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Adaptive Angle-Constrained Enclosing Control for
Multirobot Systems Using Bearing Measurements

Ke Lu, Shi-Lu Dai, Member, IEEE, and Xu Jin, Member, IEEE

Abstract—This paper proposes a constrained control frame-
work to solve the moving-target enclosing problem for non-
holonomic multirobot systems, where the safety and precision
constraints are considered during the encircling motion. Based
on bearing measurements, the target-robot and inter-robot angles
are constrained to satisfy the requirements of limited sensing
range and collision avoidance. The precision constraint further
guarantees all robots converging to a small neighbourhood of
the desired enclosing formation. With the help of adaptive
estimators, universal barrier Lyapunov functions are employed
to the constrained control framework despite the lack of target’s
velocity. Simulation results verify the effectiveness of the proposed
control algorithm.

Index Terms—Enclosing control, angle constraints, collision
avoidance, nonholonomic mobile robots, limited sensing range.

I. INTRODUCTION

Coordination and control of multiagent systems have re-
ceived great attention in many fields [1]–[4] due to promising
applications such as surveillance, search, rescue, etc. Target
enclosing control is an important problem in multiagent coor-
dination, where an enclosing formation is utilized to entrap,
attack, protect, and monitor a target. A great number of
control design techniques have been presented for the target
enclosing problem [5]–[18], where mobile agents are driven to
enclose a static or moving target. In enclosing control tasks,
many works generate a desired formation based on relative
distances or positions. Compared with position or distance
sensors, bearing-only sensors are simpler and cheaper, which
promotes the advance in bearing-based formation control
[19]–[21]. Consequently, control designs based on bearing
measurements have been developed in the target enclosing
control literature [10]–[12], in which a fixed or time-varying
formation is achieved around the target. However, most of the
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existing target enclosing control algorithms do not consider
any constraint requirement.

In enclosing control tasks, safety is typically a primary
concern, which requires that autonomous agents cannot go
beyond some predefined ranges. In practice, an onboard sensor
only can work effectively within a certain range due to the
limited sensing capability [22]–[24]. In addition, as a practical
problem, collision avoidance with the target or neighbouring
agents has been addressed in the enclosing control literature
[11]–[18]. In [11], a maximum allowed subtended angle is
employed to guarantee collision avoidance with a disk tar-
get. Furthermore, a precise formation for multiagent systems
usually requires small formation tracking errors during the
transient and steady-state stages [25], [26]. The precision
constraint has been addressed in synchronization control [27],
formation maneuvering [28], and path-following control [29].
How to develop a constrained control framework for the
target enclosing problem, such that both safety and formation
precision are addressed, is a challenging research topic that has
not been fully considered in the enclosing control literature.

The constrained control design can prevent multiagent
systems violating some certain limits specified by different
constraint requirements such as safety and line-of-sight range
[30]–[33]. Barrier Lyapunov functions (BLFs) are usually
incorporated with control design to deal with the constrained
systems [34]–[36]. In [34], an asymmetric BLF is employed to
handle output-constrained nonlinear systems. Both symmetric
and asymmetric BLFs are applied to prevent the violation of
full state constraints [35]. A novel universal BLF proposed
in [36] can not only address asymmetric and symmetric
constraint requirements, but also work for the system with no
constraints. Therefore, how to extend the BLF-based controller
design to constrained enclosing control systems is another
motivation for this work.

In this work, we develop a constrained control framework to
solve the moving-target enclosing problem for nonholonomic
multirobot systems with safety and precision requirements.
Based on bearing measurements, the target-robot and inter-
robot angles are constrained to guarantee the limited sensing
range and collision avoidance with the target and neighbouring
robots. Universal BLFs and adaptive estimators are incorpo-
rated with bearing-angle-based control strategy to satisfy all
constraint requirements despite the lack of target’s velocity.
The contributions of this work are summarized as follows.
(i) A constrained control framework is proposed to solve

the moving-target enclosing problem with the concern of
both safety and precision constraints.

(ii) The angle constraints related to the safety are addressed,
which enables mobile robots to avoid collisions with the
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target and neighbouring robots while guaranteeing the
limited sensing requirement.

(iii) The precision constraint, which requires small formation
tracking errors, enforces mobile robots to converge to a
desired enclosing formation despite the lack of accurate
knowledge of target’s velocity.

