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Abstract

This paper considers the problem of kernel regression and classification with possibly un-
observable response variables in the data, where the mechanism that causes the absence of
information can depend on both predictors and the response variables. Our proposed approach
involves two steps: First we construct a family of models (possibly infinite dimensional) indexed
by the unknown parameter of the missing probability mechanism. In the second step, a search
is carried out to find the empirically optimal member of an appropriate cover (or subclass) of
the underlying family in the sense of minimizing the mean squared prediction error. The main
focus of the paper is to look into some of the theoretical properties of these estimators. The
issue of identifiability is also addressed. Our methods use a data-splitting approach which is
quite easy to implement. We also derive exponential bounds on the performance of the result-
ing estimators in terms of their deviations from the true regression curve in general L, norms,
where we allow the size of the cover or subclass to diverge as the sample size n increases. These
bounds immediately yield various strong convergence results for the proposed estimators. As
an application of our findings, we consider the problem of statistical classification based on the
proposed regression estimators and also look into their rates of convergence under different set-
tings. Although this work is mainly stated for kernel-type estimators, it can also be extended

to other popular local-averaging methods such as nearest-neighbor and histogram estimators.
MSC2020 subject classifications: Primary 62G05; secondary 62G08
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1 Introduction

During the past decade, there has been a steady growing interest in developing appropriate proce-
dures to perform estimation and inference in the presence of incomplete data under the complex
regime where the data is not missing at random (NMAR). The NMAR setup is generally acknowl-

edged to be a difficult problem in incomplete data literature due to identifiability issues; this is
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significantly different from the simpler missing at random model where the absence of Y depends
on X only (and not Y itself).

The focus of this paper is on the theoretical performance of kernel regression and classification under
the realistic assumption that many response values in the data may be unavailable or missing.
Unobservable or incomplete data occur frequently in medical data, survey data, public opinion
polls, as well as the data collected in many areas of scientific activities. More specifically, let
(X,Y) € R? xR be a random vector and consider the problem of estimating the regression function
m(x) = E(Y|X = x), based on n independent and identically distributed (iid) observations (X, Y;),
i=1,...,n, drawn from the distribution of (X,Y’). When the data is fully observable, the classical
Nadaraya-Watson kernel estimator of m(x) (Nadaraya (1964), Watson (1964)) is given by

) — ke YK = X /1)
T L K- X)/m)

where the function IC : R? — R, is the kernel used with the bandwidth h = h, > 0. A global

(1)

measure of the accuracy of m,,(-), as an estimator of m(-), is given by its L,-type statistic

I,(p) = /\fﬁn (x) —m (x)[P u(dx), 1<p<oo,

where p is the probability measure of X. The quantity I,,(1) plays an important role in statistical
classification; see for example Devroye et al (1996; Sec.6.2) and Devroye and Krzyzak (1989). In
fact, in the cited paper, Devroye and Krzyzak obtain a number of equivalent results under the
assumption that |Y| < L < oo, one of which states that if the kernel K is regular (see Definition 1)
then for every € > 0 and n large enough, one has P {I,(1) > ¢} < exp{—cn}, where c is a positive

constant depending on € but not on n.

Now, suppose that the response variable Y is allowed to be missing according to the NMAR
mechanism. Define the indicator random variable A =0 if Y is missing, and A =1 otherwise.
Similarly, for i=1,--- ,n, let A;=0 if Y; is missing (and A; =1 otherwise). Then, it is not
hard to see that the estimator m,(x) in (1) is no longer available. Of course, one might de-
cide (incorrectly) to use the kernel estimator based on the complete cases only, i.e., the estimator
me(x) = S AYK((x — X5)/h)/ S0, AiK((x — X;)/h). Unfortunately, m(x) turns out to

be the estimator of the quantity E(AY|X = x)/E(A|X = x) which, in general, is not equal to the

regression function m(x) = E(Y|X = x) under a NMAR response mechanism.

For the important case of predictive models (such as regression), Kim and Yu (2011) considered a
highly versatile logistic type missing probability mechanism that works as follows. Let 7(x,y) :=

E [A ’X =x,Y = y] be the selection probability, also called the monresponse propensity. Then,



Kim and Yu (2011) considered the flexible model
1
, (2)
1+ exp {g(x) + vy}
indexed by the real parameter v, where g is a completely unknown function of the predictor x

T (x,y) == B, [A|X=x,Y =y] = PL{A=1|X=x,Y =y} =

which also depends on v. The true value of the unknown parameter v will be denoted by ~v*.

It is well-understood in the framework of NMAR missing data that imposing parametric models
on both m,(x,y) and the distribution of (X,Y") is too strong to be useful in practice (Molenberghs
and Kenward (2007)). In fact, fully parametric models are sensitive to failure of the model assump-
tions (Little (1985)). On the other hand, in a fully nonparametric setup where 7 (x,y) and the
distribution of (X,Y’) are unknown, one faces the issue of non-identifiability when estimating the
function 7, (Shao and Wang (2016)). Some authors have assumed a fully parametric model for
7y(x,y) only, but not the underlying distributions (Qin et al. (2002) and Wang et al (2014)), but
this is also considered to be too strong in practice. To deal with these issues, Kim and Yu (2011)

considered the semi-parametric model (2) as a reasonable compromised solution.

The missing probability mechanism (2) has been used and studied extensively in the literature; see,
for example, Zhao and Shao (2015), Shao and Wang (2016), Morikawa et al (2017), Uehara and
Kim (2018), Morikawa and Kim (2018), Morikawa and Kano (2018), Fang et al (2018), O’Brien
et al (2018), Maity et al (2019), Sadinle and Reiter (2019), Zhao et al (2019), Yuan et al (2020),
Chen et al (2020), Mojirsheibani (2021), and Liu and Yau (2021). In fact, in view of the recent
widespread use of model (2) in the literature, there appears to be the tacit consensus that (2) is
versatile enough to be used in predictive models such as regression and classification, and this will
also be the direction of the current paper. We observe that if y =0, then (2) reduces to the simpler

case of missing at random assumption (MAR).

The problem of regression function estimation with NMAR, missing data is generally considered
to be challenging. In fact, to the best of our knowledge, there are only a few results available in
the literature in this direction that also address the theoretical validity of their proposed methods.
These include the results of Niu et al (2014) and Guo et al (2019) for the case of linear regression,
those of Bindele et al (2018) to estimate § in the model E(Y|X = x) = g(x,0) , where g is
completely known, and the results of Li et al (2018) for parameter estimation in functional linear
regression. In the case of nonparametric regression, Mojirsheibani (2022) studied the asymptotic
distribution of the maximal deviation of kernel regression estimators. However, all of these results
assume the availability of either an independent validation sample or an independent follow-up
survey for estimating the parameters in (2). Furthermore, the current work does not assume

linearity of the underlying regression model.

Our contributions in this paper are three-fold. (i) We develop two types of easy-to-implement



estimators of the regression curve m(x) in the presence of NMAR missing data. Additionally, we
consider a more general version of model (2) where the quantity exp{~yy} will be replaced by a more
general positive function ¢(y). We also propose estimators of ¢(y). The new estimators, which
are based on the approximation theory of totally bounded classes of functions, are constructed
using a data-splitting approach. (ii) We will carefully explore and study the global properties of
the proposed regression estimators in general L, norms; these results parallel those of Devroye and
Krzyzak (1989) for the simpler case of no missing data. More specifically, we provide exponential
performance bounds on the L, norms of the proposed regression estimators that are valid under
rather standard assumption. Such bounds in conjunction with the Borel-Cantelli lemma imme-
diately yield various strong convergence and optimality results. Exploiting these bounds further,
we also look into the rates of convergence of the proposed estimators (in L,). (iii) A study of
the applications of our proposed estimators to the problem of nonparametric classification in the

presence of partially observed data is also considered.

As an important application of our results to the field of machine learning and statistical classi-
fication, we note that in the so-called semi-supervised learning one usually has to deal with large
amounts of missing responses (or missing labels) in the data. In such setups, researchers in machine
learning have made efforts to develop procedures for utilizing the unlabeled cases (i.e., the data
points with missing Y;’s) in order to construct more effective classification rules; see, for example,
Wang and Shen (2007). But most such results assume that the response variable is missing com-
pletely at random; see, for example, Azizyan et al (2013). Our results in Section 3 make it possible
to develop classification rules in the presence of NMAR response variables for the semi-supervised

setup, where we also study the rates of convergence of such classifiers.

The rest of the paper is organized as follows. Section 2 presents the main results, where in Subsec-
tion 2.1 the estimation of the true v* can be based on any available method. Subsection 2.1 also
proposes a generalization of the model (2), as given by (8), where new estimation methods based
on the theory of totally bounded classes of functions are employed. Subsection 2.2 uses a Horvitz-
Thompson type inverse weighting approach to estimate the underlying regression function. Section
3 focuses on the applications of our estimators to the problem of nonparametric classification with

partially observed data. All proofs are deferred to Section 4.

Throughout this paper, we denote by C,C’,Cy,C1,--- ,c,c,co,c1, -+ some real constants that are
strictly positive; also, for reals a and b, we use the notation a Vb = max(a,b) and a Ab = min(a, b).
For the ease of notation, when the events or random variables of interest involve the random variable
A or A;’s, the notations Py{-} and E,[-] (resp. P,{-} and E,[-]) will be used only when v (resp.
) is different from the true parameter value v* (resp. ¢*). Furthermore, for real sequences a,, and

b, > 0, the notation a,, = O(b,), as n — oo, means that |a,|/b, is a bounded sequence in the sense



that there are positive constants M and n, such that |a,| < M-b, for all n > n,.

2 Main results

2.1 The first estimator and a more general missing mechanism

Consider the missing probability mechanism (2) and let D, = {(X1,Y1,A1),...,(Xn, Yn, An)} be
independent and identically distributed (iid) observations, i.e., the data. Then, clearly the estimator
My, in (1) is no longer available due to the presence of missing Y;’s. Furthermore, as discussed in the
introduction, the complete-case estimator that only uses the fully observable data is not necessarily
the correct estimator under model (2) anymore. In the following two sections, we propose some
alternative estimators instead. To justify our first estimator, we start by constructing an initial

naive plug-in type estimator which works as follows. Define the quantity
me(x.t) = E AYQ_kexp{tY}‘X:x}, k=12, teR, (3)

and observe that when P{A=1}#1, i.e., when Y is allowed to be missing, one can use Lemma 1

(upon replacing ¢*(y) by exp{7*y} in this lemma) to express the regression curve m(x) as

misx) = moe(x) = milx,0) + 227

n2(X, 7*) (1 _772(X70>)' (4)

Now, let 4 be any estimator of v* and consider the following simple kernel-type estimator of (4)

Fna(x) = A(x0)+ m (1 (. 0)). (5)
where
_ S AV exp {13 K((x — X /h)
o0, £) = ST K((x— X3) /) ’

k=1,2, teR, (6)

and, as in (1), £ : R? — R, is the kernel used with bandwidth h. In passing, we also point out that
although we are considering a kernel type estimator in (5), virtually all our results in this paper
continue to hold for other popular local-averaging estimators such as nearest-neighbor estimators,
cubic histograms, as well as general partitioning estimators. However, to avoid making this work

unnecessarily long and tedious, the paper is confined to kernel estimators only.

