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Abstract

This paper considers the problem of kernel regression and classification with possibly un-

observable response variables in the data, where the mechanism that causes the absence of

information can depend on both predictors and the response variables. Our proposed approach

involves two steps: First we construct a family of models (possibly infinite dimensional) indexed

by the unknown parameter of the missing probability mechanism. In the second step, a search

is carried out to find the empirically optimal member of an appropriate cover (or subclass) of

the underlying family in the sense of minimizing the mean squared prediction error. The main

focus of the paper is to look into some of the theoretical properties of these estimators. The

issue of identifiability is also addressed. Our methods use a data-splitting approach which is

quite easy to implement. We also derive exponential bounds on the performance of the result-

ing estimators in terms of their deviations from the true regression curve in general Lp norms,

where we allow the size of the cover or subclass to diverge as the sample size n increases. These

bounds immediately yield various strong convergence results for the proposed estimators. As

an application of our findings, we consider the problem of statistical classification based on the

proposed regression estimators and also look into their rates of convergence under different set-

tings. Although this work is mainly stated for kernel-type estimators, it can also be extended

to other popular local-averaging methods such as nearest-neighbor and histogram estimators.

MSC2020 subject classifications: Primary 62G05; secondary 62G08
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1 Introduction

During the past decade, there has been a steady growing interest in developing appropriate proce-

dures to perform estimation and inference in the presence of incomplete data under the complex

regime where the data is not missing at random (NMAR). The NMAR setup is generally acknowl-

edged to be a difficult problem in incomplete data literature due to identifiability issues; this is
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significantly different from the simpler missing at random model where the absence of Y depends

on X only (and not Y itself).

The focus of this paper is on the theoretical performance of kernel regression and classification under

the realistic assumption that many response values in the data may be unavailable or missing.

Unobservable or incomplete data occur frequently in medical data, survey data, public opinion

polls, as well as the data collected in many areas of scientific activities. More specifically, let

(X, Y ) ∈ Rd×R be a random vector and consider the problem of estimating the regression function

m(x) = E(Y |X = x), based on n independent and identically distributed (iid) observations (Xi, Yi),

i = 1, . . . , n, drawn from the distribution of (X, Y ). When the data is fully observable, the classical

Nadaraya-Watson kernel estimator of m(x) (Nadaraya (1964), Watson (1964)) is given by

m̂n(x) =

∑n
i=1 YiK((x−Xi)/h)∑n
i=1K((x−Xi)/h)

, (1)

where the function K : Rd → R+ is the kernel used with the bandwidth h ≡ hn > 0. A global

measure of the accuracy of m̂n(·), as an estimator of m(·), is given by its Lp-type statistic

In(p) =

∫
|m̂n (x)−m (x)|p µ(dx), 1 ≤ p <∞ ,

where µ is the probability measure of X. The quantity In(1) plays an important role in statistical

classification; see for example Devroye et al (1996; Sec. 6.2) and Devroye and Krzyżak (1989). In

fact, in the cited paper, Devroye and Krzyżak obtain a number of equivalent results under the

assumption that |Y | ≤ L <∞, one of which states that if the kernel K is regular (see Definition 1)

then for every ϵ > 0 and n large enough, one has P {In(1) > ϵ} ≤ exp{−c n}, where c is a positive

constant depending on ϵ but not on n.

Now, suppose that the response variable Y is allowed to be missing according to the NMAR

mechanism. Define the indicator random variable ∆=0 if Y is missing, and ∆=1 otherwise.

Similarly, for i=1, · · · , n, let ∆i=0 if Yi is missing (and ∆i=1 otherwise). Then, it is not

hard to see that the estimator m̂n(x) in (1) is no longer available. Of course, one might de-

cide (incorrectly) to use the kernel estimator based on the complete cases only, i.e., the estimator

mcc
n (x) :=

∑n
i=1∆iYiK((x −Xi)/h)

/∑n
i=1∆iK((x −Xi)/h). Unfortunately, mcc

n (x) turns out to

be the estimator of the quantity E(∆Y |X = x)
/
E(∆|X = x) which, in general, is not equal to the

regression function m(x)=E(Y |X = x) under a NMAR response mechanism.

For the important case of predictive models (such as regression), Kim and Yu (2011) considered a

highly versatile logistic type missing probability mechanism that works as follows. Let π(x, y) :=

E
[
∆
∣∣X = x, Y = y

]
be the selection probability, also called the nonresponse propensity. Then,
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Kim and Yu (2011) considered the flexible model

πγ(x, y) := Eγ

[
∆
∣∣X = x, Y = y

]
= Pγ

{
∆ = 1

∣∣X = x, Y = y
}

=
1

1 + exp
{
g(x) + γy

} , (2)

indexed by the real parameter γ, where g is a completely unknown function of the predictor x

which also depends on γ. The true value of the unknown parameter γ will be denoted by γ∗.

It is well-understood in the framework of NMAR missing data that imposing parametric models

on both πγ(x, y) and the distribution of (X, Y ) is too strong to be useful in practice (Molenberghs

and Kenward (2007)). In fact, fully parametric models are sensitive to failure of the model assump-

tions (Little (1985)). On the other hand, in a fully nonparametric setup where πγ(x, y) and the

distribution of (X, Y ) are unknown, one faces the issue of non-identifiability when estimating the

function πγ (Shao and Wang (2016)). Some authors have assumed a fully parametric model for

πγ(x, y) only, but not the underlying distributions (Qin et al. (2002) and Wang et al (2014)), but

this is also considered to be too strong in practice. To deal with these issues, Kim and Yu (2011)

considered the semi-parametric model (2) as a reasonable compromised solution.

The missing probability mechanism (2) has been used and studied extensively in the literature; see,

for example, Zhao and Shao (2015), Shao and Wang (2016), Morikawa et al (2017), Uehara and

Kim (2018), Morikawa and Kim (2018), Morikawa and Kano (2018), Fang et al (2018), O’Brien

et al (2018), Maity et al (2019), Sadinle and Reiter (2019), Zhao et al (2019), Yuan et al (2020),

Chen et al (2020), Mojirsheibani (2021), and Liu and Yau (2021). In fact, in view of the recent

widespread use of model (2) in the literature, there appears to be the tacit consensus that (2) is

versatile enough to be used in predictive models such as regression and classification, and this will

also be the direction of the current paper. We observe that if γ=0, then (2) reduces to the simpler

case of missing at random assumption (MAR).

The problem of regression function estimation with NMAR missing data is generally considered

to be challenging. In fact, to the best of our knowledge, there are only a few results available in

the literature in this direction that also address the theoretical validity of their proposed methods.

These include the results of Niu et al (2014) and Guo et al (2019) for the case of linear regression,

those of Bindele et al (2018) to estimate β in the model E(Y |X = x) = g(x, β) , where g is

completely known, and the results of Li et al (2018) for parameter estimation in functional linear

regression. In the case of nonparametric regression, Mojirsheibani (2022) studied the asymptotic

distribution of the maximal deviation of kernel regression estimators. However, all of these results

assume the availability of either an independent validation sample or an independent follow-up

survey for estimating the parameters in (2). Furthermore, the current work does not assume

linearity of the underlying regression model.

Our contributions in this paper are three-fold. (i) We develop two types of easy-to-implement
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estimators of the regression curve m(x) in the presence of NMAR missing data. Additionally, we

consider a more general version of model (2) where the quantity exp{γy} will be replaced by a more

general positive function φ(y). We also propose estimators of φ(y). The new estimators, which

are based on the approximation theory of totally bounded classes of functions, are constructed

using a data-splitting approach. (ii) We will carefully explore and study the global properties of

the proposed regression estimators in general Lp norms; these results parallel those of Devroye and

Krzyżak (1989) for the simpler case of no missing data. More specifically, we provide exponential

performance bounds on the Lp norms of the proposed regression estimators that are valid under

rather standard assumption. Such bounds in conjunction with the Borel-Cantelli lemma imme-

diately yield various strong convergence and optimality results. Exploiting these bounds further,

we also look into the rates of convergence of the proposed estimators (in Lp). (iii) A study of

the applications of our proposed estimators to the problem of nonparametric classification in the

presence of partially observed data is also considered.

As an important application of our results to the field of machine learning and statistical classi-

fication, we note that in the so-called semi-supervised learning one usually has to deal with large

amounts of missing responses (or missing labels) in the data. In such setups, researchers in machine

learning have made efforts to develop procedures for utilizing the unlabeled cases (i.e., the data

points with missing Yi’s) in order to construct more effective classification rules; see, for example,

Wang and Shen (2007). But most such results assume that the response variable is missing com-

pletely at random; see, for example, Azizyan et al (2013). Our results in Section 3 make it possible

to develop classification rules in the presence of NMAR response variables for the semi-supervised

setup, where we also study the rates of convergence of such classifiers.

The rest of the paper is organized as follows. Section 2 presents the main results, where in Subsec-

tion 2.1 the estimation of the true γ∗ can be based on any available method. Subsection 2.1 also

proposes a generalization of the model (2), as given by (8), where new estimation methods based

on the theory of totally bounded classes of functions are employed. Subsection 2.2 uses a Horvitz-

Thompson type inverse weighting approach to estimate the underlying regression function. Section

3 focuses on the applications of our estimators to the problem of nonparametric classification with

partially observed data. All proofs are deferred to Section 4.

Throughout this paper, we denote by C,C ′, C0, C1, · · · , c, c′, c0, c1, · · · some real constants that are

strictly positive; also, for reals a and b, we use the notation a∨ b = max(a, b) and a∧ b = min(a, b).

For the ease of notation, when the events or random variables of interest involve the random variable

∆ or ∆i’s, the notations Pγ{·} and Eγ[ · ]
(
resp. Pφ{·} and Eφ[ · ]

)
will be used only when γ (resp.

φ) is different from the true parameter value γ∗ (resp. φ∗). Furthermore, for real sequences an and

bn> 0, the notation an=O(bn), as n→ ∞, means that |an|/bn is a bounded sequence in the sense
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that there are positive constants M and no such that |an| ≤M ·bn for all n ≥ no.

2 Main results

2.1 The first estimator and a more general missing mechanism

Consider the missing probability mechanism (2) and let Dn = {(X1, Y1,∆1), . . . , (Xn, Yn,∆n)} be

independent and identically distributed (iid) observations, i.e., the data. Then, clearly the estimator

m̂n in (1) is no longer available due to the presence of missing Yi’s. Furthermore, as discussed in the

introduction, the complete-case estimator that only uses the fully observable data is not necessarily

the correct estimator under model (2) anymore. In the following two sections, we propose some

alternative estimators instead. To justify our first estimator, we start by constructing an initial

naive plug-in type estimator which works as follows. Define the quantity

ηk(x, t) = E
[
∆Y 2−k exp{t Y }

∣∣∣X = x
]
, k = 1, 2, t ∈ R, (3)

and observe that when P{∆=1} ̸=1, i.e., when Y is allowed to be missing, one can use Lemma 1

(upon replacing φ∗(y) by exp{γ∗y} in this lemma) to express the regression curve m(x) as

m(x) ≡ mγ∗(x) = η1(x, 0) +
η1(x, γ

∗)

η2(x, γ∗)

(
1− η2(x, 0)

)
. (4)

Now, let γ̂ be any estimator of γ∗ and consider the following simple kernel-type estimator of (4)

m̂n,γ̂(x) = η̂1(x, 0) +
η̂1(x, γ̂)

η̂2(x, γ̂)

(
1− η̂2(x, 0)

)
, (5)

where

η̂k(x, t) =

∑n
i=1∆iY

2−k
i exp {t Yi}K((x−Xi)/h)∑n

i=1K((x−Xi)/h)
, k = 1, 2, t ∈ R, (6)

and, as in (1), K : Rd → R+ is the kernel used with bandwidth h. In passing, we also point out that

although we are considering a kernel type estimator in (5), virtually all our results in this paper

continue to hold for other popular local-averaging estimators such as nearest-neighbor estimators,

cubic histograms, as well as general partitioning estimators. However, to avoid making this work

unnecessarily long and tedious, the paper is confined to kernel estimators only.

How good of an estimator is m̂n,γ̂(x) in (5)? To answer this question, we start by assuming that

the kernel K is regular:

Definition 1 A nonnegative kernel K is said to be regular if there are real constants b > 0 and

r > 0 such that K(u) ≥ b I{u ∈ S0,r} and
∫
supy∈u+S0,r

K(y) du < ∞, where S0,r is the ball of

radius r centered at the origin.

5



For more on this, see Devroye and Krzyżak (1989). We also require the following condition regarding

the selection probability πγ(x, y) := Pγ{∆ = 1|X = x, Y = y}, which is quite standard in missing

data literature:

Assumption (A). The selection probability, πγ(x, y), satisfies infx,y πγ(x, y) =: πmin > 0, for

some πmin.

Assumption (A) essentially states that the response Y can always be observed with a non-zero

probability for any values of x and y. The following basic result gives upper bounds on the

performance of the Lp norms of the estimator m̂n,γ̂(x) under standard assumptions.

Theorem 1 Let m̂n,γ̂(x) be the estimator of m(x) defined in (5), where γ̂ may be any estimator

of γ∗ in (4), and suppose that assumption (A) holds. Suppose that the kernel K in (6) is regular

and that its bandwidth satisfies h → 0 and nhd → ∞, as n → ∞. Then, for every ϵ > 0, every

1 ≤ p <∞, any distribution of (X, Y ) ∈ Rd × [−L,L], L <∞, and n large enough,

P

{∫ ∣∣∣m̂n,γ̂(x)−m(x)
∣∣∣pµ(dx) > ϵ

}
≤ c1 e

−c2n + c3 P
{
|γ̂ − γ∗| > C0

}
, (7)

where µ is the probability measure of X and c1, c2, c3, and C0 are positive constants not depending

on n; here, c2 also depends on ϵ.

In passing, we note that the bound in Theorem 1 is in the spirit of the classical result of Devroye and

Krzyżak (1989) for kernel regression estimators with no missing data (modulo the term P{|γ̂−γ∗| >
C0} on the right side of (7)).

Remark 1 The bound in Theorem 1 shows that the consistency of γ̂, as an estimator of γ∗, is

needed in order for the proposed regression estimator to converge in the Lp norm. Unfortunately,

due to parameter identifiability issues, consistent estimation of γ∗ can be a serious challenge unless

one either has access to additional external data, as in Kim and Yu (2011), or one can correctly

assume that the function g(x) in (2) is independent/free of certain components of x= (x1, · · · , xd)T ;
see, for example, Shao and Wang (2016) or Uehara and Kim (2018). Here, we consider a different

estimation procedure based on the approximation theory of totally bound class of functions.