II. PROBLEM FORMULATION

Consider a moving target is enclosed by a team of n ≥ 2
nonholonomic mobile robots in a plane. For convenience of
presentation, we define the index set N = {1, ..., n}. The
kinematics of nonholonomic robot i, i ∈ N , is modeled as

ṗi(t) =

[
cos θi(t)
sin θi(t)

]
vi(t)

θ̇i(t) = ωi(t)

(1)

where pi(t) = [xi(t) yi(t)]
T ∈ R2 is the robot’s position

with respect to the global coordinate frame, θi(t) is the
heading angle of the ith robot, and vi(t) and ωi(t) are the
linear and angular velocity control inputs, respectively. As
shown in Fig. 1, an onboard sensor is installed at the position
psi(t) = [xsi(t) ysi(t)]

T ∈ R2, which is shifted a non-zero
distance d from pi(t) along direction θi(t). The position psi(t)
is described by psi(t) = pi(t)+d[cos θi(t) sin θi(t)]

T , whose
dynamics is modeled as

ṗsi(t) = Gi(t)ui(t) (2)

with ui(t) = [vi(t) ωi(t)]
T , where Gi(t) is defined as

Gi(t) =

[
cos θi(t) −d sin θi(t)
sin θi(t) d cos θi(t)

]
. (3)

Note that det(Gi(t)) = d, which implies that Gi(t) is invert-
ible if d ̸= 0. The moving target is governed by ṗ0(t) = v0(t),
where p0(t) = [x0(t) y0(t)]

T ∈ R2 and v0(t) ∈ R2 are the
position and velocity of the target, respectively. The relative
distance between the onboard sensor and the moving target
is defined as ρi(t) =

√
(x0(t)− xsi(t))2 + (y0(t)− ysi(t))2

whose derivative yields

ρ̇i(t) =− φT
i (t)[ṗsi(t)− v0(t)] (4)

with φi(t) = [p0(t) − psi(t)]/ρi(t) = [cosϕi(t) sinϕi(t)]
T ,

where φi(t) is the measurable unit vector from the onboard
sensor pointing to the target, and ϕi(t) is the bearing angle
to the target with respect to the onboard sensor as shown in
Fig. 1. The unit vector φ̄i(t) is orthogonal to φi(t), which is
described as φ̄i(t) = [cos(ϕi(t)± π

2 ) sin(ϕi(t)± π
2 )]

T where
±π

2 denotes the opposite directions being orthogonal to φi(t).

A. Target-Robot Angle Constraint

It is assumed that the onboard sensor only provides bearing
measurements, rather than distance information, e.g., ρi(t)
defined in (4). Specifically, as shown in Fig. 1, two points pTLi

and pTRi on the surface of a disk target can be detected via an
onboard sensor, e.g., a monocular cameral system, and thus the
bearing measurements gTLi, gTRi, and φi are obtained, where

 

 

O X 

Y 

 !"!# $

%$

%&$

'$

($

 !"!# $ + 1

'$+

%$+

)*(+,#

%&$+-$+

($+

(0

.$+

/$+

0$(.$ ,/$)

01$(.1$ ,/1$)

00(.0,/0)

0$+(.$+ ,/$+)

01$+(.1$+ ,/1$+)

0)2$

0) $

+) $

+)2$

3$

3$4$ ,$+

-$

5

"

'$$$$$

(($((

--$

55

  !"

+
%

--$+

($(( ++++++

Fig. 1. Illustration of enclosing a disk target by multiple mobile robots.

the subtended angle βi(t) ∈ (0, π/2) is further available.
According to geometrical relation shown in Fig. 1, we have

ρi(t) =
r0

sinβi(t)
(5)

where r0 denotes the radius of the target. The derivative of
(5) along system (4) produces

β̇i(t) = φT
i (t)

sin2 βi(t)

r0 cosβi(t)
[ṗsi(t)− v0(t)]. (6)

Note that sinβi(t) ∈ (0, 1) is strictly monotonically increasing
with βi(t) ∈ (0, π/2), and it is clear from (5) that ρi(t) has
the maximal value as βi(t) → βmin,i and has the minimal
value as βi(t) → βmax,i, where βmin,i and βmax,i are the
minimal and maximal subtended angles, respectively. Hence,
the target-robot angle constraint

