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1 | INTRODUCTION

Formation control problems of unmanned aerial vehicles (UAVs), especially quadrotors, have received much attention
from the research, civil, industrial, and military communities, including notable applications in surveillance,'? search
and rescue,® contour mapping,*> object lifting and transporting,®” just to name a few.

Most of the works in the literature considering quadrotor formation problems, including but not limited to References
8-17, do not address the issues of various system constraints during the operation. However, to ensure the precise and safe
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operations of the quadrotor team, several constraint requirements cannot be ignored and have to be taken into consider-
ation. First, for the performance constraints, we need to ensure that the quadrotor team is tracking the desired formation
trajectory closely. More specifically, the line-of-sight (LOS) distance between the quadrotor and its reference trajectory
should not be too large. Failing to meet such constraint requirements would result in undesirable formation performance.
Second, for safety constraints, we need to guarantee that the LOS relative distance between any two quadrotors cannot be
either too small or too large. On one hand, if two quadrotors in the formation come too close, it can result in collisions
of quadrotors. On the other hand, if the distance between two quadrotors is too large, the communication link can be
lost, as many communicating devices like XBEE or WiFi-based gadgets can only work effectively within a certain range.
Furthermore, for safety considerations, the attitude of each quadrotor, namely the roll, pitch, and yaw angles have to be
confined within a certain range during the flight, so that to ensure accurate pointing for any onboard devices, and to make
sure the quadrotor is not destabilized.

Few works in the quadrotor or UAV formation literature have addressed the above issues regarding performance and
safety constraints. Some notable exceptions include,'®?6 which consider mere collision avoidance between UAVs, but
ignore the upper constraints of the inter-vehicle distances, and fail to address constraints on the LOS distance tracking
errors and the attitude. For a single aerial robot, position constraints of a quadrotor have been considered in Reference
27, yet attitude constraint requirements are ignored. Authors in Reference 28 propose an adaptive position/attitude track-
ing control algorithm, considering constant and symmetric constraints for both position and attitude tracking errors,
for a class of fully actuated helicopters. Such a framework cannot be extended to address underactuated unmanned
vehicles. The work? addresses both position and attitude constraints for a single quadrotor, which only addresses con-
stant and symmetric constraint functions. A distributed formation control framework for underactuated quadrotors with
pre-assigned constraints of the position is developed in Reference 30. The work3! investigates the attitude synchronization
problem for cooperative quadrotors subjected to unknown nonlinear dynamics and multiple actuator faults. A forma-
tion control algorithm for the leader quadrotors and a finite-time containment control for the follower quadrotors with
unknown model dynamics are proposed in Reference 32. None of these works?’-32 can address formation control problems
of a team of underactuated quadrotors, with time-varying and asymmetric constraint requirements on the LOS distance,
relative inter-quadrotor distance, and attitude tracking errors.

In this work, we develop a novel adaptive constrained formation control architecture for a team of quadrotors.
Multiple constraint requirements on performance and safety are considered during operation. For the performance con-
siderations, we address the constraint requirements on the distance tracking error between the actual and the desired
positions for each quadrotor, so that to ensure precise trajectory tracking and formation keeping. For the safety con-
straints, we consider the constraints on the relative inter-quadrotor distance, so that to ensure the distance between any
two quadrotors is neither too large nor too small. Safety constraints also include constraint requirements on the atti-
tude of each quadrotor, so that to ensure accurate pointing and avoid destabilization. All constraint functions can be
time-varying and asymmetric. Universal barrier functions are adopted in the controller design and analysis, which is a
unified structure that can address different types of constraints in a single control architecture. Adaptive estimation is used
to handle time-varying uncertainties presented in the system dynamics and unknown system properties. Through rigor-
ous mathematical discussions, we show that exponential convergence can be guaranteed on the LOS distance and relative
distance tracking errors, as well as the attitude tracking errors, while all constraint requirements are satisfied during the
operation.

The notations used in this work are fairly standard. Specifically, R denotes the set of real numbers and I, means the
identity matrix in the space R™ ™, Moreover, (-)T implies the transpose vector, | - | is the absolute value for scalars, and
|| - || represents the Euclidean norm for vectors and induced norm for matrices. Next, diag[x;, ... ,X»] denotes a diagonal
matrix in the space R™, and the only nonzero elements being xi, ... ,x, on the diagonal in that specific sequence.
Furthermore, we use cé to denote cos 6, sf to denote sin 0, and tf to denote tan 8. We also write (-) as the first order time
derivative of (-), if () is differentiable, and (-)" as the nth order time derivative of (-) for n being a positive integer. Next,
C? denotes the class of functions that are two-times differentiable with respect to time, with the derivatives being in the
class of C', which consists of all differentiable functions whose derivative is continuous. Besides, for any two vectors
vy, v, € R3, the cross-product operator S(-) gives S(v;)v, = v; X v,. Itis also true that S(v;)v, = —S(v,)v; and vIS(vz)vl =0.
Furthermore, we use o to denote the Hadamard product, that is, the element-wise product of two vectors/matrices with
the same dimension, such that for A, B € R™",wherei =1, ... ,mandj =1, ... ,n,we have (4 o B); = (A);(B)y. Finally,
SO3) = {Q € R¥3 | Q"Q = I5} is a set of orthogonal matrices in R¥3,and S?> = {x € R? | ||x|| = 1} is a set of unit vectors
in R3.
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FIGURE 1 Illustration of the inertial {I} and body-fixed {B} frames.