In what follows, we consider a more general version of the missing probability model (2) given by

πφ(x, y) := Eφ

[
∆
∣∣X = x, Y = y

]
= Pφ

{
∆ = 1

∣∣X = x, Y = y
}

=
1

1 + exp
{
g(x)

}
· φ(y)

, (8)

where the model is indexed by the functional parameter φ > 0; the true φ will be denoted by

φ∗. Clearly the function exp{γy} in (2) is a special case of φ(y). Our approach to estimate the

function φ∗ here is based on the approximation theory of totally bounded function spaces. More
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specifically, consider the situation where φ∗ belongs to a totally bounded class of functions in the

following sense: Let F be a given class of function φ : [−L,L] → (0, B], for some B <∞. Fix ε > 0

and suppose that the finite collection of functions Fε = {φ1, . . . , φN(ε)}, φi : [−L,L] → (0, B], is an

ε-cover of F , i.e., for each φ ∈ F , there is a φ̄ ∈ Fε such that ∥φ− φ̄∥∞ < ε; here ∥ · ∥∞ is the usual

supnorm. The cardinality of the smallest ε-cover of F is called the covering number of the family

F and will be denoted by N (ε,F). If N (ε,F) < ∞ holds for every ε > 0, then the family F is

said to be totally bounded (with respect to ∥ · ∥∞). The monograph by van der Vaart and Wellner

(1996; p. 83) provides more details on such concepts.

To present our methods, we employ a data splitting approach that works as follows. Let Dn =

{(X1, Y1,∆1), . . . , ((Xn, Yn,∆n)} be the data (iid), where ∆i=0 if Yi is missing (and ∆i=1

otherwise). Now, randomly split the data into a training sample Dm of size m and a validation

sequence Dℓ of size ℓ = n −m, where Dm ∪ Dℓ = Dn and Dm ∩ Dℓ = ∅. Here, it is assumed that

ℓ→ ∞ and m→ ∞, as n→ ∞; the choices of m and ℓ will be discussed later in our main results.

Also, define the index sets

Im =
{
i ∈ {1, · · · , n}

∣∣∣ (Xi, Yi,∆i) ∈ Dm

}
and Iℓ =

{
i ∈ {1, · · · , n}

∣∣∣ (Xi, Yi,∆i) ∈ Dℓ

}
.

Next, for each fixed φ ∈ F , consider the kernel-type estimator of m(x) constructed based on the

training set Dm alone, given by

m̂m(x;φ) = η̂m,1(x) +
ψ̂m,1(x;φ)

ψ̂m,2(x;φ)

(
1− η̂m,2(x)

)
, (9)

where ψ̂m,k(x;φ) and η̂m,k(x), k = 1, 2, are the quantities

ψ̂m,k(x;φ) =

∑
i∈Im

∆iY
2−k
i φ(Yi)K((x−Xi)/h)∑

i∈Im
K((x−Xi)/h)

, k = 1, 2, φ ∈ F , (10)

η̂m,k(x) =

∑
i∈Im

∆iY
2−k
i K((x−Xi)/h)∑

i∈Im
K((x−Xi)/h)

, k = 1, 2. (11)

Of course, (9) is not quite an estimator because φ itself must also be estimated. To this end, we

first observe that in view of the results of Kim and Yu (2011), the term exp{g(x)} that appears in

(8) can also be expressed as

exp{g(x)} = Eφ

[
1−∆

∣∣X = x
]/
Eφ

[
∆φ(Y )

∣∣X = x
]
. (12)

To appreciate (12), first observe that by (8), 1
Eφ(∆|X,Y ) − 1 = 1

πφ(X,Y ) − 1 = exp{g(X)} · φ(Y ).

Therefore, Eφ

[
∆
(

1
Eφ(∆|X,Y ) − 1

)
|X
]
= Eφ[1−∆|X] = exp{g(X)} · Eφ[∆φ(Y )|X], from which (12)

follows. Estimating the right side of (12) can be challenging due to identifiability issues, and a

sufficient condition for model identification is (see, for example, Uehara and Kim (2018)) to assume
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that there is a part of X, say V, which is conditionally independent of ∆, given Y and Z, where

X = (Z,V); see assumption (G) on the next page. Under this assumption, the selection probability

model in (8) becomes

πφ(z, y) := Eφ

[
∆
∣∣Z = z, Y = y

]
= Pφ

{
∆ = 1

∣∣Z = z, Y = y
}

=
1

1 + exp{g(z)} · φ(y)
. (13)

It is not hard to see that under (13) the expression in (12) becomes

exp{g(z)} = Eφ

[
1−∆

∣∣Z = z
]/
Eφ

[
∆φ(Y )

∣∣Z = z
]
. (14)

Next, we propose the following two-step procedure to estimate the function φ in (9):

Step 1. For each given φ, the selection probability in (13) is estimated, based on Dm alone, by

π̂φ(z, y) =
[
1 + ̂exp{g(z)} · φ(y)

]−1
, (15)

where ̂exp{g(z)} is the kernel regression estimator of (14) based on Dm, i.e.,

̂exp{g(z)} =

∑
i∈Im

(1−∆i)K0((z− Zi)/h)∑
i∈Im

∆iφ(Yi)K0((z− Zi)/h)
, (16)

and K0 is the kernel used with bandwidth h.

Step 2. Let εn > 0 be a decreasing sequence εn ↓ 0, as n→ ∞, and let Fεn = {φ1, . . . , φN(εn)} ⊂ F
be any εn-cover of F . The proposed estimator of φ in (9) is then defined by

φ̂n := argmin
φ∈Fεn

L̂m,ℓ(φ) where L̂m,ℓ(φ) = ℓ−1
∑
i∈Iℓ

∆i

π̂φ(Zi, Yi)

∣∣m̂m(Xi;φ)− Yi
∣∣2, (17)

where m̂m(x;φ) is as in (9). The subscript n at φ̂n reflects the fact that the entire data of size n

has been used here. Finally, our estimator of the regression function m(x) is given by

m̂(x; φ̂n) := m̂m(x;φ)
∣∣
φ=φ̂n

, with m̂m(x;φ) as in (9). (18)

The estimator in (17) may be viewed as the empirical version of the minimizer of the mean squared

error, i.e., the empirical version of

φεn := argmin
φ∈Fεn

E
∣∣m(X;φ)− Y

∣∣2, (19)

where m(X;φ) is the regression function m(X;φ∗) evaluated at an arbitrary φ ∈ Fεn (see Lemma

1). We also note that φεn in (19) is an approximation to the true function φ∗ based on the cover

Fεn of F . In fact, we have

φ∗ := argmin
φ: [−L,L]→R+

E
∣∣m(X;φ)− Y

∣∣2. (20)

8



How good is m̂(x; φ̂n) in (18) as an estimator of the true regression curve m(x)? To answer this,

we first state a number of assumptions.

Assumption (A′). For all φ ∈ F , the selection probability πφ(z, y) in (13) satisfies infz,y πφ(z, y) =:

πmin > 0 for some πmin, where F is a totally bounded class of functions φ : [−L,L] → (0, B], for

some B <∞ and L <∞.

Assumption (B). The kernel K satisfies
∫
Rd K(x) dx = 1 and

∫
Rd |xi|K(x) dx < ∞, for xi ∈

(x1, · · · , xd)T = x. Also, the smoothing parameter h satisfies h→ 0 and nhd → ∞, as n→ ∞.

Assumption (C). The density function f(z) of Z is compactly supported and is bounded away

from zero and infinity on its compact support. Additionally, the first-order partial derivatives of f

exist and are bounded on the interior of its support.

Assumption (D). Eφ[∆φ(Y )|X = x] ≥ ϱ0, for µ–a.e.x and each φ ∈ F , for some constant ϱ0 > 0.

Assumption (E). The partial derivatives ∂
∂zi
Eφ[∆|Z = z] and ∂

∂zi
Eφ[∆φ(Y )|Z = z] exist for

i = 1, . . . , dim(z), and are bounded on the compact support of f .

Assumption (F). The deviation Am,ℓ(φ) = |L̂m,ℓ(φ) − E[|m̂m(X;φ) − Y |2|Dm]|, where L̂m,ℓ(φ)

and m̂m(x;φ) are as in (17) and (9) satisfies P{Am,ℓ(φ) > t} ≤ supφ∈F Pφ{Am,ℓ(φ) > t}, ∀ t > 0.

Assumption (G). [Identifiability] There is a part of X, say V, which is conditionally independent

of ∆, given Y and Z, where X = (Z,V).

Assumption (B) is not restrictive at all because the choice of the kernel K is at our discretion.

The first part of assumption (C) is usually imposed in the literature on nonparametric regres-

sion to avoid unstable estimates of m(x) in the tails of the density, f . The second part of this

assumption is technical. Assumption (D) is quite mild and is justified because Eφ[∆φ(Y )|X] =

Eφ[φ(Y )Eφ(∆|X, Y )|X] ≥ πminE[φ(Y )|X] and the fact that φ(y) > 0 for all y. Assumption (E)

has already been used in the literature, whereas assumption (F) is technical. Assumption (G) is a

sufficient condition for model identifiability; see, for example, Uehara and Kim (2018).

The following result gives exponential upper bounds on the performance of the L2 norms of the

estimator defined via (18) and (17). This result readily extends to more general Lp norms (p ≥ 1);

see Remark 2 below.

Theorem 2 Let m̂(x; φ̂n) be as in (18) and suppose that assumptions (A′), (B)–(G) hold. Also

let the missing probability mechanism πφ be as in (13). Then for every εn > 0 satisfying εn ↓ 0, as

n→ ∞, every t > 0, any distribution of (X, Y ) ∈ Rd × [−L,L], L <∞, and n large enough,

P

{∫ ∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) > t

}
≤ c4|Fεn |e−c5ℓt2 + c6ℓ |Fεn |

(
e−c7mhd

+ e−c8mhd t2
)
, (21)
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whenever φ∗ ∈ F , where |Fεn | is the cardinality of the set Fεn and c4– c8 are positive constants not

depending on m, ℓ, n, or t.

Remark 2 Although the above theorem is stated in the L2 sense, the theorem continues to hold for

all p ≥ 2. To appreciate this, observe that in the case of p > 2 one can always write∣∣m̂(x; φ̂n)−m(x)
∣∣p ≤ (∣∣m̂(x; φ̂n)

∣∣+ ∣∣m(x)
∣∣)p−2∣∣m̂(x; φ̂n)−m(x)

∣∣2 ≤ (3L)p−2
∣∣m̂(x; φ̂n)−m(x)

∣∣2.
On the other hand, if p ∈ [1, 2) then by Hölder’s inequality we have

P

{∫ ∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣pµ(dx) > t

}
≤ P

{∫ ∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) > t2/p

}
.

In passing, we note that the bound in (21) may be viewed as a generalization of the classical results

of Devroye and Krzyżak (1989) for kernel regression estimators with fully observable data, where

they also assumed |Y | ≤ L < ∞. This assumption readily allows one to establish exponential

performance bounds for general Lp norms, p≥ 1, of kernel regression estimators (and not just for

p=1 or 2). It is also justified by the fact that our main application is to the problem of classification

where Y is bounded. A more desirable result would be obtained if the boundedness of Y could

be relaxed to the moment condition E|Y |c < ∞, for some c≥ 1. This has been achieved in the

case of fully observable data; see, for example Krzyżak (1992) and Györfi et al (1998). However,

so far we have not been able to extend our results in this direction. In fact, to the best of our

knowledge, such extensions are not available even for the simpler case of data missing at random

(MAR) setups, where the probability that Y is missing depends on X, but not Y itself.

The following simple corollary shows that the above theorem can be used to establish strong

convergence results.

Corollary 1 Let m̂(X; φ̂n) be the estimator in (18). If, as n→ ∞,

εn ↓ 0,
log ℓ

mhd
→ 0,

log |Fεn |
mhd

→ 0, and
log |Fεn |

ℓ
→ 0, (22)

then under the conditions of Theorem 2 we have

E
[∣∣m̂(X; φ̂n)−m(X)

∣∣p∣∣∣Dn

]
−→a.s. 0, for all p ∈ [2,∞).

Clearly, by Lebesgue dominated convergence theorem, under the conditions of Corollary 1 and

without further ado,

E
∣∣m̂(X; φ̂n)−m(X)

∣∣p −→ 0, for all p ∈ [2,∞).

Unfortunately, this result does not provide a rate of convergence. The following theorem sheds

more light on the convergence properties of the estimator in (18).
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Theorem 3 Consider the estimator m̂(X; φ̂n) in (18). Then, under the conditions of Theorem 2,

for n large enough,

E
∣∣∣m̂(X; φ̂n)−m(X)

∣∣∣p
≤

√
c9 + log ℓ+ log |Fεn |

c10 · (ℓ ∧mhd)
+

√
1

c11 · (ℓ ∧mhd)
[
c9 + log ℓ+ log |Fεn |

] + c12
∣∣Fεn

∣∣ ℓ e−c13 mhd
,

for all p ∈ [2,∞), where c9– c13 are positive constants not depending on m, ℓ, or n.

The following result, which is an immediate corollary to Theorem 3, looks into the rate of conver-

gence of the proposed regression estimator.

Corollary 2 Let m̂(X; φ̂n) be the estimator in (18) and suppose that (22) holds. Then, under the

conditions of Theorem 2, for all p ≥ 2,

E
∣∣∣m̂(X; φ̂n)−m(X)

∣∣∣p = O

(√
log(ℓ ∨ |Fεn |)
ℓ ∧mhd

)
.

In the special case where m = α ·n and ℓ = (1−α) ·n, where α ∈ (0, 1), one finds (under the above

conditions) that for all p ≥ 2,

E
∣∣∣m̂(X; φ̂n)−m(X)

∣∣∣p = O

(√
log(n ∨ |Fεn |)

nhd

)
.

An Example.

To compare and contrast the asymptotic performance of our estimation approach with the existing

methods, consider the class F of functions φ of the form:

φ(y) = exp{γy} , |γ| ≤M, |y| ≤ L, for some M,L <∞, (23)

which is similar to the selection probability model used by Kim and Yu (2011). It is straightforward

to see that for every ε > 0, the finite collection of functions

Fε =

{
exp{γy}, |y| ≤ L

∣∣∣∣ γ ∈
{{

2 iε/
(
L exp(ML)

) ∣∣∣ |i| ≤ ⌊ML exp{ML}/ε⌋
}
∪ {−M} ∪ {M}

}}
(24)

is an ε-cover of F and its covering number is bounded by (2ML exp{ML}ε−1+3); see the Appendix

for details. Since this bound grows like ε−1 (as ε ↓ 0), one obtains strong Lp consistency results

for the regression estimator (18) under the conditions of Theorem 2 for any sequence εn ↓ 0 (as

n→ ∞) for which log(1/εn)/(mh
d∨ℓ)) → 0. Similarly, the conclusions of Theorem 3 and Corollary

2 continue to hold for such a sequence.

