.

IV. CONVERSE BOUND

Under the constraint of uncoded cache placement, we can
partition each block Ws where S C [N] and |S| = r, into
sub-blocks as

Ws = {W&V YV CIK]}, VS CIN]: |S] =T, 21

where W 1 represents the bits of Ws exclusively cached by
users indexed by V.°

A. Proof of Theorem 1

The delivery phase with uncoded cache placement is equiva-
lent to a multicast index coding problem [47]. Such a problem
can be represented on a directed graph. In this graph, each
sub-block demanded but not cached by a user is a node;
a directed edge exists from node a to node b if the user
demanding the sub-block represented by node b has the
sub-block represented by node a in its cache. As in [3], we use
the acyclic index coding converse bound from [46] to lower
bound the number of transmitted bits needed to satisfy all the
nodes/users in this index coding problem as follows.

For a demand vector d with N.(d) demanded files,
we choose N.(d) users (i.e., leaders) each of which demands

®Note that V can be the empty set and W ¢ represents the bits of W
not cached by any user.
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10 T T
—#— Scheme in [21]
—+— Proposed scheme in Theorem 5
——-C-- Proposed converse bound in Theorem 1| |

Load
[6)]

(a) Demand type D2o.

—— Scheme in [21]
—+— Proposed scheme in Theorem 5
——-&-— Proposed converse bound in Theorem 1] |

Load

(b) Average load over all demands.

Fig. 2. The memory-load trade-off for the (N, K,r) = (20,30, 2)
shared-link caching problem with correlated files of combinatorial
overlaps.

a distinct file. We then draw a graph where each sub-block
demanded but not cached by some of these N(d) users is a
node. We then consider a permutation of these N.(d) users,
denoted by u = (u1,uz,...,un,()). The set of sub-blocks

U U U Ws,v,

k€[min{ Ne(d),N—r+1}] SCINN\{duys-duy_, }: VKN {u1,yur}
|S|=r,du, €S

(22)

does not contain a directed cycle.” This can be seen as follows,
similar to [3, Lemma 1]. We classify the sub-blocks/nodes
in the set (22) into levels. More precisely, we say that sub-
block/node Wy is in level ¢ if S C [N]\ {duy,---,du; ,}
dy, € S and V C [K] \ {u1,...,u;}. Each node in level i is
a sub-block that is demanded by user u; and is not cached
by any user in {ui,...,u;}, and corresponds to a user in the
index coding problem that has the same side information as
user u; in our caching problem (i.e., each node in level ¢ only

"Note that in (22), k should be no more than N — r + 1. This is because,
duy ..., du,,_, are distinct; thus, if & > N — r 4 1, there does not exist
such S C [N]\ {du,,...,du,_, } where |S|=r.
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7 T T T

—*— Scheme in [21]
—+— Proposed scheme in Theorem 3
—-&-— Proposed converse bound in Theorem 1

Load

(a) Demand type Dao.

® —#— Scheme in [21]
—+— Proposed scheme in Theorem 3
—-©-— Proposed converse bound in Theorem 1

Load

(b) Average load over all demands.

Fig. 3. The memory-load trade-off for the (N, K,r) = (20,30, 3)
shared-link caching problem with correlated files of combinatorial
overlaps.

knows the nodes Ws ), where u; € V). So each node in level
1 knows neither the nodes in the same level, nor the nodes in
the higher levels. As a result, the proposed set in (22) does
not contain a directed cycle.

By the acyclic index coding converse bound, the number of
transmitted bits is not less than the total number of bits of the
sub-blocks in the set in (22); that is,

>

RL(M, Ne(d)) > >

ke€[min{Ne(d),N—r+1}] SCIN\{duy,.-,duy_, }:

|S|=r,du, €S
Z [Ws.vl
B b
VC[K\{u1,...,ur}

where |Ws y| represents the length of Ws y in bits.

For a fixed s € [min{K, N}], consider all the demands of
type Ds, all sets of s users with different s distinct demands,
and all permutations of those users. By summing together all
the resulting inequalities as in (23) we obtain the lower bound
on R%(M,s) in (24), shown at the bottom of the next page.
To obtain (24), the number of possible leader sets including s
leaders equals (':), the number of demand vectors where a set

wp

(23)
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of s users can serve as leader set equals ™ (N ), , the number of
permutations of a leader set equals s!. By the symmetry of the
problem, in (24) the coefficient of each sub-block stored by
exactly ¢ users is identical, for each ¢ € [0 : K]. In (24), there
e D e fmin{s,N—r+1,K—t}] (N ]) (Kt_j) sub-blocks known by
exactly t users. We also note that in the whole library there are
(M) (%) sub-blocks known by exactly ¢ users. Hence, we have

K N— K—j
Z j€[min{s,N—r+1,K— t}]( 7)( t])
R:(M,s) > < J
2 B0
Z SCINJ:|S|= rZVC K]:|V|= t|WSV|
B

— XK: (ZJ‘E[min{s,NrH,Kt}] (':I:f) (K;j)
: (=)
.Z SCINJ:IS|=r 2ovC[Kl:vi=t "TWSs, v)

NB

(25a)
t=0
_ r(Wsvl
Ty 1= Z > “NB (25b)
[N]:|S|=r VC[K]:|V|=t
N—j\ (K—j
o= Zje[min{s,N—r—i-l,K—t}] (r—l)( t )
t N—1\ (K J
(rfl) (t)
(as already defined in (9)), (25¢)
o+ 21+ ... +xk =1, (file size constraint),
(25d)
KMr
T, +2x0+ ...+t + ...+ Kok < N
(memory size contraint), (25e)

where x; in (25b) represents the fraction of all the bits in the
library that are cached exactly by ¢ users.

As in [4], we can lower bound (25a) by using Jensen’s
inequality and the monotonicity of Conv(c}) (i.e., the convex
lower envelope of ¢{ in terms of t),

R* (M, s) > Conv(c}). (26)

By considering all the demand types, and from (26), we also
have

RL(M) > E cimin{nky [RE(M, 8)] > Egcimingn,ky [Conv(cs)].
(27)

Since ¢ is convex in ¢, we can change the order of the
expectation and the ‘Conv’ in (27). Thus we prove the converse
bound in Theorem 1.

Notice that we could also use Fourier-Motzkin elimination
to eliminate the parameters {xt}te[o:K] in (25a) and derive the
bound in (26), as done in [3].

B. Discussion

We conclude this session with some observations on the
proposed converse bound, which we shall use as a guideline
to design our achievable scheme.
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1) The corner points of our converse bound are of the form
(%, cf), where ¢; is defined in (9). The converse bound
may suggest the following placement. We partition each
block Ws into (%) equal-length sub-blocks of length
ﬁ and indicate Ws = {Wsy : V C [K], V| = t}.
Each user k € [K] stores the sub;bllocllf Wsy if ke V.
Hence, user k € [K] caches 78(({_’11))((,{))
total. S
We will use this interpretation to design the file parti-
tioning and the cache placement of our proposed caching
scheme, which is the same as in [21].

2) If the above placement is used, each sub-block is
cached by ¢ users. In the proof of Theorem 1, for
each demand d, we choose a set of leader users (each
demanding a different file) and consider a permutation
u = (ug,...,un,q)) of these N.(d) leader users.
For the permutation u, we find an acyclic set of
2 jemin{Ne(d),N—r+1,K—t}] (3=7) (/) sub-blocks, and
the load is lower bounded by the total length of these
sub-blocks. In addition, in this acyclic set of sub-blocks,
there are (Y~7)(*;7) sub-blocks desired by user wu;
where j € [min{N.(d),N — r + 1,K — t}]; these
sub-blocks are not cached nor desired by any user u;,
where j; < j. This may suggest a delivery scheme with
min{Ne(d), N —r+1, K—t} steps, where in Step j we

transmit (/) (*7) linear combinations such that each

linear combination contains one of the ('?':1] ) (Kt_j ) sub-
blocks desired by user u;, and thus at the end of this
step user u; is satisfied.

We will use this interpretation to design the first
sub-phase of our general delivery scheme in (11), which

we shall introduce next in Section V.

= BN bits in
.

V. ACHIEVABLE SCHEMES

In this section, we focus on the achievable scheme in (11)
and prove the statements of Theorems 2, 3 and 5. Notice that
when r € {1, N}, the considered problem is equivalent to the
MAN problem (solved under the constraint of uncoded cache
placement in [4]). Hence, the novelty of our scheme is for
r € [2: N —1]. The scheme we propose was summarized
in (11); Theorems 2 and 5 only use the first sub-phase of the
delivery, while Theorem 3 uses both sub-phases.

The rest of this section is organized as follows.
In Section V-A we give an example of the first sub-phase
of the proposed delivery scheme in (11); the objective is
to highlight how the multicast messages sent in sub-phase
1 enable all leaders to decode their desired file. Then in
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Section V-B we show which user can decode which sub-blocks
after receiving the multicast messages in sub-phase 1, regard-
less of the demand type. In Section V-C we show that every
user can decode its desired message by also receiving the
multicast messages sent in sub-phase 2. In Section V-D we
give an example of the second sub-phase of the proposed
delivery scheme in (11). In Section V-E we prove the order
optimality results in Theorems 4 for general case. Finally,
in Section V-F we prove the exact optimality results in
Theorem 5 by observing each non-leader can reconstruct its
required multicast messages in sub-phase 2 by performing
linear combinations of the received multicast messages in sub-
phase 1.

A. An Example of (11) With Only Sub-Phase 1 for the
Delivery Scheme

First, we study an example where N > K and each user
demands a distinct file (i.e., s = K). In particular, we consider
the (N,K,r,M) = (4,4,2,1/2) shared-link caching problem
with correlated files of combinatorial overlaps. There are
('?) = 6 blocks denoted as Wiy 2y, Wiy 3y, Wiy, Wiasy,
W24y, and Wy 4y. The files are

Fy = {W1 2y, Wiy, Winay )
Fy = {W1 2y, W33, Wiaay 1
F3 = {Wy1 3y, Wia sy, Wiz ay }s
Fy = {Wi14y, Wia 4y, Wiz ay }-

1) Block Subdivision: Here t = XMt = 1. We partition
each block into (%) = 4 equal-length sub-blocks and denote
Ws ={Wsy:VCK|V|=t=1} = {Ws p : k € [K]}.
Hence, each sub-block contains B/ ((T__ll) (f)) = B/12 bits.

2) Placement Phase: The cache placement is inspired by
the converse bound (see discussion in Section IV-B). User
k € [K] caches Wy if k € V; that is, Zy, = {Ws q1},VS C
[N] : |S| =r=2}.

