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Abstract
In this work, we propose a novel adaptive formation control architecture for
a group of quadrotor systems, under line-of-sight (LOS) distance and relative
distance constraints as well as attitude constraints, where the constraint require-
ments can be both asymmetric and time-varying in nature. The LOS distance
constraint consideration ensures that each quadrotor is not deviating too far
away from its desired flight trajectory. The LOS relative inter-quadrotor distance
constraint is to guarantee that the LOS distance between any two quadrotors
in the formation is neither too large (which may result in the loss of commu-
nication between quadrotors, for example) nor too small (which may result in
collision between quadrotors, for example). The attitude constraints make sure
that the roll, pitch, and yaw angles of each quadrotor do not deviate too much
from the desired profile. Universal barrier functions are adopted in the con-
troller design and analysis,which is a generic framework that can address system
with different types of constraints in a unified controller architecture. Further-
more, each quadrotor’smass and inertia are unknown, and the system dynamics
are subjected to time-varying external disturbances. Through rigorous analysis,
an exponential convergence rate can be guaranteed on the distance and atti-
tude tracking errors, while all constraints are satisfied during the operation. A
simulation example further demonstrates the efficacy of the proposed control
framework.
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1 INTRODUCTION

Formation control problems of unmanned aerial vehicles (UAVs), especially quadrotors, have received much attention
from the research, civil, industrial, and military communities, including notable applications in surveillance,1,2 search
and rescue,3 contour mapping,4,5 object lifting and transporting,6,7 just to name a few.

Most of the works in the literature considering quadrotor formation problems, including but not limited to References
8-17, do not address the issues of various system constraints during the operation. However, to ensure the precise and safe
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operations of the quadrotor team, several constraint requirements cannot be ignored and have to be taken into consider-
ation. First, for the performance constraints, we need to ensure that the quadrotor team is tracking the desired formation
trajectory closely. More specifically, the line-of-sight (LOS) distance between the quadrotor and its reference trajectory
should not be too large. Failing tomeet such constraint requirements would result in undesirable formation performance.
Second, for safety constraints, we need to guarantee that the LOS relative distance between any two quadrotors cannot be
either too small or too large. On one hand, if two quadrotors in the formation come too close, it can result in collisions
of quadrotors. On the other hand, if the distance between two quadrotors is too large, the communication link can be
lost, as many communicating devices like XBEE or WiFi-based gadgets can only work effectively within a certain range.
Furthermore, for safety considerations, the attitude of each quadrotor, namely the roll, pitch, and yaw angles have to be
confinedwithin a certain range during the flight, so that to ensure accurate pointing for any onboard devices, and tomake
sure the quadrotor is not destabilized.

Few works in the quadrotor or UAV formation literature have addressed the above issues regarding performance and
safety constraints. Some notable exceptions include,18-26 which consider mere collision avoidance between UAVs, but
ignore the upper constraints of the inter-vehicle distances, and fail to address constraints on the LOS distance tracking
errors and the attitude. For a single aerial robot, position constraints of a quadrotor have been considered in Reference
27, yet attitude constraint requirements are ignored. Authors in Reference 28 propose an adaptive position/attitude track-
ing control algorithm, considering constant and symmetric constraints for both position and attitude tracking errors,
for a class of fully actuated helicopters. Such a framework cannot be extended to address underactuated unmanned
vehicles. The work29 addresses both position and attitude constraints for a single quadrotor, which only addresses con-
stant and symmetric constraint functions. A distributed formation control framework for underactuated quadrotors with
pre-assigned constraints of the position is developed in Reference 30. Thework31 investigates the attitude synchronization
problem for cooperative quadrotors subjected to unknown nonlinear dynamics and multiple actuator faults. A forma-
tion control algorithm for the leader quadrotors and a finite-time containment control for the follower quadrotors with
unknownmodel dynamics are proposed inReference 32. None of theseworks27-32 can address formation control problems
of a team of underactuated quadrotors, with time-varying and asymmetric constraint requirements on the LOS distance,
relative inter-quadrotor distance, and attitude tracking errors.

In this work, we develop a novel adaptive constrained formation control architecture for a team of quadrotors.
Multiple constraint requirements on performance and safety are considered during operation. For the performance con-
siderations, we address the constraint requirements on the distance tracking error between the actual and the desired
positions for each quadrotor, so that to ensure precise trajectory tracking and formation keeping. For the safety con-
straints, we consider the constraints on the relative inter-quadrotor distance, so that to ensure the distance between any
two quadrotors is neither too large nor too small. Safety constraints also include constraint requirements on the atti-
tude of each quadrotor, so that to ensure accurate pointing and avoid destabilization. All constraint functions can be
time-varying and asymmetric. Universal barrier functions are adopted in the controller design and analysis, which is a
unified structure that can address different types of constraints in a single control architecture. Adaptive estimation is used
to handle time-varying uncertainties presented in the system dynamics and unknown system properties. Through rigor-
ousmathematical discussions, we show that exponential convergence can be guaranteed on the LOS distance and relative
distance tracking errors, as well as the attitude tracking errors, while all constraint requirements are satisfied during the
operation.

The notations used in this work are fairly standard. Specifically, R denotes the set of real numbers and Im means the
identity matrix in the space Rm×m. Moreover, (⋅)T implies the transpose vector, | ⋅ | is the absolute value for scalars, and
|| ⋅ || represents the Euclidean norm for vectors and induced norm for matrices. Next, diag[x1, … , xm] denotes a diagonal
matrix in the space Rm×m, and the only nonzero elements being x1, … , xm on the diagonal in that specific sequence.
Furthermore, we use c𝜃 to denote cos 𝜃, s𝜃 to denote sin 𝜃, and t𝜃 to denote tan 𝜃. We also write ̇(⋅) as the first order time
derivative of (⋅), if (⋅) is differentiable, and (⋅)(n) as the nth order time derivative of (⋅) for n being a positive integer. Next,
C2 denotes the class of functions that are two-times differentiable with respect to time, with the derivatives being in the
class of C1, which consists of all differentiable functions whose derivative is continuous. Besides, for any two vectors
v1, v2 ∈ R3, the cross-product operator S(⋅) gives S(v1)v2 = v1 × v2. It is also true that S(v1)v2 = −S(v2)v1 and vT1S(v2)v1 = 0.
Furthermore, we use ◦ to denote the Hadamard product, that is, the element-wise product of two vectors/matrices with
the same dimension, such that forA, B ∈ Rm×n, where i = 1, … ,m and j = 1, … ,n, we have (A ◦ B)ij = (A)ij(B)ij. Finally,
SO(3) = {Ω ∈ R3×3 | ΩTΩ = I3} is a set of orthogonalmatrices inR3×3, and S2 = {x ∈ R3 | ||x|| = 1} is a set of unit vectors
in R3.
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F I GURE 1 Illustration of the inertial {I} and body-fixed {B} frames.

2 PROBLEM FORMULATION

2.1 System dynamics

Consider the following class ofmulti-vehicle systemswithN quadrotors,where, for the ith quadrotor (i = 1, … ,N) shown
in Figure 1, the position and attitude in the inertial reference frame are represented as pi(t) = [xi(t), yi(t), zi(t)]T ∈ R3

andΘi(t) = [𝜙i(t), 𝜃i(t), 𝜓i(t)]T ∈ R3, respectively. The translational velocities with respect to the inertial reference frame
are represented as vi(t) = [vxi(t), vyi(t), vzi(t)]T ∈ R3. Moreover, define a body-fixed frame with the origin being at the
center of mass for each quadrotor, and the rotational velocities with respect to this body-fixed frame are denoted by
𝜔i(t) = [𝜔xi(t), 𝜔yi(t), 𝜔zi(t)]T ∈ R3. The kinematics for the ith quadrotor (i = 1, … ,N) are expressed as

ṗi(t) = vi(t), (1)

̇Θi(t) = T(Θi(t))𝜔i(t), (2)

where pi(0) = pi0 ∈ R3 andΘi(0) = Θi0 ∈ R3, with pi0 andΘi0 being initial conditions. Besides, T(Θi(t)) is the transforma-
tionmatrix that relates the angular velocity in the body-fixed frame to the rate of change of the Euler angles in the inertial
frame, and is given by

T(Θi) =
⎡
⎢
⎢
⎢
⎣

1 s𝜙it𝜃i c𝜙it𝜃i
0 c𝜙i −s𝜙i
0 s𝜙i∕c𝜃i c𝜙i∕c𝜃i

⎤
⎥
⎥
⎥
⎦

, (3)

where we have

||T(Θi(t))|| ≤ Tmax, (4)

with Tmax > 0 being a known constant, when − 𝜋

2
< 𝜙i(t) < 𝜋

2
and − 𝜋

2
+ 𝜖 < 𝜃i(t) < 𝜋

2
− 𝜖, for any user-defined positive 𝜖.