11



2.2 A Horvitz-Thompson type estimator

Our estimators in this section are based on a Horvitz-Thompson type inverse weighting approach

(Horvitz and Thompson (1952)). This method works by scaling each observed response variable Y

with the inverse of the estimate of the selection probability, πφ∗(Z, Y ), as given by (13), where φ∗

is the true function φ in (13) in the sense that

m(X;πφ∗) := E
[
∆Y/πφ∗(X, Y )

∣∣X] = E[Y |X] = m(X). (25)

To motivate this approach, consider the hypothetical (and unrealistic) situation where the true

function πφ∗ is completely known. Then in view of (25) a kernel-type estimator of the regression

curve m(x) is simply

m̃n(x;πφ∗) =

n∑
i=1

∆iYi
πφ∗(Zi, Yi)

K
(
(x−Xi)/h

)/ n∑
i=1

K
(
(x−Xi)/h

)
. (26)

Since πφ∗ is unknown, we proceed as follows. For each φ ∈ F , consider the estimate of the selection

probability πφ of (13), based on Dm, given by

π̃φ(Zi, Yi) =

[
1 +

1− η̃m(Zi)

ψ̃m(Zi;φ)
· φ(Yi)

]−1

, (27)

where
ψ̃m(Zi;φ) =

∑
j∈Im, j ̸=i∆jφ(Yj)K0((Zi − Zj)/h)

/∑
j∈Im, j ̸=iK0((Zi − Zj)/h)

η̃m(Zi) =
∑

j∈Im, j ̸=i∆jK0((Zi − Zj)/h)
/∑

j∈Im, j ̸=iK0((Zi − Zj)/h).
(28)

Since πφ > πmin > 0 (by assumption (A)) and since ψ̂m(Zi;φ) in (28) is the estimator of the con-

ditional expectation Eφ[∆iφ(Yi)|Zi] ≥ ϱ0 > 0 (by assumption (D)), we also consider the following

truncated-type version of the estimator in (27)

π̆φ(Zi, Yi) =

[
1 +

1− η̃m(Zi)

π0 ∨ ψ̃m(Zi;φ)
· φ(Yi)

]−1

, (29)

where π0 > 0 is a fixed constant whose choice will be discussed later under assumption (A′). Here,

we note that π̆φ in (29) can be viewed as a one-sided winsorized estimator of πφ (compare this with

π̃φ in (27)). In applications with either simulated or real data, π0 is chosen to be a small positive

number such as 10−ν , ν ≥ 3. Next, let εn > 0 be a decreasing sequence εn ↓ 0, as n → ∞ and let

Fεn = {φ1, . . . , φN(εn)} ⊂ F be any εn-cover of F . Then, depending on whether (27) or (29) is

used, an estimator of the unknown function φ∗ based on the εn-cover Fεn is given by φ̃n := argminφ∈Fεn
ℓ−1

∑
i∈Iℓ

∆i
π̃φ(Zi,Yi)

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2, if (27) is used,

φ̆n := argminφ∈Fεn
ℓ−1

∑
i∈Iℓ

∆i
π̆φ(Zi,Yi)

∣∣m̂HT
m (Xi; π̆φ)− Yi

∣∣2, if (29) is used,
(30)
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where

m̂HT
m (x; π̃φ) =

∑
i∈Im

∆iYi
π̃φ(Zi, Yi)

K
(
(x−Xi)/h

)/ ∑
i∈Im

K
(
(x−Xi)/h

)
, (31)

and m̂HT
m (Xi; π̆φ) is obtained by replacing π̃φ with π̆φ in (31). Finally, our proposed Horvitz-

Thompson type estimator of the regression function m(x) is given by
m̂HT(x; π̃φ̃n

) := m̂HT
m (x;πφ)

∣∣∣
πφ=π̃φ̃n

if (27) is used,

m̂HT(x; π̆φ̆n) := m̂HT
m (x;πφ)

∣∣∣
πφ=π̆φ̆n

if (29) is used,
(32)

where m̂HT
m (x;πφ) is as in (31) but with π̃φ replaced by πφ.

Next, we compare and study the asymptotic performance of the two estimators in (32). It turns

out, as in Theorem 2 and its corollary (i.e., Corollary 1), that exponential upper bounds along with

strong consistency results are available for both estimators. However, in the case of the winsorized-

type estimator m̂HT(x; π̆φ̆n), one can also study the rates of convergence. To present these results,

we start by stating the following theorem.

Theorem 4 Consider the two regression function estimators defined via (32) and let the missing

probability mechanism πφ be as in (13).

(i) Let m̂HT(x; π̃φ̃n
) be the top estimator in (32) and suppose that assumptions (A′),(B)–(G)

hold. Then for every εn > 0 satisfying εn ↓ 0, as n → ∞, every t > 0, any distribution of

(X, Y ) ∈ Rd × [−L,L], L <∞, and n large enough,

P

{∫ ∣∣∣m̂HT(x; π̃φ̃n
)−m(x)

∣∣∣2µ(dx) > t

}
≤
∣∣Fεn

∣∣ (c13 e−c14ℓt2+c15ℓm e−c16mhdt2+c17 ℓm e−c18mhd
)
,

(33)

whenever φ∗ ∈ F , where |Fεn | is the cardinality of the set Fεn and c13– c18 are positive constants

not depending on m, ℓ, n, or t.

(ii) Let m̂HT(x; π̆φ̆n) be the second estimator in (32) and suppose that assumptions (A′), (B)–(G)

hold. If the truncation constant π0 in (29) is any constant satisfying 0 < π0 ≤ πmin then, under the

conditions of part (i) of the theorem, the bound in (33) continues to hold (with different constants

c13–c18) for the probability P
{∫

|m̂HT(x; π̆φ̆n)−m(x)|2µ(dx) > t
}
.

Remark 3 As in Remark 2, it is straightforward to show that Part (ii) of the above theorem holds

more generally for all p≥ 2. I.e., the bound in (33) holds for P
{ ∫

|m̂HT(x; π̆φ̆n)−m(x)|pµ(dx) > t
}
,

for all p ≥ 2.

The following result may be viewed as the counterpart of Corollary 1 for the two regression function

estimators in (32).
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Corollary 3 Consider the two estimators in (32). If, as n→ ∞,

εn ↓ 0,
log(m ∨ ℓ)
mhd

→ 0,
log |Fεn |
mhd

→ 0, and
log |Fεn |

ℓ
→ 0, (34)

then, under the conditions of Theorem 4, the top estimator in (32) satisfies the strong convergence

property, E
[∣∣m̂HT(X; π̃φ̃n

)−m(X)
∣∣2∣∣∣Dn

]
→a.s. 0. However, for the second estimator in (32),

E
[∣∣m̂HT(X; π̆φ̆n)−m(X)

∣∣p∣∣∣Dn

]
−→a.s. 0 , for all p ≥ 2.

We also note that under the conditions of Corollary 3, by Lebesgue dominated convergence theorem,

and without further ado, one has E
∣∣m̂HT(X; π̆φ̆n) −m(X)

∣∣p → 0, for all p ∈ [2,∞). However, to

study the rates of convergence here, we state the following theorem which is the counterpart of

Theorem 3 for the estimator m̂HT(x; π̆φ̆n).

Theorem 5 Let m̂HT(x; π̆φ̆n) be the second estimator in (32). Then, under the conditions of The-

orem 4, for all p ∈ [2,∞) and n large enough,

E
∣∣∣m̂HT(X; π̆φ̆n)−m(X)

∣∣∣p
≤

√
c19 + log ℓ+ logm+ log |Fεn |

c20 · (ℓ ∧mhd)
+

√
1

c21 · (ℓ ∧mhd)
[
c19 + log ℓ+ logm+ log |Fεn |

]
+ c22

∣∣Fεn

∣∣ ℓme−c23 mhd
,

where c19– c23 are positive constants not depending on m, ℓ, or n.

The following is an immediate corollary to Theorem 5.

Corollary 4 Let m̂HT(x; π̆φ̆n) be the second estimator in (32) and suppose that (34) holds. Then,

under the conditions of Theorem 4, for all p ≥ 2,

E
∣∣∣m̂HT(X; π̆φ̆n)−m(X)

∣∣∣p = O

(√
log(ℓ ∨m ∨ |Fεn |)

ℓ ∧mhd

)
.

Once again, we note that for the special case where m = α · n and ℓ = (1−α) · n, where α ∈ (0, 1),

under the above conditions, one finds that

E
∣∣∣m̂HT(X; π̆φ̆n)−m(X)

∣∣∣p = O

(√
log(n ∨ |Fεn |)

nhd

)
, for all p ≥ 2.

Remark 4 The rates of convergence derived in Corollaries 2 and 4 are not optimal as compared

to those of kernel regression estimators based on no missing data. A better rate would be of order

O
(√

log n/nhd
)
, which is achievable if the cardinality of the εn-cover satisfies log |Fεn | = O(n).
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It is also well-understood in the framework of kernel regression (with no missing data) that under

additional assumptions such as the Lipschitz continuity of the regression function m(x), one can

establish rates as fast as O
(
(nhd)−1 + h2

)
for the usual kernel estimator in (1) based on the naive

kernel; see, for example, Györfi et al (2002; Sec. 5.3). Unfortunately, such rates do not seem to be

available for our estimators with NMAR missing data where the estimation process involves many

steps and many components. The rates in Corollaries 2 and 4 also show that choosing ℓ and m to

satisfy either ℓ/n→ 0 or m/n→ 0 can generally result in estimators with convergence rates worse

than the case where m = α · n and ℓ = (1− α) · n for any α ∈ (0, 1).

3 Applications to classification with partially labeled data

Consider the following standard two-group classification problem. Let (X, Y ) be a random pair,

where X ∈ Rd is a vector of covariates and Y ∈ {0, 1}, called the class variable or class label, has

to be predicted based on X. More specifically, the aim of classification is to find a map/function

g : R → {0, 1} for which the misclassification error, i.e.,

L(g) := P{g(X) ̸= Y }, (35)

is as small as possible. The best classifier, also referred to as the Bayes classifier, is given by

gB(x) =

{
1 if m(x) := E

[
Y |X = x

]
> 1

2

0 otherwise,
(36)

see, for example, Devroye et al (1996; Ch. 2). Since the distribution of (X, Y ) is virtually always

unknown, finding the best classifier gB is impossible. However, suppose that we have access to n

iid observations (the data), Dn := {(X1, Y1), · · · , (Xn, Yn)}, where (Xi, Yi)
iid
= (X, Y ), i = 1, · · · , n,

and let ĝn be any classifier constructed based on the data Dn. Also, let

Ln(ĝn) = P
{
ĝn(X) ̸= Y

∣∣Dn

}
(37)

be the conditional misclassification error of ĝn. Then ĝn is said to be weakly (strongly) Bayes

consistent if Ln(ĝn) → L(gB) in probability (almost surely). Now, let m̂(x) be any estimator of the

regression function m(x) := E
[
Y |X = x

]
and consider the plug-in type classifier

ĝn(x) =

{
1 if m̂(x) > 1

2

0 otherwise.
(38)

Then, one has (see Lemma 6.1 of Devroye et al (1996))

Ln(ĝn)− L(gB) ≤ 2E
[∣∣m̂(X)−m(X)

∣∣ ∣∣Dn

]
, (39)
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and by the dominated convergence theorem, E
[
Ln(ĝn)

]
− L(gB) ≤ 2E

∣∣m̂(X) − m(X)
∣∣. Next,

suppose that some of the Yi’s may be missing not at random (NMAR) and consider the regression

estimator m̂(x; φ̂n) in (18). Denote the plug-in classifier corresponding to m̂(x; φ̂n) by

ĝn(x; φ̂n) :=

{
1 if m̂(x; φ̂n) > 1

2

0 otherwise.
(40)

To study the asymptotic performance of the classifier in (40), we first state the following so-called

margin condition (see, for example, Audibert and Tsybakov(2007)).

Assumption (H) [Margin condition.] There exist constants c > 0 and α > 0 such that

P

{
0 <

∣∣∣∣m(X)− 1

2

∣∣∣∣ ≤ t

}
≤ c tα, for all t > 0. (41)

Applications of the margin condition to classification has been studied by many authors; see, for ex-

ample, Mammen and Tsybakov (1999), Massart and Nédélec (2006), Audibert and Tsybakov(2007),

Tsybakov and van de Geer (2005), Kohler and Krzyżak (2007), and Döring et al (2016).

Theorem 6 Consider the classifier ĝn(x; φ̂n) given by (40). If (22) holds then, under the condi-

tions of Theorem 2, we have

(i) P
{
ĝn(X; φ̂n) ̸= Y

∣∣∣Dn

}
−→a.s. P{gB(X) ̸= Y }.

(ii) P {ĝn(X; φ̂n) ̸= Y } − P{gB(X) ̸= Y } = O
((

log(ℓ∨|Fεn |)
ℓ∧(mhd)

)1/4)
.

(iii) If the margin condition (41) holds then

P {ĝn(X; φ̂n) ̸= Y } − P{gB(X) ̸= Y } = O

((
log(ℓ ∨ |Fεn |)
ℓ ∧ (mhd)

) 1+α
2(2+α)

)
,

where α is as in (41).

Part (iii) of the above theorem shows that for large values of α we can obtain rates closer to(
log(ℓ ∨ |Fεn |)

/[
ℓ ∧ (mhd)

])1/2
which is the same as that of the actual regression estimator (see

Corollary 2).

Next, consider the Horvitz-Thompson type regression estimators given by (32) and denote the

corresponding plug-in classifiers by

g̃HT
n (x; π̃) =

{
1 if m̂HT(x; π̃φ̃n

) > 1
2

0 otherwise,
and ğHT

n (x; π̆) =

{
1 if m̂HT(x; π̆φ̆n) > 1

2

0 otherwise,
(42)

where m̂HT(x; π̃φ̃n
) and m̂HT(x; π̆φ̆n) are as in (32). As for the asymptotic performance of the two

classifiers in (42), we have the following counterpart of Theorem (6).
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Theorem 7 Let g̃HT
n and ğHT

n be the two classifiers in (42). If (34) holds then, under the conditions

of Theorem 4, we have

(i) P
{
g̃HT
n (X; π̃) ̸= Y

∣∣∣Dn

}
→a.s. P{gB(X) ̸= Y } and P

{
ğHT
n (X; π̆) ̸= Y

∣∣∣Dn

}
→a.s. P{gB(X) ̸= Y }.