3) Delivery Phase: Assume d = (1,2,3,4), which has
N.(d) = 4 distinct demanded files. Pick one user demanding
a distinct file, and refer to it as the leader among those
users demanding the same file. Since each user has a distinct
request in this example, each user is a leader, and the leader
set is [1 : 4]. Consider a permutation u of the leaders, say
u = (’L,Ll7 U, us, U4) = (1, 27 3, 4)

Our proposed first sub-phase of the general delivery scheme
contains min{Ne(d), N —r+1,K—t} = 3 steps; after the j®
step, the j element/leader in the permutation can decode its
desired file; after finishing all steps, the remaining leaders can
also decode their desired file. We next describe, one by one, the

(N —s)!
N! gK—s

>

RM, ) > o 3

K
() LC[K]:|L]|=s

>

deD;:L are leaders

> X

" ue{permutations of £}

Wsvl|
> = (24)

K-k

D

k€[min(s,N—r+1)] SCIN\{du, ..., duk_l}: t=0 VC[K\{u1,..., up }:|V|=t

|S|=r,du, €S
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three steps for this example. Recalling (11f), the transmitted
multicast messages are of the type
Cgpi= @ ©
keJ SCNa(J)UB:

|S|=r,BCS,deS
for all 7 C [K]\ {u1,...,u;—1} where |7| =t + 1, and
uj € J, and all B C [N]\ {dy,,...,dy,} where |[B| =r—1.
Note that Mg(J) is the set of demanded files by the users
in J. In (28), the role of J is to select whose demanded
blocks are included in the sum Cs 5 and the role of B is to
select which demanded blocks by the users in J are included
into the sum. In plain words, the multicast message C's g
in (28) is the XOR of sub-blocks Ws 7\ (), where k € 7,
S C (Na(J)UB), di, € S and B C S. Note that, when r = 1
(in which case our model reduces to the MAN system in [2]),
C7 ¢ in (28) is equivalent to the MAN multicast message

Ws 7\ {k} (28)

Cro= @ W ‘ 29
70 =9 Wiag.a\0) 29

Delivery sub-phase 1.Step 1. In this step we aim to satisfy
leader user u; = 1, who misses three sub-blocks of the three
blocks in F} (recall that d,,, = 1); that is, user 1 must recover
nine sub-blocks. Each time we consider one set of users 7 C
[K] where |J| =t+1 =2 and uy € J (recall that u; = 1),
and one set of files B C [N]\{d., } where |[B] =r—1 =1, and
transmit C'7 g. For example, for 7 = {1,2} and B = {2},
we transmit

Criz2y = Wiy 20 © Wozy 1y (30a)

In 0{1,2}7{2}, user 1 knows W{1,2}7{1} and can thus decode
W12}, 42y Similarly, user 2 knows Wy 2y 23 and can thus
decode Wy 9y 41} Similarly, we transmit

Ci1,23,03y = Wiy, 23 © Wia sy 1) (30b)
Cr 21,04y = Wiy 12y © Wiy, 1y (30¢)
Cr3y.42) = Wi2y,03) © Wiesy s (30d)
Cr131,030 = Win sy, 30 © Winsy (s (30e)
Ci1,3y,04y = W1 ay,03y © Wi ay,01); (30f)
Cuay,02y = Wiy 4y © Wioay 1y (30g)
Cr1ay,030 = Win sy, 14y © Wizay 1y (30h)
Criayqar = Wiay e @ Woay - (30)

From (30) and its cached content, user u; = 1 can recover
W12y, Wi 3y, and Wiy 4y. Thus, user 1 is satisfied after this
step (i.e., it has recovered the missing nine sub-blocks from
the nine received multicast messages in the first step).

Let us then focus on user ug = 2. User 2 can
directly recover Wy 9y 1) from (30a), Wy 3) 1 from (30b),
Wi2,4,11y from (30c). Since user 2 has recovered Wy, 3y (1},
it then can recover Wy ) 33 from (30d). Since user 2 has
recovered Wyg 4y 113, it then can recover Wiy 9y 143
from (30g). In conclusion, after Step 1, user 2 can
recover Wiy oy and also recover Wys 3y 11y and Wia 4y (13-
User up = 2 after Step 1 still misses four sub-blocks, namely
Wiasy iy Wizay qey - k€ [3,4]}.

Similar to user us = 2, each user k € {3,4} can recover
Ws where {d,,,d;} C S, and can also recover W, y, where

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 10, OCTOBER 2023

dr € &1 and uwy € V; after Step 1. Each of these users still
misses four sub-blocks after Step 1.

Delivery sub-phase 1.Step 2. In this step we aim to satisfy
leader user us = 2. Each time we consider one set of users
J C ([K]\ {u1}) where | 7| =t+1 and up € J, and one set
of files B C ([N]\ {dy,,du,}) where |B| =r —1 =1 (recall
that uy = dy, = 1,up = dy, = 2), and transmit Cy 5. For
example, for J = {2,3} and B = {3}, we transmit

Crasyq3r = Wizay.q3) © Wizsy (23 (31a)

From (31a), user 2 can recover Wyj 3y (31 and user 3 can
recover Wyg 3y roy. Similarly, we transmit

Cy2,31,14y = Wi2,43,03y © Wiz 4y 42} (31b)
Ci2,4y,03y = Wya,3y,141 © Wiy q2}; (3lc)
Cra,ay.04y = Wizay 14y © Wiy (23 (31d)

From (31) user us = 2 can recover the desired sub-blocks
that were not recovered from Step 1. User us = 2 is satisfied
after this step (i.e., it has recovered the missing four sub-blocks
from the four received multicast messages in the second step).

Let us then focus on user us = 3. User 3 can directly
recover Wyg 3y 12y from (31a) and W3 4y 12y from (31b).
Since user 3 has recovered W3 4y (2}, it then can recover
Wia,3y,q4y from (31c). User uz = 3 after this step still misses
Wis,ay,1ay-

Similar to user ug = 3, at the end of Step 2, user k = 4 can
recover Ws where d € S, {dy,,du,} NS # 0, and also
recover Ws, y, where dj, € S1 and {u1,us} NVy # (. User
4 still misses one sub-block (W3 41 (3y) after Step 2.

Delivery sub-phase 1.Step 3. In this step we aim to satisfy
leader user ug = 3. Each time we consider one set of users
J C ([K]\ {u1,u2}) where |[J| =t+1 and us € J, and one
set of files B C ([N]\ {du,,duy,dus}) where |[B|=r—1=1
(recall that u; = dy, = 1,u2 = dy, = 2,us = dy, = 3), and
transmit C'7 5. Hence, at this point there is one possibility,
J ={3,4} and B = {4}, for which we transmit

Czargay = Wisay (a1 © Wiz ay 433 (32)

From (32), user 3 can recover W3 4) 143, and user 4 can
recover W3 4y ¢33. Hence, at the end of Step 3, users 3 and
4 are satisfied.

4) Performance: Based on the above placement and deliv-
ery phases, all users are able to decode their desired blocks.
We sent .y (':':1”) (K;j) = 14 linear combinations, each
of length B/12 bits. So the load is 7/6, which coincides with
the converse bound in Theorem 1 for s = 4.

5) Comparison With the State-of-the-Art ‘Round-Division’
Schemes: Let us then consider the round-division methods
in [21], [34], [35], [36], [37], [38], [39], and [40]. If there
exists some sub-block appearing in different rounds, the
round-division strategy that treats each round as an indepen-
dent single-request MAN caching problem may miss some
multicast opportunities. Here we show that the round-division
strategy is sub-optimal even if we can divide the users’
demands into multiple rounds such that there does not exist
any sub-block appearing in different rounds. More precisely,

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on November 08,2023 at 23:24:46 UTC from IEEE Xplore. Restrictions apply.



WAN et al.: ON THE FUNDAMENTAL LIMITS OF CODED CACHING WITH CORRELATED FILES

since each user demands 3 blocks, we can divide the delivery
into the following three rounds:

¢ Round 1: In the first round, users 1 and 2 demand W{LQ},
and users 3 and 4 demand W3 4y. This is equivalent
to the MAN caching problem with 4 users and 2 files.
By using the optimal caching scheme under the constraint
of uncoded cache placement in [4], we need to transmit
(f) — (K;N) = (‘21) — (;) = 5 linear combinations, each
of which contains B/12 bits, in order to satisfy these
requests.

e Round 2: In the second round, users 1 and 3 demand
Wii3y, and users 2 and 4 demand Wys 4y. By using
the caching scheme in [4], we need to transmit 5 linear
combinations to satisfy these requests.

e Round 3: In the third round, users 1 and 4 demand
W14y, and users 2 and 3 demand Wy;3y. By using
the caching scheme in [4], we need to transmit 5 linear
combinations to satisfy these requests.

Hence, by this round-division strategy, the load is 15/12 >
7/6, which is strictly sub-optimal. In conclusion, in order to
achieve optimality in this example, we need to jointly serve
the users’ demands (as proposed in this paper) in order to fully
leverage all multicast opportunities.

B. Proof of Theorem 2

Here we shall prove that after the first sub-phase of the
delivery scheme in (11) every leader user is able to decode
its desired file (as in the example in Section V-A), and that
the load of the first sub-phase (i.e, c;) matches the load of the
converse bound in (9) (i.e., R (M, s)). Thus, for the case where
every user is a leader (i.e., every user demands a distinct file),
we have proved the exact optimality under the constraint of
uncoded cache placement of the proposed achievable scheme
as claimed in Theorem 2.

1) Decodability After Delivery Sub-Phase 1: We need to
establish which user can decode which sub-blocks at each step
of delivery sub-phase 1. The following Lemma 1, which is
proved by induction in Appendix A, describes the decoding
procedure for delivery sub-phase 1 for general demands (i.e.,
not only for distinct demands).

Lemma 1 (Decoding After Sub-Phase 1): In the
first sub-phase of the proposed delivery scheme
in (11) with leader set L£(d) = {u1,...,un, )}, in

Step j € [min{N,(d),N —r+ 1, K—t¢}], for each set of users
J where J C [K]\ {u1,...,u;—1} such that | 7| =¢+1 and
u; € J, and each set of files B C [N]\ {dy,,...,d,,} where
|B] = r — 1, we transmit C'7 g as defined in (28).

Let ugy(;) represent the leader user demanding file F;, for
each i € NMg([K]). At the end of the delivery sub-phase 1,
we have:

1) For any C 7 g transmitted in sub-phase 1, each user in
J can recover all the sub-blocks in C'7 3.

2) Atthe end of Step j € [min{g(dy), N—r+1, K—t}], user
k € [K] can recover Wy if dj, € S and {uq,...,u;}N
V #0.
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3) At the end of Step j € [min{g(dx) — I,N—r+1,K—
t}], user k € [K] can recover Wg if d, € S and
{duys. .. dy, } NS #0.

]
2) Decodability for Leader Users After Sub-Phase 1: We
use Lemma 1 to show that every leader user is able to recover
its demanded file after delivery sub-phase 1. Indeed, under
any system parameters, for leader user u, where p € [N.(d)],
we have:
e Case p < min{N.(d),N —r+1,K—t}.
By Lemma I.Item 3, user u, can recover Ws, where
du, € S and {dy,,...,dy, ,} NS # 0, at the end of
Step p — 1.
In addition, by Lemma 1.Item 2, user u,, can also recover
Ws, v,» where d,,, € Si and {u1,...,up_1} NV1 # 0,
at the end of Step p — 1.
Hence, user u, still needs to recover W, y,, where
du, € Sa, {duy, ... du,_ }NS2 =0 and {uy,...,up}N
Vo = 0. Such a Wg, v, appears in CV2U{%}752\{d%}7
which is sent in Step p. Hence, by Lemma 1.Item 1, user
u, can recover W, y, at the end of Step p.

o Case N.(d) > min{N —r+ 1,K — ¢} and min{N —r +
1K=t} <p < Ne(d).
We distinguish two sub-cases:

— N—r+1 < K—t. For each desired block of user u,
(assumed to be W), we have |S| = r and thus SN
{du,,...,duy_,., } # 0. Hence, user u, can recover
W at the end of the last step (Step N —r + 1) by
Lemma 1.Item 3.

— N—r+1 > K—t. For each desired sub-block of user
u, (assumed to be W, y, where u, ¢ V1), we have
V1| = t and thus V; N {uy,...,uk—¢} # 0. Hence,
user u,, can recover Wgs, v, at the end of the last
step (Step K — ¢) by Lemma 1.Item 2.

This proves that each leader can recover its demanded file after
sub-phase 1.

3) Load of Sub-Phase 1: This proposed sub-phase 1 of the
delivery scheme transmits (t‘__f ) (Kt_j ) multicast messages in
Step j € [min{N¢(d),N —r + 1,K — t}], which follows the
intuition from the proof of our converse bound (see discussion
in Section IV-B). Thus, by summing over all steps in sub-
phase 1, we get that the load of this delivery sub-phase matches
the load of the converse bound in (9).

4) Optimality for the Case of Distinct Demands: From the
above reasoning, when all users are leaders (i.e., for the case
N > K and demand type Dk), the claim of Theorem 2 is
proved.