The constraints are known as the safety constraints that will be discussed shortly.
The dynamics for the ith quadrotor (i = 1, … ,N) are expressed as

miv̇i(t) = migez − Fi(t)R(Θi(t))ez + N1i(t), (5)

Ji𝜔̇i(t) = S(Ji𝜔i(t))𝜔i(t) + 𝜏i(t) + N2i(t), (6)
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8186 HU and JIN

where vi(0) = vi0 ∈ R3 and 𝜔i(0) = 𝜔i0 ∈ R3, with vi0 and 𝜔i0 being the initial conditions. mi ∈ R, mi > 0 is the mass
of the ith quadrotor (i = 1, … ,N), and Ji ∈ R3×3 is a symmetric positive definite matrix representing the inertia.
Fi(t) ∈ R and 𝜏i(t) ∈ R3 represent the thrust and torques of the ith quadrotor (i = 1, … ,N), respectively. N1i(t) ∈ R3

and N2i(t) ∈ R3 denote the external disturbances of the ith quadrotor (i = 1, … ,N). Furthermore, g ∈ R is the grav-
itational acceleration and ez = [0, 0, 1]T ∈ R3 is the unit vector. R(Θi(t)) ∈ SO(3) is the rotation matrix, with the
expression

R(Θi) =
⎡
⎢
⎢
⎢
⎣

c𝜃ic𝜓i s𝜙is𝜃ic𝜓i − c𝜙is𝜓i c𝜙is𝜃ic𝜓i + s𝜙is𝜓i

c𝜃is𝜓i s𝜙is𝜃is𝜓i + c𝜙ic𝜓i c𝜙is𝜃is𝜓i − s𝜙ic𝜓i

− s𝜃i s𝜙ic𝜃i c𝜙ic𝜃i

⎤
⎥
⎥
⎥
⎦

, (7)

which translates the translational velocity vector in the body-fixed frame into the rate of change of the position vector in
the inertial frame. It is straightforward to see that

||R(Θi(t))|| ≤ Rmax, (8)

with Rmax > 0 being a known constant.

2.2 System performance and safety constraints

In the formation control problem, each quadrotor has its own reference trajectory to track, with the coordinate of the ref-
erence trajectory for the ith vehicle (i = 1, … ,N) denoted by pdi(t) ≜ [xdi(t), ydi(t), zdi(t)]T ∈ R3. Hence the line-of-sight
(LOS) distance tracking error for the ith quadrotor (i = 1, … ,N), which is the distance between the desired and actual
position of the quadrotor, is defined as

dei(t) ≜
√
(xi(t) − xdi(t))2 + (yi(t) − ydi(t))2 + (zi(t) − zdi(t))2. (9)

Furthermore, the desired LOS relative distance between the ith and jth (i, j = 1, … ,N, j ≠ i) quadrotors is given as

Lij(t) ≜
√

(xdi(t) − xdj(t))2 + (ydi(t) − ydj(t))2 + (zdi(t) − zdj(t))2, (10)

with the actual LOS relative distance being

dij(t) ≜
√

(xi(t) − xj(t))2 + (yi(t) − yj(t))2 + (zi(t) − zj(t))2. (11)

The configurations in the case of three quadrotors can be seen in Figure 2.
During the formation operation, there are certain system constraint requirements that need to be satisfied, in

order to ensure the precise and safe functioning of the system. Specifically, one performance constraint and four safety
constraints have to be satisfied for each quadrotor in the operation.

First, the LOS distance tracking error for the ith quadrotor dei(t) (i = 1, … ,N) has to satisfy the following performance
constraint

dei(t) < ΩdHi(t), (12)

where, for all t ≥ 0, ΩdHi(t) > 0 is the user-defined time-varying constraint requirement for the distance tracking error
dei(t) and is C3. The constraint requirement (12) means that the LOS distance tracking error for the ith quadrotor cannot
be too large.
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HU and JIN 8187

F I GURE 2 Schematics of the formation control problem for three quadrotors: for i, j = 1, 2, 3, j ≠ i, quadrotors in dark blue and solid
black represent the actual positions (xi(t), yi(t), zi(t)), quadrotors in light blue and dashed black represent the desired positions
(xdi(t), ydi(t), zdi(t)), red dashed lines represent the desired trajectories, black dashed lines represent the desired inter-quadrotor distances
Lij(t), black solid lines represent the actual inter-quadrotor distances dij(t), and blue solid lines represent the distance tracking errors dei(t).

Second, define the LOS relative distance tracking error between the ith and jth quadrotors (i, j = 1, … ,N, j ≠ i) as
deij(t) ≜ dij(t) − Lij(t), which has to meet the following safety constraint

−ΩLij(t) < deij(t) < ΩHij(t), (13)

where, for all t ≥ 0, ΩHij(t) > 0 is the user-defined time-varying higher bound for the distance tracking error deij(t), and
−ΩLij(t) < 0 is the lower bound, with Lij(t) > ΩLij(t) > 0. Both ΩHij(t) and ΩLij(t) are C3. The constraint requirement (13)
means that the inter-quadrotor distance cannot be either too large or too small.

Remark 1. On the one hand, the satisfaction of constraint requirement (13) ensures that

0 < Lij(t) − ΩLij(t) < dij(t) < ΩHij(t) + Lij(t),

for i, j = 1, … ,N, j ≠ i, which ensures collision avoidance and guarantees that the LOS relative distance
between any two quadrotors is not too far. On the other hand, if we have the following inter-vehicle distance
constraint requirement

0 < ̄ΩLij(t) < dij(t) < ̄ΩHij(t), (14)

for all t ≥ 0, then it can be easily transferred into the form of (13), by designing ΩHij(t) = ̄ΩHij(t) − Lij(t) > 0
and ΩLij(t) = Lij(t) − ̄ΩLij(t) > 0. Note that ̄ΩLij(t) < Lij(t) < ̄ΩHij(t) should be guaranteed for all t ≥ 0 in order
for the perfect tracking to be achievable.

Last but not least, the attitude tracking error for the ith quadrotor (i = 1, … ,N) is defined as

eΘi(t) = [e
𝜙i(t), e𝜃i(t), e𝜓 i(t)]T = Θi(t) − Θdi(t), (15)

where Θdi(t) = [𝜙di(t), 𝜃di(t), 𝜓di(t)]T is the desired attitude to be specified later. The attitude tracking error has to satisfy
the following safety constraint

−Ω
𝜙Li(t) < e

𝜙i(t) < Ω
𝜙Hi(t), (16)
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−Ω
𝜃Li(t) < e

𝜃i(t) < Ω
𝜃Hi(t), (17)

−Ω
𝜓Li(t) < e

𝜓 i(t) < Ω
𝜓Hi(t), (18)

where, for all t ≥ 0, the constraint functions Ω
𝜙Li(t), Ω𝜙Hi(t), Ω𝜃Li(t), Ω𝜃Hi(t), Ω𝜓Li(t), and Ω𝜓Hi(t) are C2 and

0 < Ω
𝜙Li(t) ≤

𝜋

2
+ 𝜙di(t), 0 < Ω

𝜙Hi(t) ≤
𝜋

2
− 𝜙di(t),

0 < Ω
𝜃Li(t) ≤

𝜋

2
− 𝜖 + 𝜃di(t), 0 < Ω

𝜃Hi(t) ≤
𝜋

2
− 𝜖 − 𝜃di(t),

0 < Ω
𝜓Li(t) ≤ 𝜋 + 𝜓di(t), 0 < Ω

𝜓Hi(t) ≤ 𝜋 − 𝜓di(t).