How good of an estimator is 7, 5(x) in (5)7 To answer this question, we start by assuming that

the kernel K is reqular:

Definition 1 A nonnegative kernel K is said to be reqular if there are real constants b > 0 and
r > 0 such that K(u) > bI{u € Sp,} and fsupyequSOyT K(y)du < oo, where Sy, is the ball of

radius v centered at the origin.



For more on this, see Devroye and Krzyzak (1989). We also require the following condition regarding
the selection probability 7 (x,y) := Py{A = 1|X = x,Y = y}, which is quite standard in missing

data literature:

Assumption (A). The selection probability, m-(x,y), satisfies infx , 7y(x,y) = 7w > 0, for

SOIME Tpip-

Assumption (A) essentially states that the response Y can always be observed with a non-zero
probability for any values of x and y. The following basic result gives upper bounds on the

performance of the L, norms of the estimator m,, 5(x) under standard assumptions.

Theorem 1 Let m, 5(x) be the estimator of m(x) defined in (5), where ¥ may be any estimator
of v* in (4), and suppose that assumption (A) holds. Suppose that the kernel KC in (6) is regular
and that its bandwidth satisfies h — 0 and nh® — oo, as n — oo. Then, for every € > 0, every
1 < p < 00, any distribution of (X,Y) € R% x [~L, L], L < oo, and n large enough,

P {/ ‘ﬁﬂbnﬁ(x) - m(x)’pu(dx) > e} < e+ g P{[F—~* > Co}, (7)

where 1 is the probability measure of X and c1, co, c3, and Cy are positive constants not depending

on n; here, cy also depends on €.

In passing, we note that the bound in Theorem 1 is in the spirit of the classical result of Devroye and
Krzyzak (1989) for kernel regression estimators with no missing data (modulo the term P{|y—~*| >
Co} on the right side of (7)).

Remark 1 The bound in Theorem 1 shows that the consistency of 7, as an estimator of v*, is
needed in order for the proposed regression estimator to converge in the L, norm. Unfortunately,
due to parameter identifiability issues, consistent estimation of v* can be a serious challenge unless
one either has access to additional external data, as in Kim and Yu (2011), or one can correctly
assume that the function g(x) in (2) is independent/free of certain components of x = (x1,--- ,xq)";
see, for example, Shao and Wang (2016) or Uehara and Kim (2018). Here, we consider a different

estimation procedure based on the approximation theory of totally bound class of functions.

In what follows, we consider a more general version of the missing probability model (2) given by
1
1+exp{g(x)} - ¢(y)

where the model is indexed by the functional parameter ¢ > 0; the true ¢ will be denoted by

To(X,y) = E¢[A|XZX,Y:y] = w{Azl‘X:x,Y:y} = . (8)

©*. Clearly the function exp{vyy} in (2) is a special case of p(y). Our approach to estimate the

function ¢* here is based on the approximation theory of totally bounded function spaces. More



specifically, consider the situation where * belongs to a totally bounded class of functions in the
following sense: Let F be a given class of function ¢ : [-L, L] — (0, B], for some B < co. Fixe >0
and suppose that the finite collection of functions . = {¢1,...,onw }, @i - [-L, L] — (0, B], is an
e-cover of F, i.e., for each ¢ € F, there is a ¢ € F. such that ||¢ —@||ec < €; here || - || is the usual
supnorm. The cardinality of the smallest e-cover of F is called the covering number of the family
F and will be denoted by N (e, F). If N(e,F) < oo holds for every € > 0, then the family F is
said to be totally bounded (with respect to || -||~). The monograph by van der Vaart and Wellner

(1996; p. 83) provides more details on such concepts.

To present our methods, we employ a data splitting approach that works as follows. Let D,, =
{(X1,Y1,A1),..., (Xn,Yn,An)} be the data (iid), where A; =0 if Y; is missing (and A;=1
otherwise). Now, randomly split the data into a training sample D,, of size m and a validation
sequence Dy of size £ = n — m, where D,,, UD, = D,, and D,, "Dy = &. Here, it is assumed that
{ — oo and m — oo, as n — 00; the choices of m and ¢ will be discussed later in our main results.
Also, define the index sets

Im:{ie{l,--~,n} (Xi,m,Ai)eDm} and Ig:{ie{l,---,n}’(XZ-,Y;,A,-)EDg}.

Next, for each fixed ¢ € F, consider the kernel-type estimator of m(x) constructed based on the

training set D,,, alone, given by

Fim(xig) = Ama(0)+ 2259 5 ), (9)
wm,Z(X; @

where zzm’k(x; @) and 7, (%), k = 1,2, are the quantities

~ o Yer, AV RV K(x = Xa)/h)
wm,k(xv 90) - ZieIm lC((X — Xz)/h) ’ k= 1727 Y e ‘Fv (10)

Yiez, MY TPR((x — X3) /)

D S Py < (I 91 -

Of course, (9) is not quite an estimator because ¢ itself must also be estimated. To this end, we

first observe that in view of the results of Kim and Yu (2011), the term exp{g(x)} that appears in

(8) can also be expressed as
exp{g(x)} = B [l — A|X =x|/E A o(Y)|X =x]. (12)

To appreciate (12), first observe that by (8), m -1= m —1 = exp{9(X)} - p(Y).
Therefore, Ew[A(m —1)X] = E [l — A|X] = exp{9(X)} - E,[Ap(Y)|X], from which (12)
follows. Estimating the right side of (12) can be challenging due to identifiability issues, and a

sufficient condition for model identification is (see, for example, Uehara and Kim (2018)) to assume



that there is a part of X, say V, which is conditionally independent of A, given Y and Z, where
X = (Z,V); see assumption (G) on the next page. Under this assumption, the selection probability

model in (8) becomes

1

To(z,y) == Ey[A|Z=2Y =y] = P,{A=1|Z=2Y =y} = T oplo@] o) (13)
It is not hard to see that under (13) the expression in (12) becomes
exp{g(z)} :E¢[17A|Z:z]/E¢[Ag0(Y)|Z:z}. (14)

Next, we propose the following two-step procedure to estimate the function ¢ in (9):

Step 1. For each given ¢, the selection probability in (13) is estimated, based on D, alone, by

Fo@y) = |1+ explg@}- o) (15)

—

where exp{g(z)} is the kernel regression estimator of (14) based on D,,, i.e.,

expla(a)} = Yiez,, (1 — Ai)Ko((z — Zi)/h)
Yiez,, Dip(Yi) Ko((z — Zi)/h)

and Ky is the kernel used with bandwidth h.

Step 2. Let €, > 0 be a decreasing sequence &, |0, as n — oo, and let F., = {¢1,..., (pN(an)} CcF
be any e,-cover of F. The proposed estimator of ¢ in (9) is then defined by

N N A
0, = argmin L where L = ¢! S —

'FﬁmXZaSO _}/iQ
| (X5 )

, (A7)

where M, (x; ) is as in (9). The subscript n at @, reflects the fact that the entire data of size n

has been used here. Finally, our estimator of the regression function m(x) is given by
m(x; on) == My (x; go)’¢:¢n, with M, (x;¢) as in (9). (18)

The estimator in (17) may be viewed as the empirical version of the minimizer of the mean squared
error, i.e., the empirical version of
}2

@, = argmin E|m(X;p) - Y|, (19)

(pe]:&n
where m(X; ¢) is the regression function m(X;¢*) evaluated at an arbitrary ¢ € F.  (see Lemma
1). We also note that ¢, in (19) is an approximation to the true function ¢* based on the cover
Fe, of F. In fact, we have
‘2

" == argmin  E|m(X;¢) - Y| (20)

@1 [~L,L] >R,y

8



How good is m(x; @,) in (18) as an estimator of the true regression curve m(x)? To answer this,

we first state a number of assumptions.

Assumption (A’). For all ¢ € F, the selection probability 7, (z,y) in (13) satisfies inf, , 7, (z,y) =:
Tmin > 0 for some 7,,;,, where F is a totally bounded class of functions ¢ : [—L, L] — (0, B], for

some B < oo and L < oo.

Assumption (B). The kernel K satisfies [p, K(x)dx = 1 and [pq |2;]K(x)dx < oo, for z; €

(x1,--+,24)" = x. Also, the smoothing parameter h satisfies h — 0 and nh? — oo, as n — oc.

Assumption (C). The density function f(z) of Z is compactly supported and is bounded away
from zero and infinity on its compact support. Additionally, the first-order partial derivatives of f

exist and are bounded on the interior of its support.
Assumption (D). E A o(Y)|X = x| > g, for i—a.e. x and each ¢ € F, for some constant gy > 0.

Assumption (E). The partial derivatives %EW[A|Z = z| and %EW[A o(Y)|Z = z] exist for

i=1,...,dim(z), and are bounded on the compact support of f.

Assumption (F). The deviation A, ¢(¢) = |Lm.e(2) — E[|fm(X; ) — Y [2Dy]|, where Ly, ()
and 7, (X; ) are as in (17) and (9) satisfies P{An, ¢(¢) >t} < supyer Po{Ame(p) > t}, VE > 0.

Assumption (G). [Identifiability] There is a part of X, say V, which is conditionally independent
of A, given Y and Z, where X = (Z, V).

Assumption (B) is not restrictive at all because the choice of the kernel K is at our discretion.
The first part of assumption (C) is usually imposed in the literature on nonparametric regres-
sion to avoid unstable estimates of m(x) in the tails of the density, f. The second part of this
assumption is technical. Assumption (D) is quite mild and is justified because E [A o(Y)|X] =
E lo(Y)E,(AIX,Y)|X] > mminE[e(Y)|X] and the fact that ¢(y) > 0 for all y. Assumption (E)
has already been used in the literature, whereas assumption (F) is technical. Assumption (G) is a

sufficient condition for model identifiability; see, for example, Uehara and Kim (2018).

The following result gives exponential upper bounds on the performance of the Lo norms of the
estimator defined via (18) and (17). This result readily extends to more general L, norms (p > 1);

see Remark 2 below.