C. Proof of Theorem 3

In the following, we focus on general demands and will
prove that after the two sub-phases of the delivery scheme
in (11), every user is able to decode its desired file. This
requires showing that after the second sub-phase the demands
of all non-leader users are satisfied. Sub-phase 2 of the delivery
scheme in (11) is a form of interference alignment.

The block split and the cache placement phase are as
described in (11). The delivery phase contains two sub-phases,
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where the first sub-phase is the same as in Section V-B, and the
second sub-phase is such that non-leader can align and then
cancel the non-demanded sub-blocks, in order to eventually
decode their demanded file. We specify next what each user
can decode at the end of each step.

1) First Delivery Sub-Phase: In Step j € [min{N(d), N —
r+ 1,K — ¢}] of the first sub-phase, for each set of users
J C [KI\{u1,...,uj—1} where | 7| =t+1 and u; € 7, and
each set of files B C [N]\ {dy,,...,dy,} where [B| =r—1,
we transmit C 7 g as defined in (28). As shown in Section V-B,
at the end of this sub-phase, each leader can recover its desired
file.

By Lemma 1 (recall that u;y represent the leader user who
demands file F;), each non-leader user k € [K]\ £(d) can
decode W, where di, € S and {d,,, ... 7dug(dk)—1} NS # 0,
and can decode W, v, where dj, € S1 and {u1, ..., ug(q,)}N
V; # (. In addition, for each j € [g(dy) + 1 : Ne(d)], user
k can recover W4, yus,, {u;yuv, Dy directly reading off from
Clu, k}uv,,s, (transmitted in Step j of the first sub-phase),
where S N {dy,,....dy,} =0 and Vo N {uy,...,u;} =08

The non-leader users are thus not yet satisfied, and thus we
proceed to send further multicast messages in sub-phase 2.

2) Second Delivery Sub-Phase: The second sub-phase also
contains min{N(d), N —r + 1, K — ¢} steps. In Step j, each
time we focus on one integer ¢ € [j+1 : min{N—r+2, K—t+
1, Ne(d)}]. For each J C ([K]\{u1, ..., uq—1}U{u;}) where
|\7| =t+1, {uj7uq} CJ,and JN {uq+17 B '1uNe(d)} 7é (2)7
and for each B C [N]\ {dy,,...,dy,} where |B| =r—2 and
BN Na([K]) # 0, we transmit C'7 5 as defined in (28).

In Step j of the second sub-phase, the transmitted
multicast message C7 3 by construction satisfies J N
{ugs1,. .. un. @@} # 0. However, non-leader user k may
also need some multicast message(s) Cy 5 where J N
{tgs1,-.-,un, @} = 0. It is proved in Appendix B that
each user £ who demands quj can reconstruct C'y g, where
J N {ugy1,...,un@} = 0 by using previously received
multicast messages, as formalized in the next lemma.

Lemma 2: For each j € [min{N.(d),N —r + 1,K —¢}],
each g € [+ 1:min{N —r+ 2 K—t+1,N(d)}], each
J C K\ £(d) U{u;,uqs} where |J| =t+1 and {u;,us} C
J. and each B C [N]\ {d.,,...,dy,} where |B] =r—2 and
BNNa([K]) # 0, user k with d;, = d,,, can reconstruct C7 5
at the end of Step j of sub-phase 2. (]

The following Lemma 3, whose proof is in Appendix C,
specifies some properties of the linear combinations Cs 5
defined in (28).

Lemma 3: [Properties of Function C 7 5 Defined in (28)]
For each J C [K] where |J| = t + 1, and each B C [N]
where |B| =r — 1, we have

Cop= 8 Cnienutueh@inuia),  33)

for any i € B where ug(;) ¢ J.

8This is because in C{uj k}UVo,S,» User Kk caches all except
W{dk}uSQ,{uj}uvzs such that user k can recover W{dk}USQ,{’U«j}Uv2.
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In addition, for each J C [K] where |J| =t + 1, and each
B C [N] where |[B] =r —1 and Ng(J) N B # 0, we have

CogB= (34)

S C i i}
en sl B

for any i; € Ng(J) N B. O

By using the transmissions in the two sub-phases and the
properties in Lemma 3, we prove the following Lemma 4
(whose proof is in Appendix D), which is the key result for
our interference alignment based delivery scheme.

Lemma 4 (Interference Alignment Lemma): For each j
min{Ne(d),N —r+1,K —t}] and each i € {dy,,...,dy;
each user can reconstruct C )} 80} Where J C K]
{ur, .. u b [T =t BCINJ\{dy,,...,dy, }, |Bl =r—2,
and Ng(JNL(d))\B # 0, at the end of Step j of sub-phase 2.

O

Lemma 4 can be understood as follows. By Lemma 1,
the remaining sub-blocks to be decoded by each non-leader
k € [K]\L(d) are Ws,y where dy, € S, {du,, ..., du,,, o N
S = 0 and {k,uy,...,ugan} NV = 0. In Step g(dx)
of the first sub-phase, the transmitted message C s g should
satisfy dg(q,) ¢ B. By Lemma 4, we show that user k
can also reconstruct some Cy+ 5 where dg,) € B'. Since
d"g(%) € B’, each sub-block in C p is desired or cached
by user k£ who demands Fy,. In other words, in order to
reconstruct C's+ g/, we align and then cancel the interferences
to user k. By induction, all sub-blocks except one in Cy/ s
have been already recovered or cached by user £ such that
it can recover that sub-block. The detail of the decodability
proof is presented in Appendix E. An example of how the
interference alignment scheme works is given in Section V-D.

3) Performance: As we showed in Section V-B, in the first
sub-phase we transmit ¢ bits, with s = N.(d). In Step j €
[min{s, N—r+1, K—t}] of the second sub-phase, the number
of transmitted bits is

S (0 - (59) (650 - (50)
(=D |
(335)

Hence, by summing the number of transmitted bits in each
step of sub-phase 2 and the number of transmitted bits in sub-
phase 1, the load equals ef + ¢; as defined in (9) and (13),
with s = N¢(d).

This concludes the proof of Theorem 3.

—37 M

D. An Example of Sub-Phase 2 in (11)

We will use the following example to illustrate our interfer-
ence alignment scheme.

Consider an (N,K,M,r) = (5,10,1/2,3) shared-link
caching problem with correlated files of combinatorial over-
laps. There are (T) = 10 blocks, Ws where S C [5] and
|S| = r = 3. The files are
Fr={W1 23, Wi 2,41, Wii,2,50:Wii3,41: Wi 3,51, Wiasi)
Fy={W123,W1,2.41,Wii,2,50:Wia,3,41:Wia3.51, Wia,a51)
Fy=W1 231, Wi 343 W35, Wi23.43:. Wiz sy, Wizas)
Fo=Wii 24 Wi1,343,Wi1451,Wi2343: Wiz, Wisash
Fs={W125, Wi ,350,Wii,4,50:Wi2,s,50: W51, Wisas1)-
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1) Placement Phase: Here t = Kk{" = 3. We partition

each block into ('f) = 120 equal-length sub-blocks and denote
Ws = {Wsy :V C [K],|V| =t = 3}. Each user k € [K]
caches Ws )y if k€ V.

2) Delivery Phase: Assume d = (1,2,3,4,5,1,2,3,4,5),
which has N.(d) = 5 distinct demanded files. We choose as
leaders the users in u = (1,2,3,4,5).

3) First Delivery Sub-Phase: In Step j € [min{N.(d),N—
r+ 1, K—t}] = [3] of the first sub-phase, for each set of users
J C[KI\[j—1] where || =t+1=4and j € J, and each
set of files B C [N] \ [j] where |B] =r —1 = 2, we transmit
0\77[3.

At the end of the first sub-phase, as shown in Section V-B,
each leader user can recover its desired file.

For the non-leaders, we focus on user 6. By Lemma 1,
user 6 can decode W, y, where 1 € S1, 1 € Vy, and 6 ¢
V1, by directly reading off (because in C'y, (6},s,\{1}> USer
6 caches all but W, y,). Hence, user 6 still needs to recover
Wsy where 1 € S and {1,6} NV = (.

In addition, for each j € [g(dg) + 1 : Ne(d)] = [2 : 5], user
6 can recover Wi1yus, {u,}uv, Where So N {dy,,...,dy;} =
0, Von{u,...,u;} = 0, and 6 ¢ Vs, by directly reading
off from Cyy, 6yuv,,s, transmitted in Step j of the first
sub-phase (because in Cy; 61uv,,s,, user 6 caches all but
Wi110S,, {u; }uv)-

In order to let each non-leader recover the remaining
sub-blocks of its desired file, we proceed the second delivery-
phase.

4) Second Delivery Sub-Phase: In Step j € [3] of the
second sub-phase, for each ¢ € [j + 1 : 4], each J C
(0] \ [g — 1J U {j}) where || =t +1 =4, {j ¢} € T,
JN[g+1 : 5] # (), and each B C [5]\[g] where |[B| =r—2 =1,
we transmit C 7 5.

The main objective of the second delivery sub-phase is to let
the non-leaders reconstruct the messages in Lemma 4, which
are generated by interference alignment. In the following,
we focus on the decodability of user 6, and show how user
6 reconstructs the messages in Lemma 4 and how it recovers
its desired sub-blocks from those messages.

Observe that leader g(dg) = 1 also demands F;, we show
the decodability of user 6 by induction. For induction step j' €
[9(ds)+1: Ne(d)] = [2 : 5], we prove that user 6 can recover
its desired sub-blocks Ws ) where duj, €SoruyeV.

We start from j = 2. In the following, we show that
user 6 can recover Wiy 93y, where {1,6} NV = 0 by
interference alignment (i.e., Wiy 23y 2.3.41, Wi1,2,3},{2,3,5}
W{172’3}1{274’5}, and W{1’2,3}7{3’475}). We divide the deCOding
of these 4 sub-blocks of Wiy 5 3y into three cases:

o We first focus on Wy 53y where {1,6} NV = () and
ujy =2 €V, eg, W23} 12,34 We will show that
user 6 can reconstruct 0{17273,4}7{1,3},9 from which it can
recover Wiy 23y (23,4}

In Step 1 of the first sub-phase, user 6 receives

Cr1,2,3.4),02.3) = Wii12.31,12.3.4) © Wi12.3),{1,3,4}

9This message is the message CJu{uj},Bu{z‘} with j = 1,7 = 1,
J = {2,3,4}, B = {3} in Lemma 4. Note that every sub-block in
Cf1,2,3,4},{1,3} is desired by user 6.
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@ Wii12.3),{1,2,4) D Wi23.4} (1,34}
® Wia3.4y,01,2,4) D Wi23.4},{1,2,3});
(36)

Ci1,2,3,4),03.4) = Wii3.4) 12,341 © W34y 1,24}

& Wi134y,(1,2,3) © Wi2,34},(1,3,4}

® Wi23.4y,(1,2,4) B Wi234},{1,2,3}
37

By summing (36) and (37), we can obtain

Ci1,2,34),{2.3) D C(1,2,3.4),(3,4}
= Wi1,2,3),{2.3.4) © Wi12.3),01,3.4) © Wi1,2.3),{1,2,4}

® Wii3.41,02,34) D Wi1,3,4),01,2,4) © Wi13,43,{1,2,3)
(38a)

= C1,2,3,4},{1.3}> (38b)

which shows the property in (34) in Lemma 4. It can be
seen by summing (36) and (37), we cancel the interfer-
ences from the sub-blocks of Wy, 34y to user 6. From
Lemma 1, user 6 can decode W, y, where 1 € S; and
1 € V;. In addition, in

Cr2,3,4,6),13.4) = Wi13.4) {2,460 © W(13.4),{2,3.6}
® Wii3.41,02,3,4) D Wi2,34) (3,46}