Remark 2. The safety constraints (16)–(18) require that the attitude tracking errors to be confined within a
user-defined range. Note that the constraint functions on the roll, pitch, and yaw angles can be different.
These constraint functions can also be time-varying and asymmetric. Furthermore, (16)–(18) ensure that the
transformation matrix T(Θi(t)) is invertible. Violation of the constraint requirements (16)–(18) will not only
affect the formation performance of the system, but can also destabilize the quadrotor dynamics and result in
system failure.

2.3 Control objective

The control objective for the formation control problem is to design a control framework such that:

(1) The LOS distance tracking error dei(t) for the ith quadrotor (i = 1, … ,N) can converge into an arbitrary small
neighborhood of zero;

(2) The relative distance tracking error deij(t) between the ith and jth (i, j = 1, … ,N, j ≠ i) quadrotors can converge into
an arbitrarily small neighborhood of zero;

(3) For the ith quadrotor (i = 1, … ,N), the attitude tracking error eΘi(t) = [e
𝜙i(t), e𝜃i(t), e𝜓 i(t)]T can converge into an

arbitrarily small neighborhood of zero;
(4) The performance and safety constraint requirements (12), (13), (16)–(18) are satisfied during the operation.

The following assumptions are used to facilitate the discussion and analysis of the main result.

Assumption 1. The reference trajectory coordinates for the ith quadrotor (i = 1, … ,N) xdi(t), ydi(t), and
zdi(t), are all C3. The reference attitudes 𝜙di(t), 𝜃di(t), and 𝜓di(t), are all C2. Furthermore, for the reference
attitude we require that

− 𝜋

2
< 𝜙di(t) <

𝜋

2
, −𝜋

2
+ 𝜖 < 𝜃di(t) <

𝜋

2
− 𝜖, −𝜋 ≤ 𝜓di(t) ≤ 𝜋.

Assumption 2. The thrust Fi(t) and disturbances N1i(t) and N2i(t) for the ith quadrotor (i = 1, … ,N) are
uniformly bounded with unknown bounds.

Assumption 3. Themassmi and inertia Ji for the ith quadrotor (i = 1, … ,N) are unknown, but the inverses
of Ji are assumed to be both upper and lower bounded, such that for any z ∈ R3, bJiz

Tz < zTJ−1i z < bJizTz,
where bJi, and bJi are unknown positive constants.

Assumption 4 (33). Denote the approximation of the time derivative of a continuous function ̇
𝜗(t) as ̂

̇
𝜗(t),

where

̂
̇
𝜗(t) = 𝜗(t) − 𝜗(t − T)

T
, (19)
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for some small T > 0. Then

| ̂̇𝜗(t) − ̇
𝜗(t)| ≤ 𝜀

𝜗
≈ o(T). (20)

To facilitate the analysis, we present the following lemma from the literature.

Lemma 1. For any constant 𝜀 > 0 and any variable z ∈ R, we have 0 ≤ |z| − z2
√
z2+𝜀2

< 𝜀.

From this point onwards, to simplify the notation, the time and state dependence of the system will be omitted
whenever no confusion would arise.

3 UNIVERSAL BARRIER FUNCTION

Herewe introduce the structure of universal barrier function to be used later in the analysis, which is adopted butmodified
from our earlier work.34 Specifically, to address the constraint requirements (12) and (13), which are on the LOS distance
tracking error dei and relative inter-quadrotor distance tracking error deij (i, j = 1, … ,N, j ≠ i), we first introduce the
transformed error variables as follows

𝜂ei =
ΩdHidei

ΩdHi − dei
, (21)

and

𝜂ij =
ΩHijΩLijdeij

(ΩHij − deij)(ΩLij + deij)
. (22)

The universal barrier functions used to deal with the constraint requirements (12) and (13) for the ith quadrotor (i =
1, … ,N) are then defined as

Vei =
1
2
𝜂

2
ei, Vij =

1
2
𝜂

2
ij. (23)

Take Vij for an example. It is easy to see that 𝜂ij = 0 if and only if deij = 0. Besides, when deij → ΩHij, we have 𝜂ij → +∞,
hence Vij → +∞. Alternatively, when deij → −ΩLij, we have 𝜂ij → −∞, therefore Vij → +∞.

Remark 3. For the universal barrier function Vij, note that if the constraint functions are symmetric, namely
if ΩHij = ΩLij = Ωij, then the barrier function Vij becomes

Vij =
1
2
𝜂

2
ij, 𝜂ij =

Ω2
ijdeij

Ω2
ij − d2eij

. (24)

When there are no constraint requirements on deij, which can equivalently be seen asΩHij = ΩLij = Ωij → +∞,
we have

lim
Ωij→+∞

𝜂ij = deij, lim
Ωij→+∞

Vij =
1
2
d2eij, (25)

which means systems without output constraint requirements can in fact be regarded as a special case of the
generic discussion on asymmetric constraint requirements.

Second, regarding the constraint requirements (16)–(18), which are on the attitude tracking errors eΘi(t) of the ith
quadrotor (i = 1, … ,N), we first introduce the transformed error variables as follows

𝜂
𝜙i =

Ω
𝜙HiΩ𝜙Lie𝜙i

(Ω
𝜙Hi − e

𝜙i)(Ω𝜙Li + e
𝜙i)

, (26)
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𝜂
𝜃i =

Ω
𝜃HiΩ𝜃Lie𝜃i

(Ω
𝜃Hi − e

𝜃i)(Ω𝜃Li + e
𝜃i)

, (27)

𝜂
𝜓 i =

Ω
𝜓HiΩ𝜓Lie𝜓 i

(Ω
𝜓Hi − e

𝜓 i)(Ω𝜓Li + e
𝜓 i)

, (28)

and the universal barrier function used to deal with the constraint requirements (16)–(18) for the ith quadrotor
(i = 1, … ,N) is designed as

VΘi =
1
2
𝜂

T
Θi𝜂Θi =

1
2
𝜂

2
𝜙i +

1
2
𝜂

2
𝜃i +

1
2
𝜂

2
𝜓 i, (29)

where 𝜂Θi = [𝜂
𝜙i, 𝜂𝜃i, 𝜂𝜓 i]T ∈ R3.

Remark 4. In order to address asymmetric constraint functions, one barrier Lyapunov function that has been
discussed in the literature35,36 has the following structure

Vb =
q(e)
p

log
Ωp
bH

Ωp
bH − ep

+
1 − q(e)

p
log

Ωp
bL

Ωp
bL − ep

, (30)

where e is the output tracking error to be constrained, ΩbH and ΩbL are the higher and lower bounds, p is an
even number such that p > n, with n being the order of the systems, and

q(⋅) =

{
1, if ⋅ > 0;
0, otherwise.

(31)

Note that (30) does not have the generic property stated in Remark 3. Besides, since q(⋅) is a discontinuous
function, the form (30) requires that the error variable e is raised to the pth power in order to avoid discon-
tinuity when e = 0 for the derivatives of Vb, which may put a higher demand than necessary on the control
signal when e is large.

Remark 5. Another widely used BLF in the literature utilizes the tangent form proposed in our previous
works37-39

Vb =
Ω2
b

𝜋

tan

(

𝜋e2

2Ω2
b

)

, |e(0)| < Ωb(0). (32)

By the L’ Hopital’s rule we get limΩb→+∞ Vb = 1
2
e2, hence this BLF can be used to address general systems

without constraint requirements. However such a form cannot be extended to address asymmetric constraints
without raising the error variable to higher powers as in (30). From this perspective, the barrier function (23)
and (29) are more general than both (30) and (32).

4 CONTROL DESIGN AND ANALYSIS

In this section, we present the backstepping design procedure that will lead to our controller design and main theorem.