(ii) P {ğHT
n (X; φ̆n) ̸= Y } − P{gB(X) ̸= Y } = O

((
log(ℓ∨m∨|Fεn |)

ℓ∧(mhd)

)1/4)
.

(iii) If the margin condition (41) holds then

P {ğHT
n (X; φ̆n) ̸= Y } − P{gB(X) ̸= Y } = O

((
log(ℓ ∨m ∨ |Fεn |)

ℓ ∧ (mhd)

) 1+α
2(2+α)

)
,

where α is as in (41).

Here, we observe that for large values of α in part (iii) of the above theorem, one can obtain

rates closer to
(
log(ℓ ∨m ∨ |Fεn |)

/[
ℓ ∧ (mhd)

])1/2
which is similar to that of the winsorized-type

regression estimator m̂HT(x; π̆φ̆n) in (32); see Corollary 4.

4 Proofs of the main results

We start by stating a number of lemmas whose proofs appear in the Appendix. Using the notation

of Section 2.1, let F be a totally bounded class of functions φ : [−L,L] → (0, B], for some B <∞.

Also, for any ε > 0, let Fε be any ε-cover of F (see Section 2.1). Next, for each φ ∈ F , put

ψk(x;φ) := E
[
∆Y 2−kφ(Y )

∣∣∣X = x
]

and ηk(x) := E
[
∆Y 2−k

∣∣X = x
]
, for k = 1, 2, (43)

and define

m(x;φ) = η1(x) +
ψ1(x;φ)

ψ2(x;φ)
· (1− η2(x)) . (44)

Also, define

L̂m,ℓ(φ) :=
1

ℓ

∑
i∈Iℓ

∆i

π̂φ(Zi, Yi)

∣∣∣m̂m(Xi;φ)− Yi

∣∣∣2, (45)

where π̂φ(z, y) and m̂m(x;φ) are as in (15) and (9), and put

φε := argmin
φ∈Fε

E
∣∣m(X;φ)− Y

∣∣2 and φ̂ε := argmin
φ∈Fε

L̂m,ℓ(φ). (46)

Lemma 1 Let φ∗ be the true (unknown) version of the function φ in (13). Also, let m(x;φ) be as

defined in model (44). Then the regression function m(x) = E[Y |X = x] can be represented as

m(x) = m(x;φ∗) = η1(x) +
ψ1(x;φ

∗)

ψ2(x;φ∗)
· (1− η2(x)) . (47)

where the functions ψk and ηk, k = 1, 2, are given by (43).
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Lemma 2 Let m(x;φj), j = 1, 2, be as in (44), where φj : [−L,L] → (0, B] for some positive

number B. Then, under assumption (D), one has

E
∣∣∣m(X;φ1)−m(X;φ2)

∣∣∣ ≤ C · sup
−L≤y≤L

∣∣φ1(y)− φ2(y)
∣∣,

where the constant C > 0 can be taken to be C = 2L/ϱ0, with ϱ0 as in assumption (D).

Lemma 3 Let m(x;φ), L̂m,ℓ(φ), φε, and φ̂ε be as in (44), (45), and (46), respectively. Then,

under the conditions of Theorem 2, we have

E

[∣∣∣m̂m(X; φ̂ε)−m(X;φε)
∣∣∣2∣∣∣∣Dn

]
≤ sup

φ∈Fε

∣∣∣∣E [∣∣∣m̂m(X;φ)− Y
∣∣∣2∣∣∣Dm

]
− L̂m,ℓ(φ)

∣∣∣∣
+ sup

φ∈Fε

∣∣∣∣L̂m,ℓ(φ)− E
∣∣∣m(X;φ)− Y

∣∣∣2∣∣∣∣ + C1 ε
1/2, (48)

where C1 is a positive constant not depending on n or ε, and m̂m(X;φ) is as in (9).

Lemma 4 Let K be a regular kernel. Also, let µ be any probability measure on the Borel sets of

Rd. Then there is a positive constant ρ(K), depending on the kernel K but not n, such that for

every h > 0,

sup
u∈Rd

∫
K((x− u)/h)

E[K((x−X)/h)]
µ(dx) ≤ ρ(K) .

Lemma 5 Let (U, Y ), (U1, Y1), . . . , (Un, Yn) be iid Rd × [−A,A]-valued random vectors for some

A ∈ [0,∞). Also, let m(u) = E[Y |U=u] be the regression function and define quantity m̃n(u) =∑n
i=1 YiK

(
(u−Ui)/h

)/{
nE[K((u−U)/h)]

}
, where K is a regular kernel. If h→ 0 and nhd → ∞,

as n→ ∞, then for every t > 0 and large enough n,

P

{∫ ∣∣∣m̃n(u)−m(u)
∣∣∣µ(du) > t

}
≤ e−nt2/(64A2 ρ2(K))

where µ is the probability measure of U, and ρ(K) is as in Lemma 4.

PROOF OF THEOREM 1

First observe that for every p ≥ 1, |m̂n,γ̂(x)−m(x)|p ≤ {|m̂n,γ̂(x)|+ |m(x)|}p−1|m̂n,γ̂(x)−m(x)| ≤
(3L)p−1|m̂n,γ̂(x) −m(x)|, where the term (3L) follows from the observations that |m(x)| ≤L and

|m̂n,γ̂(x)| ≤ |η̂1(x, 0)|+
(
|η̂1(x, γ̂)/η̂2(x, γ̂)|

)
· |1− η̂2(x, 0)| ≤ L+

(
L · |η̂2(x, γ̂)|/|η̂2(x, γ̂)|

)
·1 = 2L.

Therefore, we only need to prove the theorem for the case of p =1. To this end, let ηk(x, t)

and η̂k(x, t), k = 1, 2, t ∈ R, be the quantities defined in (3) and (6), respectively. Then it

is straightforward to show that in view of (5) and (4), and the fact that |η̂1(x, γ̂)/η̂2(x, γ̂)| ≤
L · |η̂2(x, γ̂)|/|η̂2(x, γ̂)| = L, one has∣∣m̂n,γ̂(x)−m(x)

∣∣ ≤
∣∣η̂1(x, 0)− η1(x, 0)

∣∣+ ∣∣∣∣ η̂1(x, γ̂)η̂2(x, γ̂)
− η1(x, γ

∗)

η2(x, γ∗)

∣∣∣∣+ L ·
∣∣η̂2(x, 0)− η2(x, 0)

∣∣. (49)
18



But the first and third terms on the right side of (49) can be immediately bounded using the

classical result of Devroye and Krzyżak (1989). More specifically, for every t > 0 and n large

enough,

P
{∫ ∣∣η̂1(x, 0)− η1(x, 0)

∣∣µ(dx) > t
}
≤ e−c24n and P

{∫
L
∣∣η̂2(x, 0)− η2(x, 0)

∣∣µ(dx) > t
}
≤ e−c25n

(50)

where c24 and c25 are positive constants that depend on t but not n. To deal with the middle term

on the right side of (49), we note that it can be written as∣∣∣∣ 1

η2(x, γ∗)

[
η̂1(x, γ̂)

η̂2(x, γ̂)
·
(
η2(x, γ

∗)− η̂2(x, γ̂)
)
+
(
η̂1(x, γ̂)− η1(x, γ

∗)
)]∣∣∣∣

≤ 1

πmin exp{−L|γ∗|}

[∣∣η̂1(x, γ̂)− η̂1(x, γ
∗)
∣∣+ ∣∣η̂1(x, γ∗)− η1(x, γ

∗)
∣∣+ L

∣∣η̂2(x, γ̂)− η̂2(x, γ
∗)
∣∣

+ L
∣∣η̂2(x, γ∗)− η2(x, γ

∗)
∣∣],

where the above inequality follows from assumption (A) with the simple fact that η2(X, γ
∗)

= E
(
E
[
∆exp{γ∗Y }

∣∣X, Y ] ∣∣X) = E
[
exp{γ∗Y }πγ∗(X, Y )

∣∣X] ≥ infz,y πγ∗(z, y) exp(−|γ∗|L), to-
gether with the observation that η̂1(x, γ̂)

/
η̂2(x, γ̂) ≤ L. Consequently, for every t > 0, the integral

of the middle term on the right side of (49) can be dealt with as follows

P

{∫ ∣∣∣∣ η̂1(x, γ̂)η̂2(x, γ̂)
− η1(x, γ

∗)

η2(x, γ∗)

∣∣∣∣µ(dx) > t

}
≤ P

{∫ ∣∣η̂1(x, γ̂)− η̂1(x, γ
∗)
∣∣µ(dx) > πmint

4 exp{L|γ∗|}

}
+P

{∫ ∣∣η̂1(x, γ∗)− η1(x, γ
∗)
∣∣µ(dx) > πmint

4 exp{L|γ∗|}

}
+P

{∫ ∣∣η̂2(x, γ̂)− η̂2(x, γ
∗)
∣∣µ(dx) > πmint

4L exp{L|γ∗|}

}
+P

{∫ ∣∣η̂2(x, γ∗)− η2(x, γ
∗)
∣∣µ(dx) > πmint

4L exp{L|γ∗|}

}
:=

4∑
k=1

Pnk(t). (51)

To deal with the first term in (51), i.e., the term Pn1(t), put

Γ′
n(x) =

n∑
i=1

∆iYi
(
exp {γ̂ Yi} − exp {γ∗ Yi}

)
K((x−Xi)/h)

/
nE
[
K((x−X)/h)

]
Γ′′
n(x) =

∑n
i=1∆iYi

(
exp {γ̂ Yi} − exp {γ∗ Yi}

)
K((x−Xi)/h)∑n

i=1K((x−Xi)/h)
·

[∑n
i=1K((x−Xi)/h)

nE
[
K((x−X)/h)

] − 1

]

and observe that

Pn1(t) ≤ P

{∫ ∣∣Γ′
n(x)

∣∣µ(dx) > πmint

8 exp{L|γ∗|}

}
+ P

{∫ ∣∣Γ′′
n(x)

∣∣µ(dx) > πmint

8 exp{L|γ∗|}

}
. (52)
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Furthermore,∫ ∣∣Γ′
n(x)

∣∣µ(dx) ≤ sup
z

∫
K((x− z)/h)

E
[
K((x−X)/h)

]µ(dx) · 1
n

n∑
i=1

∣∣∣∆iYi

(
exp {γ̂ Yi} − exp {γ∗ Yi}

)∣∣∣
≤ Lρ(K)

n

n∑
i=1

∣∣∣ exp {γ̂ Yi} − exp {γ∗ Yi}
∣∣∣, (by Lemma 4)

≤ n−1Lρ(K)
n∑

i=1

∣∣∣(γ̂ − γ∗
)
Yi exp

{
γYi
}∣∣∣, (via a one-term Taylor expansion),

≤ n−1L2 ρ(K)
∣∣γ̂ − γ∗

∣∣ · n∑
i=1

exp
{∣∣γ − γ∗

∣∣L+ γ∗Yi

}
, (53)

because |Yi| ≤ L and γYi = (γ−γ∗)Yi+γ∗Yi ≤ |γ−γ∗| ·L+γ∗Yi, where γ is a point in the interior

of the line segment joining γ̂ and γ∗. Therefore, using the fact that |γ − γ∗| ≤ |γ̂ − γ∗|, one finds,

for every constants t > 0 and C0 > 0,

P

{∫ ∣∣Γ′
n(x)

∣∣µ(dx) > πmint

8 exp{L|γ∗|}

}
≤ P

{∣∣γ̂ − γ∗
∣∣ exp{∣∣γ̂ − γ∗

∣∣L} · 1
n

n∑
i=1

exp
{
γ∗Yi

}
>

πmint

8L2 ρ(K) exp{L|γ∗|}

}

≤ P

{[∣∣γ̂ − γ∗
∣∣ exp{∣∣γ̂ − γ∗

∣∣L} · 1
n

n∑
i=1

exp
{
γ∗Yi

}
>

πmint

8L2ρ(K) exp{L|γ∗|}

]

∩
{
|γ̂ − γ∗| ≤ C0

}}
+ P

{
|γ̂ − γ∗| > C0

}
≤ n · P

{
exp

{
γ∗Y1

}
>

πmint

8L2C0 ρ(K) exp
{
(|γ∗|+ C0)L

}}+ P
{
|γ̂ − γ∗| > C0

}
(54)

= 0 + P
{
|γ̂ − γ∗| > C0

}
, (55)

for any C0 satisfying 4L2C0 ρ(K) exp
{
(|γ∗|+C0)L

}
< πmint. Here, the last line follows because the

random variable exp{γ∗Y1} is bounded by exp{|γ∗|L}, which implies that taking C0 small enough

forces the first probability statement in (54) to become zero. As for the term Γ′′
n(x), we note that

in view of (53) and the observation that |γ − γ∗| ≤ |γ̂ − γ∗|, one obtains∫ ∣∣Γ′′
n(x)

∣∣µ(dx) ≤ L2
∣∣γ̂ − γ∗

∣∣ max
1≤i≤n

exp
{∣∣γ̂ − γ∗

∣∣L+ |γ∗|L
}
·
∫ ∣∣∣∣

∑n
j=1K((x−Xj)/h)

nE
[
K((x−X)/h)

] − 1

∣∣∣∣µ(dx).
Now, observe that

P

{∫ ∣∣Γ′′
n(x)

∣∣µ(dx) > πmint

8 exp{L|γ∗|}

}
≤ P

{∣∣γ̂ − γ∗
∣∣ exp{∣∣γ̂ − γ∗

∣∣L} · ∫ ∣∣∣∣
∑n

j=1K((x−Xj)/h)

nE
[
K((x−X)/h)

] − 1

∣∣∣∣µ(dx) > πmint

8L2 exp{2L|γ∗|}

}
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≤ P

{∫ ∣∣∣∣
∑n

j=1K((x−Xj)/h)

nE
[
K((x−X)/h)

] − 1

∣∣∣∣µ(dx) > πmint

8L2C0 exp
{
(2|γ∗|+C0)L

}}+ P
{
|γ̂ − γ∗| > C0

}
≤ exp

{
−nπ2mint

2

642L4C2
0ρ

2(K) · exp
{
2
(
2|γ∗|+ C0

)
L
}}+ P

{
|γ̂ − γ∗| > C0

}
, (56)

for large n, by Lemma 5, where C0 is as in (55); here, we have used Lemma 5 with m(u) = 1 and

Yi = 1 for all i = 1, · · · , n. Putting together (52), (55), and (56), we find

Pn1(t) ≤ exp{−C2n
2t2}+ 2P

{
|γ̂ − γ∗| > C0

}
, (57)

for n large enough, where C2 is a positive constant not depending on n. It is a simple exercise

to show that the term Pn3(t) in (51) can also be bounded by the right side of (57). Furthermore,

as in (50), once again we can invoke the result of Devroye and Krzyżak (1989) to conclude that

Pn2(t) ≤ e−c26n and Pn4(t) ≤ e−c27n, for n large enough, where c26 and c27 are positive constants

not depending on n. These observations in conjunction with (57), (51), (50), and (49) complete

the proof of Theorem 1.