2 | PROBLEM FORMULATION
2.1 | System dynamics

Consider the following class of multi-vehicle systems with N quadrotors, where, for the ith quadrotor (i = 1, ... , N)shown
in Figure 1, the position and attitude in the inertial reference frame are represented as p;(t) = [x;(¢), yi(t), zi()]" € R?
and ©;(t) = [¢i(t), 0;(t), wi(1)]T € R3, respectively. The translational velocities with respect to the inertial reference frame
are represented as vi(t) = [u(t), Vyi(t), vu(H)]T € R3. Moreover, define a body-fixed frame with the origin being at the
center of mass for each quadrotor, and the rotational velocities with respect to this body-fixed frame are denoted by
wi(t) = [wxi(), wyi(t), wy()]" € R3. The kinematics for the ith quadrotor (i = 1, ... ,N) are expressed as

Di(®) = vi(?), ®
Oi(t) = T(O(t)wi(1), (2)
where p;(0) = piy € R? and ©;(0) = O € R3, with p;, and Oy, being initial conditions. Besides, T(0;(t)) is the transforma-

tion matrix that relates the angular velocity in the body-fixed frame to the rate of change of the Euler angles in the inertial
frame, and is given by

1 S‘l)itgi C¢it9i
T®) =0 c¢; —s¢i | 3
0 s¢i/cO; coi/ch;

where we have
IT@:()I| < Tmax. 4)
with Tyax > 0 being a known constant, when —% < ¢i(b) < % and —% +e<0i(t) < % — ¢, for any user-defined positive e.
The constraints are known as the safety constraints that will be discussed shortly.
The dynamics for the ith quadrotor (i = 1, ... ,N) are expressed as

m;v;(t) = mige, — F;y(H)R(O;(t))e; + Ny (t), ©)

Jiwi(t) = SUiwi(D)wi(t) + 7i(t) + Nai(?), (6)
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where v;(0) = vjp € R? and w;(0) = wy € R3, with vy and w;y being the initial conditions. m; € R, m; > 0 is the mass
of the ith quadrotor (i=1, ... ,N), and J; € R33 is a symmetric positive definite matrix representing the inertia.
Fi(t) € R and 7;(t) € R? represent the thrust and torques of the ith quadrotor (i =1, ... ,N), respectively. Ny;(t) € R3
and N,;(t) € R® denote the external disturbances of the ith quadrotor (i =1, ... ,N). Furthermore, g € R is the grav-
itational acceleration and e, = [0, 0, 1]T € R3 is the unit vector. R(®;(f)) € SO(3) is the rotation matrix, with the
expression

coicy;  sgisOicy; — chisy;  Chisticy; + SPisy;
R(®:) = | cOisyi  spisOisy; + chicy;  chisOisy; — sicy; | (7)
- sBi sqbl-cel- C¢i09i

which translates the translational velocity vector in the body-fixed frame into the rate of change of the position vector in
the inertial frame. It is straightforward to see that

IRO{(E)Il < Rmax. (®)

with Rmax > 0 being a known constant.

2.2 | System performance and safety constraints

In the formation control problem, each quadrotor has its own reference trajectory to track, with the coordinate of the ref-
erence trajectory for the ith vehicle (i = 1, ... , N) denoted by pa;(£) £ [x4i(t), yai(t), zai(H)]T € R3. Hence the line-of-sight
(LOS) distance tracking error for the ith quadrotor (i = 1, ... ,N), which is the distance between the desired and actual
position of the quadrotor, is defined as

dei(t) £ V0a(0) — xai(D)? + Qi) — Yai(0)* + @i(t) — zai(0)*. )

Furthermore, the desired LOS relative distance between the ith and jth (i,j = 1, ... , N, j # i) quadrotors is given as

Lj(t) £ \/(xdi(t) = Xgj(D)? + Vai(t) — yaj(0)? + (Zai(t) — 24j(1))?, (10)

with the actual LOS relative distance being

di(t) 2 1/ 0u(t) = 350 + G1(0) — Y0P + @(0) - (D). ()

The configurations in the case of three quadrotors can be seen in Figure 2.

During the formation operation, there are certain system constraint requirements that need to be satisfied, in
order to ensure the precise and safe functioning of the system. Specifically, one performance constraint and four safety
constraints have to be satisfied for each quadrotor in the operation.

First, the LOS distance tracking error for the ith quadrotor de;(t) (i = 1, ... , N) has to satisfy the following performance
constraint

dei(t) < Qqpi(0), (12)

where, for all t > 0, Qqu;(f) > 0 is the user-defined time-varying constraint requirement for the distance tracking error
d.;(t) and is C3. The constraint requirement (12) means that the LOS distance tracking error for the ith quadrotor cannot
be too large.
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FIGURE 2 Schematics of the formation control problem for three quadrotors: for i,j = 1, 2, 3, j # i, quadrotors in dark blue and solid
black represent the actual positions (x;(¢), y;(f), z;(t)), quadrotors in light blue and dashed black represent the desired positions

(xai(®), yai(t), zqi(1)), red dashed lines represent the desired trajectories, black dashed lines represent the desired inter-quadrotor distances
L;(t), black solid lines represent the actual inter-quadrotor distances dj;(¢), and blue solid lines represent the distance tracking errors d;(f).

Second, define the LOS relative distance tracking error between the ith and jth quadrotors (i,j =1, ... ,N, j # i) as
dei(t) & d;j(t) — Ly(t), which has to meet the following safety constraint

— Qui(b) < dejj(t) < Quy(D), (13)

where, for all ¢ > 0, Qg;(t) > 0 is the user-defined time-varying higher bound for the distance tracking error d;(f), and
—Qp;(t) < 0is the lower bound, with L;j(t) > Q;;(t) > 0. Both Qg;;(¢) and Q;(¢) are C3. The constraint requirement (13)
means that the inter-quadrotor distance cannot be either too large or too small.

Remark 1. On the one hand, the satisfaction of constraint requirement (13) ensures that
0< LU(t) — QLij(t) < dlj(l’) < QHU(t) + Lij(t),

fori,j=1, ... ,N, j# i, which ensures collision avoidance and guarantees that the LOS relative distance
between any two quadrotors is not too far. On the other hand, if we have the following inter-vehicle distance
constraint requirement

0< QLij(t) < dl](t) < QHij(t)» (14)
for all t > 0, then it can be easily transferred into the form of (13), by designing Q;(t) = QHU(t) —-Lij(®) >0

and Qq;(t) = Ly(t) — Qu;(t) > 0. Note that Qp;(¢) < L;(t) < Quy;(t) should be guaranteed for all ¢ > 0 in order
for the perfect tracking to be achievable.