Theorem 2 Let m(x;$y,) be as in (18) and suppose that assumptions (A’), (B)-(G) hold. Also
let the missing probability mechanism m, be as in (13). Then for every e, > 0 satisfying €, | 0, as
n — oo, every t > 0, any distribution of (X,Y) € R? x [~L, L], L < oo, and n large enough,
2
g {/ 7% @) — m()| u(dx) > t} < alFe e el | Fe | (7 e ) 1)

9



whenever * € F, where |F, | is the cardinality of the set Fe, and ca—cg are positive constants not

depending on m, £, n, ort.

Remark 2 Although the above theorem is stated in the Lo sense, the theorem continues to hold for

all p > 2. To appreciate this, observe that in the case of p > 2 one can always write

(s Bn) —mx) [ < ([e 8|+ m(x)])" 7 B) —mGo)|* < BLP 2|l ) — m(x)]
On the other hand, if p € [1,2) then by Hélder’s inequality we have
P{/ ’fﬁ(x; Gn) —m(x)‘pu(dx) > t} < P{/"ﬁl(x; Bn) —m(x)ru(dx) > tZ‘/p}.
In passing, we note that the bound in (21) may be viewed as a generalization of the classical results
of Devroye and Krzyzak (1989) for kernel regression estimators with fully observable data, where
they also assumed |Y| < L < oo. This assumption readily allows one to establish exponential
performance bounds for general L, norms, p > 1, of kernel regression estimators (and not just for
p=1or2). It is also justified by the fact that our main application is to the problem of classification
where Y is bounded. A more desirable result would be obtained if the boundedness of Y could
be relaxed to the moment condition F|Y|¢ < oo, for some ¢>1. This has been achieved in the
case of fully observable data; see, for example Krzyzak (1992) and Gyorfi et al (1998). However,
so far we have not been able to extend our results in this direction. In fact, to the best of our
knowledge, such extensions are not available even for the simpler case of data missing at random
(MAR) setups, where the probability that Y is missing depends on X, but not Y itself.

The following simple corollary shows that the above theorem can be used to establish strong

convergence results.

Corollary 1 Let m(X;oy,) be the estimator in (18). If, as n — oo,
log ¢

10g|]:an|
a0 a0 =

then under the conditions of Theorem 2 we have

10g‘}—an‘ N

d
— 0, an 7

0, (22)

E[ym(x; Gn) — m(X)|p)Dn] 950, for all p € [2,00).

Clearly, by Lebesgue dominated convergence theorem, under the conditions of Corollary 1 and
without further ado,

Elm(X; ) —m(X)[" — 0, for all p € [2,00).

Unfortunately, this result does not provide a rate of convergence. The following theorem sheds

more light on the convergence properties of the estimator in (18).

10



Theorem 3 Consider the estimator m(X; @y, ) in (18). Then, under the conditions of Theorem 2,

for n large enough,

E|(X; 2) = m(X)|

B \/CQ+1og£+1og\fen\ 1

+ +e1a | Fe, | e mhY,
c1o - (€ Amhd) \/611 “(CAmh) o +logl + log [Fo|] 2 7eul e

for all p € [2,00), where cg—c13 are positive constants not depending on m, £, or n.

The following result, which is an immediate corollary to Theorem 3, looks into the rate of conver-

gence of the proposed regression estimator.

Corollary 2 Let m(X;$y,) be the estimator in (18) and suppose that (22) holds. Then, under the
conditions of Theorem 2, for all p > 2,

R R P log (¢ V | Fe,
BlmX:3,) - mx)| = 0( W)

In the special case where m = a-n and £ = (1 —«) -n, where o € (0,1), one finds (under the above

conditions) that for all p > 2,

B|(X; 30) - m(X)[ = o( W) .

An Example.
To compare and contrast the asymptotic performance of our estimation approach with the existing

methods, consider the class F of functions ¢ of the form:
p(y) = expiryt, Wl <M, |yl <L, forsome M, L < oo, (23)

which is similar to the selection probability model used by Kim and Yu (2011). It is straightforward

to see that for every € > 0, the finite collection of functions

F. = {exp{w}, jyl < L] ve {{2ie/(Lexp(dL)) |Ii] < |MLexp{ML}/z] } U{-M}U {M}}}

(24)
is an e-cover of F and its covering number is bounded by (2 M L exp{ M L}e~+3); see the Appendix
for details. Since this bound grows like e~! (as ¢ | 0), one obtains strong L,, consistency results
for the regression estimator (18) under the conditions of Theorem 2 for any sequence ¢, | 0 (as
n — oo) for which log(1/e,)/(mh?®V£)) — 0. Similarly, the conclusions of Theorem 3 and Corollary

2 continue to hold for such a sequence.
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2.2 A Horvitz-Thompson type estimator

Our estimators in this section are based on a Horvitz-Thompson type inverse weighting approach
(Horvitz and Thompson (1952)). This method works by scaling each observed response variable Y
with the inverse of the estimate of the selection probability, m,«(Z,Y"), as given by (13), where ¢*

is the true function ¢ in (13) in the sense that

m(X; ) = E[AY /7+(X,Y)|X] = E[Y|X] = m(X). (25)
To motivate this approach, consider the hypothetical (and unrealistic) situation where the true
function 7y« is completely known. Then in view of (25) a kernel-type estimator of the regression
curve m(x) is simply

i) = 3 i k(e xm) S (e X/ (26)

Since 7+ is unknown, we proceed as follows. For each ¢ € F, consider the estimate of the selection

probability 7, of (13), based on IDy,, given by

_ -1
1+ 1- nm(zi) . 90(}/2)] , (27)

B = T )

where

Un(Zis ) = X e, s D0 (Y5) Kol((Zi — Zj)/h)/ZjeIm,j;éi Ko((Zi — Z;)/h)

(28)
m(Zi) = 3 ez, jri Dio(Zi — Zj)/h)/ZjeIm,j;éi Ko((Zi — Zj)/h).

Since Ty > Tmin > 0 (by assumption (A)) and since Jm(Zi; ©) in (28) is the estimator of the con-
ditional expectation E,[A;¢(Y;)|Z;] > 00 > 0 (by assumption (D)), we also consider the following
truncated-type version of the estimator in (27)

_ -1

1=im(Z) : (29)
o V U (Zi; )

where 1y > 0 is a fixed constant whose choice will be discussed later under assumption (A’). Here,

To(Zi,Yi) = |1 + (¥3)

we note that 7, in (29) can be viewed as a one-sided winsorized estimator of m, (compare this with
Ty in (27)). In applications with either simulated or real data, mg is chosen to be a small positive
number such as 107, v > 3. Next, let €, > 0 be a decreasing sequence ¢, } 0, as n — co and let
Fen = {#1,-- PN, ) C F be any e,-cover of F. Then, depending on whether (27) or (29) is

used, an estimator of the unknown function ¢* based on the e,-cover F.  is given by

~ : _ A~ ~ 2 : :
Pn = argminger ('Y g, % mpt (X3 7p) = Ys|",  if (27) is used, )
y : _ A~ y 2 : :

¢n = argmingcr { ! > e, % myr (X 7)) — Y37, if (29) is used,

12



where
HT .~ A;Y;
M (T, = Y = (% — Xi)/h)/ 3 K((x—Xi)/h), (31)
) Tr(p(Z’La Y;) .
€Ly, €Ly,
and m," (X;;7,) is obtained by replacing 7, with 7, in (31). Finally, our proposed Horvitz-
Thompson type estimator of the regression function m(x) is given by

HT( L= —

if (27) is used,

m?nT (X5 77@)

Te=Tgn

(32)

X;T,) = My (X37my,) if (29) is used,

To=T¢n

where m)1" (x;m,) is as in (31) but with 7, replaced by .

Next, we compare and study the asymptotic performance of the two estimators in (32). It turns
out, as in Theorem 2 and its corollary (i.e., Corollary 1), that exponential upper bounds along with
strong consistency results are available for both estimators. However, in the case of the winsorized-
type estimator m"" (x; 7z, ), one can also study the rates of convergence. To present these results,

we start by stating the following theorem.

Theorem 4 Consider the two regression function estimators defined via (32) and let the missing

probability mechanism m, be as in (13).

(i) Let m""(x;75,) be the top estimator in (32) and suppose that assumptions (A'),(B)-(G)
hold. Then for every e, > 0 satisfying €, | 0, as n — oo, every t > 0, any distribution of
(X,Y) € R? x [~L, L], L < 0o, and n large enough,

2
m(x;7mg ) — m(x)| puldx) > < |Fo. llcize 2+c15 me d2+c17 me ! ,
P ~HT 5 d t < |F . —ci4lt ¢ —c1gmh’t Y —ci1smh
(33)
whenever ©* € F, where |F. | is the cardinality of the set F.  and ci3—cig are positive constants
SO n n

not depending on m, £, n, ort.

(it) Let m""(x;7g,) be the second estimator in (32) and suppose that assumptions (A’), (B)-(G)
hold. If the truncation constant my in (29) is any constant satisfying 0 < mp < .., then, under the
conditions of part (i) of the theorem, the bound in (33) continues to hold (with different constants
ci3—c1s) for the probability P { [ |m"" (x; %y, ) — m(x)[*u(dx) > t}.

Remark 3 As in Remark 2, it is straightforward to show that Part (ii) of the above theorem holds
more generally for allp> 2. Le., the bound in (33) holds for P{ [ |m""(x; 7y, ) —m(x)[Pu(dx) > t},
for all p > 2.

The following result may be viewed as the counterpart of Corollary 1 for the two regression function

estimators in (32).

13



Corollary 3 Consider the two estimators in (32). If, as n — oo,

log | F2
 mhd

log |]-"5
V4

log(m Vv ¢)

ol
d — 0, (34)

en 40, — 0, ol — 0, and

then, under the conditions of Theorem 4, the top estimator in (32) satisfies the strong convergence

property, U mHT( — m(X)|2‘Dn] —®5 0. However, for the second estimator in (32),
E[‘ﬁlHT(X;ﬁ'%) - m(X)‘p‘]D)n} —%% 0, forallp > 2.

We also note that under the conditions of Corollary 3, by Lebesgue dominated convergence theorem,
and without further ado, one has E‘ MM (X 7tp,) — m(X)|p — 0, for all p € [2,00). However, to
study the rates of convergence here, we state the following theorem which is the counterpart of

Theorem 3 for the estimator m"™ (x; 7y, ).