4.1 Distance control design

Step 1:
At this step, we consider the position kinematics of the quadrotors. Design the barrier function as

V1 =
N∑

i=1

(

Vei +
N∑

j=1,j≠i
Vij

)

, (33)
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and its derivative with respect to time leads to

̇V1 =
N∑

i=1

(

̇V ei +
N∑

j=1,j≠i

̇Vij

)

=
N∑

i=1

(

𝜂ei𝜂̇ei +
N∑

j=1,j≠i
𝜂ij𝜂̇ij

)

. (34)

First we examine the dynamics for 𝜂ei (i = 1, … ,N). From (21), we have

𝜂̇ei =
𝜕𝜂ei

𝜕ΩdHi
̇ΩdHi + 𝜗di ̇dei = ΔHi + 𝜗di

1
dei

(xi − xdi)ẋi + 𝜗di
1
dei

(yi − ydi)ẏi + 𝜗di
1
dei

(zi − zdi)żi − 𝜉i, (35)

where

ΔHi ≜
𝜕𝜂ei

𝜕ΩdHi
̇ΩdHi, 𝜗di ≜

𝜕𝜂ei

𝜕dei
=

Ω2
dHi

(ΩdHi − dei)2
,

𝜉i ≜ 𝜗di
1
dei

(xi − xdi)ẋdi + 𝜗di
1
dei

(yi − ydi)ẏdi + 𝜗di
1
dei

(zi − zdi)żdi.

Hence for ̇V ei (i = 1, … ,N) we have

̇V ei = 𝜂ei𝜗di
1
dei

(xi − xdi)ẋi + 𝜂ei𝜗di
1
dei

(yi − ydi)ẏi + 𝜂ei𝜗di
1
dei

(zi − zdi)żi + 𝜂eiΔHi − 𝜂ei𝜉i. (36)

Similarly, for ̇Vij (i, j = 1, … ,N, j ≠ i) we have

̇Vij = 𝜂ij𝜗ij
1
dij

(xi − xj)ẋi + 𝜂ij𝜗ij
1
dij

(yi − yj)ẏi + 𝜂ij𝜗ij
1
dij

(zi − zj)żi

− 𝜂ij𝜗ij
1
dij

(xi − xj)ẋj − 𝜂ij𝜗ij
1
dij

(yi − yj)ẏj − 𝜂ij𝜗ij
1
dij

(zi − zj)żj + 𝜂ijΔij − 𝜂ij𝜉ij, (37)

where

Δij ≜
𝜕𝜂ij

𝜕ΩHij
̇ΩHij +

𝜕𝜂ij

𝜕ΩLij
̇ΩLij, 𝜗ij ≜

𝜕𝜂ij

𝜕deij
=

ΩHijΩLij(d2eij + ΩHijΩLij)

(ΩHij − deij)2(ΩLij + deij)2
,

𝜉ij ≜ 𝜗ij ̇Lij = 𝜗ij
1
Lij

(xdi − xdj)(ẋdi − ẋdj) + 𝜗ij
1
Lij

(ydi − ydj)(ẏdi − ẏdj) + 𝜗ij
1
Lij

(zdi − zdj)(żdi − żdj).

Hence, for ̇V1 we have

̇V1 =
N∑

i=1

(

𝜂eiΔHi − 𝜂ei𝜉i +
N∑

j=1,j≠i
(𝜂ijΔij − 𝜂ij𝜉ij) + Exiẋi + Eyiẏi + Eziżi

)

, (38)

where

Exi = 𝜂ei𝜗di
1
dei

(xi − xdi) +
N∑

j=1,j≠i
2𝜂ij𝜗ij

1
dij

(xi − xj),

Eyi = 𝜂ei𝜗di
1
dei

(yi − ydi) +
N∑

j=1,j≠i
2𝜂ij𝜗ij

1
dij

(yi − yj),

Ezi = 𝜂ei𝜗di
1
dei

(zi − zdi) +
N∑

j=1,j≠i
2𝜂ij𝜗ij

1
dij

(zi − zj).
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8192 HU and JIN

Now, define Ei = [Exi, Eyi, Ezi]T ∈ R3. For the term Exiẋi + Eyiẏi + Eziżi in (38), from (1) we can get

Exiẋi + Eyiẏi + Eziżi = ETi vi. (39)

Next, define the fictitious velocity tracking error as evi = vi − 𝛼vi, with the stabilizing function 𝛼vi ∈ R3 (i = 1, … ,N)
designed as

𝛼vi =
Ei
ETi Ei

(

−Kei𝜂2ei −
N∑

j=1,j≠i
Kij𝜂2ij − 𝜂eiΔHi + 𝜂ei𝜉i −

N∑

j=1,j≠i
(𝜂ijΔij − 𝜂ij𝜉ij)

)

, (40)

where Kei > 0 and Kij > 0 are the control gains.

Remark 6. In (40), singularity can occurwhen ||Ei|| = 0. Since ||Ei|| = 0 if and only ifExi = 0,Eyi = 0, andEzi =
0 at the same time, there are two cases when this can happen. First, ||Ei|| = 0 when both dei = 0 and deij = 0.
In this case, note that all the terms in the bracket on the right-hand-side of (40) are also zero, and we simply
have 𝛼vi = 0. Second, Exi = 0, Eyi = 0, and Ezi = 0 can happen at the same time when the reference direction
vector for tracking is opposite to and same inmagnitude with the direction vector for collision avoidance. This
is usually referred to as the “deadlock situation”33 in the literature, which can be resolved by modifying the
reference trajectories or the time-varying constraint functions to allow the vehicle tomove out of the deadlock.
For the rest of the analysis we assume ||Ei|| > 0 is guaranteed.

Therefore, (38) leads to

̇V1 =
N∑

i=1

(

ETi evi − Kei𝜂2ei −
N∑

j=1,j≠i
Kij𝜂2ij

)

. (41)

Step 2:
At this step, we consider the translational dynamics of the quadrotors. Design the Lyapunov function candidate at

this step as

V2 =
N∑

i=1

1
2
eTvievi, (42)

and its time derivative gives

̇V2 =
N∑

i=1
eTvi

(

gez −
1
mi
ui −

1
mi
Fi(Ri − Rdi)ez +

1
mi
N1i − 𝛼̇vi

)

, (43)

where we denote ui = FiRdiez. Now, for the ith quadrotor (i = 1, … ,N), the control law ui ∈ R3 is designed as

ui = m̂iūi, (44)

ūi = Ei + gez + (Kvi + 𝜈i)evi + 𝜇̂mi
evi

√

eTvievi + 𝜀

2
i

− ̂
𝛼̇vi, (45)

where Kvi > 0 and 𝜈i > 0 are control gains, 𝜀i > 0 is a small design constant introduced in view of Lemma 1, m̂i is the
estimation of the unknown constantmi, and 𝜇̂mi is the estimation of the unknown constant 𝜇mi such that

|
|
|
|
|

|
|
|
|
|

− 1
mi
Fi(Ri − Rdi)ez +

1
mi
N1i

|
|
|
|
|

|
|
|
|
|

≤ 𝜇mi.
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Next, we substitute the control design (44) back into (43), which yields

− 1
mi
eTviui = −m̂i

mi
eTviūi = −eTviūi −

m̃i

mi
eTviūi, (46)

where m̃i = m̂i −mi (i = 1, … ,N).
Hence, (41) and (43) lead to

̇V1 + ̇V2 ≤

N∑

i=1

(

ETi evi − Kei𝜂2ei −
N∑

j=1,j≠i
Kij𝜂2ij + eTvigez − eTviūi −

m̃i

mi
eTviūi

− 1
mi
eTviFi(Ri − Rdi)ez +

1
mi
eTviN1i − eTvi𝛼̇vi

)

. (47)

Note also that

eTvi( ̂𝛼̇vi − 𝛼̇vi) ≤ ||evi||𝜀𝛼vi < 𝜈i||evi||2 +
1
𝜈i
𝜀

2
𝛼vi
, (48)

and

− 1
mi
eTviFi(Ri − Rdi)ez +

1
mi
eTviN1i ≤ ||evi||𝜇mi < 𝜀i𝜇mi + 𝜇mi

eTvievi
√

eTvievi + 𝜀

2
i

. (49)