& Wia3ay.(2,4.61 B Wi234},(2.36)
(39
which is transmitted in Step 2 of the first sub-phase,
user 6 caches all except Wy 3.4} (2,3,4} such that it can
recover Wiy 3.4y (2,3.4) by directly reading off. Hence,
user 6 has decoded all except Wiy 23y 12,347 in (38a)
such that it can recover Wiy 23y (23,4} -
By similar steps, for each desired sub-block W, 5 3y v
where {16} NV = 0 and u;y = 2 € V,
user 6 first reconstructs Cy 1y {1,2,3}\{2} and then
recovers Wiy 531y from Cyugiy (12,3142}

o We then focus on Wiy 93y where {1,2,6} NV =
0, e.g., Wi1,2,3),13,4,5)- We will show that user 6 can
reconstruct 0{2737475}7{1,3},10 from which it can recover
Wii,2,3),43.4,5)-

In Step 1 of the first sub-phase, user 6 receives

Ci1,3,4,5),12.3) = Wi12.3),13.45) © Wi12.3) {1,455}
® Wia3.4y,01,4,5) D Wi23.4} (1,35}

® Wia351,11,4,5) D Wia.35),{1,3,4};
(40)

Cl1,2,35).43.4) = Wi1,3.4).{2.3.5) D Wi1,3.4).{1.2,5)
® Wi23.41,01,35) D Wi2,34),{1,2,5}
® Wisa51,01,2,5) D Wis45),{1,2,3});

(41)
Ci1,2,3.4),135) = Wii35),02.3.4) © Wi 351, {1,2,4}
® Wia351,41,3,4) D Wi2,35),{1,2,4}
& Wiz a5y.01,24) D Wi345),(1,2,3)-

42)

10This message is the message Cju{u].}’gu{i} with j = 2,7 = 1,
J = {3,4,5}, B = {3} in Lemma 4. Note that every sub-block in
C(2,3,4,5},{1,3} is desired by user 6.
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In Step 1 of the second sub-phase (with j = 1, ¢ = 2,
J =1{1,2,4,5}, B ={3}), user 6 receives

Cri2,45),03) = Wi1.2.3).02,4,5) © Wi12.3) (14,5}
® Wi134y.42,45) D Wi13.4),(1,2,5)
& Wi135y.02,4,5) D Wi135),(1,2,4)
& Wi 34y.(1,45) S Wi234},(1,2,5)
& Wia3s5y.(1,45) © W25 (1,24}
® Wisa5y.01,25) © Wisa5),(1,2,4)- (43)

By summing (40)-(43), we have

Cr13,4,5),{2,3) D C1,2,35),(34) © C(1,2,34},(3,5)

® Cf1,2,4,5,{3)

= Wii23),(3.45) © Wi12.3), (2,45} © Wi1,34},(2,4,5)

& Wi13,4y,02,35) D Wi135),12,45) D Wii35),(2,3.4)
(44a)

= C2,3.4,5),{1,3} (44b)

which shows the property in (33) in Lemma 4. Hence,
by (44b), user 6 can reconstruct Ca 345} 1,3} While
cancelling the interferences in (40)-(43), coinciding
with Lemma 4. We then focus on each sub-block in
Cr2,3,45),{1,3)- W{1,2,3},{2,.4,5} can be recovered by
user 6 as we showed previously for Wyy 3 3y 12,3 4). For
Wi1,3,4},{2,4,5), In

Cr2,4,5,6),(3.4) = Wi13.4) {2,560 © W(1,3.4) (2,45}
® Wi23.4y,04,5,6) D Wi23.4}) (2,56}

® Wiza51,02,56) D Wis4,5),{2,4,6}
(45)

which is transmitted in Step 2 of the first sub-phase,
user 6 caches all except Wy 3.4 (2,45} such that it can
recover Wiy 3.4y 124,51 by directly reading off. Similarly,
user 6 can recover Wy 3.4y 12.3,51> Wi1,3,5},42,4,5)> and
Wii13,5),42,3,4) from Step 2 of the first sub-phase by
directly reading off. Hence, in C'(2 3 4,5} {1,3}, user 6 has
recovered all except Wy 2 3} (34,57 such that user 6 can
recover Wry 23y (34,5} -

Finally, we consider Wy 5 3} (39,10}, Where dg = 4 and
dip = 5. Notice that, C(1 39 10},{3) 1S not transmitted
in the second sub-phase, because none of users 9,10 is
a leader, which contradicts the constraint on the trans-
mission of the second sub-phase (7 N[g+ 1 : 5] # 0
with ¢ = 2 and J = {1,2,9,10}). If user 6 can recon-
struct C12.9,10},43}» by the same decoding procedure
as Wy1 2.31,(3,4,5}» user 6 can recover 0{2’379710},{173},”
from which it can recover Wiy 23} 3.9,10j- So in
the following, we will prove user 6 can reconstruct
Cf1,2,0,10},43}» as described in Lemma 2.

Notice that 0{1,2’4’10}’{2’3} and 0{1’2’4,10},{3} are trans-
mitted in Step 1 of the first and second sub-phases,

"IThis message is the message C:]U{uj}’gu{i} with j = 2,7 = 1,
J = {3,9,10}, B = {3} in Lemma 4. Note that every sub-block in
C(2,3,9,10},{1,3} is desired by user 6.

respectively. Hence, user 6 can obtain

Ci1,2,4,101,42,3) D Cl1,2,4,101,43}
= Wi1,3,4),{2,4,10y © W1 3.4y,41,2,100 D Wi13,5),{2,4,10}
S Wi ssy(1.24) © Wisasy 1,210y @ Wisasy (1,243
(46)
On the RHS of (46), W{173’4}7{2’4,10} and
Wii3,5),42,4,10p can be recovered by user 6 from
0{2,476,10},{374} and 0{2,4,6710}7{3,5} transmitted in
Step 2 of the first sub-phase, respectively (by directly
reading Off). W{17374}7{172,10} and W{17375}7{172,4} can
be recovered by user 6 because they are cached by
user 1 and thus we can use Lemma 1.Item 2. Hence,
from (46), user 6 can recover

Wiz a5y.41,2,100 © Wis4.5),{1,2,4}- 47)
Similarly, user 6 can recover

Wiz asy (1,250 © Wisa5),{1,2,4) (48)

Wiz asy.41,2,50 © Wis451,{1,2,9) (49)

from Cy1 2.4,51,(2,3 DCh1,2,4,5),{3) and Cy1 2.8 5),12,3} D
Cf1,2,85),{3)» respectively. By summing (47)-(49),
user 6 can obtain

Wiza5y.41,2,100 © Wis4.5),{1,2,9}- (50)

Similar to (46), we have

Cf1,2,0,101,12,3) = Cf1,2,9,10},(3} & W(1,3,4},12,9,10}
& Wi1,3.43,{1,2,10) © Wi1,35),02,9,10) © Wi1.3,5),{1,2,9}
® Wisa51,{1,2,10) D Wi3,45},11,2,9)- (51)

On the RHS of (51), C{1,2,9,10},{2,3} is transmitted in
Step 1 of the first sub-phase. In addition, Wy 343 (29,10}
and Wiy 3551 (2,9,10) can be recovered by user 6 from
0{2,679,10},{374} and 0{2,6,9,10},{3,5} transmitted in
Step 2 of the first sub-phase, respectively (by directly
reading Off) W{173,4}7{172710} and W{173,5}7{1,279} can be
recovered by user 6 because they are cached by user 1 and
thus we can use Lemma 1.Item 2. We also proved in (50)
that Wis 4.53,11,2,10y D W{3,4,5},{1,2,9) can be recovered
by user 6. Hence, user 6 can reconstruct C1 2.9,10},{3}
and thus it can recover Wy 5 3} (3.9,10}-

By similar steps, for each desired sub-block Wy, 5 3y
where {1,2,6} NV = (), user 6 first reconstructs
Cyvuq2},{1,2,3}\{2) and then recovers Wy, 5 3\ from
Cvuiay{1.2,3)\{2}-

Hence, we proved that user 6 can recover Wy o 33. Sim-
ilarly, we can prove that user 6 can recover Ws where
{dk,duj,} ={1,2} CS.

For each desired sub-block Wsy where duj/ =2¢8S,
{1,6} NV =0, and u;» = 2 € V, user 6 can recover Wy y
from Cyyyey,s\f1} transmitted in Step u; = 2 of sub-phase
1 by directly reading off. Hence, we finished the proof of the
decodability of user 6 for j' = 2.

By the induction method, other desired blocks can also
be recovered by user 6 with the above decoding procedure.
Similarly, the other non-leaders can also recover their desired
file from the delivery.
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5) Performance: The achieved load is 41/36 ~ 1.139 while
the converse bound in Theorem 1 is 707/720 ~ 0.982 and the
achieved load in [21] is 7/6 ~ 1.167.

E. Proof of Theorem 4

For type Ds where s € [min{K, N}] and each corner point
Ni

M = & where t € [0 : K], from Theorem 3, we can achieve
the load in (52g), shown at the bottom of the next page,
where (52d), shown at the bottom of the next page, comes
from the Pascal’s triangle and (52g) comes from the converse
bound in Theorem 1. Hence, we proved that the proposed
caching scheme in Theorem 3 is order optimal to within a
factor of 2 under the constraint of uncoded cache placement
for demand type D;.

Similarly, we can prove that the average load among all
possible demands in Theorem 3 is order optimal to within a

factor of 2 under the constraint of uncoded cache placement.

FE. Proof of Theorem 5

From the decodability proof of the proposed scheme with
two delivery sub-phases, we have the following observations,
which are proved in Appendix E-C and will help us to further
reduce the load for some special cases:

1) Observation 1: when r = 2 or ¢ = 1, the transmission of
the second sub-phase does not exist and thus each user
can recover its desired file from the first sub-phase.

2) Observation 2: for a non-leader k, to decode Wy
where dy € S, {du,,...,du,,, ,} NS = 0 and
{k,u1,...,ug@} NV = 0, if there is no user in
V whose demanded file is in {du,,...,du,,  ,}. the
multicast messages in the first sub-phase, in Step g(dy)
of the second sub-phase, and in Step g(d) in Lemma 2,
are enough for user k.

3) Observation 3: for a non-leader k, to decode Ws y
where dy € S, {du,... du,,, ,} NS = 0,
{k:,ul, . ,ug(dk)} NY = 0, and (kaey{dk/}) N (S \
{dr}) = 0, user k only needs the transmission of the
first sub-phase.

In the following, we will show if r € {1,2,N — 1,N} or
t€{0,1,2,K—1,K} or s € [min{K, N, 4}], the transmission
of the second sub-phase is not needed. Notice that the load
of the first sub-phase (i.e., c¢f) coincides with the proposed
converse bound in Theorem 1 (i.e., R}(M,s)). Hence, for the
above cases, the transmission of the first sub-phase is optimal
under the constraint of uncoded cache placement.

When r € {1,N}, the considered problem is equivalent to
the MAN caching problem, the first sub-phase is equivalent
to the caching scheme in [4], which is optimal under the
constraint of uncoded cache placement.

When t € {0,K}, it is simple to achieve the optimality by
transmitting all demanded files or nothing.

When r = 2 or ¢ = 1, as shown in Observation 1, each
non-leader can recover its desired files from the transmission
of the first sub-phase.

When ¢t = K—1, there is only one step in the first sub-phase.
By Lemma 1.Item 2, it can be seen that any non-leader can
recover its desired blocks from Step 1 of the first sub-phase.
Hence, the second sub-phase is not necessary.
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We now consider r = N—1 or ¢ = 2 and let each non-leader
k recover Ws y where di, € S, {dy,,-- -, dug(dk)—l} NS=10
and {k,uy,...,ugqg,)} NV = 0, by the transmission of the
first sub-phase. The fact that the first sub-phase is enough for
these two cases, is because user k can reconstruct its required
the multicast messages transmitted in the second sub-phase,
from the first sub-phase. The detail of the decodability proof
for these two cases could be found in Appendix F.