✷

PROOF OF THEOREM 2

To proceed with the proof, first note that for each i ∈ Iℓ , we have

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2

π̂φ(Zi, Yi)
=

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)
− ∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2 [ 1

πφ(Zi, Yi)
− 1

π̂φ(Zi, Yi)

]
.

Therefore, by the definition of L̂m,ℓ(φ) in (45), one finds for every β > 0

P

{
sup
φ∈Fε

∣∣∣∣L̂m,ℓ(φ)− E

[∣∣∣m̂m(X;φ)− Y
∣∣∣2∣∣∣Dm

]∣∣∣∣ > β

}

≤ P

 sup
φ∈Fε

∣∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)
− E

[∣∣∣m̂m(X;φ)− Y
∣∣∣2∣∣∣Dm

]∣∣∣∣∣∣ > β

2


+ P

 sup
φ∈Fε

∣∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2 [ 1

πφ(Zi, Yi)
− 1

π̂φ(Zi, Yi)

]∣∣∣∣∣∣ > β

2


:= Sn(1) + Sn(2). (58)

But with πφ(z, y) modeled as (13), where φ ∈ F is the free functional parameter, for each i ∈ Iℓ

Eφ

[
∆i

πφ(Zi, Yi)

∣∣∣m̂m(Xi;φ)− Yi

∣∣∣2 ∣∣∣∣∣Dm

]
= Eφ


∣∣∣m̂m(Xi;φ)− Yi

∣∣∣2
πφ(Zi, Yi)

Eφ

(
∆i

∣∣∣Dm,Xi, Yi

) ∣∣∣∣∣Dm


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= Eφ

[∣∣∣m̂m(X;φ)− Y
∣∣∣2 ∣∣∣Dm

]
.

Furthermore, conditional on Dm, the terms ∆i

∣∣m̂m(Xi;φ) − Yi
∣∣2/πφ(Zi, Yi), i ∈ Iℓ, are indepen-

dent bounded random variables, taking values in
[
0, (3L)2/πmin

]
. Therefore,

Sn(1) ≤
∣∣Fε

∣∣ sup
φ∈Fε

P

{∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)
− E

[∣∣∣m̂m(X;φ)− Y
∣∣∣2∣∣∣Dm

] ∣∣∣∣∣ > β

2

}

≤
∣∣Fε

∣∣ sup
φ∈F

Eφ

[
Pφ

{∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)
− Eφ

[∣∣∣m̂m(X;φ)− Y
∣∣∣2∣∣∣Dm

] ∣∣∣∣∣ > β

2

∣∣∣∣∣Dm

}]

≤ 2
∣∣Fε

∣∣ exp{− π2minℓβ
2/(162L4)

}
(via Hoeffding’s inequality), (59)

where the line above (59) follows from conditioning in conjunction with assumption (F). To deal

with the term Sn(2) in (58), let ψ̃m(Zi;φ) and η̃m(Zi) be as in (28) and observe that in view of

(13), (14), (15), (16), and the fact that |m̂m(Xi;φ)− Yi| ≤ 3L, we can write

Sn(2) ≤
∣∣Fε

∣∣ sup
φ∈Fε

P

{
ℓ−1

∑
i∈Iℓ

∣∣∣∣ 1

π̂φ(Zi, Yi)
− 1

πφ(Zi, Yi)

∣∣∣∣ > β

18L2

}

≤
∣∣Fε

∣∣ sup
φ∈Fε

∑
i∈Iℓ

E

[
P

{∣∣∣∣∣1− η̃m(Zi)

ψ̃m(Zi;φ)
− E[1−∆i|Zi]

E[∆i φ(Yi)|Zi]

∣∣∣∣∣φ(Yi) > β

18L2

∣∣∣∣∣Zi, Yi

}]
, (60)

where the last line follows upon replacing the term exp{g(z)} in (13) by the right side of (14). Now,

to bound (60), we note that∣∣∣∣∣1− η̃m(Zi)

ψ̃m(Zi;φ)
−

1− E
[
∆i

∣∣Zi

]
E
[
∆iφ(Yi)

∣∣Zi

]∣∣∣∣∣
=

∣∣∣∣∣− 1− η̃m(Zi)

ψ̃m(Zi;φ)
·
ψ̃m(Zi;φ)− E

[
∆iφ(Yi)

∣∣Zi

]
E
[
∆iφ(Yi)

∣∣Zi

] +
E
[
∆i

∣∣Zi

]
− η̃m(Zi)

E
[
∆iφ(Yi)

∣∣Zi

] ∣∣∣∣∣
≤

∣∣∣∣∣1− η̃m(Zi)

ψ̃m(Zi;φ)

∣∣∣∣∣ ·
∣∣∣∣∣ ψ̃m(Zi;φ)− E

[
∆iφ(Yi)

∣∣Zi

]
E
[
∆iφ(Yi)

∣∣Zi

] ∣∣∣∣∣+
∣∣∣∣∣E
[
∆i

∣∣Zi

]
− η̃m(Zi)

E
[
∆iφ(Yi)

∣∣Zi

] ∣∣∣∣∣ .
Therefore, in view of (43), the inner conditional probability in (60) becomes

P

{∣∣∣∣∣1− η̃m(Zi)

ψ̃m(Zi;φ)
−

1− E
[
∆i

∣∣Zi

]
E
[
∆iφ(Yi)

∣∣Zi

]∣∣∣∣∣ φ(Yi) > β

18L2

∣∣∣∣∣Zi, Yi

}

≤ P

{∣∣∣∣∣1− η̃m(Zi)

ψ̃m(Zi;φ)

∣∣∣∣∣ · ∣∣∣ψ̃m(Zi;φ)− E
[
∆iφ(Yi)

∣∣Zi

]∣∣∣ > ϱ0β

36BL2

∣∣∣∣Zi, Yi

}

+ P

{∣∣∣η̃m(Zi)− E
[
∆i

∣∣Zi

]∣∣∣ > ϱ0β

36BL2

∣∣∣∣Zi, Yi

}
:= Pn,1(i) + Pn,2(i), (61)
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where we have used the facts that φ(y) ∈ (0, B], B > 0, and E
[
∆φ(Y )

∣∣Z = z
]
≥ ϱ0 (by assumption

D). But, using standard arguments, it is not difficult to show that, under assumptions (B)–(E) and

m large enough, one has

Pn,2(i) ≤ C12 e
−C13 mhdβ2

(62)

where c12 and c13 are positive constants not depending om m, ℓ, or β. Furthermore, it is also shown

in the Appendix that

Pn,1(i) ≤ C14 e
−C15 mhdβ2

+ C16 e
−C17 mhd

, (63)

where C16 and C17 are positive constant not depending on m or ℓ. Therefore, in view of (58) – (63),

for every β > 0 and n large enough, we have

P

{
sup
φ∈Fε

∣∣∣∣L̂m,ℓ(φ)− E

[∣∣∣m̂m(X;φ)− Y
∣∣∣2∣∣∣Dm

]∣∣∣∣ > β

}
≤ ℓ

∣∣Fε

∣∣[C21 e
−C22mhd

+ C23 e
−C24 mhdβ2

]
+ 2

∣∣Fε

∣∣ e−π2
minℓβ

2/(162L4), (64)

Next, we deal with the second term on the right side of (48). To this end, first note that since for

φ ∈ F , E
∣∣m(X;φ)− Y

∣∣2 = Eφ

∣∣m(X;φ)− Y
∣∣2 = Eφ

[
∆
∣∣m(X;φ)− Y

∣∣2/πφ(Z, Y )
]
, one obtains

∣∣∣∣L̂m,ℓ(φ)− E
∣∣∣m(X;φ)− Y

∣∣∣2∣∣∣∣ ≤

∣∣∣∣∣∣1ℓ
∑
i∈Iℓ

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)
− 1

ℓ

∑
i∈Iℓ

∆i

∣∣m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)

∣∣∣∣∣∣
+

∣∣∣∣∣∣1ℓ
∑
i∈Iℓ

∆i

∣∣m(Xi;φ)− Yi
∣∣2

πφ(Zi, Yi)
− Eφ

[
∆
∣∣m(X;φ)− Y

∣∣2
πφ(Z, Y )

]∣∣∣∣∣∣
+

∣∣∣∣∣∣1ℓ
∑
i∈Iℓ

∆i

∣∣m̂m(Xi;φ)− Yi
∣∣2 [ 1

πφ(Zi, Yi)
− 1

π̂φ(Zi, Yi)

]∣∣∣∣∣∣
:= |Un,1(φ)|+ |Un,2(φ)|+ |Un,3(φ)|. (65)

Therefore, for every β > 0,

P

{
sup
φ∈Fε

∣∣∣∣L̂m,ℓ(φ)− E
∣∣∣m(X;φ)− Y

∣∣∣2∣∣∣∣ > β

}
≤

3∑
k=1

P

{
sup
φ∈Fε

∣∣Un,k(φ)
∣∣ > β

3

}
.

But using assumption (A) and the simple fact that a2 − b2 ≤ |a− b||a+ b|, one can write

P

{
sup
φ∈Fε

∣∣Un,1(φ)
∣∣ > β/3

}
≤ P

{
sup
φ∈Fε

1

ℓ

∑
i∈Iℓ

[∣∣m̂m(Xi;φ)−m(Xi;φ)
∣∣ · ∣∣m̂m(Xi;φ) +m(Xi;φ)− 2Yi

∣∣] > βπmin

3

}

≤
∣∣Fε

∣∣ sup
φ∈Fε

∑
i∈Iℓ

P

{∣∣m̂m(Xi;φ)−m(Xi;φ)
∣∣ > βπmin

15L

}
,
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where we have used the fact that
∣∣m̂m(Xi;φ) + m(Xi;φ) − 2Yi

∣∣ ≤ 5L. Now, using standard

arguments, it is not hard to show that under assumptions (B)–(E) and m large enough, one has

P
{

sup
φ∈Fε

|Un,1(φ)| > β/3
}

≤ ℓ
∣∣Fε

∣∣C25 exp{−C26mh
dβ2}, (66)

for positive constants C25 and C26 not depending onm, ℓ, or β. Next, since the iid random variables

∆i|m(Xi;φ) − Yi|2/πφ(Zi, Yi), i ∈ Iℓ, take values in (0, 4L2/πmin), an application of Hoeffding’s

inequality yields

P
{

sup
φ∈Fε

|Un,2(φ)| > β/3
}

≤
∣∣Fε

∣∣ sup
φ∈F

Pφ

{
|Un,2(φ)| > β/3

}
≤ 2

∣∣Fε

∣∣ exp{− ℓπ2minβ
2/(72L4)

}
.

(67)

Furthermore, the same arguments that were used to deal with the term Sn(2) in (58) can be

employed to show that

P
{

sup
φ∈Fε

|Un,3(φ)| > β/3
}

≤ ℓ
∣∣Fε

∣∣ [C27 exp
{
− C28mh

d
}
+ C29 exp

{
− C30mh

dβ2
}]
, (68)

for n large enough and positive constants C27 – C30 that do not depend on m, ℓ, or β. Putting

together (65), (66), (67), and (68), one finds, for every β > 0,

P

{
sup
φ∈Fε

∣∣∣∣L̂m,ℓ(φ)− E
∣∣∣m(X;φ)− Y

∣∣∣2∣∣∣∣ > β

}
≤ C31 ℓ

∣∣Fε

∣∣ [e−C32 mhd
+ e−C33 mhdβ2

]
+ 2

∣∣Fε

∣∣ e−C34 ℓ β2
, (69)

for n large enough, where C31 – C34 are positive constants not depending on m or ℓ. Now to

complete the proof of the theorem, let 0 < εn ↓ 0 be as in the statement of the theorem and let

φεn be as in (19). Then, (47) in conjunction with the arguments used in the proof of Lemma 3 (in

particular (94), (95)), and the Cp-inequality (with p = 2), one has∫ ∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) ≤ 2

∫ ∣∣∣m̂(x; φ̂n)−m(x;φεn)
∣∣∣2µ(dx) + 4LC εn , (70)

where C > 0 is the constant in Lemma 2. Finally, observe that (70) in conjunction with Lemma 3

implies that, for every t > 0,

P

{∫ ∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) > t

}
≤ P

{∫ ∣∣∣m̂(x; φ̂n)−m(x;φεn)
∣∣∣2µ(dx) > t

2
− 2LC εn

}
≤ P

{
sup

φ∈Fεn

∣∣∣∣∣E
[∣∣∣m̂m(X;φ)− Y

∣∣∣2∣∣∣Dm

]
− L̂m,ℓ(φ)

∣∣∣∣∣ > t/2− 2LC εn − C1
√
εn

2

}

+ P

{
sup

φ∈Fεn

∣∣∣∣∣L̂m,ℓ(φ)− E
∣∣∣m(X;φ)− Y

∣∣∣2∣∣∣∣∣ > t/2− 2LC εn − C1
√
εn

2

}
.
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Now, since εn ↓ 0, as n→ ∞, we can choose n large enough so that t/2− 2LC εn − C1
√
εn > t/4.

Therefore, in view of (64) and (69), for every t > 0 and for n large enough, one finds

P

{∫ ∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) > t

}
≤ 4

∣∣Fεn

∣∣ e−c35ℓt2+c36 ℓ
∣∣Fεn

∣∣ e−c37mhd
+c38 ℓ

∣∣Fεn

∣∣ e−c39mhdt2 ,

which completes the proof of Theorem 2.

✷

PROOF OF COROLLARY 1

Corollary 1 follows from an application of the Borel-Cantelli lemma in conjunction with (22), the

bound in Theorem 2, and Remark 2.