Therefore, it follows from (47) that

̇V1 + ̇V2 <

N∑

i=1

(

− Kei𝜂2ei −
N∑

j=1,j≠i
Kij𝜂2ij − KvieTvievi −

m̃i

mi
eTviūi − 𝜇̃mi

eTvievi
√

eTvievi + 𝜀

2
i

+ 𝜇mi𝜀i +
1
𝜈i
𝜀

2
𝛼vi

)

, (50)

where 𝜇̃mi = 𝜇̂mi − 𝜇mi (i = 1, … ,N).
Next, design the adaptive laws for the estimators m̂i and 𝜇̂mi (i = 1, … ,N) as the following

̇m̂i = nmieTviūi − 𝜎mim̂i, (51)

̇
𝜇̂mi = n

𝜇mi

eTvievi
√

eTvievi + 𝜀

2
i

− 𝜎
𝜇mi 𝜇̂mi, (52)

with m̂i(0) = m̂i0 and 𝜇̂mi(0) = 𝜇̂mi0, where m̂i0 and 𝜇̂mi0 are the initial conditions, nmi, n𝜇mi , 𝜎mi, and 𝜎
𝜇mi (i = 1, … ,N)

are positive design constants. Design the Lyapunov function candidates for the estimators of the quadrotors as

Vm =
N∑

i=1

1
2nmimi

m̃2
i , V

𝜇m =
N∑

i=1

1
2n

𝜇mi

𝜇̃

2
mi. (53)

Denote Vpos = V1 + V2 + Vm + V
𝜇m , after some algebraic manipulation, we can arrive at

̇Vpos <

N∑

i=1

(

−Kei𝜂2ei −
N∑

j=1,j≠i
Kij𝜂2ij − KvieTvievi −

𝜎mi

2nmimi
m̃2
i −

𝜎
𝜇mi

2n
𝜇mi

𝜇̃

2
mi + C1i

)

, (54)
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8194 HU and JIN

where

C1i =
𝜎mi

2nmi
mi +

𝜎
𝜇mi

2n
𝜇mi

𝜇

2
mi + 𝜇mi𝜀i +

1
𝜈i
𝜀

2
𝛼vi
.

4.2 Attitude control design

Step 3:
At this step, we consider the attitude kinematics of the quadrotors. First, we need to extract the reference attitude from

the position control design. Recall that ui = FiRdiez, and from (44) we have

ui = m̂iūi = FiRdiez = Fi

⎡
⎢
⎢
⎢
⎣

c𝜙dis𝜃dic𝜓di + s𝜙dis𝜓di

c𝜙dis𝜃dis𝜓di − s𝜙dic𝜓di

c𝜙dic𝜃di

⎤
⎥
⎥
⎥
⎦

, (55)

in which we recall that Fi is the thrust of the ith quadrotor. Here, for any designated reference yaw signal 𝜓di satisfying
Assumption 1, we define

Fi = ||ui||, (56)

𝜙di = arcsin
(
ui1s𝜓di − ui2c𝜓di

||ui||

)

, (57)

𝜃di = arctan
(
ui1c𝜓di + ui2s𝜓di

ui3

)

, (58)

where ui = [ui1, ui2, ui3]T ∈ R3, with 𝜙di and 𝜃di satisfying Assumption 1.
Note that the dynamics for 𝜂Θi = [𝜂

𝜙i, 𝜂𝜃i, 𝜂𝜓 i]T (i = 1, … ,N), with 𝜂
𝜙i, 𝜂𝜃i, and 𝜂

𝜓 i introduced in (26)–(28), are as
the following

𝜂̇Θi =
⎡
⎢
⎢
⎢
⎣

ΔH𝜙i + ΔL𝜙i + 𝜗
𝜙iė𝜙i

ΔH𝜃i + ΔL𝜃i + 𝜗
𝜃iė𝜃i

ΔH𝜓 i + ΔL𝜓 i + 𝜗
𝜓 iė𝜓 i

⎤
⎥
⎥
⎥
⎦

= 𝜂ΩΘi + 𝜗Θi ◦ ėΘi, (59)

where 𝜂ΩΘi ≜ [ΔH𝜙i + ΔL𝜙i, ΔH𝜃i + ΔL𝜃i, ΔH𝜓 i + ΔL𝜓 i]T ∈ R3, 𝜗Θi ≜ [𝜗
𝜙i, 𝜗𝜃i, 𝜗𝜓 i]T ∈ R3, and ėΘi = [ė

𝜙i, ė𝜃i, ė𝜓 i]T ∈ R3.
Furthermore,

ΔH𝜙i =
𝜕𝜂

𝜙i

𝜕Ω
𝜙Hi

̇Ω
𝜙Hi, ΔL𝜙i =

𝜕𝜂
𝜙i

𝜕Ω
𝜙Li

̇Ω
𝜙Li,

ΔH𝜃i =
𝜕𝜂

𝜃i

𝜕Ω
𝜃Hi

̇Ω
𝜃Hi, ΔL𝜃i =

𝜕𝜂
𝜃i

𝜕Ω
𝜃Li

̇Ω
𝜃Li,

ΔH𝜓 i =
𝜕𝜂

𝜓 i

𝜕Ω
𝜓Hi

̇Ω
𝜓Hi, ΔL𝜓 i =

𝜕𝜂
𝜓 i

𝜕Ω
𝜓Li

̇Ω
𝜓Li,

where

𝜕𝜂
𝜒 i

𝜕Ω
𝜒Hi

= −
Ω

𝜒Lie2
𝜒 i

(Ω
𝜒Hi − e

𝜒 i)2(Ω𝜒Li + e
𝜒 i)

, 𝜒 = 𝜙, 𝜃, 𝜓,

𝜕𝜂
𝜒 i

𝜕Ω
𝜒Li

=
Ω

𝜒Hie2
𝜒 i

(Ω
𝜒Hi − e

𝜒 i)(Ω𝜒Li + e
𝜒 i)2

, 𝜗
𝜒 i =

𝜕𝜂
𝜒 i

𝜕e
𝜒 i

=
Ω

𝜒HiΩ𝜒Li(e2
𝜒 i + Ω

𝜒HiΩ𝜒Li)

(Ω
𝜒Hi − e

𝜒 i)2(Ω𝜒Li + e
𝜒 i)2

.
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Note that 𝜗
𝜙i, 𝜗𝜃i, and 𝜗

𝜓 i are always positive. Design the universal barrier function as V3 =
∑N

i=1
1
2
𝜂

T
Θi𝜂Θi, and its time

derivative leads to

̇V3 =
N∑

i=1

(

𝜂

T
Θi𝜂ΩΘi + 𝜂

T
Θi(𝜗Θi◦ėΘi)

)

=
N∑

i=1

(

𝜂

T
Θi𝜂ΩΘi + (𝜂Θi◦𝜗Θi)TėΘi

)

=
N∑

i=1

(

𝜂

T
Θi𝜂ΩΘi + (𝜂Θi◦𝜗Θi)T(Ti(e𝜔i + 𝛼

𝜔i) − ̇Θdi)
)

, (60)

where we define e
𝜔i = 𝜔i − 𝛼

𝜔i (i = 1, … ,N), with the stabilizing function 𝛼
𝜔i ∈ R3 designed as

𝛼
𝜔i = T−1

i

(
̂
̇Θdi − KΘidiag

[
1
𝜗
𝜙i
,

1
𝜗
𝜃i
,

1
𝜗
𝜓 i

]

𝜂Θi − 𝜈i(𝜂Θi ◦ 𝜗Θi) − diag
[
1
𝜗
𝜙i
,

1
𝜗
𝜃i
,

1
𝜗
𝜓 i

]

𝜂ΩΘi

)

, (61)

where KΘi > 0 is a control gain. Note that in view of Assumption 4, we have || ̂̇Θdi − ̇Θdi|| ≤ 𝜀Θdi , and hence

(𝜂Θi◦𝜗Θi)T( ̂̇Θdi − ̇Θdi) ≤ ||𝜂Θi◦𝜗Θi||𝜀Θdi <
1
𝜈i
𝜀

2
Θdi

+ 𝜈i||𝜂Θi◦𝜗Θi||2.