Theorem 5 Let m""(x;7y,) be the second estimator in (82). Then, under the conditions of The-

orem 4, for all p € [2,00) and n large enough,

Bl (X #5,) = m(X)|

< c19 + log ¢ + logm + log | F¢,, | n 1
- c20 - (£ A mh?) ca1 - (0 Amh?)[c1g + log € + logm + log | Fz, |]

—co3 mh?
+ c22 ‘Fen‘ﬁme 2 ,
where c19—cog are positive constants not depending on m, £, or n.

The following is an immediate corollary to Theorem 5.

Corollary 4 Let m""(x;7t3,) be the second estimator in (32) and suppose that (34) holds. Then,
under the conditions of Theorem 4, for all p > 2,

E|m""(X;7y,) _m(X)‘p — 0 <\/log(Eva |}"€n|)> |

¢ A mhd

Once again, we note that for the special case where m = a-n and ¢ = (1 — «) - n, where o € (0,1),

under the above conditions, one finds that

log(n V| e, |)

E‘AHT i) —m(X)‘p - o( e

), for all p > 2.

Remark 4 The rates of convergence derived in Corollaries 2 and 4 are not optimal as compared
to those of kernel regression estimators based on no missing data. A better rate would be of order
(’)(\/log n/nhd), which is achievable if the cardinality of the e,-cover satisfies log |F.,| = O(n).

n‘_
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It is also well-understood in the framework of kernel regression (with no missing data) that under
additional assumptions such as the Lipschitz continuity of the regression function m(x), one can
establish rates as fast as (9((nhd)_1 + h2) for the usual kernel estimator in (1) based on the naive
kernel; see, for example, Gyorfi et al (2002; Sec. 5.3). Unfortunately, such rates do not seem to be
available for our estimators with NMAR missing data where the estimation process involves many
steps and many components. The rates in Corollaries 2 and 4 also show that choosing £ and m to
satisfy either £/m — 0 or m/n — 0 can generally result in estimators with convergence rates worse

than the case where m = a-n and £ = (1 — «) - n for any a € (0,1).

3 Applications to classification with partially labeled data

Consider the following standard two-group classification problem. Let (X,Y’) be a random pair,
where X € R? is a vector of covariates and Y € {0, 1}, called the class variable or class label, has
to be predicted based on X. More specifically, the aim of classification is to find a map/function

g : R — {0,1} for which the misclassification error, i.e.,

L(g) == P{g(X) # Y}, (35)

is as small as possible. The best classifier, also referred to as the Bayes classifier, is given by

gB(X):{ 1 if m(x) = E[Y|X=x] > } (36)

0  otherwise,

see, for example, Devroye et al (1996; Ch.2). Since the distribution of (X,Y") is virtually always

unknown, finding the best classifier gg is impossible. However, suppose that we have access to n
iid

iid observations (the data), D, := {(Xy, Y1), -, (Xy,Yn)}, where (X;,Y;) = (X,Y), i=1,--- ,n,

and let g, be any classifier constructed based on the data ID,,. Also, let

be the conditional misclassification error of g,. Then g, is said to be weakly (strongly) Bayes
consistent if L, (g,) — L(gg) in probability (almost surely). Now, let m(x) be any estimator of the

regression function m(x) := E[Y|X = x| and consider the plug-in type classifier

R 1 if mx) > 3
n(X) = 38
Gn(x) { 0 otherwise. (38)

Then, one has (see Lemma 6.1 of Devroye et al (1996))

Ln(Gn) = L(gs) < 2B[|A(X) —m(X)||Dn] , (39)

15



and by the dominated convergence theorem, E[Ly(gn)] — L(gs) < 2E|m(X) — m(X)|. Next,
suppose that some of the Y;’s may be missing not at random (NMAR) and consider the regression

estimator m(x; @, ) in (18). Denote the plug-in classifier corresponding to m(x; @) by

o 1 if m(x@,) > 3
Gn(X; Pn) = { 2 (40)

0  otherwise.

To study the asymptotic performance of the classifier in (40), we first state the following so-called

margin condition (see, for example, Audibert and Tsybakov(2007)).

Assumption (H) [Margin condition.] There exist constants ¢ > 0 and a > 0 such that

1
P{O < ’m(X)—Q‘ < t} < ct®, forallt>0. (41)

Applications of the margin condition to classification has been studied by many authors; see, for ex-
ample, Mammen and Tsybakov (1999), Massart and Nédélec (2006), Audibert and Tsybakov(2007),
Tsybakov and van de Geer (2005), Kohler and Krzyzak (2007), and Déring et al (2016).

Theorem 6 Consider the classifier g, (x; @n) given by (40). If (22) holds then, under the condi-

tions of Theorem 2, we have

@) P{Gu(Xi8) £ Y|P} —o Plgs(X) £ V).

() PG AV - PlaaX) £ Y= 0 ( () )

(iii) If the margin condition (41) holds then

log(£V | Fe, \)) zét‘z)>

P{gn(X;@n) #Y} = P{ga(X) #Y} =0 (( A (mhd)

where « is as in (41).

Part (iii) of the above theorem shows that for large values of a we can obtain rates closer to
(log(¢ V |F=, 1)/ [€ A (mhd)])l/2 which is the same as that of the actual regression estimator (see
Corollary 2).

Next, consider the Horvitz-Thompson type regression estimators given by (32) and denote the
corresponding plug-in classifiers by
_ { 1 if T (x7s,) > 4 L { 1 if mAT(x7,) >

I (x;7) = and g, (x;7) = (42)

0  otherwise, 0  otherwise,

where m""(x; 75, ) and m""(x;7y,) are as in (32). As for the asymptotic performance of the two

classifiers in (42), we have the following counterpart of Theorem (6).
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Theorem 7 Let g™ and g™ be the two classifiers in (42). If (34) holds then, under the conditions

of Theorem 4, we have

(i) P{aam(x:7) £ ¥

Dy} =% P{gs(X) # Y} and P {5 (X; %) £ Y

]D)n} 05 PLgy(X) £ Y}

(i) P{gn"(Xs¢n) #Y} = P{ga(X) #Y} = O <(W>U4> ‘

(tii) If the margin condition (41) holds then

Pt £ Pl 11 - (e )

where a is as in (41).

Here, we observe that for large values of « in part (iii) of the above theorem, one can obtain
rates closer to (log(¢VmV |F.,|)/[¢ A (mhd)])l/ ® which is similar to that of the winsorized-type

regression estimator m"" (x; 7z, ) in (32); see Corollary 4.

4 Proofs of the main results

We start by stating a number of lemmas whose proofs appear in the Appendix. Using the notation
of Section 2.1, let F be a totally bounded class of functions ¢ : [-L, L] — (0, B], for some B < co.
Also, for any ¢ > 0, let F. be any e-cover of F (see Section 2.1). Next, for each ¢ € F, put

Yp(x;9) = FE AY2_k<p(Y)‘X = X] and  n(x) = E[AYQ_k‘X =x|, for k=1,2, (43)

and define
mlxie) = mx)+ S (). (44
Also, define
~ 1 A; - 2
Lie(p) = 7 Z m M (X5 0) = Yi| (45)

1€y

where 7,(z,y) and m;,(x; ) are as in (15) and (9), and put

Ys := argmin E‘m(X;gp) —Y‘2 and @, := argmin Zm,g(go). (46)
pEFe peFe

Lemma 1 Let ¢* be the true (unknown) version of the function ¢ in (13). Also, let m(x; ) be as
defined in model (}4). Then the regression function m(x) = E[Y|X = x] can be represented as

m(x) = m(xig*) = m(x) + m (1 (). (47)

where the functions ¥y and ng, k = 1,2, are given by (43).
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Lemma 2 Let m(x;p;), j = 1,2, be as in (44), where ¢; : [—L,L] — (0, B] for some positive

number B. Then, under assumption (D), one has

Bim(X;p1) —m(X;pa)| < C- sup [o1(y) — p2(y)
~L<y<L

)

where the constant C' > 0 can be taken to be C' = 2L/ g, with oy as in assumption (D).

Lemma 3 Let m(x; ), Zm,g(go), e, and Pz be as in (44), (45), and (46), respectively. Then,

under the conditions of Theorem 2, we have

2 2 ~
B[ fin%i2) = mXip| 2] < sup [ | (ki 0) < V[ B | = i)
peESe
~ 2
+sup Bt~ Efmxi) - v[]| + cret
peFe

where Cy is a positive constant not depending on n or €, and My (X;p) is as in (9).

Lemma 4 Let K be a reqular kernel. Also, let p be any probability measure on the Borel sets of
RY. Then there is a positive constant p(K), depending on the kernel K but not n, such that for
every h > 0,

K((x —u)/h)
sup / w(dx) < p(K).
i ] B (G0 my) B = 20
Lemma 5 Let (U,Y), (U, Y1),...,(Uy,Yy) be iid R? x [—A, Al-valued random vectors for some
A € [0,00). Also, let m(u) = E[Y|U=u] be the regression function and define quantity m,(u) =
S, Y, K((u=U;)/n) /{nE[K((u—U)/h)]}, where K is a reqular kernel. If h — 0 and nh® — oo,

as n — 00, then for every t > 0 and large enough n,
P{ / ‘ﬁ%n(u) —m(u)’ p(du) > t} < o /(6142 2 (K))

where v is the probability measure of U, and p(K) is as in Lemma 4.

PROOF OF THEOREM 1

First observe that for every p > 1, |, 5(x) — m(x)[P < {|f, 5(x)| + [m(x) [}~ |7, 5(x) — m(x)] <
(3L)P~! |y, 5(x) — m(x)|, where the term (3L) follows from the observations that [m(x)| < L and
i (3)] < (71 (x, 0) 4+ (171(%,7) /T2, 9)]) - [1 = 72(x, 0)| < L+ (L-[72(x,9)|/|72(x,7)]) -1 = 2L.
Therefore, we only need to prove the theorem for the case of p =1. To this end, let ng(x,t)
and 7M(x,t), k = 1,2, t € R, be the quantities defined in (3) and (6), respectively. Then it
is straightforward to show that in view of (5) and (4), and the fact that |71(x,7)/m2(x,7)| <
L+ [ii(x,3)1/li(x,3)| = L, one has

107 I 71 (x,0) — 72k, 0)]- (49)

[ 5() = ()| <G, 0) =m0 +| 2 2y =

=)
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But the first and third terms on the right side of (49) can be immediately bounded using the
classical result of Devroye and Krzyzak (1989). More specifically, for every ¢ > 0 and n large

enough,

P{ / },'/7\1 (X, 0) _ 7]1(X, 0)|u(dX) > t}§ e 24" and P{ /L’ﬁg(x, 0) — 172(X, O)’,u(dx) > t}ﬁ e €257
(50)
where co4 and co5 are positive constants that depend on ¢ but not n. To deal with the middle term

on the right side of (49), we note that it can be written as

nz(xl,v*) [ZE ?; (mal ) = ﬁQ(Xﬁ))+<ﬁ1(xﬁ)nl(x"y*))H
1
Tuin €XP{—L|7*[}

+ Lli(x,77) = ma(x, 7)) .