Last but not least, the attitude tracking error for the ith quadrotor (i =1, ... ,N) is defined as

eoi(t) = [egi(0), en(t), e, (D] = ©(t) — Og(t), (15)

where Og;(t) = [¢ai(f), 0ai(t), wai(t)]T is the desired attitude to be specified later. The attitude tracking error has to satisfy
the following safety constraint

= Quri(t) < egi(t) < Qymi(l), (16)
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= Qgri(t) < egi(t) < Qomi(t), 17)

= Q,1i(t) < eyi(t) < Qym(t), (18)

where, for all £ > 0, the constraint functions Qgr(t), Qemi(t), Qori(t), Qomi(), 2y 1:(t), and Q,m;(¢) are C? and

2.3

0 < Quui(t) < g +oa®),  0<Quu(d) < % — bailt),
0 < Quui(t) < g —e+04(), 0< QD) < g — e — 0ai(D),
0 < Qyri(t) < 7w+ wai(t), 0 < Quui(t) < 7 — wa(D).

Remark 2. The safety constraints (16)-(18) require that the attitude tracking errors to be confined within a
user-defined range. Note that the constraint functions on the roll, pitch, and yaw angles can be different.
These constraint functions can also be time-varying and asymmetric. Furthermore, (16)-(18) ensure that the
transformation matrix T(0;(¢)) is invertible. Violation of the constraint requirements (16)—(18) will not only
affect the formation performance of the system, but can also destabilize the quadrotor dynamics and result in
system failure.

| Control objective

The control objective for the formation control problem is to design a control framework such that:

(1)
(2)
(3)
4)

The LOS distance tracking error d.;(t) for the ith quadrotor (i =1, ... ,N) can converge into an arbitrary small
neighborhood of zero;

The relative distance tracking error d.;(f) between the ith and jth (i,j = 1, ... , N, j # i) quadrotors can converge into
an arbitrarily small neighborhood of zero;

For the ith quadrotor (i = 1, ... ,N), the attitude tracking error eg;(t) = [egi(t), eni(t), e,:(t)]" can converge into an

arbitrarily small neighborhood of zero;
The performance and safety constraint requirements (12), (13), (16)-(18) are satisfied during the operation.

The following assumptions are used to facilitate the discussion and analysis of the main result.

Assumption 1. The reference trajectory coordinates for the ith quadrotor (i =1, ... ,N) x4;(t), Ya:(t), and
zai(t), are all C3. The reference attitudes ¢g;(t), 04;(t), and wy;(¢), are all C2. Furthermore, for the reference
attitude we require that

T T T T
-3 < ¢ai(t) < > T3 +e < fqi(t) < 567 <yqi() <&

Assumption 2. The thrust F;(t) and disturbances Ny;(t) and Ny;(t) for the ith quadrotor (i =1, ... ,N) are
uniformly bounded with unknown bounds.

Assumption 3. The mass m; and inertia J; for the ith quadrotor (i = 1, ... , N) are unknown, but the inverses
of J; are assumed to be both upper and lower bounded, such that for any z € R3, b, 2"z < 2'J7'z < b;iz'z,

where bj;, and b, are unknown positive constants.

Assumption 4 %, Denote the approximation of the time derivative of a continuous function d(¢) as §(t),
where

() — 8¢t —T)

I = T ,

19
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for some small T > 0. Then

19(6) = ()| < €9 ~ o(T). (20)

To facilitate the analysis, we present the following lemma from the literature.
ZZ
Veiter
From this point onwards, to simplify the notation, the time and state dependence of the system will be omitted
whenever no confusion would arise.

Lemma 1. For any constant € > 0 and any variable z € R, we have 0 < |z| — <e.

3 | UNIVERSAL BARRIER FUNCTION

Here we introduce the structure of universal barrier function to be used later in the analysis, which is adopted but modified
from our earlier work.* Specifically, to address the constraint requirements (12) and (13), which are on the LOS distance
tracking error de; and relative inter-quadrotor distance tracking error de;; (i,j =1, ... ,N, j # i), we first introduce the
transformed error variables as follows

Qamidei
Nei = —————— (21)
T Quni — dei
and
ny ey (22)

- (Quyj — dey)(Quij + dej)”

The universal barrier functions used to deal with the constraint requirements (12) and (13) for the ith quadrotor (i =
1, ... ,N) are then defined as

1 1
Vei = Eﬂé, Vij = 5773 (23)
Take Vj; for an example. It is easy to see that #; = 0 if and only if d.; = 0. Besides, when de;; — Qp;;, we have 1; — +o0,
hence Vj; — +oo. Alternatively, when de; - —Qr;j, we have n; — —oo, therefore Vj; — +oo.

Remark 3. For the universal barrier function Vy;, note that if the constraint functions are symmetric, namely
if Qu; = Qi = Qy, then the barrier function V;; becomes

Q’d.;
1 2 ij ey
j 2 _p
2 Qij - deij
When there are no constraint requirements on de;;, which can equivalently be seen as Qg = Qrj = Q;; = +00,
we have
lim gy =dey, lim V=~ (25)
olim g = ey, lim V= 54,

which means systems without output constraint requirements can in fact be regarded as a special case of the
generic discussion on asymmetric constraint requirements.

Second, regarding the constraint requirements (16)—-(18), which are on the attitude tracking errors eg;(t) of the ith
quadrotor (i = 1, ... ,N), we first introduce the transformed error variables as follows

Qi p1iCpi

= , (26)
(Qgai — €4i)(QqLi + €gi)

Nepi
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_ QomiQg1i€0;
 (Qomi — €01)(Qovi + €1)”
_ Qu1iy1ilyi

T (Qumi — ) Qi +ey)]

(27

Noi

Nyi (28)

and the universal barrier function used to deal with the constraint requirements (16)-(18) for the ith quadrotor
(i=1,...,N)isdesigned as

_ 1 T _ 1 2 1 2 1 2
Vei = S Neilter = Shgi + Slgi + Sy (29

where ne; = [1gi, i Myil” € R3.