βmin,i < βi(t) < βmax,i (7)

ensures the limited sensing range and collision avoidance with
a target. In terms of the geometrical relation, the selection of
βmin,i and βmax,i should satisfy ρ

i
≤ r0

sin βmax,i
< ρi(t) <

r0
sin βmin,i

≤ ρ̄i, where ρ
i
≥ ri + r0 and ρ̄i denote the minimal

and maximal relative distances, respectively, and ri is the
safety radius of the robot i. However, the target’s radius r0
is not necessarily needed for converting ρ

i
and ρ̄i to βmin,i

and βmax,i. For example, by setting the robot close enough to
a disk target, the measured subtended angle can be specified as
βmax,i. This corresponds to the constraints ρ

i
and ρ̄i required

to be known a prior in the distance-based framework. Define
the subtended angle error as

eβi(t) = βi(t)− βdes,i (8)

where βdes,i is the desired subtended angle with βmin,i <
βdes,i < βmax,i. Substituting (8) into (7) yields

−eβi < eβi(t) < ēβi (9)

where eβi = βdes,i − βmin,i and ēβi = βmax,i − βdes,i.
Remark 1: Instead of a fixed camera, a monocular camera

is mounted on a pan-tilt unit at position psi such that it can
rotate about the axis perpendicular to the moving plane of
the robot. The subtended angle βi is invariant represented in
different coordinates, e.g., camera and robot coordinates, and
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thus it can be directly applied to the controllers. With the
concern of the inherent limitation of a camera, the selected
βmax,i is required to be less than the limited angle of view.

B. Inter-Robot Angle Constraint

The target-robot angle constraint (7) implies the existence of
a minimal distance ρ

i
. According to the arc length formula, the

existence of a minimal distance between neighbouring robots
results from the minimal radius ρ

i
and the corresponding

minimal inter-robot angle, which establishes neighbouring
robot collision avoidance. Let the index set N̄ = N \ n, and
define the driving robot, i.e., robot n, which is assigned with an
encircling speed. Then, its pre-neighbor robot n−1 is defined
in the clockwise or counterclockwise radial order around the
target according to the encircling motion direction. In terms of
this definition, the robot i, i ∈ N̄ , has its next-neighbouring
robot i + 1 labeled as i+ for convenience of presentation.
As shown in Fig. 1, we define the separation angle αi,i+ to
describe the inter-robot angle between the robot i, i ∈ N̄ , and
its next neighbour i+, which can be calculated as

αi,i+(t) = cos−1(φT
i (t)φi+(t))

where cos−1(·) is the inverse cosine function. The robot i is
assumed to have only access to φi+(t) from its neighbour i+
via local communication. According to the neighbouring robot
definition, the first robot (robot 1) is the next neighbour of the
robot n. Define their separation angle as

αn,1(t) = 2π −
∑
i∈N̄

αi,i+(t) (10)

which implies that the separation angle αn,1(t) relates to the
rest of separation angles αi,i+(t). Besides, the lower bound of
αn,1(t) relies on the upper bounds of αi,i+(t), that is, αn,1 ≤
2π −

∑
i∈N̄ ᾱi,i+ , which prevents collision between the first

and the last robots. Hence, the inter-robot angle constraint

αi,i+ < αi,i+(t) < ᾱi,i+ , i ∈ N̄ (11)

ensures collision avoidance between each robot and its next
neighbour, where αi,i+

and ᾱi,i+ are the minimal and maximal
separation angles, respectively. The separation angle error is
defined as

eαi(t) = αi,i+(t)− αdes,i,i+ , i ∈ N̄ (12)

where αdes,i,i+ is the desired separation angle with αi,i+ <
αdes,i,i+ < ᾱi,i+ . Substituting (12) into (11) produces

−eαi < eαi(t) < ēαi, i ∈ N̄ (13)

where eαi = αdes,i,i+ − αi,i+ and ēαi = ᾱi,i+ − αdes,i,i+ .
Remark 2: According to the definition of neighbouring

robots, the desired separation angle αdes,n,1 between the first
and the last robots is not specified and it relies on αdes,i,i+ , that
is, αdes,n,1 = 2π−

∑
i∈N̄ αdes,i,i+ . The separation angle error

eαn(t) = αn,1(t)−αdes,n,1 = −
∑

i∈N̄ eαi(t) in view of (10),
which indicates that the separation angle error eαn(t) depends
on the sum of separation angle errors between the robot i and
its neighbour i+. Thus, a small error eαn(t) requires that all
errors eαi(t), i ∈ N̄ , converge to small neighborhoods of zero.