(17663 = 66, 7) | + (7667 = e, 7)] + L[, ) = a3, 77)]

where the above inequality follows from assumption (A) with the simple fact that no(X,~*)
= E(E [Aexp{y*V}X,Y]|X) = E [exp{y*Y }71+(X,Y)|X] > inf,y 7y (2,y) exp(—|7*|L), to-
gether with the observation that 7;(x,7) / M2(x,7) < L. Consequently, for every ¢ > 0, the integral
of the middle term on the right side of (49) can be dealt with as follows

2 a1 < P L[ finees) = itxulan) > Tt

+P{/ﬁﬁ&wﬂ—ndxvﬂmwﬂ>3%43ﬁ%H}

mx,7y)  m(x,7")

~ o~

n(x,7)  me(x7*)

~ 7Tmint
X x, 7" dx) > ——————
‘772 7) 772( g )‘:UJ( ) 4Lexp{L|’y*\}}

AL exp{L|y*[}

P {!mxv)7M&fWM@>MM:}
4
ank(t) (51>

To deal with the first term in (51), i.e., the term P, (), put

I(x) = ZAin(exp{w}—exp{v*m})ic«x—X»/h)/nE[iC((x—X)/h)]

=1
M(x) — 2ic AY; (exp {FYi} —exp {y" Yi})K((x = Xo) /1) | EL, K((x = Xi)/h)
" 21 K((x = X;)/h) nE[K((x - X)/h)]

and observe that

7Tmint

Pt {/}r’ )| udx) > m}ﬂa{/\rg(x)m(dxpmw}(52)
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Furthermore,

/ K((x —2)/h) IS ~ ;
/ |T7(x) | u(dx) < Sl;p/ EIK((x = X)/h)] pldx) - — ; ‘Aiyi (eXp {7Yi} —exp{vy YJ)‘
< exp {73} (by Lemma 4)
< n7lLp(K) Z ’(/7\ - 7MY; (via a one-term Taylor expansion),
i=1
< n*ILQﬂ(/C)H—'V*\~ZeXp{W—'V*\L+7*Yi}7 (53)
i=1

because |Y;| < L and 7Y; = (7 —v*)Y; +1*Y; < |7 —~*|- L+~"Y;, where 7 is a point in the interior
of the line segment joining 7 and ~*. Therefore, using the fact that |y —v*| < |3 — v*|, one finds,
for every constants ¢t > 0 and Cy > 0,

P{ [ Ieeoluta ssp{w}

o~ * ~ * 7rmint
Sp{h_” e {718} oo () > >exp{L\v*r}}

=1
gp{

n-P {exp {yvi} >

~ ) R . . T minl
7 = |exp {|7 —+*|L} - ;eXp{’y Yi} > 8L%p(K) exp{L|v*[}

n{F-i< co}} + P{F =71 > Co}

7Tmint

8L2Co p(K) exp {(|v*| + Co) L}

IN

}+P{Wv*| >Cop  (54)

—0+P{F-1>Co}, (55)

for any Cy satisfying 4L2Co p(K) exp {(|7*|+ Co)L} < mnt. Here, the last line follows because the
random variable exp{y*Y1} is bounded by exp{|y*|L}, which implies that taking Cj small enough
forces the first probability statement in (54) to become zero. As for the term I/ (x), we note that
in view of (53) and the observation that |7 — v*| < |y — v*|, one obtains

251 K((x = X;)/h)
nE[K((x - X)/h)]

/!FZ(X)W(dX) < L3 =77 1Igg<>%exp{ﬁv*|L+h*lL}'/

- 1‘ p(dx).

Now, observe that

p{/|r;;<x>|u(dx> > M}

<P{h 7| exp {|7 - ML}/

j 1 (( ])/h') B < Tininl
EK((x— X)/)] 1‘““ )= 8L2exp{2m|}}
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251 K((x = X5)/h)
nE[K((x - X)/h)]

7rmint

8L2Cyexp {(2]v*|+Co)L}

—1\u<dx> > }+P{W—7*| > Co}

o f

< min PlF -
_eXp{642L4cgp2(IC _exp{2(27*’+CO>L}}+ {W g \>Co}, (56)

for large n, by Lemma 5, where Cj is as in (55); here, we have used Lemma 5 with m(u) = 1 and
Y;=1for all i = 1,--- ,n. Putting together (52), (55), and (56), we find

Pur(t) < exp{-Con®?} +2P{[5 = > Co }, (57)

for n large enough, where Cy is a positive constant not depending on n. It is a simple exercise
to show that the term P,3(¢) in (51) can also be bounded by the right side of (57). Furthermore,
as in (50), once again we can invoke the result of Devroye and Krzyzak (1989) to conclude that
Pra(t) < e 26" and Ppa(t) < e 2" for n large enough, where cog and co7 are positive constants
not depending on n. These observations in conjunction with (57), (51), (50), and (49) complete
the proof of Theorem 1.

Od
PROOF OF THEOREM 2
To proceed with the proof, first note that for each i € Z,, we have
Ail i (Xiz @) = Yi[© _ Ai (X o) — Y;|? R > 1 1
L LT T kb | RN PO S NS SRS W
W@(Zzyifz) Ww(zza}/;) 7TLP(Z’MYL) WQP(Z“K)
Therefore, by the definition of Eml(cp) in (45), one finds for every 8 > 0
~ N 2
P{ sup |Los(p) — E Ummm;s@) -] \Dm” > 8
pEFe
A; ‘mm i) — Yi‘Q 2 B
< Pl sup | —Eﬂmm X: o —Y‘ )Dm] > 2
peFe Zez;g ﬂ.@ ZZ’ Y) ( ) 2
1 1 I3
+ P{ sup |01 A [T ( Z,(p—YiQ[ — = }>
pEFe ZEZIg | ) | To(Zi,Yi)  To(Zi,Yi) 2
= Sp(1) + Sn(2). (58)

But with 7, (z,y) modeled as (13), where ¢ € F is the free functional parameter, for each i € Z,

A;
TFSO(ZZ" Y%)

2
L | [P0 -y (a
v W@(Z%Yi) ’ ’

2
Ego mm (Xu 90) - Y; ]D)m

D,

my
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Esoﬂmm(x;go) —Y‘Q )Dm] .

Furthermore, conditional on I,,, the terms A; |fflm(XZ-; ) — }/;‘Q/W¢(Zi, Y:), i € Iy, are indepen-

dent bounded random variables, taking values in [0, (3L)?/m,,;,]. Therefore,

A [ (X3 ) — Vi [ _ 2 8
Sa(1) < |F Pt —E‘ (X —Y‘ ‘]D)m] > 2
< Pl { Z TolZo 1) im X ) z
1 _ . _ [
< iz rfje 3 A a oo -] |- .
< 2|F| exp{ —wmmm?/(mzﬁ)} (via Hoeffding’s inequality), (59)

where the line above (59) follows from conditioning in conjunction with assumption (F). To deal
with the term S,,(2) in (58), let ¥ (Zi; ¢) and 7m(Z;) be as in (28) and observe that in view of
(13), (14), (15), (16), and the fact that |[m,(Xi;¢) — Y| < 3L, we can write

_ 1 1 B
Sn(2) < | Fe| sup P/ 1 — - >
() ‘ 6‘806]'—5 { iezl'g 7T<P(Zi7Y;) ﬂ-ﬁﬂ(zi?}/i) 18L2}
< | F:| sup E - e(Yi) > —— |Zi,Yi |, 60
| ‘cpefsg;é { Um(Zis o) ElAio(Yi)|Z] 1812 (60)

where the last line follows upon replacing the term exp{g(z)} in (13) by the right side of (14). Now,
to bound (60), we note that

1= iim(Z:) 1 B[Ai|Z]

bm(Zizp)  E[Aip(Yi)|Zi]

1 —nm(Zi) m(Zi; ) — E[Aip(Y;)|Z;] N E[A|Zs] — Tim(Z)
bm(Zis ) E[Aip(Y;)|Zs] E[Aip(Y;)|Zs]

1 — i (Zs)| ‘%(zz-; p) = B[Awp(Y)|Z]| | |E[AZ] = iin(Z)
A E[Aip(Y;)|Z4] E[Aip(Y;)|Zs]

Therefore, in view of (43), the inner conditional probability in (60) becomes

P{ o Zszi}

1 —7m(Zi) 11— E[A|Z]

bm(Zi; ) E[Aw(i@)lzz-]

Y,
e(Yi) > 573

1—7 003
< P{ W lwm 1) — E[Aio(Yi)|Zs) 3652 Zi,Yz}
+ P{’ﬁm(zi) — E[A|Z]| > ngﬁp ZZ,YZ}
= Po(i) + Po2(i), (61)
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where we have used the facts that ¢(y) € (0, B], B > 0, and E[Acp(Y)‘Z = z] > oo (by assumption
D). But, using standard arguments, it is not difficult to show that, under assumptions (B)—(E) and

m large enough, one has
Poa(i) < Chge Cramh®s? (62)

where c12 and c13 are positive constants not depending om m, ¢, or 5. Furthermore, it is also shown
in the Appendix that
Poa(i) < ChgeCsmhB 4 0y e Crrmh? (63)

where C1g and C}7 are positive constant not depending on m or £. Therefore, in view of (58)—(63),

for every 8 > 0 and n large enough, we have

P < sup
pEFe

~ 2
Lyi(p) — E “ﬁlm(X, ) — Y‘ ‘Dm] ‘ > ﬁ} < / }]:g| [C’Ql ¢~ Cozmh? | Ciyg e~ C24 mhd g2
+ 2|F| e a5/ (A62LY) (64)

Next, we deal with the second term on the right side of (48). To this end, first note that since for
peF, Elm(X;p) — Y| = EJm(X; ) — Y|° = B [A|m(X;¢) — Y|? /7s(Z,Y)], one obtains

R 2 1 A, \mm(xi; ©) — Yi|2 1 A; ’m(Xz’E ®) — Yi’2
T o) — E‘ X; ) — Y‘ < |- -5
() m(X; ) ‘ = ¢ Z o (Zi, ;) e T (Zi, Yi)
i€ T, i€y