Remark 4. In order to address asymmetric constraint functions, one barrier Lyapunov function that has been
discussed in the literature3>3¢ has the following structure

(0’4 — (074
=@1og b L q(e)log bL

Vb
D D
b QbH —eP p QbL —ep

, (30)

where e is the output tracking error to be constrained, Quy and Q. are the higher and lower bounds, p is an
even number such that p > n, with n being the order of the systems, and

1, if ->0;
q(-)={ b G

0, otherwise.

Note that (30) does not have the generic property stated in Remark 3. Besides, since g(-) is a discontinuous
function, the form (30) requires that the error variable e is raised to the pth power in order to avoid discon-
tinuity when e = 0 for the derivatives of V4, which may put a higher demand than necessary on the control
signal when e is large.

Remark 5. Another widely used BLF in the literature utilizes the tangent form proposed in our previous
works37-3°

Q2 2
Vo= —2tan( 2= |, [e(0)] < Q4(0). (32)
r 202

By the L’ Hopital’s rule we get limg, 4o Vb = %ez, hence this BLF can be used to address general systems
without constraint requirements. However such a form cannot be extended to address asymmetric constraints

without raising the error variable to higher powers as in (30). From this perspective, the barrier function (23)
and (29) are more general than both (30) and (32).

4 | CONTROL DESIGN AND ANALYSIS

In this section, we present the backstepping design procedure that will lead to our controller design and main theorem.

4.1 | Distance control design

Step 1:
At this step, we consider the position kinematics of the quadrotors. Design the barrier function as

N N
i=Y (Vei + ) V) (33)

=L
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and its derivative with respect to time leads to

N N N N
V= Z <Vei + Z Vl]> = Z <’76i77ei + Z nl}nl}) :

i=1 J=Lj# J=L

First we examine the dynamics for #e; (i = 1, ... ,N). From (21), we have

Hei = 6(22’1;;,- Qqi + Saide; = A + Sdidiei(xi — Xai)%i + 19didiﬂ_(yi —Ya)y; + 19did%i(zi — Zai)% — &is
where
Am = Ot Qani, 94 = Onet _ —Qiﬂl ,
0Qqm; ddei  (Qani — dei)?

1 . 1 . 1 .
& 2 9ai— (6 — Xa)kai + 9ai— Wi — Ya)Vai + 9ai— (Zi — Zai)Zai-
dei dei dei

Hence for V; (i=1, ... ,N) we have

. 1 . 1 . 1 .
Vei = Hei¥di = (6 — Xa)Xi + Hei®ai = i — Ydi)V; + Neiddi = (Zi — Zdi)Zi + Neilni — Heili-
dei dei dei

Similarly, for V;; (i,j = 1, ... ,N, j # i) we have

1 .
—(Zi — Z)Zi

. 1 . .
Vij = 506 = x)%i + nyd (Vz Yili + iy -
ij )

i
Jdlj

1 . . 1
- "lij&jE(xi — X)Xj — ’1ijl9ijE(Vi =9V — 5@ — )% + nydy — miéy,
ij ij

ydu
where
N o . Loy QupQuy(dy; + QuyQuy)
Ay = Qi + Quj, 95 = = > =
aQHU 0QLU- adeij (QHU - deij) (QLU + deij)

&= 2 '9ULLJ = 191] (xdl Xqj)(Xai — Xgj) + 191] (le Ya)Wa; _ydj) + 8 — (Zdi — Zaj)(Zdi — Zdj)-
]

”L
Hence, for V; we have
N N
Vi= Z <’7e1AH1 Neili + Z (A — mii&y) + ExiX; + Eyp; + Ezzzl>
i=1 J=1j#i
where
1 1
By = i (i — Xa) + Z 20954 (X = X;),
de; dyj
= 1,1#1

Eyi = letai=— (yl Yai) + Zzn-- )

g
Jj= 1,1#! dj

1
Ey = neiai—— (% — Za1) + Zzny&, @ - ).
e Jj=Lj# di

(34)

(35)

(36)

(37)

(38)
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Now, define E; = [Ey;, Ej;, E,]" € R3. For the term EyX; + E,iy; + E;z; in (38), from (1) we can get

EuX; + EyY; + Eyzi = E} ;. (39)
Next, define the fictitious velocity tracking error as e,; = v; — a;, with the stabilizing function «; € R® (i=1, ... ,N)
designed as
E N N
oy = ET}lE <—Kei'1e2i - 2 Kij”lizj — NeiDmi + Neili — Z (myAy — ’7ij§ij)) , (40)
i i J=Lj# J=Lj#

where K; > 0 and Kj; > 0 are the control gains.

Remark 6. In(40), singularity can occur when || E;|| = 0. Since ||E;|| = Oifand only if Ey; = 0, E; = 0,and E; =
0 at the same time, there are two cases when this can happen. First, ||E;|| = 0 when both de; = 0 and d¢; = 0.
In this case, note that all the terms in the bracket on the right-hand-side of (40) are also zero, and we simply
have a,; = 0. Second, Ey; = 0, E); = 0, and E; = 0 can happen at the same time when the reference direction
vector for tracking is opposite to and same in magnitude with the direction vector for collision avoidance. This
is usually referred to as the “deadlock situation”? in the literature, which can be resolved by modifying the
reference trajectories or the time-varying constraint functions to allow the vehicle to move out of the deadlock.
For the rest of the analysis we assume ||E;|| > 0 is guaranteed.