✷

PROOF OF THEOREM 3

We first note that by Remark 2 it is sufficient to prove the theorem for the case of p = 2. The proof

is along standard arguments and goes as follows. Observe that

E
∣∣m̂(X; φ̂n)−m(X)

∣∣2 = E

[∫
Rd

∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2 µ(dx]

=

∫ ∞

0
P

{∫
Rd

∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) > t

}
dt

=

∫ 9L2

0
P

{∫
Rd

∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2µ(dx) > t

}
dt , (71)

where the last line follows because by the definition of the estimator m̂(x; φ̂n) in (18), one has∣∣∣m̂(x; φ̂n)−m(x)
∣∣∣2 ≤

(∣∣m̂(x; φ̂n)
∣∣+ ∣∣m(x)

∣∣)2
≤

(∣∣η̂m,1(x)
∣∣+ ∣∣∣∣∣ ψ̂m,1(x; φ̂n)

ψ̂m,2(x; φ̂n)

∣∣∣∣∣ · ∣∣1− η̂m,2(x)
∣∣+ L

)2

≤ (L+ L · 1 + L)2.

Therefore, by Theorem 2, for n large enough, we have(
right side of (71)

)
≤
∫ u

0
dt +

(
c4 ∨ c6

)∣∣Fεn

∣∣ · [∫ 9L2

u
e−c5ℓt2 dt + ℓ

∫ 9L2

u
e−c8 mhdt2 dt + ℓ e−c7 mhd

∫ 9L2

u
dt

]
,

(where c4–c8 are as in Theorem 2)

≤ u + 2(c4 ∨ c6)
∣∣Fεn

∣∣ ℓ ∫ 9L2

u
e−(c5∧c8)(ℓ∧mhd) t2 dt + (c4 ∨ c6)(9L2)

∣∣Fεn

∣∣ ℓ e−c7 mhd

≤ u +
2(c4 ∨ c6)

∣∣Fεn

∣∣ ℓ√
(c5 ∧ c8)(ℓ ∧mhd)

·
∫ ∞

u
√

(c5∧c8)(ℓ∧mhd)
e−v2/2 dv + (c4 ∨ c6)(9L2)

∣∣Fεn

∣∣ ℓ e−c7 mhd
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(which follows from the change of variable v =
√
(c5 ∧ c8)(ℓ ∧mhd) t

≤ u +
2(c4 ∨ c6)

∣∣Fεn

∣∣ ℓ√
(c5 ∧ c8)(ℓ ∧mhd)

· e−(c5∧c8)(ℓ∧mhd)u2/2√
(c5 ∧ c8)(ℓ ∧mhd) u

+ (c4 ∨ c6)(9L2)
∣∣Fεn

∣∣ ℓ e−c7 mhd
, (72)

where the last line follows from the upper bound on Mill’s ratio; see, for example, Mitrinovic (1970;

p. 177). Now, put

c = 2(c4 ∨ c6)
∣∣Fεn

∣∣ ℓ and N = (c5 ∧ c8)(ℓ ∧mhd)/4

and observe that the right side of (72) can be written as

u+
c

4Nu
e−2Nu2

+ (c4 ∨ c6)(9L2)
∣∣Fεn

∣∣ ℓ e−c7 mhd
. (73)

But the term u+ c
4Nu e

−2Nu2
in (73) is approximately minimized by taking u =

√
log(c)/(2N), and

the corresponding minimum value of (73) is√
log(c)

2N
+

√
1

8N log(c)
+ (c4 ∨ c6)(9L2)

∣∣Fεn

∣∣ ℓ e−c7 mhd

=

√
c41 + log ℓ+ log |Fεn |

c42 (ℓ ∧mhd)
+

√
1

c43 (ℓ ∧mhd)
[
c41 + log ℓ+ log |Fεn |

] + c44
∣∣Fεn

∣∣ ℓ e−c7 mhd
,

where c41– c44 are positive constants not depending on m, ℓ, and n.

✷

PROOF OF THEOREM 4

Let m̂HT
m (x; π̃φ), m(x, πφ∗) , and φε be as in (31), (25), and (46) respectively. Also, define

L̃m,ℓ(π̃φ) = ℓ−1
∑
i∈Iℓ

∆i

π̃φ(Zi, Yi)

∣∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣∣2, (74)

where π̃φ(x, y) is given by (27), and put

φ̃ε = argmin
φ∈Fε

L̃m,ℓ(π̃φ).

Then, using the arguments that led to (90) and (91), yield∫ ∣∣∣m̂HT
m (x; π̃φ̃ε

)−m(x;πφε)
∣∣∣2µ(dx)

≤ sup
φ∈Fε

∣∣∣∣E [∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]
− L̃m,ℓ(π̃φ)

∣∣∣∣+ sup
φ∈Fε

∣∣∣∣L̃m,ℓ(π̃φ)− E
∣∣∣m(X;πφ)− Y

∣∣∣2∣∣∣∣
+ 2E

[∣∣m̂HT
m (X; π̃φ̃ε

)−m(X;πφε)
∣∣ · ∣∣m(X;πφε)−m(X;πφ∗)

∣∣∣∣∣Dn

]
(75)
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where, as before, φ∗ is the true φ. But by Cauchy-Schwarz inequality, the last line on the right

side of (75) is bounded by

2

√∫ ∣∣∣m̂HT
m (x; π̃φ̃ε

)−m(x;πφε)
∣∣∣2µ(dx) ·√E∣∣m(X;πφε)−m(X;πφ∗)

∣∣2
≤ C3

√∫ ∣∣∣m̂HT
m (x; π̃φ̃ε

)−m(x;πφε)
∣∣∣2µ(dx) ·

√
ε , (76)

where (76) follows from arguments similar to those used to arrive at (94) and (95); here C3 is a

positive constant not depending on n or ε. Therefore, in view of (75) and (76), for any t > 0

P

{∫ ∣∣∣m̂HT
m (x; π̃φ̃ε

)−m(x;πφε)
∣∣∣2µ(dx) > t

}
− P

{∫ ∣∣∣m̂HT
m (x; π̃φ̃ε

)−m(x;πφε)
∣∣∣2µ(dx) > t2

c4ε

}

≤ P

{
sup
φ∈Fε

∣∣∣∣E [∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]
− L̃m,ℓ(π̃φ)

∣∣∣∣ > t

3

}

+P

{
sup
φ∈Fε

∣∣∣∣L̃m,ℓ(π̃φ)− E
∣∣∣m(X;πφ)− Y

∣∣∣2∣∣∣∣ > t

3

}
, (77)

where c4 = (3C3)
2 with C3 as in (76). Therefore, for every constant β > 0

P

{
sup
φ∈Fε

∣∣∣∣L̃m,ℓ(π̃φ)− E

[∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]∣∣∣∣ > β

}

≤ P

 sup
φ∈Fε

∣∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2
πφ(Zi, Yi)

− E

[∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]∣∣∣∣∣∣ > β

2


+ P

 sup
φ∈Fε

∣∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2 [(πφ(Zi, Yi)
)−1

−
(
π̃φ(Zi, Yi)

)−1
]∣∣∣∣∣∣ > β

2


:= Tn(1) + Tn(2). (78)

However, for every i ∈ Iℓ and φ ∈ F , one finds that Eφ

[
∆i|m̂HT

m (Xi; π̃φ) − Yi|2/πφ(Zi, Yi)
∣∣Dm

]
=

Eφ

[
Eφ

{
∆i|m̂HT

m (Xi; π̃φ) − Yi|2/πφ(Zi, Yi)
∣∣Dm,Xi, Yi

}∣∣Dm

]
= Eφ

[
|m̂HT

m (Xi; π̃φ) − Yi|2
∣∣Dm

]
, which

follows from the definition of πφ in (13). Moreover, by the definition of π̃φ(Z, Y ) in (27), one finds

|m̂HT
m (Xi; π̃φ)| ≤ max

k∈Im

∣∣∆kYk/π̃φ(Zk, Yk)
∣∣ ≤ L ·

(
1 + max

k∈Im

∣∣∣∣∣ 1

ψ̃m(Zk;φ)

∣∣∣∣∣ ·B
)
, (79)

where the function ψ̃m(Zk;φ) is as given by (28). Consequently, conditional on Dm, the terms[
∆i|m̂HT

m (Xi; π̃φ)−Yi|2
]/
πφ(Zi, Yi), i ∈ Iℓ, are independent nonnegative random variables bounded

by 2L2
{
4 + B2max2k∈Im

∣∣1/ψ̃m(Zk;φ)
∣∣}/πmin. Therefore, using the arguments that lead to (59),

the term Tn(1) in (78) can be handled as follows

Tn(1) ≤
∣∣Fε

∣∣ sup
φ∈Fε

P

{∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2
πφ(Zi, Yi)

− E

[∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

] ∣∣∣∣∣ > β

2

}
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≤
∣∣Fε

∣∣ sup
φ∈F

Eφ

[
Pφ

{∣∣∣∣∣ℓ−1
∑
i∈Iℓ

∆i

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2
πφ(Zi, Yi)

− Eφ

[∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]∣∣∣∣∣> β

2

∣∣∣∣Dm

}]

≤ 2
∣∣Fε

∣∣ sup
φ∈F

Eφ

exp
 −2ℓ2 (β/2)2

2L2π−1
min

{
4 +B2max2k∈Im

∣∣1/ψ̃m(Zk;φ)
∣∣}

 , (80)

via Hoeffding’s inequality. Now let ϱ0 be the constant in assumption (D) and observe that since

the exponential function in (80) is always bounded by 1, the expectation on the right side of (80)

is bounded by

Eφ

exp
 −2ℓ2 (β/2)2

2L2π−1
min

{
4 + max2k∈Im

∣∣B/ψ̃m(Zk;φ)
∣∣}
 I

{ ⋂
k∈Im

[
ψ̃m(Zk;φ) ≥

ϱ0
2

]}
+ Eφ

[
I
{ ⋃

k∈Im

[
ψ̃m(Zk;φ) < ϱ0/2

]}]

≤ exp

{
−2ℓ2 (β/2)2

2L2π−1
min

{
4 +B2(2/ϱ0)2

}} · Pφ

{ ⋂
k∈Im

[
ψ̃m(Zk;φ) ≥ ϱ0/2

]}

+
∑

k∈Im

Pφ

{
ψ̃m(Zk;φ) < ϱ0/2

}

≤ exp

{
−2ℓ2 (β/2)2

2L2π−1
min {4 +B2(2/ϱ0)2}

}
+
∑

k∈Im

Pφ

{
ψ̃m(Zk;φ) < ϱ0/2

}
. (81)

If we put ψ(Zk;φ) := Eφ

[
∆kφ(Yk)

∣∣Zk

]
, then we find Pφ

{
ψ̃m(Zk;φ) < ϱ0/2

∣∣Zk

}
≤ Pφ

{
−ψ̃m(Zk;φ)+

ψ(Zk;φ) > ϱ0 − ϱ0/2
∣∣Zk

}
≤ Pφ

{∣∣ψ̃m(Zk;φ)− ψ(Zk;φ)
∣∣ > ϱ0/2

∣∣Zk

}
≤ C16 exp{−C17mh

d}, for n
large enough and positive constants C16 and C17 not depending on n or φ. Thus, by (80) and (81),

Tn(1) ≤ 2
∣∣Fε

∣∣ (exp{ −2ℓ2 (β/2)2

2L2π−1
min {4 +B2(2/ϱ0)2}

}
+ C16m exp

{
−C17mh

d
})

. (82)

As for the term Tn(2) that appears in (78), one can use the fact that |m̂HT
m (Xi; π̃φ) − Yi|2 ≤

2L2
{
4 +B2max2k∈Im

∣∣1/ψ̃m(Zk;φ)
∣∣} to write

Tn(2)

≤
∣∣Fε

∣∣ sup
φ∈Fε

P

[
2L2

ℓ

{
4 +

(
max
k∈Im

∣∣∣B/ψ̃m(Zk;φ)
∣∣∣)2} ∑

i∈Iℓ

∣∣∣∣ 1

πφ(Zi, Yi)
− 1

π̃φ(Zi, Yi)

∣∣∣∣ > β

2

]

∩

[ ⋂
k∈Im

{
ψ̃m(Zk;φ) ≥ ϱ0/2

}]+
∑

k∈Im

P
{
ψ̃m(Zk;φ) < ϱ0/2

}
≤
∣∣Fε

∣∣ sup
φ∈Fε

P
ℓ−1

∑
i∈Iℓ

∣∣∣∣ 1

πφ(Zi, Yi)
− 1

π̃φ(Zi, Yi)

∣∣∣∣ > β

4L2[4 +B2(2/ϱ0)2]


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+
∑

k∈Im

P
{
ψ̃m(Zk;φ) < ϱ0/2

} .

Employing the arguments that were used in (60), (61), (62), and (63), one arrives at

Tn(2) ≤
∣∣Fε

∣∣ (C46 ℓ exp
{
−C47mh

dβ2
}
+ C48 ℓ exp

{
−C49mh

d
}
+ C50 ℓ exp

{
−C51mh

d
})

. (83)

Now, putting together (78), (82), and (83), we find that for every β > 0 and n large enough (and

thus m and ℓ),

P

{
sup
φ∈Fε

∣∣∣∣L̃m,ℓ(φ)− E

[∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]∣∣∣∣ > β

}
≤
∣∣Fε

∣∣ (exp{−C52 ℓ
2β2
}
+ C46 ℓ exp

{
−C47mh

dβ2
}
+ C53 (ℓ ∨m) exp

{
−C54mh

d
})

. (84)

To wrap up the proof, we also need to deal with the last probability statement on the right side of

(77). To that end, it is shown in the Appendix that for every β > 0

P

{
sup
φ∈Fε

∣∣∣∣L̃m,ℓ(π̃φ)− E
∣∣∣m(X;πφ)− Y

∣∣∣2∣∣∣∣ > β

}
≤

∣∣Fε

∣∣(C50ℓm e−C51mhdβ2
+ C52ℓm e−C53mhd

+ 2 e−C55ℓβ2
)

(85)

for positive constants C55–C59 not depending on m, ℓ, or β. Now, for any decreasing sequence

0 < εn ↓ 0, let φεn be as in (19). Then, employing arguments similar to those used in the proof of

Lemma 3 (in particular those used to arrive at (94) and (95)), we find∫ ∣∣∣m̂HT(x; φ̃n)−m(x)
∣∣∣2µ(dx) =

∫ ∣∣∣m̂HT(x; φ̃n)−m(x;φεn) +m(x;φεn)−m(x)
∣∣∣2µ(dx)

≤ 2

∫ ∣∣∣m̂HT(x; φ̃n)−m(x;φεn)
∣∣∣2µ(dx) + 4LC εn , (86)

where C > 0 is the constant in Lemma 2. Therefore, in view of (86) and (77), for every constant

t > 0 we have

1

2
P

{∫ ∣∣∣m̂HT(x; π̃φ̃n
)−m(x)

∣∣∣2µ(dx) > t

}
≤ 1

2
P

{∫ ∣∣∣m̂HT(x; π̃φ̃n
)−m(x;φεn)

∣∣∣2µ(dx) > t/2− 2LCεn

}
≤ P

{∫ ∣∣∣m̂HT(x; π̃φ̃n
)−m(x;φεn)

∣∣∣2µ(dx) > t/2− 2LCεn

}
− P

{∫ ∣∣∣m̂HT(x; π̃φ̃n
)−m(x;φεn)

∣∣∣2µ(dx) > (t/2− 2LCεn)
2/(c4 ε

2
n)

}
(for n large enough, where c4 > 0 is as in the first line of (77))

≤ P

{
sup

φ∈Fεn

∣∣∣∣E [∣∣∣m̂HT
m (X; π̃φ)− Y

∣∣∣2∣∣∣Dm

]
− L̃m,ℓ(π̃φ)

∣∣∣∣ > t/2− 2LCεn
3

}
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+ P

{
sup

φ∈Fεn

∣∣∣∣L̃m,ℓ(π̃φ)− E
∣∣∣m(X;πφ)− Y

∣∣∣2∣∣∣∣ > t/2− 2LCεn
3

}
.