1 A |m(Xip) - Y[
7 2 7o(Zi,Y7) B

i€y

Alm(X; ) —Y‘Q
WW(Z,Y)

1 ~ 2 1 1
7 2 Ailmn(Xise) =Y [ — }
¢ iGZIe ‘ ‘ mo(Zi,Yi)  Tp(Zi,Yi)

= |Un,1(90)’ + |Un,2(90)‘ + ’Un,S(SO)" (65)

Therefore, for every 8 > 0,

P < sup
peFe

But using assumption (A) and the simple fact that a? — ? < |a — b||a + b|, one can write

Em,ﬁ(‘ﬂ)—E‘m(X;<ﬁ)—Y‘2’>ﬁ} < ZP{SEJIF) |Unk }>§}
pET:

P{ sup |Un,1(¢)| >5/3}

pEF:

N
s
—
w
5
| =
g

Uﬁlm(Xz‘;@) —m(Xi; )| - [ (Xi3 ) + m(Xis ) — 2YZH > ”BW‘"“‘}

pEFe €L 3
67Tmin
< ’]:’ sup Z {‘mm 2 30)—m(XZ»SD)’ > 151 }7
QOG E’LEIZ
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where we have used the fact that !ﬁlm(Xi;go) + m(Xi;0) — QYZ-‘ < 5L. Now, using standard

arguments, it is not hard to show that under assumptions (B)—(E) and m large enough, one has

P{ sup [Una(9)| > B/3} < €|F|Cas exp{—Casmh?8%), (66)
peFe
for positive constants Cos and Cog not depending on m, ¢, or 5. Next, since the iid random variables
Aim(Xis ) — Yi|?/7p(Z2i,Y5), i € Iy, take values in (0, 412 /T, ), an application of Hoeffding’s
inequality yields

P{ sup |Un2(p)| > 6/3} | 7| sup P{|Un2(0)| > B/3} < 2|F.|exp{ - en?, B2/(T20%)}.
SOE €
(67)
Furthermore, the same arguments that were used to deal with the term S, (2) in (58) can be

employed to show that

P{ Su]g |Un,3(¢)| > ,8/3} </ ‘]—"8| [027 exp { — Cog mhd} + Cag exp { — C3o mhdﬂ2}} ,  (68)
peSe

for n large enough and positive constants Co7 — (59 that do not depend on m, ¢, or 5. Putting
together (65), (66), (67), and (68), one finds, for every 5 > 0,

P < sup
pEFe

Em’g(ga) — Eim(X;p) — Y‘Ql > ,B} < Cs/f ’fg‘ |:e*032 mhd + ¢~ Css mhdﬁz]
+ 2| F.| e Coath? (69)

for n large enough, where C3; — (34 are positive constants not depending on m or £. Now to
complete the proof of the theorem, let 0 < ¢, | 0 be as in the statement of the theorem and let
©e, be as in (19). Then, (47) in conjunction with the arguments used in the proof of Lemma 3 (in
particular (94), (95)), and the Cp-inequality (with p = 2), one has

[ 8 =m0 “utix) < 2 [ |@i6@n) —mbxipe,)| i) + 120, ()

where C' > 0 is the constant in Lemma 2. Finally, observe that (70) in conjunction with Lemma 3

implies that, for every ¢ > 0,

{/’mxcpn— ()’ <dx)>t}<P{/‘man)—m(x;4p5n)

~ t/2—-2LC¢, — Ci+\/en
< P{ sup EU%(X;@—Y\ ]Dm}—Lm,Aap) > Y Ve }
906]:571

2

t/2 —2LCe, — C1\/E,

+ P{ sup > / c Ve .
PEFep 2

2

wu(dx) > % —2LC sn}

~

Line(¢) = B|m(Xs ) -
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Now, since &, | 0, as n — 0o, we can choose n large enough so that ¢t/2 — 2LC'e,, — C1./E, > t/4.
Therefore, in view of (64) and (69), for every ¢ > 0 and for n large enough, one finds

2
P{/ (x; @) = m(0)| u(dx) > t} < 4|F, | e e €] F, | e pegg | Fe [ om0,

which completes the proof of Theorem 2.

PROOF OF COROLLARY 1

Corollary 1 follows from an application of the Borel-Cantelli lemma in conjunction with (22), the
bound in Theorem 2, and Remark 2.
O

PROOF OF THEOREM 3

We first note that by Remark 2 it is sufficient to prove the theorem for the case of p = 2. The proof

is along standard arguments and goes as follows. Observe that

E|f(X:8,) ~m(X)[* = E [/R
sz

9L2
s

where the last line follows because by the definition of the estimator m(x; @,) in (18), one has

(o) — m(x0)| u(dX]

(x; Bn) — m(x)‘zu(dx) > t} dt

2
(% Br) — m(x)‘ p(dx) > t} dt, (71)

< (|0 @) + [mx)])”

Dt (%3 B)

~

wm,Q (X; @n)

IN

2
(Wm,l(x)H '\1—ﬁm,z(X)\+L> < (L+L-1+L)>

Therefore, by Theorem 2, for n large enough, we have
(right side of (71))

< /dt+(64\/cﬁ)‘}'gn‘-
0

912 ) 9L2 Lo 4 9L2
/ e M qt + E/ e~ MM gt 4 pecTmh / dt |,
u u u

(where c4—cg are as in Theorem 2)
9L2
S e Vel T [ DI G (e ) 01|, 7T
u

2(C4V06)‘f5n’€ /oo
\/(65 A Cg)w A mhd) uy/ (esAcg)(EAmhAd)

e V2 dy + (ca V 06)(9L2)‘}}n | ¢ e—crmh!
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(which follows from the change of variable v = \/(c5 A cg) (¢ A mhd) t

2 vV F. | —(csAcs) (UAMRY) u2 /2
< u+ (VelFalt e + (ca V e6)(9L%)| .,
V(s Aeg)(E Amhd)  \/(es A cg)(f Amhd) u

Ceermht - (72)

where the last line follows from the upper bound on Mill’s ratio; see, for example, Mitrinovic (1970;
p. 177). Now, put

c=2(ca V c6)|]:5n‘ ¢ and N = (c5Acg)(l Amh?)/4

and observe that the right side of (72) can be written as

u+ ﬁ e 2w 4 (ca Vo) (9L?)|Fy, | Le mh, (73)
But the term v+ 5~ e~2Nv* in (73) is approximately minimized by taking u = \/log(c)/(2N), and

the corresponding minimum value of (73) is

[log(c) | 1 2 —crmhd
L E C7 M.
ON + 8N log(c) + (ea V)9 )’fan‘ e

_ [car +logl +log | F,| 1
ca2 (€ A mhd) cag (LA mh®)[cs1 + log € + log | 2, |]

+ C44 ’fgn } le " mhd,

where c41—cy44 are positive constants not depending on m, ¢, and n.

O
PROOF OF THEOREM 4
Let mp"(x;7,), m(x,my) , and ¢. be as in (31), (25), and (46) respectively. Also, define
T ~\ _ p—1 A ~HT L~ 2
Lin(Tp) =4 Z F(Z,Y) ’mm (Xi;7p) = Yi| (74)
i€y
where 7, (x,y) is given by (27), and put
Qe = argmin Emj(?r@).
peFe
Then, using the arguments that led to (90) and (91), yield
S HT ~ 2
[ |7 a7) - mtxim,)| )
2 ~ ~ 2
< sup |E “mng(X;%w) - Y‘ ‘Dm] — Ly (Tp)| + sup ‘Lm,g(%go) - E‘m(X; ) —Y‘
pEFe pEFe
+ 2B [ (X 7p,) = m(Ximp,)| - [m(X; mp.) = m(X; mpe)| [ Dl (75)
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where, as before, ¢* is the true ¢. But by Cauchy-Schwarz inequality, the last line on the right
side of (75) is bounded by

’ \// ‘mgg(x; T.) — m(X; Ty, ) 2M(
C3 \//‘ﬁleT(X; Tg.) — m(x;my,)

where (76) follows from arguments similar to those used to arrive at (94) and (95); here Cj3 is a

dx) - \/E‘m(X;ﬂ'%) —m(X; myr) 2

2

n(dx) - Ve, (76)

positive constant not depending on n or €. Therefore, in view of (75) and (76), for any ¢t > 0

P{/ ‘mfnT(X; 75.) _m(x;ﬂ'%) p(dx) > } {/ ‘mHT X; T, ) — m(x; T, ) 2M(dX) > tz}

Cy€
< P{ sup
peFe

E “mg}(x; ) — Y’Q‘Dm] — Li(7,)

St
3

. 2| ¢
+P { sup (L o(7y) — E‘m(X, Ty) — Y‘ > } , (77)
peFe 3
where ¢y = (3C3)? with C3 as in (76). Therefore, for every constant 8 > 0
R _ 2
P sup |Lone(7,) — D i X;%)—Y’ ‘ID)mH>ﬁ
pEFe

Aj | (X 7 Y| - 2 B
< Pl sup | o) [‘AHTX;W —Y‘ ‘D ] > 2
<p€.7-E€ Z 7r<p(zu sz <p) " 2

€Ly
/\HT L~ |12 R -1 (= VL -1 é
+ P 5;1;)5 0 1ZE§T;A [mpt (X3 Tp) — Y| |:<7r<p(ZZaE)) (Wso(zuyz)) } > 5
= T (1) + Th(2). (78)

However, for every i € Z; and ¢ € F, one finds that Ey[A|mi (X 7,) — Yil?/7(Zi, Y;) Dy | =
Eg[E{ Al (XisTp) — Yil? /mo(Zi, Vi) D, X3, Yi D] = B[ (Xis 7p) — Vil D], which
follows from the definition of 7, in (13). Moreover, by the definition of 7,(Z,Y") in (27), one finds

— |- B, 79
wm(ZkQ@) > ( )

where the function Jm(Zk; ©) is as given by (28). Consequently, conditional on D,,, the terms

~SHT o= < ~ < .
‘ (Xz777g0)| < Eel%i|AkYk/7rcp(zkaYk)‘ < L <1+I§I€1%i(n

[A M (X)) =Y |2] / 7o(Zi,Y;), i € Iy, are independent nonnegative random variables bounded
by 2L2{4 + B? maxkezm 1/zpm (Zy; |}/7rmm Therefore, using the arguments that lead to (59),
the term 7),(1) in (78) can be handled as follows
p
= 2

A; ‘m (Xi;7p) — Z-
Trcp(ZuYz

=Y

UAHT (X;7,) Y‘ D }
’LEI[

To( ’]—"‘ sup P{
peFe
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Ai|mpT (Xis ) — Y;|2
T Zza)/;)

2
- B, Umﬁf(x; 7,) — Y‘ )Dm]

2]

—20% (3/2)? (80)
2027 L {4 + B2 max%ezm |1/7Zm(zk; ‘P)’} 7

< ‘.7:5‘ sup E,
pEeF

ey

€Ly

A

<2 |]—}’ sup E, | exp
peF

via Hoeffding’s inequality. Now let gy be the constant in assumption (D) and observe that since
the exponential function in (80) is always bounded by 1, the expectation on the right side of (80)
is bounded by

22 (5/2)? o,
o { 2027 4 {4+ maxd oz, |B/dm(Zis )| | } H{ ka n(Zii) = | }}

H{ U [{/;m(zk;@) < 90/2} }]

keLm

< exp{ —20%(8/2) i } ,p@{ N [Jm(zk;go) > QQ/Q] }

2027, {4 + B2(2/00 .