Therefore, (38) leads to

N N
Vi=Y (E?ew- — K= ) Kl-,-n;) : 1)

i=1 j=1j#i

Step 2:
At this step, we consider the translational dynamics of the quadrotors. Design the Lyapunov function candidate at
this step as

N
1
Va= Y S (42)
i=1
and its time derivative gives
< 1 1 1
7 T .
Vo= ;ew <gez - Eui - EFi(Ri — Rapez + ENH - avi) , (43)
where we denote u; = F;Ry;e,. Now, for the ith quadrotor (i = 1, ... , N), the control law u; € R? is designed as
u; = myil;, (44)
- A €y; 2
; = E; + ge; + (Kyi + Ve + flyy——— — &y, (45)

[T, o .2
e e t €;

where K,; > 0 and v; > 0 are control gains, ¢; > 0 is a small design constant introduced in view of Lemma 1, #; is the
estimation of the unknown constant m;, and fi,,; is the estimation of the unknown constant u,,; such that

1 1
H — —F;(R; — Ra)ez + —Nuyi|| < ppmi.
m; m;

1
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Next, we substitute the control design (44) back into (43), which yields
m; m;
- Ee U = —Zle U = —egl.l_li - Zle:i.ai,
i i i

where m; = m; —m; (i=1, ... ,N).
Hence, (41) and (43) lead to

tvjz

. . m; r_
Vi+V, < (E 6y — eL"Iel Z K‘J”lj + ewgez e, — Ziew.ui

i=1 J=1j#i
1
T T T .
- EeviFi(Ri — Rgi)e; + Eew.Nh- - ew.a,,,->.
Note also that

T % . 1
e, (G — ai) < llevill€q, < villewll® + ;835 ,
L

vi

and
eley
- _e F(R Rai)e; + _e Nll < levill imi < €iptmi + Hmi
m; m; T 2
em.ew- + &

Therefore, it follows from (47) that

< mor_ €y 1,
Vi+V,< Z ez”lel Z KL]”IU VIe jCvi — el — flyy—————— + Umi&i + ;gaw- )
]

m.
i=1 J=Lj# ! \Jelew + €

where fi,; = flyi — Hmi =1, ... ,N).

Next, design the adaptive laws for the estimators my; and fi,,; (i = 1, ... ,N) as the following
A T - ~
m; = Npi€ Ui — omiM,

To .
€,;evi

nllmi T 2
1/ €,;%i + E;

A

Hmi = - O’I‘m#ﬂli’

with #;(0) = Aty and fi,,,;(0) = fi;9, Where o and fi,,,;o are the initial conditions, ny;, n, , om, and o, (i =1,

are positive design constants. Design the Lyapunov function candidates for the estimators of the quadrotors as

N N
= v, = 2
lz 2nmlml Hom ; 2n,, Hmi

Denote Vpos = V1 + V2 + Vi + V), , after some algebraic manipulation, we can arrive at

N
. o
2 T Omi ~2 Hmi ~2
pos < e,r] Kyn — Kye e, — m; — as o +Cy ),
z ‘/ ei : ‘/ ij vi mm L 2n mi
j=1,j#i mitieL Himi

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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where
Omi Oty 5 1,
Crii= —Mi+ ——pp,; + Umii + —&q,.
Zl’lmi 211” ) Vi
mi

4.2 | Attitude control design

Step 3:
At this step, we consider the attitude kinematics of the quadrotors. First, we need to extract the reference attitude from
the position control design. Recall that u; = F;Rg4;e;, and from (44) we have

ChaistaiCywai + SPaiSwai
Wi = mill; = FiRaie; = Fi | caisOaisyai — Spaicyai | (55)

ChaiCOdi

in which we recall that F; is the thrust of the ith quadrotor. Here, for any designated reference yaw signal yy; satisfying
Assumption 1, we define

Fi = luill, (56)
. WilSWdi — UppCyg;
; = arcsin | ——mM ———— ), 57
b < el ) &7
Ui Cyai + UpSyy;
04; = arctan <M) , (58)
i3

where u; = [u;1, Ui, ui]T € R3, with ¢pg; and 6y; satisfying Assumption 1.
Note that the dynamics for #e; = [#4i, 70i, nl,,l-]T (i=1, ... ,N), with 54, ng;, and n,,; introduced in (26)-(28), are as
the following

AHqﬁi + AL¢i + 19¢,‘é¢i
floi = | Anoi + Avgi + 0ioi | = g, + J6i © €61 (59)
AHwi + ALy/i + 19y/iév/i

where no,, £ [Angi + Avgi, Ansi + Avoi, Anyi + Aryil” € R3, 9ei = [94i, o1, 9yi]" € R3, and ee; = [e4i, €gi, &,i1]" € R3.
Furthermore,
ongi - ngi .
Argi = 1 sy Avg = Oy,
Hei aQqﬁHi ¢Hi Lgi an)Li ¢Li
ong; - ongi
Aroi = 2 s Avg = 2 6o,
Hoi aQeHi OHi Loi aQeLi OLi
011Wi . al’]wi .
Ayt = Ouuin Aryi = O
Hyi 9 i wHi Lyi aQwLi wLi
where
onyi QIUeii
== P s X = ¢s 67 v,
0Q 1 (Qymi — €4)*(Q,1i + €41)
oni Q,mie’, any el + QL)

0,1 (Qui—e ) Quite)? 7 ey (Qumi— e ) Qi+ ey)?
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Note that 84;, 9¢;, and 9,,; are always positive. Design the universal barrier function as V3 = Zﬁ\il%ngin@i, and its time

derivative leads to

N
V3 (ﬂg)im@i + ngi(é’@ioé@i)) = Z(ﬂgi'm@i + (”@iO&Gi)TéGi)
i=1

1

I
_

(ﬂéim@,. + (n01°961) " (Ti(€ai + Xoi) — G')di)>»

1]
—_

where we define e,; = @; — @i (i = 1, ... ,N), with the stabilizing function a,,; € R? designed as

1 1 1

=T 64 — Kerdiag | —, —, —
[L2% i ( di eidlag [19¢i 90 Oy

. 1 1 1
] nei — vi(nei © dei) — diag [@, e 8_] i’lge,) ,
i i wi

where Kg; > 0 is a control gain. Note that in view of Assumption 4, we have 194 — Ogill < €0 ,» and hence
2 . 1
(1619961  (Ogi — Oai) < lIneiodeilles,, < ;6?9111‘ + villneiodeill*.
1

Therefore, from (60) we can get

N

. 1

V3 < Z <—K@m(§,-nei + (eioder)" Tiewi + ;Eédi> .
i=1 i

Step 4:

At this step, design the Lyapunov function candidate as V; = ZN LeT e,, and its rate of change is

i=17 " wi

Vi=e (J7'SUiw)w; + T 't — G + T Nay).