Finally, choosing n large enough so that (t/2−2LCεn)/3 > t/12, and using the bounds in (84) and

(85), we find

P

{∫ ∣∣∣m̂HT(x; π̃φ̃n
)−m(x)

∣∣∣2µ(dx) > t

}
≤

∣∣Fεn

∣∣(C65 e
−C66ℓt2 + C67e

−C68ℓ2t2 + C69ℓ e
−C70mhdt2

+ C71 ℓm e−C72mhd(t2∨1) + C73(ℓ ∨m)e−C74mhd
)
,

for n large enough where C65–C74 are positive constants not depending on m , ℓ, or t. This

completes the proof of Part (i) of the theorem.

Part (ii).

The proof of Part (ii) of the theorem is virtually the same and, in fact, easier and therefore will

not be given.

✷

PROOF OF COROLLARY 3

The corollary follows from the Borel-Cantelli lemma in conjunction with (34), the bound in Theorem

4, and Remark 3.

✷

PROOF OF THEOREM 5

The proof of this theorem is similar to that of Theorem 3 and therefore will not be given.

✷

PROOF OF THEOREM 6

Part (i).

By (39), we have

P
{
ĝn(X; φ̂n) ̸= Y

∣∣∣Dn

}
− P{gB(X) ̸= Y } ≤ 2E

[∣∣∣m̂(X; φ̂n)−m(X)
∣∣∣ ∣∣∣∣Dn

]
. (87)

Now, Part (i) of the theorem follows from (87) and Corollary 1 in conjunction with the Cauchy-

Schwarz inequality.

Part (ii).

Taking the expectation of both sides of (87), the result follows from Corollary 2 together with the

Cauchy-Schwarz inequality.
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Part (iii).

By a result of Audibert and Tsybakov (2007; Lemma 5.2), under the margin assumption (H), we

have

P {ĝn(X; φ̂n) ̸= Y } − P{gB(X) ̸= Y } ≤
(
E
∣∣∣m̂(X; φ̂n)−m(X)

∣∣∣2) 1+α
2+α

, (88)

where α is as in (41). The result now follows from Corollary 2.

✷

PROOF OF THEOREM 7

The proof uses Corollaries 3 and 4 and is virtually the same as that of Theorem 7, and thus will

not be given.

✷

Appendix: auxiliary proofs

PROOF OF LEMMA 1.

Let πφ(x, y) be as in (8) and note that

1− πφ∗(X, Y ) =
exp{g(X)}φ∗(Y )

1 + exp{g(X)}φ∗(Y )
= exp{g(X)}φ∗(Y )πφ∗(X, Y ). (89)

Now, writing m(x) = E[Y |X = x] = E[Y∆|X = x] + E[Y (1−∆)|X=x]
E[1−∆|X=x] · E[1−∆|X = x], one finds

E[Y (1−∆)|X]

E[1−∆|X]
=

E
[
E
{
Y (1−∆)|X, Y

}∣∣X]
E
[
E
{
1−∆|X, Y

}∣∣X] =
E
[
Y
{
1− πφ∗(X, Y )

}∣∣X]
E
[
1− πφ∗(X, Y )

∣∣X]
by (89)
=

E
[
Y exp{g(X)}φ∗(Y )πφ∗(X, Y )

∣∣X]
E
[
exp{g(X)}φ∗(Y )πφ∗(X, Y )

∣∣X] =
E
[
Y φ∗(Y )∆

∣∣X]
E
[
φ∗(Y )∆

∣∣X] =
ψ1(X;φ∗)

ψ2(X;φ∗)
.

The proof of the lemma now follows from this and the definitions of ψk and ηk, k = 1, 2, in (43).

✷

PROOF OF LEMMA 2.

Let ψk(x;φ), k = 1, 2, be as in (43) and observe that∣∣∣m(x;φ1)−m(x;φ2)
∣∣∣ =

∣∣∣∣−ψ1(x;φ1)

ψ2(x;φ1)
· ψ2(x;φ1)− ψ2(x;φ2)

ψ2(x;φ2)
+
ψ1(x;φ1)− ψ1(x;φ2)

ψ2(x;φ2)

∣∣∣∣
×E

[
1−∆|X = x

]
≤ 1

ψ2(x;φ2)

{
L
∣∣ψ2(x;φ1)− ψ2(x;φ2)

∣∣+ ∣∣ψ1(x;φ1)− ψ1(x;φ2)
∣∣},

where we used the fact |ψ1(x;φ1)|/|ψ2(x;φ1)| ≤ L|ψ2(x;φ1)|/|ψ2(x;φ1)|=L (because φk > 0).

But, since |Y∆| ≤L, one finds |ψ1(x;φ1) − ψ1(x;φ2)| ≤ E
[
|∆Y | ·

∣∣φ1(Y )− φ2(Y )
∣∣ ∣∣X = x

]
≤
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L sup−L≤y≤L

∣∣φ1(y)−φ2(y)
∣∣. Similarly, |ψ2(x;φ1)−ψ2(x;φ2)| ≤ sup−L≤y≤L

∣∣φ1(y)−φ2(y)
∣∣. On

the other hand, by assumption (D), we have ψ2(x;φ2) ≥ ϱ0 > 0, for µ–a.e.x. Therefore∣∣∣m(x;φ1)−m(x;φ2)
∣∣∣ ≤ (2L/ϱ0) sup

−L≤y≤L

∣∣φ1(y)− φ2(y)
∣∣.

The lemma follows now by integrating both sides of this inequality with respect to µ(dx).

✷

PROOF OF LEMMA 3.

Observe that E
[
|m̂m(X; φ̂ε) − Y |2

∣∣Dn

]
= E

[
|m̂m(X; φ̂ε) − m(X;φε)|2

∣∣Dn

]
+ E|m(X;φε) − Y |2

+2E
[(
m̂m(X; φ̂ε)−m(X;φε)

)(
m(X;φε)− Y

)∣∣Dn

]
. Also, let φ∗ be as in (20) and note that

E

[(
m̂m(X; φ̂ε)−m(X;φε)

)(
m(X;φε)− Y

)∣∣∣∣Dn

]
= E

[(
m̂m(X; φ̂ε)−m(X;φε)

)(
m(X;φε)−m(X;φ∗) +m(X;φ∗)− Y

)∣∣∣∣Dn

]
= E

[(
m̂m(X; φ̂ε)−m(X;φε)

)(
m(X;φε)−m(X;φ∗)

)∣∣∣∣Dn

]
,

where we have used the fact that in view of (47), E[Y |X = x] := m(x) = m(x;φ∗). Therefore

E

[∣∣∣m̂m(X; φ̂ε)−m(X;φε)
∣∣∣2∣∣∣∣Dn

]
=

{
E

[∣∣∣m̂m(X; φ̂ε)− Y
∣∣∣2∣∣∣∣Dn

]
− E

∣∣∣m(X;φε)− Y
∣∣∣2}

− 2E

[(
m̂m(X; φ̂ε)−m(X;φε)

)(
m(X;φε)−m(X;φ∗)

)∣∣∣∣Dn

]
:= In + IIn. (90)

Now, observe that

In = E

[∣∣∣m̂m(X; φ̂ε)− Y
∣∣∣2∣∣∣∣Dn

]
− inf

φ∈Fε

E
∣∣m(X;φ)− Y

∣∣2
= sup

φ∈Fε

{
E

[∣∣∣m̂m(X; φ̂ε)− Y
∣∣∣2∣∣∣∣Dn

]
− L̂m,ℓ(φ) + L̂m,ℓ(φ)− L̂m,ℓ(φ̂ε)

+ L̂m,ℓ(φ̂ε)− E
∣∣m(X;φ)− Y

∣∣2}, (where L̂m,ℓ(φ) is as in (45))

≤
(
E

[∣∣∣m̂m(X; φ̂ε)− Y
∣∣∣2∣∣∣∣Dn

]
− L̂m,ℓ(φ̂ε)

)
+ sup

φ∈Fε

∣∣∣L̂m,ℓ(φ)− E
∣∣m(X;φ)− Y

∣∣2∣∣∣ ,
where the last line follows since L̂m,ℓ(φ̂ε) ≤ L̂m,ℓ(φ) holds for all φ ∈ Fε (because of the definition

of φ̂ε in (46)). Therefore,

∣∣In∣∣ ≤ sup
φ∈Fε

∣∣∣∣∣E
[∣∣∣m̂m(X;φ)− Y

∣∣∣2∣∣∣∣Dm

]
− L̂m,ℓ(φ)

∣∣∣∣∣+ sup
φ∈Fε

∣∣∣∣∣L̂m,ℓ(φ)− E
∣∣m(X;φ)− Y

∣∣2∣∣∣∣∣, (91)
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where conditioning on Dm in the above expression reflects the fact that m̂m(X;φ) depends on Dm

only (and not the entire data Dn). Furthermore, by the definitions of m̂m(x;φ), ψ̂m,k, and η̂m,k in

(9), (10), and (11), respectively, and the fact that |m(X;φ)| ≤ |Y | ≤ L holds for each φ, one finds∣∣m̂m(X; φ̂ε)
∣∣ ≤ |η̂m,1(X)|+

(
|ψ̂m,1(X; φ̂ε)|/|ψ̂m,2(X; φ̂ε)|

)
·
∣∣1− η̂m,2(X)

∣∣ ≤ L+ L · 1 = 2L. (92)

Therefore, one can bound IIn in (90) by

∣∣IIn∣∣ ≤ 2E

[∣∣∣m̂m(X; φ̂ε)−m(X;φε)
∣∣∣ · ∣∣∣m(X;φε)−m(X;φ∗)

∣∣∣∣∣∣∣Dn

]
≤ 6L · E

∣∣∣m(X;φε)−m(X;φ∗)
∣∣∣ ≤ 6L

√
E
∣∣m(X;φε)−m(X;φ∗)

∣∣2, (93)

via Cauchy-Schwarz inequality. Next, consider the identity E
∣∣m(X;φε)−Y

∣∣2 = E
∣∣m(X;φ∗)−Y

∣∣2+
E
∣∣m(X;φε)−m(X;φ∗)

∣∣2, which holds because E
[
E
{(
m(X;φε)−m(X;φ∗)

)(
m(X;φ∗)−Y

)∣∣X}] =
E
[(
m(X;φε) −m(X;φ∗)

)
E
{
m(X;φ∗) − Y

∣∣X}] = 0 (since E(Y |X) = m(X) = m(X;φ∗)). Using

this identity, one finds

E
∣∣m(X;φε)−m(X;φ∗)

∣∣2 = inf
φ∈Fε

E
∣∣m(X;φ)− Y

∣∣2 − E
∣∣m(X;φ∗)− Y

∣∣2
= inf

φ∈Fε

E
∣∣m(X;φ)−m(X;φ∗)

∣∣2
≤ 2L inf

φ∈Fε

E
∣∣m(X;φ)−m(X;φ∗)

∣∣, (94)

where the last line in (94) follows because
∣∣m(X;φ)−m(X;φ∗)

∣∣2 ≤ ∣∣m(X;φ)−m(X;φ∗)
∣∣× (2L).

Now let φ† ∈ Fε be such that φ∗ ∈ B(φ†, ε); such a φ† ∈ Fε exists because φ∗ ∈ F and Fε is an

ε-cover of F . Then, by Lemma 2 and the fact that the right side of (94) is an infimum, one finds

(Right side of (94)) ≤ 2L · E
∣∣m(X;φ†)−m(X;φ∗)

∣∣ ≤ 2LC sup
−L≤y≤L

∣∣φ†(y)− φ∗(y)
∣∣

≤ 2LC · ε
(
because φ∗ ∈ B(φ†, ε)

)
, (95)

where C is as in Lemma 2. Therefore, by (93) and (94), we have∣∣IIn∣∣ ≤ 6L
√
2LC · ε =: C1

√
ε . (96)

Lemma 3 now follows from (90), (91), and (96).

✷

PROOF OF LEMMA 4.

The proof of this lemma appears in Devroye and Krzyżak (1989; Lemma 1).

□

PROOF OF LEMMA 5.
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The proof can be found in Györfi et al. (2002; Sec. 23).

✷

Proof of (24).

Start by letting

Ωε =

{
2 iε/(L exp(ML))

∣∣∣∣− ⌊ML exp(ML)/ε⌋ ≤ i ≤ ⌊ML exp(ML)/ε⌋
}
∪ {−M} ∪ {M}.

Also, let γ ∈ [−M,M ] be given and put φ(y) = eγy ∈ F . If γ̃ ∈ Ωε is the closest value to γ, then

sup
|y|≤L

∣∣∣eγy − eγ̃y
∣∣∣ = sup

|y|≤L

∣∣∣y exp{γ†y}
∣∣∣ · ∣∣γ̃ − γ

∣∣, (
where γ† ∈ (γ̃ ∧ γ , γ̃ ∨ γ)

)
≤ L exp{ML} ·

∣∣γ̃ − γ
∣∣ ≤ L exp{ML} · ε

L exp{ML}
= ε ,

where the last line follows from the fact that the distance between γ and its nearest value in Ωε

is bounded by ε/(L exp{ML}). Therefore, the class F is totally bounded. Moreover, a count of

the number of terms in Ωε shows that the ε-covering number of F is bounded by the quantity

2
⌊
ML exp{ML}ε−1

⌋
+ 3.