+ Y. P {ﬂ?m Zy; )<Q0/2}

k€Lm

—20% (8/2)?
= eXp{2L2 Tk {4+ B2(2/00)2} } +k§ {d}m @i ) < Q0/2}' =

By

+ By

If we put ¢ (Zy; @) = Eg[App(Yi)|Zy], then we find Po{tm(Zy; ) < 00/2 2.} < Po{ 0 (Zy; )+
U(Zis; ©) > 00 — 00/2|Zi} < Po{ [0m(Zis; 0) — ¥(Zy; 0)| > 00/2|Zi} < Crg exp{—Crzmh?}, for n
large enough and positive constants C1g and Cj7 not depending on n or . Thus, by (80) and (81),

T.(1) < 2|F]| <exp { 12n mgif—iﬁéfé/gop}} + Ci6m exp {—Cnmhd}) . (82)

As for the term T),(2) that appears in (78), one can use the fact that |[miIT(X;;7,) — Vi|? <
2L7{4+ B*maxj 7 ‘1/1Zm(Zk; ©)|} to write

T,.(2)

1 1
ﬂ-‘ﬂ(zh Y;) - %Lﬂ(ziﬂ }/Z)

2L2{4+ (max ‘B/wm Zy; )D2} Z

4 ke
m €T,

< ‘.7:5‘ sup | P
peFe

}+ > P{on(@iie) < 90/2})

k€Lm

ﬂ[ N {n(Zi0) = 00/2}
k

€ELm

S B
412[4 + B%(2/00)?]

1 1
mo(Zi,Yi)  Tp(Zi,Y5)

< ‘.7:‘ sup | P 1
) pefe iezl':g
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+ ) {¢m (Zy; )<@o/2}

ke,

Employing the arguments that were used in (60), (61), (62), and (63), one arrives at
Tn(2) < |.7:5‘ (C46 lexp {—047 mthQ} + Cyg Lexp {—C4gmhd} + Cs L exp {—C5lmhd}) . (83)

Now, putting together (78), (82), and (83), we find that for every 8 > 0 and n large enough (and
thus m and ¢),

P smp [Ento - £ [roem, - ¥[ou] | 5}
peEFe

< |7 <exp{—C52€2ﬁ2} +c46£exp{—c47mhd52} + Css (V) exp{—C'54mhd}>. (84)

To wrap up the proof, we also need to deal with the last probability statement on the right side of
(77). To that end, it is shown in the Appendix that for every § > 0

~ 2
p { SUp | L () — E\m(x; ) — Y\ ‘ > 5} < |7 (Csofme_cmmhdﬂQ + Csplm e~ Cramh
pEFe

2670 (85)

for positive constants Cs5—Cs9 not depending on m, ¢, or 5. Now, for any decreasing sequence
0<enl0,let ., beasin (19). Then, employing arguments similar to those used in the proof of

Lemma 3 (in particular those used to arrive at (94) and (95)), we find
2 2
[ - meo| utdx) = [ 7006 5 — mxiion,) + mxicen,) - mGo)| )
2
< 2 [ ) - mlxion,)| uldx) + 4LC=, . (80

where C' > 0 is the constant in Lemma 2. Therefore, in view of (86) and (77), for every constant

t > 0 we have

1 2
< 5 P{ [ oe,) — i) i) > 12 - 20Ce, |

P
N . 2
< P{/‘mHT(X;%n)—m(X;%n) [

2
- P {/ ’mHT(X; Tz,) — m(X; ¢e,)| p(dx) > (t/2 — 2LCe,)/(cs 5%)}
(for n large enough, where ¢4 > 0 is as in the first line of (77))
t/2 —2LCey, }

(dx) > t/2 — 2LC€n}

IN

3

2 ~
P! sup ‘E Umgf(x;ﬁp)y‘ ‘Dm} — Le(7)| >
PEFe,

29



~ 2
Lni(7y) — E(m(X; ) — Y’ >

—i—P{sup 3

wefsn

t/2 —2LCe, }

Finally, choosing n large enough so that (/2 —2LCey,)/3 > t/12, and using the bounds in (84) and
(85), we find

2
" {/ ‘mHT(X; T5,) — m(x)’ p(dx) > t} < || (065 e Cost® o Cre=Cosl®t o Cggl ¢~ Cromh®?

+ C71 dm 67072mhd(t2\/1) + 073(5 V m)efcmmhd),

for n large enough where Cgs—C74 are positive constants not depending on m , ¢, or t. This
completes the proof of Part (i) of the theorem.
Part (ii).
The proof of Part (ii) of the theorem is virtually the same and, in fact, easier and therefore will

not be given.

a

PROOF OF COROLLARY 3

The corollary follows from the Borel-Cantelli lemma in conjunction with (34), the bound in Theorem
4, and Remark 3.

O
PROOF OF THEOREM 5
The proof of this theorem is similar to that of Theorem 3 and therefore will not be given.
O
PROOF OF THEOREM 6
Part ().
By (39), we have
P {5 £ Y[B.} — PlauX) £ ) < 28 [ - meo|[p]. 67

Now, Part (i) of the theorem follows from (87) and Corollary 1 in conjunction with the Cauchy-

Schwarz inequality.

Part (i1).
Taking the expectation of both sides of (87), the result follows from Corollary 2 together with the

Cauchy-Schwarz inequality.
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Part (ii).
By a result of Audibert and Tsybakov (2007; Lemma 5.2), under the margin assumption (H), we

have
PGP # Y- P00 # v} < (Elacay-meo ) s

where « is as in (41). The result now follows from Corollary 2.

PROOF OF THEOREM 7

The proof uses Corollaries 3 and 4 and is virtually the same as that of Theorem 7, and thus will

not be given.

O
Appendix: auxiliary proofs
PROOF OF LEMMA 1.
Let m,(x,y) be as in (8) and note that
X)}o* (Y

1= (X,Y) = 1 f‘i{g {(g (%9; ;* (>Y) = exp{g(X)} 0" (V) mp (X, V). (89)

Now, writing m(x) = E[Y|X = x] = E[Y A[X = x] + 218X L pl1 — AJX =], one finds
EY(1-A)X] EE{YQ-2)XY}X] E[Y{l-m-(XY)}X]
E[1—A[X] - E[E{1-AX,Y}X] = EB[l-7m(XY)[X]

o E[Y (g (N ne (X, V)X] _EYe'(AX]  ni(Xe)
Elexp{g(X)} ¢*(Y) e (X, Y)|X]  E[p*(Y)A|X]  4a(X59%)

The proof of the lemma now follows from this and the definitions of 15 and 7, k = 1,2, in (43).
O

PROOF OF LEMMA 2.
Let Yx(x;¢), k= 1,2, be as in (43) and observe that

’— 1(x5901)  Ya(x;901) — Pa(x; p2) n P1(x5 1) — Y1 (x5 92)
Ua(x; 1) Pa(x; @2) a2(X; ¢2)
x E[1 - A|X =x]

M{L’%(x; e1) = Y2(%; pa) | + |1h1(x; 1) — ¥1(x;02) [},

where we used the fact |¢1(x;01)|/|[2(x;01)| < Lia(x;01)|/|2(x;01)| =L (because ¢ > 0).
But, since |YA[<L, one finds |[¢1(x;91) — ¥1(x592)] < E[JAY]: }gol(Y) - 902(Y)’ }X =x| <

m(x; 1) — m(x; w)‘ =
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L sup_r<, <z |01(y) — @2(y)|. Similarly, [¢2(x;01) — 2(x; 02)| < sup_r<, <1 [01(y) — @2(y)|. On
the other hand, by assumption (D), we have ¥9(x;p2) > go > 0, for p—a.e. x. Therefore

‘m(X; e1) —m(x; wz)’ < (2L/o0) g lo1(y) — wa(y)|.

The lemma follows now by integrating both sides of this inequality with respect to p(dx).
PROOF OF LEMMA 3.
Observe that E[|Mm(X;@:) — Y2Dy] = E[|m(X;8:) — m(X;¢:)?|Dn] + Eim(X; ¢c) — Y2
+ 2B (M (X;82) — m(X; ¢:)) (m(X;02) = Y) ’]Dn] Also, let ¢* be as in (20) and note that
]D)n}
= | (X 82) — (X 2)) (m(Xs 00 = (X ") + m(Xi 1)~ V) 2]
where we have used the fact that in view of (47), E[Y|X = x] := m(x) = m(x; ¢*). Therefore
2

Dn}

_ {E Dmm(X; 5o -v[ Dn} — B|m(X;02) _Yr}

B [(ﬁm(X; 5:) —m(Xi o) ) (m(Xipe) - Y)

=F [(mm(x; o) —m(X; sos)) (m(X; ve) — m(X; sO*))

],

E Umm(x;@) —m(X; pe)

—2F [(ﬁlm(X; Pe) — m(X;%)> (m(X; Pe) — m(X;w*)> Dn]
=1, +1I0,. (90)

Now, observe that

N R 2 2
I, = FE ‘mm(Xﬁps)*Y‘ }

D,| — inf Elm(X:0)—Y
n} nf |m(X; )

2
sup {5 || (X:2) - ¥
pEFe

]Dn:| - Em,@(SO) + Lm,ﬁ((p) - Em,@(@a)

T L@ - Elm(Xs ) - Y!Z}, (where Lm() is as in (45))

IN

)

. ~ 2 > > 2
(5[ x:20 = ¥ ['[Pu] = Bn@)) + 510 [Em) ~ Elm(Xi) - ¥
pESe

where the last line follows since Em,g(cﬁs) < Emg(cp) holds for all ¢ € F. (because of the definition
of @c in (46)). Therefore,