C. Precision Constraint
To ensure a precise formation, it requires that the angle error

constraints (9) and (13) are further restricted by

−Ωβi(t) <eβi(t) < Ω̄βi(t) (14)

−Ωαi(t) <eαi(t) < Ω̄αi(t) (15)

where Ωj(t) > 0 and Ω̄j(t) > 0, j = βi, αi, are designed
decreasing C1 functions such that the angle errors eβi(t) and
eαi(t) are driven to small neighbourhoods of zero as time
evolves. Besides, ˙̄Ωj(t) and Ω̇j(t) require to be bounded which
is associated with the boundedness of control signals. More-
over, the constraint requirements (14) and (15) should further
satisfy the angle error constraints (9) and (13), respectively,
that is, −ej ≤ −Ωj(t) < ej(t) < Ω̄j(t) ≤ ēj , j = βi, αi.

Remark 3: As discussed in Remark 2, small separation
angle errors eαi, i ∈ N̄ , are preferred. Thus, the precision
constraints are further considered to obtain a precise formation.
Accordingly, time-varying precision constraints (14) and (15)
are designed to ensure that not only subtended angle errors
but also separation angle errors should not deviate much from
zero. As a result, the robot group is driven to surround a
moving target with a precise enclosing formation, despite the
lack of accurate knowledge of target’s velocity.

Assumption 1: At the initial time t = 0, the robots do not
violate the angle constraints (7) and (11), that is, βmin,i <
βi(0) < βmax,i, i ∈ N , and αi,i+

< αi,i+(0) < ᾱi,i+ , i ∈ N̄ .
Assumption 2: The target’s velocity is bounded, i.e.,

||v0|| ≤ v̄0, where v̄0 > 0 is a constant.
Lemma 1: [37] For any constant ε > 0 and any variable

z ∈ R, we have 0 ≤ |z| − z2
√
z2+ε2

< ε.

III. TARGET ENCLOSING CONTROL OBJECTIVE

Under Assumptions 1–2, the target enclosing control objec-
tive is to design the feedback control law ui(t) such that
(i) the subtended angle βi(t) and the separation angle

αi,i+(t) eventually converge to a small neighborhood of
the desired angles βdes,i and αdes,i,i+ , respectively; and

(ii) every robot can avoid collisions with the target and its
next-neighbouring robot, while guaranteeing the limited
sensing requirement during the encircling motion.

To deal with the constraint requirements, the following
universal barrier function [36] is applied in the control design

Vj =
1

2
η2j , ηj =

Ω̄jΩjej

(Ω̄j − ej)(ej +Ωj)
, j = βi, αi (16)

where ηj is the transformed error variable, which has the
following properties: i) ηj = 0 if and only if ej = 0; ii)
ηj → −∞ when ej → −Ωj ; and iii) ηj → +∞ when
ej → Ω̄j . The derivative of ηj produces

η̇j =
∂ηj
∂Ω̄j

˙̄Ωj +
∂ηj
∂Ωj

Ω̇j +
∂ηj
∂ej

ėj , j = βi, αi (17)

where
∂ηj
∂Ω̄j

=
−Ωje

2
j

(Ω̄j − ej)2(ej +Ωj)
,

∂ηj
∂Ωj

=
Ω̄je

2
j

(Ω̄j − ej)(ej +Ωj)
2

∂ηj
∂ej

=
Ω̄jΩj(Ω̄jΩj + e2j )

(Ω̄j − ej)2(ej +Ωj)
2
.
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The control laws for the robot i, i ∈ N , are taken as

ui = G−1
i

(
φiu1i + φ̄iu2i − φiû1i − φ̄iû2i

)
, i ∈ N̄ (18)

ui = G−1
i

(
φiu1i − φiû1i + φ̄i

ω̄

sinβi

)
, i = n (19)

with

u1i =
cosβi

sin2 βi

(
− k1iΩ̄βiΩβiηβi − ηβi

∂eβi
∂Ω̄βi

∂ηβi
∂Ω̄βi

˙̄Ω2
βi

− ηβi
∂eβi
∂Ωβi

∂ηβi
∂Ωβi

Ω̇
2

βi

)
u2i =

1

sinβi

(
− k2iΩ̄αiΩαiηαi − ηαi

∂eαi
∂Ω̄αi

∂ηαi
∂Ω̄αi

˙̄Ω2
αi

− ηαi
∂eαi
∂Ωαi

∂ηαi
∂Ωαi

Ω̇
2

αi − ηαi
∂ηαi
∂eαi

)
û1i = ˆ̄vi0

H1i√
H2

1i + ε2
, û2i = ˆ̄vi0

H2i√
H2

2i + ε2

H1i = ηβi
∂ηβi
∂eβi

sin2 βi

cosβi
, H2i = ηαi

∂ηαi
∂eαi

sinβi

where k1i > 0 and k2i > 0 are control gains, φi and φ̄i are
unit vectors defined in (4), G−1

i is the inverse matrix defined
in (3), ε > 0 and ω̄ > 0 are design parameters, and ˆ̄vi0 is the
estimate of the upper bound of velocity v̄0 with the estimation
error ˜̄vi0 = ˆ̄vi0 − v̄0. The adaptive laws ˙̄̂vi0 are designed as