In conclusion, for the cases where r € {1,2,N — 1, N} or
t € {1,2,K — 1,K}, we proved that from the first delivery
sub-phase, each user can recover its desired file. Comparing
the converse bound in Theorem 1 and the achieved load
(given in Section V-F), we have the optimality for Theo-
rem 5.Case 1 where r € {1,2,N — 1, N}. The optimality for
Theorem 5.Case 2 where either KrM/N < 2 or KrM/N >
K—1, is due to the fact that in the converse bound (10), civ o(d)
is convex in terms of ¢ and when ¢ € {0,1,2,K — 1,K}, our
proposed scheme is optimal.

Finally, we will prove the optimality of R’ (M, s) for The-
orem 5.Case 3 where s € [min{K,N,4}]. We consider the
following two cases.

1) min{K,N} < 4. Theorem 5.Case 1 covers all possible
values of r when 3 > N — 1, and Theorem 5.Case 2
covers all possible values of M when 3 > K— 1. Hence,
when min{K, N} < 4, we can prove the optimality.

2) min{K,N} > 4. In this case, s = |[Na([K])| < 4.
For each subset of files 7 C [N] \ Na([K]) where
r—4 < |7T| < r, we can gather all blocks Ws where
S C N, [S] =r, S\ Na([K]) = 7. The proposed first
delivery sub-phase on these blocks is equivalent to the
first delivery sub-phase for Nj([K]) = N = s, K' =K,
r' =r—|T|, and ¢’ = ¢. Since we proved the decodability
of the proposed first delivery sub-phase for the system
including up to 4 files, we can prove the blocks in this
group can be recovered by the demanding users. Hence,
we prove that each user can recover its desired file from
the first delivery sub-phase.

As aresult, we proved that when s € [min{K, N, 4}], each user
can recover its desired file from the first delivery sub-phase,
and thus we proved the optimality for Theorem 5.Case 3.

VI. CONCLUSION

In this paper, we studied the coded caching problem with
correlated files of combinatorial overlaps and aimed to mini-
mize the average load over the uniform demand distribution.
We proposed a converse bound under the constraint of uncoded
cache placement and a new coded caching scheme based on
interference alignment, containing two sub-phases. For any
demand type, under the constraint of uncoded cache place-
ment, our caching scheme is optimal to within a factor of 2.
For the demand type Ds where s = K or s € [min{K, N, 4}],
or for the case with any demand type with r € {1,2,N—1,N}
or KrM < 2N or KrM > (K — 1)N, the first sub-phase of the
proposed scheme is decodable and optimal under the constraint
of uncoded cache placement. As an extension, the above exact
and order optimal results can be extended to the worst-case
loads. As by-products, we showed that the proposed strategy
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which jointly serves the users’ demands reduces the load of
existing schemes for the coded caching problem with multiple
requests; the proposed scheme for distinct demands can be also
extended to the coded distributed computing problem with a
central server, which achieves the optimal transmission load
over the binary field.

APPENDIX A
PROOF OF LEMMA 1

For a given demand vector d, let s = Ne(d), jmax =
min{s,N — r + 1,K — ¢}, and order the leader users as
(u1,...,us). Recall that in Step j € [jmax] Of delivery
sub-phase 1 of the scheme in (11) we satisfy the demand
of leader user u; as follows: for each set of users J C
[K] \ {u1,...,uj_1} such that |J| = ¢t + 1 and u; € J,
and for each set of files B C [N] \ {dy,,...,dy,} such that
|B| = r— 1, we transmit the multicast message in (28), which
we re-write as

S0 kGJG:?lkgB BU{d},T\{k} (530)
® & (W
ke Tdpen\  BUTdu; T\ kY
\ Wao ) (53b)
iENa(TI\(BU{du, }) Bu{i},T\{k}

By construction (i.e., dy; ¢ B), C7 5 in (53) contains only
one sub-block desired by user u; (which is WBU{duj 1T\, })s
while all other sub-blocks in C's s are in its cache. Based on
this observation, we introduce the following terminology:

Directly read off. The observation made for leader user u;
actually holds for every user k € J where di, ¢ B (i.e., term
in (53a)). Thus, we say that user k ‘directly reads off’ its
desired sub-block Wp(q, 1,7\ (%} from the multicast message
Cyr.B.

Indirectly read off. For user k € J where d, € B, its
desired sub-blocks appear in C';s g as the linear combination
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WBU{duj 1LI\{k} T+ WBU{i},J\{k} (i.e., term

iENd(J)\G?BU{duj})
in (53b)), while the other sub-blocks appearing in C 7 g are
cached by user k. We will prove later that user k can recover
WBu{i},j\{k} where ¢ € Nd(j)\(lg U {duJ}) from other
multicast messages. Thus user k£ can ‘indirectly read off” its
desired sub-block WBu{du,j 1,7\ {%} from the multicast message
ij[j’. '
Lemma 1 is proved by induction.

A. Step 1

Lemma 1.Item 1: We focus on one set of users J C
[K] where |J| = ¢+ 1 and u; € J, and one set of files
B C [N]\ {dy, } where |B| =r— 1. We will prove that from
Step 1, each user in k € J can recover all sub-blocks in C7 3.
We consider two cases:

e dy, ¢ B: in Cyp user k caches all sub-blocks
except Wpuia,y,7\(r}- Hence, user k can recover
Wiugd, 1,7\ (k) by directly reading off.

e di € B:in Cy g user k caches all sub-blocks except
WBU{i},J\{k}v where ¢ € Nd(j) \ B.

- If ¢ # dy,, user k can recover Wpy(4), 7\ (x} from
C7,(BUfi})\{dx} by directly reading off as the similar
reason described in the above case.

- If ¢ = d,,, since we proved that user k can recover
all sub-blocks in Cyp except Wgyuid, }.7\{k}>
then it can be seen that user k£ can recover
Wgu{dul}, J\{k} by indirectly reading off.

In conclusion, user k can recover all sub-blocks in C'7 3.

Hence, we proved Lemma 1.Item 1 for Step 1.

Lemma I.Item 2: Note that user u; can recover Wy
where d,,, € S and u; € V, from its cache. Hence, in the
following, we will prove that any user k& € ([K] \ {u1}) can
recover each Wsy where d, € S, up € V and k ¢ V, from
Step 1. We consider two cases:

S S
¢ t+e;

r—1 q=j+1

(V) () + SR () - () (0 - (5)

= - (52a)
je[min{s,Nz:r+1,Kt}] ('l\'l—ll) (Ij)
() + Sl (o )
< J+1_ r—2/)\t—1 (52b)
je[min{s,NZ—r—Q—l,K—t}] (':1711) (I;)
(o) () + i T () (Y
< _ (52¢)
jE[min{s,NZ—r+1,K—t}] ('I\’l—ll) (tf()
G ) + CD 2
< i (52d)
jE[Irlirl{s,NZ—r+1,K—t}] (':1—11) (PI‘()
G ()
je[rnin{s,E-‘rl,K—t}] (':I—ll) (I:)
= 2¢] (52f)
< 2R:(M,s), (52g)
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e dy, ¢ S. We can see that Wsy appears in

Cyu{k},s\{dy}- By Lemma L.Item 1 for Step 1, we prove

that user k£ can recover Ws y.

e d,, € S We can see that Wsy appears in

CVU{k},S\{du1}~ By Lemma 1.Item 1 for Step 1, we prove

that user k can recover W y.

Hence, we proved Lemma 1.Item 2 for Step 1.

Lemma 1.Item 3: We then focus on one user k& whose
demanded file is in [N]\{d., }, and one sub-block Ws 1, where
{dg,du,} € S and {u1,k} NV =0. In CVU{ul},S\{dul}’ all
sub-blocks are desired by user k& while only one of them is
desired by user u; (which is Ws ) and the others are cached
by user u;. From Lemma 1.Item 2 for Step 1, user k£ has
recovered all desired sub-blocks which are cached by user
uy, and thus user k can recover W,y from Cyu(u,},5\{d., }-
Hence, we proved Lemma 1.Item 3 for Step 1.

In summary, we proved Lemma 1 for Step 1.

B. Step j

We focus one j € [min{N.(d),N—r-+1, K—t}] and assume
that Lemma 1 holds for the first j — 1 steps. In the following,
we prove that Lemma 1 holds for Step j.

Lemma 1.Item 1: We focus on one set of users J C
(K] \ {u1,...,uj-1}) where |J| =t+1 and u; € J, and
one set of files B C ([N]\ {d.,,....dy;}) where |B] =r—1.
We will prove that from the transmission until Step j, each
user in k € J can recover all sub-blocks in C; g. We consider
two cases:

e d, ¢ B. In this case, in Cy 3 user k caches all
sub-blocks except Wiyya, 1,7\ (x}- Hence, user k can
recover Wiy(q,3,7\{x} by directly reading off.

o di € B. In this case, di & {du,,...,dy,}. In Cs 5 user
k caches all sub-blocks except Wpyyiy, 7\ {x}» Where i €
Na(J)\ B.

- If i € {du,,...,dy,_,}. by the induction assump-
tion, user k has already recovered the whole block
Wasugiy-
-If i« ¢ {du,...,dy;}, user k can recover
WBU{i},J\{k} from CJ,(BU{i})\{dk} transmitted in
Step j by directly reading off.
- Ifi= du]., in Cy g user k has cached or recovered
all sub-blocks except WBU{d“j}, J\{k}- Hence, user
k can recover WBU{d“j 1,7\{k} by indirectly reading
off.
In conclusion, user & can recover all sub-blocks in C 7 g, and
thus we proved Lemma 1.Item 1 for Step j.

Lemma 1.Item 2: Note that user u; can recover Ws y
where d, € S and u; € V, from its cache. Hence, in the
following, we will prove any user k € ([K] \ {u;}) where
dy & {du,,...,dy;_,}, can recover each W5y where dj, € S,
{du“... ,duj_l} ns = @, U S V, and {k,ul,...,uj_l} N
V = (), at the end of Step j. We consider two cases:

o dy; ¢ S. We can see that Wy, appears in Cyy(x},s\{d,.}
transmitted in Step j. By Lemma 1.Item | for Step 7,
we prove that user k can recover W y.

o dy; € S We can see that Wgsy
in Cvu{k}ys\{d“]} transmitted  in

appears
Step .
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By Lemma I.Item 1 for Step j, we prove that
user k can recover W y.

Hence, we proved Lemma 1.Item 2 for Step j.

Lemma 1.Item 3: We then focus on one user k& where
dp € (IN] \ {du,,...,dy;}), and one sub-block Ws y
where {di,dy,} € S, {du,,...,dy,_,} NS = 0, and
{kyui,...,u;} NV = 0. In Cvu{uj},S\{duj} transmitted in
Step j, all sub-blocks are desired by user k, while only one of
them is desired by user u; (which is W 1)) and the others are
cached by user u;. From Lemma 1.Item 2 for Step j, user k
has recovered all desired sub-blocks which are cached by user
u;, and thus user %k can recover Ws y from CVU{uj},S\{duj}'
Hence, we proved Lemma 1.Item 3 for Step j.

In conclusion, we proved Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Focus on Step j € [min{N¢(d),N —r + 1,K — ¢}] and
ge+1:mn{N—-r+2K-=—t+1 N(d)}]. We will
prove that each user k with dy, = d,; can recover Cyz s, for
each J C [K]\ (£(d) \ {u;,uq}) where |J| =t + 1 and
{uj,uq} € J, and each B C ([N] \ {dy,,...,dy,}) where
IB| = r—2 and BN Ng([K]) # 0, at the end of Step j of
sub-phase 2.