Therefore, from (60) we can get

̇V3 ≤

N∑

i=1

(

−KΘi𝜂
T
Θi𝜂Θi + (𝜂Θi◦𝜗Θi)TTie𝜔i +

1
𝜈i
𝜀

2
Θdi

)

. (62)

Step 4:
At this step, design the Lyapunov function candidate as V4 =

∑N
i=1

1
2
eT
𝜔ie𝜔i, and its rate of change is

̇V4 = eT
𝜔i(J

−1
i S(Ji𝜔i)𝜔i + J−1i 𝜏i − 𝛼̇

𝜔i + J−1i N2i). (63)

Note that we can further parameterize the term eT
𝜔iJ

−1
i S(Ji𝜔i)𝜔i as eT

𝜔iJ
−1
i S(Ji𝜔i)𝜔i = eT

𝜔iJi𝜔i,where Ji and 𝜔i for the ith
quadrotor (i = 1, … ,N) are defined as

Ji =
[

J1i, J2i, J3i, J4i, J5i, J6i
]

, (64)

with

J1i =

⎡
⎢
⎢
⎢
⎢
⎣

𝜍xyiJzxi − 𝜍xziJyxi

𝜍yyiJzxi − 𝜍yziJyxi

𝜍zyiJzxi − 𝜍zziJyxi

⎤
⎥
⎥
⎥
⎥
⎦

, J2i =

⎡
⎢
⎢
⎢
⎢
⎣

− 𝜍xxiJzxi + 𝜍xyiJzyi + 𝜍xzi(Jxxi − Jyyi)

− 𝜍yxiJzxi + 𝜍yyiJzyi + 𝜍yzi(Jxxi − Jyyi)

− 𝜍zxiJzxi + 𝜍zyiJzyi + 𝜍zzi(Jxxi − Jyyi)

⎤
⎥
⎥
⎥
⎥
⎦

,

J3i =

⎡
⎢
⎢
⎢
⎢
⎣

𝜍xxiJyxi + 𝜍xyi(Jzzi − Jxxi) − 𝜍xziJyzi

𝜍yxiJyxi + 𝜍yyi(Jzzi − Jxxi) − 𝜍yziJyzi

𝜍zxiJyxi + 𝜍zyi(Jzzi − Jxxi) − 𝜍zziJyzi

⎤
⎥
⎥
⎥
⎥
⎦

, J4i =

⎡
⎢
⎢
⎢
⎢
⎣

− 𝜍xxiJzyi + 𝜍xziJxyi

− 𝜍yxiJzyi + 𝜍yziJxyi

− 𝜍zxiJzyi + 𝜍zziJxyi

⎤
⎥
⎥
⎥
⎥
⎦

,

J5i =

⎡
⎢
⎢
⎢
⎢
⎣

𝜍xxi(Jyyi − Jzzi) − 𝜍xyiJxyi + 𝜍xziJxzi

𝜍yxi(Jyyi − Jzzi) − 𝜍yyiJxyi + 𝜍yziJxzi

𝜍zxi(Jyyi − Jzzi) − 𝜍zyiJxyi + 𝜍zziJxzi

⎤
⎥
⎥
⎥
⎥
⎦

, J6i =

⎡
⎢
⎢
⎢
⎢
⎣

𝜍xxiJyzi − 𝜍xziJxzi

𝜍yxiJyzi − 𝜍yyiJxzi

𝜍zxiJyzi − 𝜍zyiJxzi

⎤
⎥
⎥
⎥
⎥
⎦

,
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where

Ji =
⎡
⎢
⎢
⎢
⎣

Jxxi Jxyi Jxzi
Jyxi Jyyi Jyzi
Jzxi Jzyi Jzzi

⎤
⎥
⎥
⎥
⎦

, J−1i =
⎡
⎢
⎢
⎢
⎣

𝜍xxi 𝜍xyi 𝜍xzi

𝜍yxi 𝜍yyi 𝜍yzi

𝜍zxi 𝜍zyi 𝜍zzi

⎤
⎥
⎥
⎥
⎦

,

and

𝜔i =
[

𝜔

2
xi, 𝜔xi𝜔yi, 𝜔xi𝜔zi, 𝜔

2
yi, 𝜔yi𝜔zi, 𝜔

2
zi

]T
. (65)

Here Ji is the unknown constant matrix such that there exists a constant hJi satisfying z
TJiz ≤ hJiz

Tz for any z ∈ R3.
Therefore, we have

eT
𝜔iJ

−1
i S(Ji𝜔i)𝜔i ≤ ||e𝜔i||hJi||𝜔i|| < 𝜀ihJi + hJi

eT
𝜔ie𝜔i𝜔

T
i 𝜔i

√

eT
𝜔ie𝜔i𝜔

T
i 𝜔i + 𝜀

2
i

. (66)

Besides,

eT
𝜔iJ

−1
i N2i ≤ ||e𝜔i||𝜇Ji < 𝜀i𝜇Ji + 𝜇Ji

eT
𝜔ie𝜔i

√

eT
𝜔ie𝜔i + 𝜀

2
i

, (67)

where 𝜇Ji is an unknown constant such that ||J
−1
i N2i|| ≤ 𝜇Ji .

For the ith quadrotor (i = 1, … ,N), we design the control torque 𝜏i ∈ R3 as the following

𝜏i = −
e
𝜔i𝜏

T
i 𝜏 i𝜌̂

2
Ji

√

eT
𝜔ie𝜔i𝜏

T
i 𝜏 i𝜌̂

2
Ji + 𝜀

2
i

, (68)

𝜏 i = − ̂
𝛼̇
𝜔i + (K

𝜔i + 𝜈i)e𝜔i + TTi (𝜂Θi◦𝜗Θi) + 𝜇̂Ji
e
𝜔i

√

eT
𝜔ie𝜔i + 𝜀

2
i

+ ̂hJi
e
𝜔i𝜔

T
i 𝜔i

√

eT
𝜔ie𝜔i𝜔

T
i 𝜔i + 𝜀

2
i

, (69)

where 𝜇̂Ji is the estimator of the unknown constant 𝜇Ji , ̂hJi is the estimator of the unknown constant hJi, and 𝜌̂Ji is the
estimator of the unknown constant 𝜌Ji = 1

bJi
.

Hence, we have

̇V3 + ̇V4 <

N∑

i=1

⎛
⎜
⎜
⎜
⎝

𝜀i(hJi + 𝜇Ji + bJi) +
1
𝜈i
𝜀

2
Θdi

+ 1
𝜈i
𝜀

2
𝛼
𝜔i
− KΘi𝜂

T
Θi𝜂Θi − K

𝜔ieT
𝜔ie𝜔i − bJie

T
𝜔i𝜏 i𝜌̃Ji

−𝜇̃Ji
eT
𝜔ie𝜔i

√

eT
𝜔ie𝜔i + 𝜀

2
i

− ̃hJi
eT
𝜔ie𝜔i𝜔

T
i 𝜔i

√

eT
𝜔ie𝜔i𝜔

T
i 𝜔i + 𝜀

2
i

⎞
⎟
⎟
⎟
⎠

, (70)

where 𝜌̃Ji = 𝜌̂Ji − 𝜌Ji, 𝜇̃Ji = 𝜇̂Ji − 𝜇Ji, and ̃hJi = ̂hJi − hJi (i = 1, … ,N).
Now, the adaptive laws for the estimators 𝜌̂Ji, ̂hJi, and 𝜇̂Ji (i = 1, … ,N) are designed as the following

̇
𝜌̂Ji = n

𝜌Ji e
T
𝜔i𝜏 i − 𝜎

𝜌Ji 𝜌̂Ji, (71)
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̇
̂hJi = nhJi

eT
𝜔ie𝜔i𝜔

T
i 𝜔i

√

eT
𝜔ie𝜔i𝜔

T
i 𝜔i + 𝜀

2
i

− 𝜎hJi
̂hJi, (72)

̇
𝜇̂Ji = n

𝜇Ji

eT
𝜔ie𝜔i

√

eT
𝜔ie𝜔i + 𝜀

2
i

− 𝜎
𝜇Ji 𝜇̂Ji, (73)

where 𝜌̂Ji(0) = 0, ̂hJi(0) = 0, and 𝜇̂Ji(0) = 0 are the initial conditions, n
𝜌Ji , 𝜎𝜌Ji , nhJi , 𝜎hJi , n𝜇Ji , and 𝜎

𝜇Ji are positive design
constants.