(60)

(61)

(62)

(63)

Note that we can further parameterize the term el J~'S(Jjw))w; as e} J-'S(Jiwi)w; = ez)lj .@;, where J; and w; for the ith

quadrotor (i =1, ... ,N) are defined as
ji = [jli, jzi, 731', 74i, -751', -761'] >
with
Sxyidexi — Sxzidyxi — Gxxidzxi t Sxyidgyi + Sxzi (T — Jyyi)
‘711' = | Gyyidzxi — Syzidyni |5 ‘721' = | = Gyidoxi + Syyidzyi + Syzi(Ur — Jyyi) |5
Sayidzxi — Szzidyxi = Sxidon + Sgyidayi + Sezi(Uooa — Jyyi)
Coidyxi + Syilzzi — Jxi) — Sxzidyzi — Guxidzyi + Sxzidyi
‘731' = | Gyidyxi + Syyilzzi — Jxa) — Syzidyz |5 ‘74i = | = Syidgi + Syzidyi |5
Coadyxi + SgyiJzzi — o) — Szzidyzi = Soxidgyi + Szzidyyi
CoiUyyi = Jzzi) — Sayidryi + gz Sxxilyzi — Sxzidxzi
*751' = GilFyyi — Jzzi) — Syyidnyi + Gyzidxzi |5 ~76i = | Gyxidyzi — Syyidzi | >
Soi(Byyi = Jezi) — Soyidyi + Srzidxzi Soxidyzi — SzyiTizi

(64)
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where
J, xxi I xyi J; Xzl Cxxi gxyi Cxzi
— -1 _
Ji - Jyxi Jyyi Jyzl' s Ji =S Syyi Syzi |
Jpi T, Zyi Jzi Coxi  Szyi Sz
and
D = 2 2 2
w; = [coxi, WxiWyi,  Oxi@gis O, Oy, coz,-] . (65)

Here J; is the unknown constant matrix such that there exists a constant Eji satisfying iz < 17171.sz for any z € R3.
Therefore, we have

—T—
T r—1 - — — ezﬂ,ewiwi wj
e,Ji SUiww; < lleqillhg;llwill < €ihy; + hy; : (66)

/T, =T— 2
e Coi®; W; + £;

Besides,

T -1 ezﬂ'e“’i
e i Noi < |lewill s, < gipy, + pyj,——, (67)

T, 2
\/€,;wi + €;
where p, is an unknown constant such that ||Jl.‘1N2i|| < py,.

For the ith quadrotor (i = 1, ... , N), we design the control torque 7; € R3 as the following

CiT, Ti
S wiTi TiPy; , (68)
T ,
Vel et Tipy + €
Cori C0i®; @
T = —boi + (Koi + Vi)eai + T} (neio961) + Ay — + hy; L (69)

Ji ’
T ) 2 T —T— 2
\/ €ifwi + > \ €,;€wi®; i + £

where fij; is the estimator of the unknown constant uy,, 17171. is the estimator of the unknown constant Eji’ and py; is the
estimator of the unknown constant pj; =

L°‘ »—‘

Hence, we have

. . — 1 1
Vi+Vy< Z eihy; + py, +by) + ;Eédi + ;60( K@zﬂ@lﬂe)z — Koie} ewi — bel Tipy
1

=Ji wi
i=1

B e ewl e ea}lewl
THpT /—— (70)

e €w1+5 \/e emlw wl+£

where p; = p5 = pui» figi = Ay — Ha> and by, = by, 7~ hp (=1 ...N).
Now, the adaptive laws for the estimators jy;, h+,, and fij; (i =1, ... ,N) are designed as the following

Ji?

A T — ~
Pji = n/’]iewiTi - Gﬂﬁpﬁ’ (71)
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T , = I—
fl ewiewiwi wj ]jl
Ti — nh}i T - Uhii Tis (72)
T 1= 2
A/ €,,i€wi®; W; + &
T
. € .Cui
A wl A
Hi=ny, — Oy, Hiis (73)

[T, o .2
e, Coi t

where p;(0) =0, ]:lji(O) = 0, and fi;(0) = 0 are the initial conditions, n,,, c,,, Ny O Myyps and o, are positive design
constants. ,
. . . . o ~2
Next, design the Lyapunov function candidates for the estimators as V, = ZN =l pfi, Vi, = ZN ! hs, V,, =

i=12n, i=1 % i
Zé\il#ﬂfﬁif Denote Vot = V3 + Va+ V), + Vi +V,, after some algebraic manipulation, we can arrive at
N b.c 0
. T T ZJi%Pn hy ~2 Ouy o
Va < Z <_K®i’7®i’1®i — Kpi€,;€wi — o, Py — S h;, — o, Ay + C2i> ; (74)
i=1 Ji Ti i
where
Cyi = ei(hs, + s +b ) + Do 2y Ol 2 Oy a1
20 = &Ny~ Uy, T Dy an]- Ti 21 Ji 2n, Hyi vi Oy Vi @,
i Ji Ji
Hence, let the overall Lyapunov function be V' = Vo5 + Vi, we can get
V<=V +o, (75)

where
N
K 2 n}}n(szei’ 2KZJ9 2Kvi» 2K®i9 szi, Oupis Omis Oppis Ghﬁ., O-M]i)s 4 = Z(Cli + C2i)-
i=1

The above backstepping design leads to the following theorem.