Let J' = J \ {uj,ug}. It can be seen that J' only
contains non-leaders. Recall that NVg(7) is the union set of
files demanded by the users in 7, and L£4(7) is the union
set of leader users demanding the files in Ng(7). Given J’,
we define a family of sets % (J’) containing each set J' U
(La(T)\{uj, ug)\F, where F C J'U(La(T")\{u;,uq}),
7] = 1£a(T )N\ g, uq}| and Na(F) = Na(T")\{du; , du, }-
In plain words, for each file in Ng(J')\{dy,, du, }, we replace
one or zero user in J' demanding this file by the leader
user demanding this file; the resulting set is a set in Z#(J’).
For example, J' = {5,6,7,8} where d,, = 1, d,, = 2,
ds = dg = 3, d7 = 4, and dg = 2. Assume that the leader user
demanding F3 is user 3 and the leader user demanding F} is
user 4. After replacing users 5,7 in [’ by users 3, 4, we obtain
the set {3,4,6,8} € .#(J’). Similarly, in this example we
have

F(J')=1{{3,4,6,8},{3,4,5,8},{3,6,7,8},{3,5,7,8},
{4,5,6,8},{5,6,7,8} }.

For each J; € Z(J'), with a slight abuse of notation,
we let

= @ D W, . Y.
Qn WET SCNa(T)UB\(du, duy ) 1O wa MK

BCS,d, €S
54

In plain words, 7, is obtained by removing all sub-blocks
in the blocks desired by user u; or u, from Cgz, gy, u,},58-
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By definition, we have

Cufusugh B D Crufuyug},Bulugy @ Lo

W ERU{us} SCNa(TaU{u, DUBN (dy ) TR
BCS,dy €8
@ 9y (55a)

= @ @
k' €J1U{u;} SC(Na(J1U{u; UB)\{du, }:
BCS {dys,du;}CS

W, 10qu; ug )\ {k'}+

(55b)

On the RHS of (55b), if &' # wj, Ws 7,0fu;u, )\ (&'} 1S
cached by u; and by Lemma 1.Item 2, user k can recover
Ws. 7,0 {u; ug i\ {k'}- We then consider k" = u; and focus on
Ws, 7,01u; ug\ (k' = Ws,710{u,}- Since uy ¢ S, it will be
proved later in Remark 6 that W, 7,(.,) can be recovered
by user k at the end of Step g(dy) = j of sub-phase 2. Hence,
user k can reconstruct the RHS of (55b) at the end of Step
g(dy) = j of sub-phase 2.

In addition, for each J, € F#(J’) where Jo # J', since
there exists at least one leader in J5, it can be seen that
C 70wy ug},BUfugy a0 Cz,ugy; 0,5 are received in (or
before) Step j of the first and second sub-phases, respectively.
Hence, user k can reconstruct Q 7, from (55b) at the end of
Step j of sub-phase 2.

At the end of this proof, we will prove the following
equation.

=0. (56)

D J1

TJLeF(T)
In (56), all the messages except Qs are recovered by user
k such that each user can reconstruct Qs . In addition,
C7104u; uq)Bufugy = C7.BU{u,) 1S transmitted in Step j of
the first sub-phase. Hence, from (55b), user k£ can reconstruct
C7'0{u, uy},8 = C7,5 at the end of Step j of sub-phase 2.

Finally, we will prove (56). We focus on any sub-block
Ws,y in (56) and assume that Wsy is in Q,, which is
desired by user kq. Hence, k1 € J1, V = J1U{u;, ugs}\{k1},
and dy, ¢ {dy,,d,,}. By the construction of .7 (J’), there
exists only one user in J' U {uy(q,,)} demanding dy,, who
is not in J;. We assume that this user is ko. It can be
seen that Wy desired by ko, is also in Qy, where Jo =
J1U{ka}\{k1}. In addition, except [J; and Ja, there does not
exist other J5 € .Z (J') where Q, contains Wy, because
V\{dy,,dy,} = J1 \ {k1} cannot be a subset of J3. Hence,
W,y appears twice in (56) and we proved (56).

APPENDIX C
PROOF OF LEMMA 3
A. Proof of (33)

Focus on one J C [K] where || = t+ 1, and one B C [N]
where |B| = r— 1. To prove (33), it is equivalent to prove that

ke Tt oy T MEDH 0 LBV} 57
for any i € B where ug;y ¢ J. We define R = J U {ug(;}-

Since ug(;y ¢ J and |J| =t + 1, we have |[R| =t + 2. Any
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Crx in (57), should satisfy 7 C R and |[R\ 7| = 1. The
desired file of the user in R\ 7, is in H. In addition, if C'r, 3,
and C', 3, are in (57), we can see that 77 # 7.

We focus one sub-block Wy in (57) and assume that C'7
contains Ws . Hence, we have § C Na(T)UH,V C T,
|7 \ V| = 1, and the user in 7 \ V (assumed to be user k')
desires the sub-block W y. In addition, since k' € 7 C R
and [R\ 7| =1, assuming k; € R\ 7, we have dj,, € H and
thus Ws y is also desired by user k;. Hence, it can be seen
that Cvu{kl},H\{dh}u{dk,} is also in (57), and Wy desired
by user ki is in CVU{kl},H\{dkl}U{dkf}‘ Except C'7 1 and
CVU{k1}7H\{dk1}U{dk/}’ there does not exist any other C'7; 7,
in (57) containing Ws y; this is because except 7 and V U
{k1}, there does not exist any other 7; C R where |T;| =
|R|—1and ¥V C 77 (noticing that V C R and |V| = |R| —2).

In conclusion, each sub-block in (57) appears twice in (57),
and thus we proved (57).

B. Proof of (34)

Focus on one J C [K] where | 7| = t+1, and one B C [N]
where |B| = r — 1 and Nq(J) N B # 0. To prove (34), it is
equivalent to prove that, for any i1 € Ng(J) N B,

Ca.B\fihuiy = 0. (58)

D
i€(Na(I)\B)U{i1}

Assume that C'y 5 appears on the LHS of (58). Thus we
have (B\ {i1}) C H and |H \ (B\ {i1})| = 1. In addition,
the file in H \ (B\ {41}), is also in (Na(J) \ B) U {i1}.

We focus one sub-block Wy, which is in Cz . Thus
H C S and [S\H| =1 (we assume the file in S\ H is ¢').
In addition, we have (B\ {i1}) C H and |[H\ (B\{i1})| =1
(we assume the file in H\ (B\{i1}) is ¢’"). As described before,
i is (Na(J) \ B) U {i1} and thus file F;~ is demanded by
some user in J (recall that i; € Ng(J)NB). Hence, it can be
seen that Wy is also in C 7 3\ firyuqiy- Except C7 9 and
C7 w1\ {iyu{i'y» there does not exist any other C'7 3¢, in (58)
containing W y; this is because except H and H\ {i"}U{i'}
there does not exist any other Hy; C S where (B \ {i1}) C
Hi and [Hy| = |S| — 1 (noticing that (B \ {i1}) € S and
B\ {ir}] = IS| - 2.

In conclusion, each sub-block in (58) appears twice in (58),
and thus we proved (58).

APPENDIX D
PROOF OF LEMMA 4

We use the induction method to prove Lemma 4.

j = 1. We will prove that each user can reconstruct
Crufui}.Bud,,y Where J C [K]\ {ui}, |[T| = t, B C
INJ\ {du, }, |B] =r—2, and Ng(J N L(d)) \ B # 0.

By (34) in Lemma 3, we have

Crufu},Bufis}>
(59)

TU{u1},BU{du, } in€Na(TI\(BU{du, })

where each Cryqy,},8ufi,} 1S transmitted in Step j =
1 of the first sub-phase. Hence, each user can reconstruct

C0{us },BU{du, }-
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je2: min{N( ), N—r+1, K—t}]. Assume that for each
j € j—1 and i' € {du,,...,du, }, each user has recon-
structed C'z/¢u,,},8/01i1} Where J C K]\ {u, .o uy ),
T = 1. B <IN {duy. ). [B] = ¢~ 2, and
Na(T'nL(d)) \ B #0.

Now fori € {dy,,...,dy, }, we want to prove that each user
can reconstruct Czygy,1,8u¢:3 Where 7 C [K]\ {u1, ..., u;},
|T|=1t, BC[NJ\{du,,---,duy,}, Bl =r—2, and Nq(J N
L(d))\ B # 0.

We first consider the case where i € {du,,...,du,_,}.
By (33) in Lemma 3, we have

(60)

Cautu;y,Bufiy = Cautus ugi M\ {k},BU{dy}-

@D
keTU{u;}
For each k € J U {u;},

o if dp € {dy,,...,dy, ,}, each user can reconstruct
Oju{uj’ug(i)}\{k}’gu{dk} by the induction assumption
(by letting j' = ug(;), i’ = dp, J' = T U{u;}\{k}, and
B' = B);

o if dk ¢ {dul,...,dujfl} and dk ¢ B,
CIUfu; ugy I\ {k},BULdy} 1S transmitted in Step g(i) of
the first sub-phase;

o if dp ¢ {du,,...,dy; ,} and d}, € B, since Nq(J N
L(d))\ B # (), we can see that there exists one leader in
J \ {k} whose demanded file is not in B. Thus in this
case, Crufu;uyeo Nk} BU{dR} = CTU{us 0 )\ (k)5 1S
transmitted in Step g(i) of the second sub-phase.

Hence, each user can recover C7yu;},80{i}-
We then focus on the case 7 = duj, and consider
CJU{u].}’BU{d“j}. By (34) in Lemma 3, we have

C7U{u;3,Bufis}-
(61)

On the RHS of (61), if iy € {dy,,...,dy;_,}, it has been
proved in (60) that C7yu,},80u(i,) can be reconstructed
by each user; otherwise, Cz7yqu,},B8u{i,} 18 transmitted in
Step j of the first sub-phase. Hence, each user can recover
Cautu;}.Buidy, }-

Remark 5: Notice that to prove Lemma 4, the condition
Na(T N L(d))\ B # 0 and the transmission in the second
sub-phase are only used when there exists some user k €
J U{u;} whose demanded file is in B (i.e., di, € B in (60)).

Hence, for each j € [min{N.(d),N —r +1,K — ¢}] and
each i € {dy,,...,dy,}, by using the transmission in the
first sub-phase, each user can recover Czyqy,},8u{i}, Where

Cr0gu, wt = v
TU{u;}Bu{d; } i2€Na(T)\(BU{du,})

J C K\ {us,- .., :t,Bg([N}\{dul,...,duj}),
IB| =r—2, and Ng(J)N B = 0. O
APPENDIX E
PROOF OF DECODABILITY OF THE GENERAL SCHEME IN
SECTION V-C

Now we are ready to prove the decodability of each non-
leader k. In other words, we want to prove that it can decode
Wsy where dj, € S, {du,,....du,,,, ,} NS = 0 and
{k,u1,...,ug@} NV = 0 (in Lemma 1 we showed that
the other desired sub-blocks could be decoded by user k from
the transmission of the first sub-phase). We consider two cases,
SN Na([K])[ > 1 and |S N Na(K])| = 1.

6395

A [SNNg(K])| > 1

Among all desired sub-blocks in this case, we use the
induction method to prove for each j € [g(di) + 1
min{Ng(d),N — r + 2, K — ¢ 4+ 1}], user k can recover its
desired sub-blocks Ws y (ie., d. € S) where d,; € S or
u; € V.

Induction on j = g(dy,) + 1. We consider three cases:

e u; € Vand dy; ¢ S. In Cyygxy,s\{a,} transmitted in
Step j of the ﬁrst sub-phase, user k caches all sub-blocks
except Wy and thus it can recover Wsy by directly
reading off.

e uj €V and d,; € S. Since u; € V, by Lemma 4 it can
be seen that user k can reconstruct CVU{ug(dk)} S\{du,}
at the end of Step g(dy) of sub-phase 2.'?

In CVU{u () 1S\ {du, > all sub-blocks are desired by user
k. In addition, all sub-blocks desired by user k& which are
cached by user ugy(q,), can be recovered by user k by
Lemma I.Item 2.