IL,| < sup Los(p) — E|lm(X;9) — Y|

peFe

+ sup . (91)

peFe

E “mm(x; 0) - Y‘Q‘Dm} — L ()
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where conditioning on Dy, in the above expression reflects the fact that m,,(X;¢) depends on Dy,
only (and not the entire data ID,,). Furthermore, by the definitions of m,,(x; ¢), {Z)\m,k» and 7y, ; in
(9), (10), and (11), respectively, and the fact that |m(X;¢)| <|Y| < L holds for each ¢, one finds

|7 (X5 32| < i (X)] + ([0 (X5 B/ |92 (X3 8)]) - |1 = Gima2(X)| S L+ L-1=2L. (92)

]

< 6L \/E]m(X; pe) —m(X; ")

Therefore, one can bound II,, in (90) by

‘Hn} < 257[FﬁmCX¥¢%)—7nCX¥¢e)

: ‘m(X; p:) —m(X; ")

2

< 6L- E‘m(X; ve) —m(X; ") ) (93)

via Cauchy-Schwarz inequality. Next, consider the identity E‘m (X; @E)—Y‘Q = E’m (X5 ¢%) ‘

E|m(X; ) —m(X; ¢ )! which holds because E[E{(m(X; pz) —m(X; ¢*)) (m(X -Y) | H =
E[(m(X;¢:) — m(X; %)) E{m(X; ¢*) — Y|X}] = 0 (since E(Y|X) =m(X) = ( ©*)). Using
this identity, one finds

E|m(X;p:) —m(X;gp*)|2 = golél]f-‘ E|m(X; ) ‘ — E|m(X; ") — Y‘Q
= inf E|m(X;¢) - (X;cp*)‘2
pEFe
< 2L inf E‘m (X5 ¢) —m(X;¢")|, (94)
peFe

where the last line in (94) follows because }m(X; ) —m(X; @*)‘2 < !m(X; ) —m(X; go*)} x (2L).
Now let ¢! € F. be such that p* € B(p',¢); such a ¢f € F. exists because ¢* € F and F. is an
e-cover of F. Then, by Lemma 2 and the fact that the right side of (94) is an infimum, one finds

(Right side of (94)) < 2L- E|m(X;¢") —m(X;¢")| < 2LC sup |o'(y) — " ()]

—L<y<L
< 2LC-e (because p* € B(yp',¢)), (95)
where C'is as in Lemma 2. Therefore, by (93) and (94), we have
|I,| < 6LV2LC-c =: Ciye. (96)
Lemma 3 now follows from (90), (91), and (96).
O
PROOF OF LEMMA 4.
The proof of this lemma appears in Devroye and Krzyzak (1989; Lemma 1).
]

PROOF OF LEMMA 5.

33



The proof can be found in Gyorfi et al. (2002; Sec. 23).

Proof of (24).
Start by letting

Q= {2@'8/(L exp(ML))

— |MLexp(ML)/e| <i < LMLexp(ML)/EJ} u{-M}uU{M}.

Also, let v € [=M, M] be given and put ¢(y) = e € F. If ¥ € €2, is the closest value to v, then

sup (ew — er’y‘ = sup ‘y eXp{va}‘ [F7=7], (wherey' € (FAvy,FV7))
lyl<L ly|<L
~ €
< Lexp{ML}-|7-1| < Lexp{ML}-m = ¢,

where the last line follows from the fact that the distance between v and its nearest value in 2.
is bounded by ¢/(Lexp{ML}). Therefore, the class F is totally bounded. Moreover, a count of
the number of terms in 2. shows that the e-covering number of F is bounded by the quantity
2|MLexp{ML}e'| +3.

Proof of (63)

Put B,, {wm i) > 00/ 2}, where g is as in assumption D, and note that
Poii) < P 17 [Gn(i: 0) — B[Aio()| 2] 05 | 1 B,.(2)| 20, V;
n,l >~ wm( r m iy P 1P\ L % 363[/2 m\ Hg 7y L1

+ P{Bfn(zz‘)\ZuYi}

= 7{01(2) + P7/L/1(’L)
However, straightforward but tedious arguments show that

o383
729BL?

00) = P{[Tn@ise) - Blaw|2]

_ d a2
Zi,Yi} < Cpye Cramhis

for n (and thus m) large enough, where C14 and 015 are positive constants not depending on
m, £, or 3. As for the term Pﬁ’g(i)’ we have P” ; P{wm H RS E[AZQO(YZ)!ZZ] < 00/2 —
B[Nip(Y)|Z:]|Z:,Vi} < P{|tm(Zi; ) — E[Asp(Y; |Zz” > QO/Q‘ZuY;} < Chg exp{—Ci7 mh?},
where we have used the fact that 9 is bounded by assumption (D); here C1g and Cy7 are positive

constant not depending on m or ¢. Putting these bounds together, we find

Pa1(i) < PLy(i)+ PYi(i) < Crye G 4 gyge=Crimh?,

n,l1
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Proof of (85).
Start by defining the quantities

1 A; ’m (X5 7p) — Yi‘g 1 Ai‘m(Xi;%) —Y;-|2
Qnile) = |5 z - (97)
14 iezlg 7o (Zi,Y;) ! = o (Zi, ;)
1 A ’m(Xi;mp) - Yi‘Q A|m(X; Ty) — Y|2
Qn,Q((p) = |7 (98)
‘ ; 7o(Za, V) 7o(Z,Y)
1 9 -1 _ -1
Qual) = |j 3 it i) - v | (mo(zav)) - (Rozaw)) || o9
1€y
and observe that for every 5 > 0,
~ 2
P osup Ly e(7y) — E‘m(X;mp) - Y‘ ‘ >
peFe
p p p
< P< sup ‘Qn,l(go)‘ > — 5>+ P4 sup ‘ang(gp)‘ > =%+ Pq sup ‘ng(gp)} > — 5.
peFe 3 peFe 3 peFe 3
= In1+ Pn,2 + Pn,3- (100)
However, in view of (79) and the fact that |m(X;;my)| < L/, one obtains
Pn,l
1 B’ﬂmin
< P< sup - Z [A ‘ F (X ) — m(Xi; ) Hm (X5 7p) + m(Xy;mp)— 2YZH >
er t 3
P Ve,
1 ~ B B
< P{ sup |- mp T (X 7)) — m(Xg;mp)| | 3+ + max |= >
906]:5 Ezezl'g | v v } T min k€L m wm(Zk,(P) 3L
{‘7: ’ sup Z ( {“AHT Xu”go (Xi;mp)‘(?""ﬁr;i +B/(QO/2)> > /Bﬂmm]
pEeF: 3L
€Ly
- Qo0 e 00
. > - . =
m[ N {InZiivo) = 5 }]}+ > Plim(Ziie) < 3 })
ke, ke,
< |7 [ sup S P | (Xis7p) = m(Ximp)| > Cof+£ Y P{on(Zaig) < ?}} (101)

PEFe i1, k€T,

where
Cs = Tuinf3/3L (3 + 7 + B/(00/2)) -

But the first probability statement in (101) can be bounded as follows. First, observe that
P {‘ﬁng(Xi;%@) — m(Xj; ﬂ¢)’ > Cﬁ}

C C
< P{’AHT Xi;Ty) — ﬁlSpLT(Xi;ﬂ'cp)’ 26} + P {‘AHT Xi3mp) — m(Xi;%)‘ > 25}
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= Pn1(B) + Pni(B). (102)

On the other hand,

Pni(B8) = P zI: [(7750 Zy,Yy) )71 - (W‘/’(Zk’ykwl} ZA]Z}ZC:LC/(C((}((;(:—X}?J/)%) g %

< P{krg%i (%(Zkayk))il - (%(Zk’Y’CDl‘ ” 201/;}
< Y P{ <%¢(Zk7Yk))_1 - (”¢(Zk’Yk)>_1 ” g[’i}
kELnm

Therefore, using arguments similar to those leading to (60), (61), (62), and (63), we find, for every
£ > 0 and n large enough,

d g2 d
Por(B) < Cgme=C1omh*8* | 0\ me—Cazmh?

where C39—C4o are positive constants not depending on m, ¢, or 5. Furthermore, tedious but
standard arguments can be used to show that for n large enough, there are positive constants Cys

and Cy4, not depending on m, ¢, or 3, such that
Pra() < Cuz e Cuamh?s?,

As for the last probability statement on the right side of (101), our earlier arguments (see the
paragraph after equation (81)) yield P{@Zm(Zk;gp) < 90/2} < Cig exp{—Ciymh?}, for n large
enough, where (¢ and C7 are positive constants not depending on n. Therefore, in view of (101)

we arrive at
Po1 < U] F| (C’39 meComhB® | 0y o= Caamh®S® 4 me_c56mhd> , (103)

for n large enough, where P, ; is as in (100). To deal with P, 2, we first note that the terms
Ai|m(Ximy,) — 1/}|2/7r¢(Zi,Yi), i € Iy, are iid bounded random variables taking values in the
interval [0, L2(141/7min)?/ ﬂ'min] . Therefore an application of Hoeffding’s inequality (in conjunction

with the union bound) immediately yields

1 Ai}m(Xi;mp)—Y;‘Q Alm(X;m,) —Y‘z B
Pn S f P - > —
2 < |7l ’z EZI 7o(Z:, Vi) 7o(Z,Y) 3

< 2|7 exp{ — 22 0(B8/3)%/[LA(1 + 1/7rmm)4]}. (104)

Finally, to deal with the term P, 3 in (100), we observe that in view of (79), and with gy as in

>§]

Assumption (D), one has

1 1
To(Z:, Vi) 7,(Z,Y7)

Pys < |F|sup [P

(2 + max
peFe

k€Lm

@ZJm(Zk;QO

S
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ﬂ[ N {Fn(x0) = 00/2}

ke,

+ > P{{/?m(zk;sO) < Q0/2}

ke,

< ‘]—}‘ sup | P 12

l
pEFe i€,

1 1

%@(ZHE) W@(Zi,}/;)

>dg o + Z P{Jm(zk;@ < 00/2}
KeTym

where dg = [3L%(2 4+ 2B/00)?] ~'3. Now, employing the arguments used to bound the term S,(2)
in (58), (see (60), (61), (62), (63)), it is straightforward to show that for n large enough

Pus < }fs{(058€e—059mhd62 +O6Om€_061mhd>, (105)

for positive constants Csg—Cg1 not depending on ¢, m, or 5. Putting together (100), (103), (104),
and (105), one finds that for each § > 0 and n large enough,

P < sup
peFe

~ 2
L y(Tp) — E‘m(X, Ty) — Y‘ ‘ > ﬁ} < ‘.7:5‘ (ng@m ¢~ Caomh?p? | Csslm o—Csemh?
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