Theorem 1. For theith quadrotor (i = 1, ... ,N), with the thrust laws as (44) and (45), torque laws as (68) and
(69), and adaptive laws (51), (52), (71)-(73), the quadrotor formation system described by (1), (2), (5), and (6),
under Assumptions 1-4 has the following properties:

1. The constraint requirements (12), (13), (16)—(18) will not be violated during operation.
2. The transformed output tracking error ne;, ny, and ne; (i,j = 1, ... ,N, j # i) will converge into the sets

20
{x = 7Iei’ 'h]’ n(ﬁi’ 7]€i7 r]l[/i : |x| < £l1’ £l’] = _} ’ (76)

K

and as a result, the output tracking error d;, dej, eg;, €, and ey;, will converge to the sets
{dei : dei < y,,}+ (77
{deij, epis €ois €yi 1 —&,, <@ < e,H’i} , (78)
where @ = dejj, egi, €i, OF €. FOr €, we have

£,Qqmi

=T (79)
Qami + &y

5)m,i

9sUQdIT suowwo)) aanear) ajqearjdde ayy Aq pauroAoS are sa[onIE Y SN JO SA[NI J0f AIRIqIT QUIUQ) AS[IAN UO (SUONIPUOD-PUB-SLIA}/ W0 K[ 1M ATRIqI[auT[uo//:sdY) SUONIPUO)) pue SULd ], ) 28 [£707/11/80] U0 Areiqr autjuQ Ad[1p\ “Ayomuay] JO ANs1oAtun £q $789 dul/Z00 1 () [/10p/wod Ka[im Areiqraurjuo,/:sdny woly papeojumo( b1 ‘€707 ‘6£216601



8198 Wl LEY HU and JIN

€y, and g, , are expressed as

(L — (s — Q) + QAL + €2 + Q1) — 26, Q. (s — )

elll‘i = 2{—:” s (80)

—(QuQ + £,(Qu — Qu)) + \/Qilﬁi +£5(Qu + Q1)? + 26, QuQu(Qu — Q1)

: (81)

o
£
|

2e,

where QH = QHij, Q(I)Hia QgHi, or Qu/Hi: and QL = QLijs Q¢Lis QgLi, or Qu/Li; fO?’ i,j = 1, ,N,j # i

Proof. First, from (75), it is clear that the overall Lyapunov function V is bounded, since

V() < (V(O) _ 9) ety & (82)
K K

The boundedness of V' implies boundedness of #e;, %, #gi, 191, and ny; (i,j=1, ... ,N, j # i). Hence, the

constraint requirements (12), (13), (16)—(18) are satisfied during the operation.

Moreover, we have limsup,_V = g, hence %’7; < f when t — oo, therefore 7; will converge to the set
(76). Similar relationships hold for #;;, #4:, 716:, and #,,;. Furthermore, boundedness of the adaptive estimates 7,
Limis Pris I:zji, and g J» a8 well as boundedness of the fictitious error e,; and e,; (i =1, ... ,N), can be concluded
from the fact that V is bounded.

Next, for i =1, ... ,N, note that in the range that de; < Qqmu;, #e; is a function of de;. Hence, the range
(12) gives the range for d; given as in (77). Besides, within the range of (13), (16)—(18), #;, #4i, fei>» and #,;
are quadratically related to d.;j, e, €gi, and e,;, respectively. Hence, satisfying the constraints (13), (16)—(18)
means that the distance and attitude tracking errors d.;, de;j, €4i, €si, and e,; will be confined in the ranges
defined by (77) and (78). n

Remark 7. Once the thrust and torque of the ith quadrotor (i = 1, ... , N) are determined, the propeller speeds
can be calculated using the following relation

F; Y; Y; Y, Y, 2

rotil

58]

roti2
2
roti3
2
roti4

I
g 8 8 8

where 7; = [t41, 7oi, Tyil" € R3, @roti1, Wrotizs @rotiz» a0d wyonis represent the front, right, rear, and left propeller
speeds of the ith quadrotor, respectively. [; is the distance between the center of the propeller and the center
of the ith quadrotor, Y; is a thrust factor of the ith quadrotor, and d; is a drag factor of the ith quadrotor,
i=1,...,N.

Remark 8. By L’ Hopital’s rule, in Theorem 1 we have

lime, =0, limeg, =0, lime, =0 83
£,~0 i ’ £,~0 "L ’ €,~0 A ’ ( )

for i =1, ... ,N, which means as the modified error variables #e;, #;, fgi» #gi, and #,,; converge into small
neighborhoods of zero, so does the tracking errors de;, dejj, €4, €gi, and ey;.

Remark 9. To reduce the size of the set in (76), we need to select large x and small ¢. To make « large, we
can select large control gains K, Kj;, K, Ke;, and K, for i,j =1, ... ,N, j # i, and large adaptive control
parameters o, ., Omi, Gy, O, and o, ,fori=1, ... ,N. To make ¢ small, we can select small ¢;, large v;, and
large adaptive control parameters ny;, n,, ., n,,, Nh s andn,, .
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5 | SIMULATION STUDIES