The sub-blocks in Cvu{ug< ap 1S\{du; } which are not
cached by user u g(dy)» A€ all cached by user u; (because
u; € V). For each i € Ng(V) \ (S \ {du,}), the sub-
block WS\{du]- Yu{i},v is in CVU{ug(dk)}VS\{du]‘} which is
desired (and not cached) by user ug(g,)-

If i # dy,, since dy; ¢ (S \ {dy;} U {i}) and
u; €V, we proved in the first case that WS\{d JUfiv
can be recovered by user k; otherwise, the sub-block
Was\(d.,yutiy.v 18 Ws,v. Hence, in Cyuu, i, )}.8\(du, }»
only sub-block Wi,y is not recovered by user £, such that
user k can recover W y.

e uj ¢ V and d,;, € S. We first prove that user &k can
reconstruct CVU{Uj},S\{duj}' From (33) in Lemma 3,
we have

CVufu;},8\{du, }

CVUtuy gy Mk (S\{du,

5ode})U{dk, }
(62)

D
k1€(VU{u;})

For each k1 € (VU {u;}) in (62),
— sub-case 1: if k; = u;, we have

CVULuy g k1 1 (S\{du; di HULd, }
= CVUfuga, ) 1S\ {di}s

which is transmitted in Step g(dj) of the first sub-
phase;

— sub-case 2: if k1 # u; and di, & {du,, ...
it can be seen that
CVU{uj,ugw,c)}\{kl},(S\{duj Jdi})U{dy, } 1S transmitted
either in Step g(dy) of the first sub-phase (if |(S \
{dy;,dr}) U{dy, }| = r—1) or Step g(dy) of the
second sub-phase (if [(S\ {dy,,dx}) U{dy, }| =r—
2 and (V\ {k1}) N Na([K]) # 0) or Step g(di) in

’duy(dk)}’

2From the proof of Lemma 4 in Appendix D, to reconstruct
Cvu{uq(d ) 1.8\ {du }> User k only needs to use sub-phase 1 and Step g(dy)
[ : J
of sub-phase 2. This is because dy, € S\{du; } and {du,, ..., dugia,)—1 n
S = ; thus in (60), we have i = d,.
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Lemma 2 (if [(S \ {du;,dr}) U {dy, }| =r —2 and
(W {k1}) N Na([K]) = 0);

— sub-case 3:if k1 # u; and dy, € {du,,...,du,,,}
by Lemma 4, Cyufu, uyay ) }\ (k1 }.(S\{du, di})U{d, }
can be reconstructed by user k at the end of Step
g(dy,) of sub-phase 2.'3

Hence, user k£ can recover each message on the RHS
of (62) and thus it can reconstruct Cyy 1y, },5\{d, hE

In Cyugu,y,8\{d., BE all sub-blocks are desired by user
k. For each ky € (Y U {u;}), if ko # u;, the desired
sub-blocks in CVU{UJLS\{%} by user k5 are stored by
user u;, which can be recovered by user k from the
transmission of the first sub-phase (as we proved above
for the case u; € V and d,, ¢ S). If ko = uy;, the desired
sub-block by user k2 is Ws . Hence, user k£ can recover
Wsy.

Induction on j € [g(dy) + 2 : min{Ne(d),N —r +2,K —
t+ 1}]. If there exists j' € [g(dk) +1: 5 — 1], where u; € V
or duj, € S, by the induction assumption, user k can recover
W, y; otherwise, we can use the similar proof by dividing
into three cases and using the induction assumption, to prove
user k can recover Wsy (for the sake of simplicity, we do
not repeat).

Remark 6: If there exists one leader in V (assumed to be
k") where dy, ¢ S, we can prove that user k can recover Ws y
without using Lemma 2.

More precisely, we focus on the case u; € V and du]. €S,
where Lemma 2 may be needed. In (62), for each k; € V
where dy, & {du,, ... du,, },if k1 # k', it can be seen that
W\ A{k1}) NNa(IK]) # 0 and thus Lemma 2 is not needed;
otherwise, we have k; = k" and |(S \ {dy,,dr}) U {dwp }| =
r — 1 such that Lemma 2 is not needed neither.

B. SO Na([K)| = 1

We can gather all blocks Ws: where &’ N ([N]\Wa([K])) =

N (IN] \ Na([K])). The transmission for these blocks is
equivalent to the MAN caching problem in [2] and thus from
the transmission of the first sub-phase on these blocks which
is equivalent to the optimal caching scheme in [4], each non-
leader can recover Ws y.

C. Proof of Observations

Proof of Observation 1: Recall that in Step j €
[min{N.(d),N — r + 1, K — ¢}] of sub-phase 2, we transmit
Cypwherege [j+1:min{N—r+2,K—t+1,N(d)}],
T € (KN, g1 JO{ug ), 7] = 141, {uj,u,} € 7,
T N {ugst, . un,@) # 0. B C N\ {du,,...,dy,}
|B| =r—2, and BN Na([K]) # 0.

When r = 2, the transmission of the second sub-phase does
not exist because |B] = r—2 = 0 and BNNg4([K]) # 0 cannot
hold simultaneously.

BFrom the proof of Lemma 4 in Appendix D, to reconstruct
CVU{“]‘aug(dk)}\{kl}v<s\{du,-»dk})u{dkl}’ user k only needs to use
sub-phase 1 and Step g(dklj of sub-phase 2. This is because di, €
{duys--- dug(d )} and {dul""’dug(dk)—l} NS = 0; thus in (60),

we have i = dkl
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When ¢ = 1, the transmission of the second sub-phase does
not exist because when | 7| =t +1 = 2, {u;,u,} € J and
J N {ugs1,. .., un,a)} # 0, cannot hold simultaneously.

Proof of Observation 2: We want to prove that
for a non-leader k, to decode Wsy where dp € S,
{du17""dug(dk)—l} ns = @ and {k,ul,...,ug(dk)} ny =
(), if there is no user in }V whose demanded file is in
{duy, ... duyq,, } user k only needs to use the transmission
of the first sub-phase, Step g(dy) of the second sub-phase and
Step g(dg) in Lemma 2.

Besides the transmission of the first sub-phase, Step g(dy)
of the second sub-phase and Step g(dj) in Lemma 2, other
steps of the second sub-phase may be needed only when we
use Lemma 4 to show that non-leader £ can reconstruct (sub-
case 3 in (62))

OV g a) P\ (k1 Y (S\ {du i} U{dy }
= CyUfuyugrag) k1 1. (8\{du, >

where di, € {du,,...,du,, , .}, as explained in Foot-
note 13. Hence, if there is no user in V whose demanded
file is in {du,,...,du,,, ,} non-leader k does not need to
use the transmission of other steps of the second sub-phase;
thus we proved Observation 2.

Proof of Observation 3: We want to prove that,
for a non-leader k, to decode Wsy, where d; € S,
{dul,... Ug(dy) }ﬂS—@ {k‘ul,...,ug(dk)}ﬁVZV),
and (Uklev{dk/}) (S \ {di}) = 0, user k only needs the
transmission of the first sub-phase.

If |[S N Na([K])| = 1, it has been proved that only the first
sub-phase is needed. Hence, in the following we consider |SN
Na([K])| > 1. We focus on the induction Step j € [g(dy)+1 :
min{Ne(d),N — r+ 2,K — ¢ 4+ 1}] in the decodability proof
in Appendix E-A, and consider the following cases:

o ifu; € Vandd,; ¢S, from the proof in Appendix E-A,

the first sub-phase is only needed;

o if uj € V and d,; € S, user k needs to reconstruct

CyULugay) 1S\ {du, 1. Since (Upep{di )N (S\ {di}) =

(), from Remark S we can see that CVU{u () 1S\ {du }
can be reconstructed by user k from the transmission of
the first sub-phase;

o finally we focus on u; ¢ V and d,, € S. In this case,

user k needs to recover the LHS of (62). On the RHS
of (62), for each k1 € (VU {u;}),

— if k1 = uy, the first sub-phase is only needed;

—if k1 # u; and di, ¢ {du,,...,du,,, } since
(Uwev{di}) N (S\ {d}) = 0, we have |(S\
{dy,,dr}) U {dg, }| = r—1 and thus we only need
the first sub-phase;

- if k1 =+ uj and d, €
{duyy -y dy Uy ,}» user k should reconstruct
Cvu{uj,uqu)}\{kl}w\{d Dl Since
(Ugrev{dr }) N (S '\ {dk} , from Remark 5
we can see that user k; can reconstruct
CVULu; g (k1 1S\ (du di ) U{dr, }  from  the

first sub-phase.
Hence, we proved Observation 3.
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APPENDIX F
PROOF OF THE DECODABILITY FORr =N —10ORt = 2

We now consider r = N — 1 or ¢t = 2 and prove
that each non-leader k can recover Wsy where d; € S,
{du1> ces ,dug(dk)_l}ﬂs = (Z) and {k,uh e 7ug(dk)}ﬂV = (Z),
from the first sub-phase. If Ng(V)N(S\{dx}) = 0, by Obser-
vation 3, user k can recover Ws y from the first sub-phase.
Hence, in the following, we focus on Ng (V)N (S\{dx}) # 0.
We consider two cases, Ng(V)N{d,,,...,d } =0 and

1 Qugay) 1
Na(W) N {du,;- - duyq,, .} # 0, respectively.

A. Nd(V) N {du17 e 7dug(dk)71} = @

By Observation 2, if user k£ obtain the multicast messages
in the first sub-phase, in Step g(dj) of the second sub-phase,
and in Step g(dj) in Lemma 2, it can recover Ws y. In the
following, we will prove that user k£ can reconstruct the
multicast messages in Step g(dj) of the second sub-phase and
in Step g(dx) in Lemma 2 by using the transmission of the
first sub-phase. In other words, we will prove that for each
integer ¢ € [g(dk) + 1 : min{N —r+ 2, K — ¢ + 1, Nc(d)}],
user k can reconstruct C's 5 from the first sub-phase, where
T (K a1} U g} |I] = ¢+ 1,
{ug(dk)vuq} cJ, BC [N] \ {dulv"'vduq}’ |B| =r—2,
and BN Ng([K]) # 0.

If there is no user in J \ {ug(a,), uq} Whose demand is
in [N] \ ({dk,dy,} U B), it can be seen that all sub-blocks
in Cg g are from Wgyya,,q,,}- Hence, we have Cyp =
C7,8u{d,,}» Which is transmitted in Step g(dx) of the first
sub-phase. Hence, in the following, we consider that there
exists some user in J \ {ug(q4,),uq} Whose demand is in
N\ ({dx, du, } U B).

For the case t = 2, we have |J \ {ug(q,), uq}| = 1; for
the case r = N — 1, we have |[B| = r—2 = N — 3 and
thus |[N] \ (BU {d,dy,})| = 1. Hence, when r = N — 1 or
t = 2, there is only one file in [N] \ ({dk,d.,} U B), which
is demanded by some user in J \ {ug(q,),uq}. We assume
that this file is <. It can be seen that all interferences in C 7 5
to user k, are from one block Wgyqa, 3. The sum of the
interferences in Cs s to user k is

‘U.q ’1/

I =
k1€ \{ug(ay) }:dky #di

WBU{du, it T\ (k- (63)

In addition, we also have

WaU{dy, i}, 7\ {ka}-

(64)

Cr5=Cg80{d,} ® S
k2 €T\ {uug bid,

We then consider the following cases:
o if i ¢ {du,,... . du, .}, in (64), C7 pu(d,,} 18 transmit-
ted in Step g(dy) of the first sub-phase.