✷

Proof of (63).

Put Bm(Zi) =
{
ψ̃m(Zi;φ) ≥ ϱ0/2

}
, where ϱ0 is as in assumption D, and note that

Pn,1(i) ≤ P

{[ ∣∣∣∣∣1− η̃m(Zi)

ψ̃m(Zi;φ)

∣∣∣∣∣ · ∣∣∣ψ̃m(Zi;φ)− E
[
∆iφ(Yi)

∣∣Zi

]∣∣∣ > ϱ0β

36BL2

]
∩ Bm(Zi)

∣∣∣∣Zi, Yi

}

+ P
{
Bc
m(Zi)

∣∣Zi, Yi

}
:= P ′

n,1(i) + P ′′
n,1(i).

However, straightforward but tedious arguments show that

P ′
n,1(i) ≤ P

{ ∣∣∣ψ̃m(Zi;φ)− E
[
∆iφ(Yi)

∣∣Zi

]∣∣∣ > ϱ20β

72BL2

∣∣∣∣Zi, Yi

}
≤ C14 e

−C15 mhdβ2
,

for n (and thus m) large enough, where C14 and C15 are positive constants not depending on

m, ℓ, or β. As for the term P ′′
n,1(i), we have P ′′

n,1(i) = P
{
ψ̃m(Zi;φ) − E

[
∆iφ(Yi)

∣∣Zi

]
< ϱ0/2 −

E
[
∆iφ(Yi)

∣∣Zi

]∣∣Zi, Yi
}
≤ P

{∣∣ψ̃m(Zi;φ) − E
[
∆iφ(Yi)

∣∣Zi

]∣∣ > ϱ0/2
∣∣Zi, Yi

}
≤ C16 exp{−C17mh

d},
where we have used the fact that ψ2 is bounded by assumption (D); here C16 and C17 are positive

constant not depending on m or ℓ. Putting these bounds together, we find

Pn,1(i) ≤ P ′
n,1(i) + P ′′

n,1(i) ≤ C14 e
−C15 mhdβ2

+ C16 e
−C17 mhd

.

✷

34



Proof of (85).

Start by defining the quantities

Qn,1(φ) =

∣∣∣∣∣1ℓ ∑
i∈Iℓ

∆i

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2
πφ(Zi, Yi)

− 1

ℓ

∑
i∈Iℓ

∆i

∣∣m(Xi;πφ)− Yi
∣∣2

πφ(Zi, Yi)

∣∣∣∣∣ (97)

Qn,2(φ) =

∣∣∣∣∣1ℓ ∑
i∈Iℓ

∆i

∣∣m(Xi;πφ)− Yi
∣∣2

πφ(Zi, Yi)
− E

[
∆
∣∣m(X;πφ)− Y

∣∣2
πφ(Z, Y )

] ∣∣∣∣∣ (98)

Qn,3(φ) =

∣∣∣∣∣1ℓ ∑
i∈Iℓ

∆i

∣∣m̂HT
m (Xi; π̃φ)− Yi

∣∣2 [(πφ(Zi, Yi)
)−1

−
(
π̃φ(Zi, Yi)

)−1
] ∣∣∣∣∣, (99)

and observe that for every β > 0,

P

{
sup
φ∈Fε

∣∣∣∣L̃m,ℓ(π̃φ)− E
∣∣∣m(X;πφ)− Y

∣∣∣2∣∣∣∣ > β

}

≤ P

{
sup
φ∈Fε

∣∣Qn,1(φ)
∣∣ > β

3

}
+ P

{
sup
φ∈Fε

∣∣Qn,2(φ)
∣∣ > β

3

}
+ P

{
sup
φ∈Fε

∣∣Qn,3(φ)
∣∣ > β

3

}
.

:= Pn,1 + Pn,2 + Pn,3. (100)

However, in view of (79) and the fact that |m(Xi;πφ)| ≤ L/πmin, one obtains

Pn,1

≤ P

{
sup
φ∈Fε

1

ℓ

∑
i∈Iℓ

[
∆i

∣∣m̂HT
m (Xi; π̃φ)−m(Xi;πφ)

∣∣∣∣m̂HT
m (Xi; π̃φ) +m(Xi;πφ)− 2Yi

∣∣] > βπmin

3

}

≤ P

 sup
φ∈Fε

∣∣∣∣∣∣1ℓ
∑
i∈Iℓ

[∣∣m̂HT
m (Xi; π̃φ)−m(Xi;πφ)

∣∣(3 + 1

πmin

+ max
k∈Im

∣∣∣∣∣ B

ψ̃m(Zk;φ)

∣∣∣∣∣
)]∣∣∣∣∣∣ > βπmin

3L


≤
∣∣Fε

∣∣ sup
φ∈Fε

∑
i∈Iℓ

(
P

{[∣∣∣m̂HT
m (Xi; π̃φ)−m(Xi;πφ)

∣∣∣(3 + π−1
min +B/(ϱ0/2)

)
>
βπmin

3L

]

∩
[ ⋂
k∈Im

{
ψ̃m(Zk;φ) ≥

ϱ0
2

}]}
+
∑

k∈Im

P
{
ψ̃m(Zk;φ) <

ϱ0
2

})

≤
∣∣Fε

∣∣[ sup
φ∈Fε

∑
i∈Iℓ

P
{∣∣∣m̂HT

m (Xi; π̃φ)−m(Xi;πφ)
∣∣∣ > Cβ

}
+ ℓ

∑
k∈Im

P
{
ψ̃m(Zk;φ) <

ϱ0
2

}]
(101)

where

Cβ = πminβ
/
3L
(
3 + π−1

min +B/(ϱ0/2)
)
.

But the first probability statement in (101) can be bounded as follows. First, observe that

P
{∣∣∣m̂HT

m (Xi; π̃φ)−m(Xi;πφ)
∣∣∣ > Cβ

}
≤ P

{∣∣∣m̂HT
m (Xi; π̃φ)− m̂HT

m (Xi;πφ)
∣∣∣ > Cβ

2

}
+ P

{∣∣∣m̂HT
m (Xi;πφ)−m(Xi;πφ)

∣∣∣ > Cβ

2

}
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:= Pn1(β) + Pn1(β). (102)

On the other hand,

Pn1(β) = P


∣∣∣∣∣∣
∑

k∈Im

[(
π̃φ(Zk, Yk)

)−1
−
(
πφ(Zk, Yk)

)−1
]

∆kYkK((Xi −Xk)/h)∑
j∈Im

K((Xi −Xj)/h)

∣∣∣∣∣∣ > Cβ

2


≤ P

{
max
k∈Im

∣∣∣∣(π̃φ(Zk, Yk)
)−1

−
(
πφ(Zk, Yk)

)−1
∣∣∣∣ > Cβ

2L

}
≤

∑
k∈Im

P

{∣∣∣∣(π̃φ(Zk, Yk)
)−1

−
(
πφ(Zk, Yk)

)−1
∣∣∣∣ > Cβ

2L

}
.

Therefore, using arguments similar to those leading to (60), (61), (62), and (63), we find, for every

β > 0 and n large enough,

Pn1(β) ≤ C39me
−C40mhdβ2

+ C41me
−C42mhd

,

where C39–C42 are positive constants not depending on m, ℓ, or β. Furthermore, tedious but

standard arguments can be used to show that for n large enough, there are positive constants C43

and C44, not depending on m, ℓ, or β, such that

Pn2(β) ≤ C43 e
−C44mhdβ2

.

As for the last probability statement on the right side of (101), our earlier arguments (see the

paragraph after equation (81)) yield P
{
ψ̃m(Zk;φ) < ϱ0/2

}
≤ C16 exp{−C17mh

d}, for n large

enough, where C16 and C17 are positive constants not depending on n. Therefore, in view of (101)

we arrive at

Pn,1 ≤ ℓ
∣∣Fε

∣∣ (C39me
−C40mhdβ2

+ C43 e
−C44mhdβ2

+ C55me
−C56mhd

)
, (103)

for n large enough, where Pn,1 is as in (100). To deal with Pn,2, we first note that the terms

∆i

∣∣m(Xi;πφ) − Yi
∣∣2/πφ(Zi, Yi), i ∈ Iℓ, are iid bounded random variables taking values in the

interval
[
0, L2(1+1/πmin)

2/πmin

]
. Therefore an application of Hoeffding’s inequality (in conjunction

with the union bound) immediately yields

Pn,2 ≤
∣∣Fε

∣∣ sup
φ∈Fε

P


∣∣∣∣1ℓ ∑

i∈Iℓ

∆i

∣∣m(Xi;πφ)− Yi
∣∣2

πφ(Zi, Yi)
− E

[
∆
∣∣m(X;πφ)− Y

∣∣2
πφ(Z, Y )

] ∣∣∣∣∣ > β

3


≤ 2

∣∣Fε

∣∣ exp{− 2π2minℓ (β/3)
2
/
[L4(1 + 1/πmin)

4]
}
. (104)

Finally, to deal with the term Pn,3 in (100), we observe that in view of (79), and with ϱ0 as in

Assumption (D), one has

Pn,3 ≤
∣∣Fε

∣∣ sup
φ∈Fε

P

[(

2 + max
k∈Im

∣∣∣∣ B

ψ̃m(Zk;φ)

∣∣∣∣)2

L2 · 1
ℓ

∑
i∈Iℓ

∣∣∣∣ 1

π̃φ(Zi, Yi)
− 1

πφ(Zi, Yi)

∣∣∣∣ > β

3

]

36



∩

[ ⋂
k∈Im

{
ψ̃m(Zk;φ) ≥ ϱ0/2

}]+
∑

k∈Im

P
{
ψ̃m(Zk;φ) < ϱ0/2

}
≤

∣∣Fε

∣∣ sup
φ∈Fε

P
1

ℓ

∑
i∈Iℓ

∣∣∣∣ 1

π̃φ(Zi, Yi)
− 1

πφ(Zi, Yi)

∣∣∣∣ > dβ

+
∑
k∈Im

P
{
ψ̃m(Zk;φ) < ϱ0/2

}
where dβ =

[
3L2(2 + 2B/ϱ0)

2
]−1

β. Now, employing the arguments used to bound the term Sn(2)

in (58), (see (60), (61), (62), (63)), it is straightforward to show that for n large enough

Pn,3 ≤
∣∣Fε

∣∣(C58ℓ e
−C59mhdβ2

+ C60me−C61mhd
)
, (105)

for positive constants C58–C61 not depending on ℓ, m, or β. Putting together (100), (103), (104),

and (105), one finds that for each β > 0 and n large enough,

P

{
sup
φ∈Fε

∣∣∣∣L̃m,ℓ(π̃φ)− E
∣∣∣m(X;πφ)− Y

∣∣∣2∣∣∣∣ > β

}
≤

∣∣Fε

∣∣(C39ℓm e−C40mhdβ2
+ C55ℓm e−C56mhd

+ 2 e−C64ℓβ2
)
.
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Massart, P. and E. Nédélec, E. (2006). Risk bounds for statistical learning. Ann. Statist. 34

2326–2366.

Mitrinovic, D. S. Analytic Inequalities. New York. Springer-Verlag, 1970.

Mojirsheibani, M. (2021). On classification with nonignorable missing data. J. Multivariate Anal.

184 104755.

Mojirsheibani, M. (2022). On the maximal deviation of kernel regression estimators with MNAR

response variables. Statistical Papers, 63 1677–1705.

Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies. New York, Wiley.

Morikawa, K., Kim, J. K., and Kano, Y. (2017). Semiparametric maximum likelihood estimation

with data missing not at random. Can. J. Statist. 45 393–409.

Morikawa, K. and Kim, J. K. (2018). A note on the equivalence of two semiparametric estimation

methods for nonignorable nonresponse. Stat. & Probab. Lett. 140 1–6.

Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Appl. 9 141–142.

Niu, C., Guo, X., Xu, W., and Zhu, L. (2014). Empirical likelihood inference in linear regression

with nonignorable missing response. Computational Statistics & Data Analysis, 79 91–112.

O’Brien, J., Gunawardena, H., Paulo, J., Chen, X., Ibrahim, J., Gygi, S., and Qaqish, B. (2018).

39



The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments.

Ann. Appl. Statist. 12 2075–2095.

Qin, J., Leung, D., Shao, J. (2002). Estimation with survey data under nonignorable nonresponse

or informative sampling. J. Am. Statist. Assoc. 97, 193–200.

Sadinle, M. and Reiter, J. (2019). Sequentially additive nonignorable missing data modelling using

auxiliary marginal information. Biometrika. 106 889–911.

Shao, J. and Wang, L. (2016) Semiparametric inverse propensity weighting for nonignorable miss-

ing data. Biometrika. 103 175–187.

Tsybakov, A.B. and van de Geer, S. (2005). Square root penalty: adaptation to the margin in

classification and in edge estimation. Ann. Statist. 33 1203–1224.

Uehara, M. and Kim, J.K. (2018). Semiparametric response model with nonignorable nonresponse.

Preprint on arXiv:1810.12519. https://arxiv.org/abs/1810.12519v1

van der Vaart, A., Wellner, J. (1996) Weak Convergence and Empirical Processes with Applications

to Statistics. Springer, New York.

Watson, G.S. (1964). Smooth regression analysis. Sankhya, Ser. A. 26 359–372.

Wang, L., Shao, J., and Fang, F. (2021). Propensity model selection with nonignorable nonresponse

and instrument variable. Statistica Sinica 31 647–671.

Wang, S., Shao, J., and Kim, J.K. (2014). Identifiability and estimation in problems with nonig-

norable nonresponse. Statistica Sinica 24, 1097 - 1116.

Wang, J. and Shen, X. (2007) Large margin semi-supervised learning. J. Mach. Learn. Res., 8

1867–1891.

Yuan, C., Hedeker, D., Mermelstein, R., Xie, H. (2020). A tractable method to account for high-

dimensional nonignorable missing data in intensive longitudinal data. Stat. Med. 39 2589–2605.

Zhao, J., Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized linear models with

40



nonignorable missing data. J. Am. Statist. Assoc 110, 1577-1590.

Zhao, P., Wang, L., and Shao, J. (2019). Empirical likelihood and Wilks phenomenon for data with

nonignorable missing values. Scand. J. Stat. 46 1003–1024.

41