In this section, a simulation example is carried out with a team of N = 4 quadrotors. In this simulation, the model
parameters of the quadrotors are m; = 2 kg, g = 9.81 m/s?, and J; = diag[0.109, 0.103, 0.0625] kg m?, i=1,2,3,4.
Note that the units of the position, attitude, translational and angular velocities are m, rad, m/s, and rad/s, respec-
tively. The reference signals for the vehicles are given as pg; = [2, 2, 5]Tm, pa> =[2, 3, 5]"m, pgs = [3, 2, 5]Tm,
and pas = [3, 3, 5]"m. The constraint functions are selected as Qqm; = (10 — 0.5)e™%2* + 0.5, Qp; = (8 — 0.1)e™ %% +
0.1, and Q5 =(3-0.1)e %% +0.1, i,j=1,2,3,4,i #j. To implement the adaptive control framework, the design
parameters are chosen as ¢; = 0.1, ¢ = 0.01, n,,; = 0.29, n, =03, n, =2, Np;, = 2, n,, =5, om =0.065, o,  =0.1,
6,, = 0.01, o, = 0.01, and o,, =0.01, i=1,2,3,4. The control gains are designed as K; = 1.2, Kj; = 0.65, K,; = 2,
v; = 0.5, Kg; =2, and K,; =4, i,j=1,2,3,4,i#j. The initial positions and attitudes of the quadrotor team are
[x1, y1. 221" = [0, 0, 0]"m, [x, y2, 221" = [0, 5. 0]'m, [x3, y3, 231" =[5, 0, 0]"m, and [X4, y4, 241" =[5, 5, 0]"m. The
initial attitudes of the agents are [¢1, 01, w1]T = [0.699, 0.9984, 0.5]Trad, [¢2, 602, w2]T = [-0.699, 0.9984, 0.5]"rad,
(3, 03, w3]T =[0.699, —0.9984, 0.5]"rad, and [¢4, 64, ws]T = [-0.699, —0.9984, 0.5]"rad. The initial conditions of the
translational and angular velocities of every agent are zero. The external disturbances are

0.6 sin(0.8t) + 0.005rand 0.1sin(0.5¢)
Nj; =10.25¢08(0.6t) + 0.01rand |, N2 =|0.1sin(0.5¢) |,
0.33 cos(0.5¢) 0.1sin(0.5¢)

where i = 1, 2, 3,4. In Ny;, rand represents the random noise uniformly distributed in the interval (-1, 1).

The communication topology diagram is shown in Figure 3.

The simulation results are presented in Figures 4-9. First, the 3D trajectories of four quadrotors are depicted in
Figure 4. It can be observed that the quadrotors can move to small regions close to their desired fixed points py;, despite
the large initial distance tracking error and presence of system uncertainties and disturbances. Next, the LOS distance
tracking errors de; under the proposed controller are shown in Figure 5 with the constraint function Qgy;. From this
figure, we see that d,; can converge to a small neighborhood of the origin without violation of the performance constraint
Qqni. Here, performance constraint function Qgyy; is selected as an exponentially decaying function and lim;_, o, Qg4 = 0.5.
When distance tracking errors d.; are constrained by constraints functions, de; can converge exponentially to the set in
(77) which is close to zero. Thus, the transient and steady-state performance of distance tracking errors d.; can be guaran-
teed by performance functions Qqp;. Figure 6 gives us the exhibition of the profile of the inter-quadrotor distance tracking
errors dg;; under the proposed controller. It is obvious that the safety constraints are always satisfied during the opera-
tion since d.; always stayed between the constraint functions —Qp; and Qp;;. Here, safety constraint functions Qp;; and
Qq;; are both selected as exponentially decaying functions and lim,_, o Qg;, Qri = 0.1. When relative distance tracking

FIGURE 3 Undirected communication graph of the UAV team.
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FIGURE 5 The profile of the LOS distance tracking errors de; with Qqp;, i = 1,2,3,4.
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FIGURE 6 The profile of the relative inter-quadrotor distance tracking errors d.; with Q;; and —Qy;, i,j = 1,2,3,4,1 #j.
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FIGURE 7 The profile of the attitudes of quadrotors, ¢;, 6;, and y;, i = 1,2, 3,4.
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FIGURE 8 The thrustF; of quadrotors, i = 1,2, 3,4.

errors dg;; are constrained by constraints functions, d¢; can converge exponentially to the set in (78) which is close to zero.
Thus, safety requirements including collision avoidance and communication link can be guaranteed during the formation
operation.

The profile of quadrotor attitudes ¢;, 6;, and y; presented in Figure 7 shows that the convergence of the attitudes to
regions close to zero despite unknown model parameters and the influence of unknown time-varying external distur-
bances N,;. Besides, safety constraints of the attitudes are not violated during the formation operation, that s, ¢; € (—%, %)
and 6; € (—% +e, % — ¢) where € = 0.01, such that T(0;(t)) is always invertible to avoid the singularity of a,,; in (61).
Finally, the thrust F; and torques 7y, 7g;, and 7,,; are plotted in Figures 8 and 9, respectively. The thrust can mitigate
the influence of external disturbances N;; and provide gravitational force for the quadrotor to make the vehicle hover
on the neighborhood of its desired set point. The torques can accommodate unknown time-varying disturbances Ny;
despite the lack of the accurate model parameters. The unknown time-varying external disturbances N,; are selected
to include sinusoidal signals such that the torques will also include sinusoidal signals to mitigate the influence of
disturbances N,;. Therefore, under our proposed controllers, the quadrotors have the good robustness against the distur-
bances. Based on the above discussion, we can conclude that the simulation results confirm the theoretic analysis shown
in Theorem 1.
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FIGURE 9 The torques 7y, 74;, and 7,,; of quadrotors, i = 1,2, 3,4.

6 | CONCLUSION

In this work, we address the formation control problem for a team of quadrotors with two types of constraints, namely per-
formance constraints and safety constraints. A new adaptive formation control architecture is proposed. Specifically, we
employ the universal barrier functions into the controller design and analysis, to ensure that the constraint requirements
on the LOS distance tracking error, relative distance error between two quadrotors, and the attitude of each quadro-
tor, are all satisfied during the operation. The universal barrier function approach is also a generic framework that can
address system with different types of constraints in a unified controller architecture. Exponential convergence rate can
be guaranteed on the LOS distance, relative inter-quadrotor distance, and attitude tracking errors, while all constraints
are satisfied during the operation. Future research includes experimental validation of the proposed formation control
algorithm and extension of the analysis to constrained formation control problems for UAVs with collaborate objectives
such as load lifting and transporting.
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