- If ky # Ug(dy)» the sub-block WBU{dk,’i},J\{kg} is
desired by user k and cached by user u (g4, ). Thus by
Lemma 1.Item 2, user k& can recover this sub-block
from the transmission of the first sub-phase;

- if Ry = uga)s WBU{de,i}.0\{ug,) €aD be
recovered by user k from C’ju{k}\{ug(%)}ﬁu{i}
transmitted in Step ¢ of the first sub-phase, where
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in C’Ju{k}\{%(dw})gu{i} user k caches all except
WBU{dk,i},J\{ug(dk)} such that it can recover this
sub-block.
Hence, user k can reconstruct C ;7 g from the transmission
of the first sub-phase;

o if i € {du,,... ,du,,,, ,}, by Lemma LItem 3, we can
see that each sub-block Wisyya,, 13,7\ {2} in (64) is from
W5u{a,,iy» Which can be recovered by user k from the
first sub-phase. Hence, user £k can reconstruct Cz g from
the transmission of the first sub-phase;

oif i € {dgway+1,---5du, ,}, for each user
ks € T \ {uga,} where dp, #  di,
we focus on C‘ju{ug”)}\{ka}’gu{duq} which
is transmitted in Step g(dx) of the first sub-

phase. In CjU{ug(i)}\{k3}7BU{duq}’ since we have
|T \ {ug(d,) uqt| = 1 (for the case t = 2) or
|B] = N — 3 (for the case r = N — 1), it can be seen
that all sub-blocks are from either Wgyyq,, ,a,} OF
Wgu{duqyi}, and cached by either user ugy(g,) or user
Ug(i)-

By Lemma 1.Item 2, user k can recover the desired
sub-block cached by user u, (g, ) from the first sub-phase.
Each sub-block of Wgu{duq .y} cached by user ug(;) and
not by wug(g,) (assumed to be Wpyyq, ay},v7), can be
recovered by user k from Cvru{k}’gu{duq} (transmitted
in Step g(4) of the first sub-phase), because all sub-blocks
in CV/U{k}}BU{duq} except WBu{duq,dk},V’ are cached
by user k. Hence, in CJU{ug(i)}\{kg},BU{duq}v user k
can recover all sub-blocks of WBU{du,q7dk}' So user k
can recover the sum of the sub-blocks of Wy ya,, i} in
Cju{ug(i)}\{kg}ygu{duq} from the first sub-phase,

(ks) ks €T Uty J\ (ka by i L0 T O to @ P ks bak

(65)
By the similar proof as (57) and (58), we can prove that
I® &) I(ks) =0, (66)

kgGJ’U{uq}:dkS #dy,

from the fact that each sub-block in (66) appears twice
in (66). Hence, user k can recover I from the transmission
of the first sub-phase. In addition, by the definition,
we have

Cy.8=Cgpuiy ®Cgu{d,,y @1, (67)

where C7 gugiy and Cygr puga,,) are transmitted in
Step g(dg) of the first sub-phase. Hence, user k can
reconstruct C 7 g from the transmission of the first sub-
phase.
In conclusion, we proved that from the transmission of the
first sub-phase, user k can reconstruct C s g.
Hence, from Observation 2, user k can recover Ws ), where
NaW) N {duy,-..,d } = 0, from the transmission of

) PUg(dy)—1

the first sub-phase.

B. Nd(V) N {du” .. 7dug(dk)71} 75 0
For the case t = 2, since Ng(V) N (S \ {dr}) # 0,
Nd(v)m{dulﬂ .- "dug(dk)—l} # 0, {duu .- '7dug(dk)7l}ms =
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(), and |V| = 2, it can be seen that [Ng(V) \ S| = 1. For the
case r = N — 1, since Na(V) N {du,, ..., du,, , .} # 0,
{duyseooiduyy,, ,} NS =0, and [S| = r=N—1, it can
also be seen that [Ng(V) \ S| = 1. In addition, in both two
cases, since dj, € S, we have di, ¢ (Na(V)\S). Hence, when
t =2 or r = N — 1, the interferences in CVU{ug(dk)}7S\{dk:}
(transmitted in Step g(dy) of the first sub-phase) to user k are
all from the block Wsyiy\{d,}, Where we assume that ¢ is
the element in AMg(V) \ S. The sum of the interferences in

CVU{ug(dk)},S\{dk} to user k is

I'=

= &) (68)
K EVidy #dy,

WU e} VUlugian K'Y

For each user k&1 € V where di, # di, we focus on
CV\{kl}U{ugukwg(i)},S\{dk} which is transmitted in Step g(i)
of the first sub-phase. In CV\{kl}U{ug(dk),ugm},s\{dk}’ since
|[V| = 2 (for the case t = 2) or |[S| = N — 1 (for the case
r = N — 1), it can be seen that all sub-blocks are from either
Ws or Ws\ (4, 3uqi}- Each sub-block from Wy is cached by
either user wug(q,) Or user wug(;), which can be recovered by
user k£ from the first sub-phase, by Lemma 1.Item 2. Hence,
user k can recover the sum of the sub-blocks of W\ (4, 3ufi}

in CV\{h}U{ug(dk),uy(i)},S\{dk} as follows,

II k = @ W i ’ u Wiy Ve
(ks k’eV\{kl}u{ug(n}:dklidsk\{dk}u{ PR IO ) 0}
(69)
By the similar proof as (57) and (58), we can prove that
I's @ I'(k) =0, (70)

k1€V:dy, #dy,

from the fact that each sub-block in (70) appears twice in (70).
Hence, user k can reconstruct the sum of all interferences I’
in CVU{ug(dk,)},S\{dk}‘ Other sub-blocks in CVU{ug(dk)},S\{dk}
are from the block Ws which is desired by user k. In addition,
all these sub-blocks are cached by user ugy(q,) except Ws y.
By Lemma 1.Item 2, from the transmission of first sub-phase
user k can recover the sub-blocks of W which are cached by
user ug(q,,)- Hence, user k can also recover Ws y in the first
sub-phase.

APPENDIX G
CODES FOR EXTENSION TO CACHING WITH MULTIPLE
REQUESTS

For the coded caching problem with multiple requests
considered in [35] where each user demands L independent
and equal-length files, the proposed delivery scheme in [35]
was proved to be optimal under the constraint of the MAN
placement for most demands with K < 4, M = N/K, and
L = 2, except one demand for K = 3 and three demands for
K = 4. Different from the considered problem in this paper,
the demands are not generally symmetric for the coded caching
problem with multiple requests. Hence, for the coded caching
problem with multiple requests, we pick a set of leaders
such that each leader has at least one specific demanded file
which is not demanded by other leaders, and the union set of
demanded files by the leaders should be equal to the union
set of demanded files by all users. In addition, the number of
leaders should be as small as possible. We can then extend the
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proposed scheme for £ = 1 in order to achieve the optimality
for those four exceptional demands, by satisfying the demands
of leaders subsequently and aligning the interferences to non-
leaders simultaneously.

1) dy ={F1,F3},ds = {Fy, F3},and d3 = {F», F3} (case
D~ in [35]). We use the MAN placement and divide
each file F; where i € [N] into (':) non-overlapping and
equal-length subfiles, F; = {F; yy : W C [K], [ W| =t},
where ¢ = KM/N = 1. It can be seen this case is
equivalent to our considered (N,K,M,r) = (3,3,1,2)
shared-link caching problem with correlated files of
combinatorial overlaps. Hence, we can directly use the
proposed delivery phase in this paper to transmit the
linear combinations (with the permutation of leaders
(ur,uz) = (1,2))

Step 1: Fy {2y ® F1 (13, F1,37 © F3 (13,
F5 10y @ F3 1y, Fo 3y © Fa q1);
Step 2: F37{3} @ F37{2}.

Hence, the load is 5/3 which coincides with the converse
bound under the constraint of MAN placement in [35],
while the proposed caching scheme in [35] achieves 2.
d1 = {Fl,FQ}, dQ = {Fl,Fg}, dg = {FQ,Fg}, and
dq = {Fy, F5} (case D/5 in [35]). It can be seen that
if we only focus on the demands of users 1, 2,3, it is
equivalent to our considered (N,K,M,r) = (3,3,1,2)
shared-link caching problem with correlated files of
combinatorial overlaps. In addition, the demanded file
by user 4 are independent of any demanded file by users
1,2, 3. Hence, we first satisfy the demands of user 4 and
then use the codes for our considered (N,K,M,r) =
(3,3,1,2) shared-link caching problem with correlated
files of combinatorial overlaps. Thus we transmit (with
the permutation of leaders (uq,us,us) = (4,1,2))

2)

Step 1: Fy (13O F1 {4y, Fy(2)®F1 14y, Fu(3)©F3 (4},
F5 (1y®F5 14y, F5(2)©F3 14y, F5(3)BF> (4);
Fi 2y ® F1 1y, F1 3y ® F3 (13,
F5 10y @ F3 11y, Faq3) © Fo q1);

F 13y © F3 q2).

Step 2:

Step 3:

It can be checked that at the end of Step j € [3],
each leader user u; can recover its desired files by
directly reading off. The non-leader (user 3) can recover
F27{1}7 F27{4}, F37{1}, F3,{2}, F37{4} by directly reading
off, and recover Fj (97 by indirectly reading off. Hence,
the load is 11/4 which coincides with the converse
bound under the constraint of MAN placement in [35],
while the proposed caching scheme in [35] achieves 3.
d = {F,R), & = {F,F}, dy = {F,F},
and dy = {Fy, F3} (case D/, in [35]). We choose
the permutation of leaders as (3,4). Inspired from the
proposed scheme for ¢ = 1, the delivery contains two
steps where in the first and second steps, we satisfy the
demands of users 3 and 4, respectively.

In Step 1, we first let user 3 recover Fj. For each user
k € {1,2,4}, if Fy is demanded by user k, we transmit

3)
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4)

[1]

[2]
[3]

[4]

[5]

Fy (1) ®F1 (3); otherwise, we pick one demanded file by
user k& which is not F (assumed to be F};), and transmit
F1 ey © Fi g3y

We then let user 3 recover Fy. For each user k €
{1,2,4}, if Fy is demanded by user k, we transmit
Fy (1) © Fy (3y; otherwise, we pick one demanded file
by user k£ which is not F; nor F} (assumed to be Fj/),
and transmit Fyy 1y © Fy (3}

By this way, we transmit in the the steps (with the
permutation of leaders (u1,us2) = (3,4))

Step 1: Fy (13 © I g3y, Fi (2} © Fi g3y,
Fi 0y ® F5 (33, Funy @ I sy,
Fy 0y © F3 13y, Fu 4y © Fy q3);
Step 2: F37{1} ® F1,{4}, F3,{2} @ F3,{4}’
Fo i1y @ Fo qay, Fo 023 @ F a3

It can be checked that at the end of Step j € [2], each
leader user u; can recover its desired files by directly
reading off. For the non-leaders (users 1, 2), user 1 can
recover Fy (31, F1 14y, Fo (3}, F2, (4} by directly reading
off, and recover Fi (9}, F5 (o} by indirectly reading
off; user 2 can recover Fy 13y, F1 q4y, F3 43}, F3 4}
by directly reading off, and recover F (1}, F3 (1} by
indirectly reading off. Hence, the load is 10/4 which
coincides with the converse bound under the constraint
of MAN placement in [35], while the proposed caching
scheme in [35] achieves 11/4.
d1 = {Fl,FQ}, dg = {Fl,FQ}, dg = {Fth}, and
dy = {Fy, F5} (case DY in [35]). It can be seen that
this case is equivalent to our considered (N, K, M,r) =
(3,4, 1,2) shared-link caching problem with correlated
files of combinatorial overlaps. Hence, we can directly
use the proposed delivery phase in this paper to transmit
the linear combinations (with the permutation of leaders
(ul,u2) = (1, 3))

Step 1: Fy 2y © F1 {1y, Fh3y © F1 01y,

Fi 14y ® F5 1y, Foq0y © F2 1y,
F5 3y @ F3 1y, Fo 4y © Fy q1);
Step 2: ng{g} ® F27{3}, F37{4} 5>} F37{3}.

Hence, the load is 2, which coincides with the converse
bound under the constraint of MAN placement in [35],
while the proposed caching scheme in [35] achieves 9/4.
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