Next, design the Lyapunov function candidates for the estimators as V
𝜌J =
∑N

i=1
bJi
2n

𝜌Ji
𝜌̃

2
Ji, VhJ =

∑N
i=1

1
2nhJi

̃h2Ji, V𝜇J =
∑N

i=1
1

2n
𝜇Ji
𝜇̃

2
Ji. Denote Vatt = V3 + V4 + V

𝜌J + VhJ + V
𝜇J , after some algebraic manipulation, we can arrive at

̇Vatt <

N∑

i=1

(

−KΘi𝜂
T
Θi𝜂Θi − K

𝜔ieT
𝜔ie𝜔i −

bJi𝜎𝜌Ji
2n

𝜌Ji

𝜌̃

2
Ji −

𝜎hJi

2nhJi
̃h2Ji −

𝜎
𝜇Ji

2n
𝜇Ji

𝜇̃

2
Ji + C2i

)

, (74)

where

C2i = 𝜀i(hJi + 𝜇Ji + bJi) +
bJi𝜎𝜌Ji
2n

𝜌Ji

𝜌

2
Ji +

𝜎hJi

2nhJi
h
2
Ji +

𝜎
𝜇Ji

2n
𝜇Ji

𝜇

2
Ji +

1
𝜈i
𝜀

2
Θdi

+ 1
𝜈i
𝜀

2
𝛼
𝜔i
.

Hence, let the overall Lyapunov function be V = Vpos + Vatt, we can get

̇V < −𝜅V + 𝜚, (75)

where

𝜅 ≜ min
i,j

(2Kei, 2Kij, 2Kvi, 2KΘi, 2K𝜔i, 𝜎𝜇mi , 𝜎mi, 𝜎𝜌Ji , 𝜎hJi , 𝜎𝜇Ji), 𝜚 ≜

N∑

i=1
(C1i + C2i).

The above backstepping design leads to the following theorem.

Theorem 1. For the ith quadrotor (i = 1, … ,N), with the thrust laws as (44) and (45), torque laws as (68) and
(69), and adaptive laws (51), (52), (71)–(73), the quadrotor formation system described by (1), (2), (5), and (6),
under Assumptions 1–4 has the following properties:

1. The constraint requirements (12), (13), (16)–(18) will not be violated during operation.
2. The transformed output tracking error 𝜂ei, 𝜂ij, and 𝜂Θi (i, j = 1, … ,N, j ≠ i) will converge into the sets

{

x = 𝜂ei, 𝜂ij, 𝜂𝜙i, 𝜂𝜃i, 𝜂𝜓 i ∶ |x| < 𝜀
𝜂
, 𝜀

𝜂
=
√

2𝜚
𝜅

}

, (76)

and as a result, the output tracking error dei, deij, e𝜙i, e𝜃i, and e𝜓 i, will converge to the sets

{
dei ∶ dei < 𝜀

𝜒H,i

}
, (77)

{
deij, e𝜙i, e𝜃i, e𝜓 i ∶ −𝜀

𝜄L,i < 𝜛 < 𝜀
𝜄H,i

}
, (78)

where𝜛 = deij, e𝜙i, e𝜃i, or e𝜓 i. For 𝜀𝜒H,i we have

𝜀
𝜒H,i =

𝜀
𝜂
ΩdHi

ΩdHi + 𝜀
𝜂

. (79)
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𝜀
𝜄H,i and 𝜀𝜄L,i are expressed as

𝜀
𝜄H,i =

−(ΩHΩL − 𝜀
𝜂
(ΩH − ΩL)) +

√

Ω2
HΩ

2
L + 𝜀

2
𝜂

(ΩH + ΩL)2 − 2𝜀
𝜂
ΩHΩL(ΩH − ΩL)

2𝜀
𝜂

, (80)

𝜀
𝜄L,i =

−(ΩHΩL + 𝜀
𝜂
(ΩH − ΩL)) +

√

Ω2
HΩ

2
L + 𝜀

2
𝜂

(ΩH + ΩL)2 + 2𝜀
𝜂
ΩHΩL(ΩH − ΩL)

2𝜀
𝜂

, (81)

where ΩH = ΩHij, Ω𝜙Hi, Ω𝜃Hi, or Ω𝜓Hi, and ΩL = ΩLij, Ω𝜙Li, Ω𝜃Li, or Ω𝜓Li, for i, j = 1, … ,N, j ≠ i.

Proof. First, from (75), it is clear that the overall Lyapunov function V is bounded, since

V(t) ≤
(

V(0) − 𝜚

𝜅

)

e−𝜅t + 𝜚

𝜅

. (82)

The boundedness of V implies boundedness of 𝜂ei, 𝜂ij, 𝜂𝜙i, 𝜂𝜃i, and 𝜂
𝜓 i (i, j = 1, … ,N, j ≠ i). Hence, the

constraint requirements (12), (13), (16)–(18) are satisfied during the operation.
Moreover, we have limsupt→∞V = 𝜚

𝜅

, hence 1
2
𝜂

2
ei ≤

𝜚

𝜅

when t → ∞, therefore 𝜂ei will converge to the set
(76). Similar relationships hold for 𝜂ij, 𝜂𝜙i, 𝜂𝜃i, and 𝜂𝜓 i. Furthermore, boundedness of the adaptive estimates m̂i,
𝜇̂mi, 𝜌̂Ji, ̂hJi, and 𝜇̂Ji , as well as boundedness of the fictitious error evi and e𝜔i (i = 1, … ,N), can be concluded
from the fact that V is bounded.

Next, for i = 1, … ,N, note that in the range that dei < ΩdHi, 𝜂ei is a function of dei. Hence, the range
(12) gives the range for dei given as in (77). Besides, within the range of (13), (16)–(18), 𝜂ij, 𝜂𝜙i, 𝜂𝜃i, and 𝜂

𝜓 i
are quadratically related to deij, e𝜙i, e𝜃i, and e𝜓 i, respectively. Hence, satisfying the constraints (13), (16)–(18)
means that the distance and attitude tracking errors dei, deij, e𝜙i, e𝜃i, and e𝜓 i will be confined in the ranges
defined by (77) and (78). ▪

Remark 7. Once the thrust and torque of the ith quadrotor (i = 1, … ,N) are determined, the propeller speeds
can be calculated using the following relation

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Fi
𝜏
𝜙i

𝜏
𝜃i

𝜏
𝜓 i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Υi Υi Υi Υi

0 −liΥi 0 liΥi

− liΥi 0 liΥi 0
di −di di −di

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜔

2
roti1

𝜔

2
roti2

𝜔

2
roti3

𝜔

2
roti4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝜏i = [𝜏
𝜙i, 𝜏𝜃i, 𝜏𝜓 i]T ∈ R3, 𝜔roti1, 𝜔roti2, 𝜔roti3, and 𝜔roti4 represent the front, right, rear, and left propeller

speeds of the ith quadrotor, respectively. li is the distance between the center of the propeller and the center
of the ith quadrotor, Υi is a thrust factor of the ith quadrotor, and di is a drag factor of the ith quadrotor,
i = 1, … ,N.

Remark 8. By L’ Hopital’s rule, in Theorem 1 we have

lim
𝜀
𝜂

→0
𝜀
𝜄H,i = 0, lim

𝜀
𝜂

→0
𝜀
𝜄L,i = 0, lim

𝜀
𝜂

→0
𝜀
𝜒H,i = 0, (83)

for i = 1, … ,N, which means as the modified error variables 𝜂ei, 𝜂ij, 𝜂𝜙i, 𝜂𝜃i, and 𝜂
𝜓 i converge into small

neighborhoods of zero, so does the tracking errors dei, deij, e𝜙i, e𝜃i, and e𝜓 i.

Remark 9. To reduce the size of the set in (76), we need to select large 𝜅 and small 𝜚. To make 𝜅 large, we
can select large control gains Kei, Kij, Kvi, KΘi, and K𝜔i, for i, j = 1, … ,N, j ≠ i, and large adaptive control
parameters 𝜎

𝜇mi , 𝜎mi, 𝜎𝜌Ji , 𝜎hJi , and 𝜎
𝜇Ji , for i = 1, … ,N. To make 𝜚 small, we can select small 𝜀i, large 𝜈i, and

large adaptive control parameters nmi, n𝜇mi , n𝜌Ji , nhJi , and n𝜇Ji .
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5 SIMULATION STUDIES

In this section, a simulation example is carried out with a team of N = 4 quadrotors. In this simulation, the model
parameters of the quadrotors are mi = 2 kg, g = 9.81 m∕s2, and Ji = diag[0.109, 0.103, 0.0625] kg m2, i = 1, 2, 3, 4.
Note that the units of the position, attitude, translational and angular velocities are m, rad, m∕s, and rad∕s, respec-
tively. The reference signals for the vehicles are given as pd1 = [2, 2, 5]Tm, pd2 = [2, 3, 5]Tm, pd3 = [3, 2, 5]Tm,
and pd4 = [3, 3, 5]Tm. The constraint functions are selected as ΩdHi = (10 − 0.5)e−0.24t + 0.5, ΩHij = (8 − 0.1)e−0.08t +
0.1, and ΩLij = (3 − 0.1)e−0.04t + 0.1, i, j = 1, 2, 3, 4, i ≠ j. To implement the adaptive control framework, the design
parameters are chosen as 𝜀i = 0.1, 𝜖 = 0.01, nmi = 0.29, n

𝜇mi = 0.3, n
𝜌Ji = 2, nhJi = 2, n

𝜇Ji = 5, 𝜎mi = 0.065, 𝜎
𝜇mi = 0.1,

𝜎
𝜌Ji = 0.01, 𝜎hJi = 0.01, and 𝜎

𝜇Ji = 0.01, i = 1, 2, 3, 4. The control gains are designed as Kei = 1.2, Kij = 0.65, Kvi = 2,
𝜈i = 0.5, KΘi = 2, and K

𝜔i = 4, i, j = 1, 2, 3, 4, i ≠ j. The initial positions and attitudes of the quadrotor team are
[x1, y1, z1]T = [0, 0, 0]Tm, [x2, y2, z2]T = [0, 5, 0]Tm, [x3, y3, z3]T = [5, 0, 0]Tm, and [x4, y4, z4]T = [5, 5, 0]Tm. The
initial attitudes of the agents are [𝜙1, 𝜃1, 𝜓1]T = [0.699, 0.9984, 0.5]Trad, [𝜙2, 𝜃2, 𝜓2]T = [−0.699, 0.9984, 0.5]Trad,
[𝜙3, 𝜃3, 𝜓3]T = [0.699, −0.9984, 0.5]Trad, and [𝜙4, 𝜃4, 𝜓4]T = [−0.699, −0.9984, 0.5]Trad. The initial conditions of the
translational and angular velocities of every agent are zero. The external disturbances are

N1i =
⎡
⎢
⎢
⎢
⎣

0.6 sin(0.8t) + 0.005rand
0.25 cos(0.6t) + 0.01rand

0.33 cos(0.5t)

⎤
⎥
⎥
⎥
⎦

, N2i =
⎡
⎢
⎢
⎢
⎣

0.1 sin(0.5t)
0.1 sin(0.5t)
0.1 sin(0.5t)

⎤
⎥
⎥
⎥
⎦

,

where i = 1, 2, 3, 4. In N1i, rand represents the random noise uniformly distributed in the interval (−1, 1).
The communication topology diagram is shown in Figure 3.
The simulation results are presented in Figures 4–9. First, the 3D trajectories of four quadrotors are depicted in

Figure 4. It can be observed that the quadrotors can move to small regions close to their desired fixed points pdi, despite
the large initial distance tracking error and presence of system uncertainties and disturbances. Next, the LOS distance
tracking errors dei under the proposed controller are shown in Figure 5 with the constraint function ΩdHi. From this
figure, we see that dei can converge to a small neighborhood of the origin without violation of the performance constraint
ΩdHi. Here, performance constraint functionΩdHi is selected as an exponentially decaying function and limt→∞ ΩdHi = 0.5.
When distance tracking errors dei are constrained by constraints functions, dei can converge exponentially to the set in
(77) which is close to zero. Thus, the transient and steady-state performance of distance tracking errors dei can be guaran-
teed by performance functionsΩdHi. Figure 6 gives us the exhibition of the profile of the inter-quadrotor distance tracking
errors deij under the proposed controller. It is obvious that the safety constraints are always satisfied during the opera-
tion since deij always stayed between the constraint functions −ΩLij and ΩHij. Here, safety constraint functions ΩHij and
ΩLij are both selected as exponentially decaying functions and limt→∞ ΩHij,ΩLij = 0.1. When relative distance tracking

F IGURE 3 Undirected communication graph of the UAV team.

 10991239, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6824 by U

niversity O
f K

entucky, W
iley O

nline Library on [08/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



8200 HU and JIN

F IGURE 4 Position tracking trajectories of quadrotors.

F IGURE 5 The profile of the LOS distance tracking errors dei with ΩdHi, i = 1, 2, 3, 4.

F IGURE 6 The profile of the relative inter-quadrotor distance tracking errors deij with ΩHij and −ΩLij, i, j = 1, 2, 3, 4, i ≠ j.
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F I GURE 7 The profile of the attitudes of quadrotors, 𝜙i, 𝜃i, and 𝜓i, i = 1, 2, 3, 4.

F IGURE 8 The thrust Fi of quadrotors, i = 1, 2, 3, 4.

errors deij are constrained by constraints functions, deij can converge exponentially to the set in (78) which is close to zero.
Thus, safety requirements including collision avoidance and communication link can be guaranteed during the formation
operation.

The profile of quadrotor attitudes 𝜙i, 𝜃i, and 𝜓i presented in Figure 7 shows that the convergence of the attitudes to
regions close to zero despite unknown model parameters and the influence of unknown time-varying external distur-
bancesN2i. Besides, safety constraints of the attitudes are not violated during the formation operation, that is,𝜙i ∈ (− 𝜋

2
,

𝜋

2
)

and 𝜃i ∈ (− 𝜋

2
+ 𝜖,

𝜋

2
− 𝜖) where 𝜖 = 0.01, such that T(Θi(t)) is always invertible to avoid the singularity of 𝛼𝜔i in (61).

Finally, the thrust Fi and torques 𝜏𝜙i, 𝜏𝜃i, and 𝜏
𝜓 i are plotted in Figures 8 and 9, respectively. The thrust can mitigate

the influence of external disturbances N1i and provide gravitational force for the quadrotor to make the vehicle hover
on the neighborhood of its desired set point. The torques can accommodate unknown time-varying disturbances N2i
despite the lack of the accurate model parameters. The unknown time-varying external disturbances N2i are selected
to include sinusoidal signals such that the torques will also include sinusoidal signals to mitigate the influence of
disturbances N2i. Therefore, under our proposed controllers, the quadrotors have the good robustness against the distur-
bances. Based on the above discussion, we can conclude that the simulation results confirm the theoretic analysis shown
in Theorem 1.
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F IGURE 9 The torques 𝜏
𝜙i, 𝜏𝜃i, and 𝜏𝜓 i of quadrotors, i = 1, 2, 3, 4.

6 CONCLUSION

In this work, we address the formation control problem for a teamof quadrotors with two types of constraints, namely per-
formance constraints and safety constraints. A new adaptive formation control architecture is proposed. Specifically, we
employ the universal barrier functions into the controller design and analysis, to ensure that the constraint requirements
on the LOS distance tracking error, relative distance error between two quadrotors, and the attitude of each quadro-
tor, are all satisfied during the operation. The universal barrier function approach is also a generic framework that can
address system with different types of constraints in a unified controller architecture. Exponential convergence rate can
be guaranteed on the LOS distance, relative inter-quadrotor distance, and attitude tracking errors, while all constraints
are satisfied during the operation. Future research includes experimental validation of the proposed formation control
algorithm and extension of the analysis to constrained formation control problems for UAVs with collaborate objectives
such as load lifting and transporting.
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