˙̄̂vi0 = γi

(
− σi ˆ̄vi0 +

H2
1i√

H2
1i + ε2

+
H2

2i√
H2

2i + ε2

)
, i ∈ N̄

(20)

˙̄̂vi0 = γi

(
− σi ˆ̄vi0 +

H2
1i√

H2
1i + ε2

)
, i = n (21)

where γi > 0 and σi > 0 are design parameters. The
separation angle describes the difference in bearing angles
between neighbouring robots in view of (4), which implies
that the dynamics of separation angle reflects the difference in
the rate of change of bearing angles, that is,

α̇i,i+ = ϕ̇i − ϕ̇i+ , i ∈ N̄ (22)

where for an encircling motion, the dynamics of bearing angle
can be obtained as

ϕ̇i =
φ̄T
i (ṗsi − v0)

ρi
, i ∈ N . (23)

Remark 4: The controller (19) indicates that the robot n
assigned with the encircling speed φ̄i(t)

ω̄
sin βi(t)

is constrained
by the moving target only. By contrast, the controller (18) lacks
the encircling speed term but has the extra terms about ηαi.
This indicates that the robot i, i ∈ N̄ , is constrained by the
moving target and its neighbour i+ in two directions φi(t) and
φ̄i(t), respectively. Consequently, the controller (18) needs to
simultaneously handle two constraint requirements.
Remark 5: The encircling speed φ̄i(t)

ω̄
sin βi(t)

can be treat-
ed as an external disturbance that forces the whole formation to
revolve around a moving target. It follows from (12) and (22)
that the convergence of separation angle error eαi(t) results
from both dynamics ϕ̇i and ϕ̇i+ . However, the robot i, i ∈ N̄ ,

has only access to bearing information without the knowledge
of ϕ̇i+ from its neighbour. With the higher magnitude of the
encircling speed, the separation angle may not converge to its
desired value, which implies an enclosing formation distortion.
To deal with such a problem, the precision constraint is
introduced to ensure the convergence to a correct formation.
As a result, when any robot is assigned with an encircling
speed, the rest of robots are driven by their neighbours to
revolve around a target with small formation tracking errors.

Remark 6: The control laws (18) and (19) require that
Gi(t) defined in (3) is invertible with d ̸= 0. If such a
condition is removed, the velocity control inputs vi and wi

in (1) need to be further designed under the same constrained
control framework, where ui in (18) and (19) are treated as
the desired inputs uid without G−1

i . Specifically, uid has the
form uid = φiu1id + φ̄iu2id which can be written as

uid =

[
uidx

uidy

]
=

[
u1id cosϕi + u2id sinϕi

u1id sinϕi − u2id cosϕi

]
and the desired heading angle θid is defined as θid =
arctan(

uidy

uidx
) for uid ̸= 0, and θid = 0 for uid = 0. The

control objective is to drive the robot’s heading angle θi
to align with the desired heading angle θid, and then the
magnitude of vi is the same as ||uid||. It follows from (8),
(12), and (16)–(21) that the variables in uid are Ω̄ji, Ωji,
˙̄Ωji, Ω̇ji, ˆ̄vi0, βi, αi,i+ , ϕi, j = β, α, which implies that
u̇idk = Fk+

∂uidk

∂βi
β̇i+

∂uidk

∂αi,i+
α̇i,i+ + ∂uidk

∂ϕi
ϕ̇i, k = x, y, where

Fk consists of the derivative of uidk with respect to Ω̄ji, Ωji,
˙̄Ωji, Ω̇ji, and ˆ̄vi0, and thus Fk is known, whereas v0, ϕ̇i+ , r0,
and ρi are unknown in the rest parts of u̇idk. Define the angle
error and its derivative as

eθi = θi − θid, ėθi = wi − θ̇id.

To avoid the singularity issue, the angle error is restricted
inside a feasible region, that is, −eθi ≤ −Ωθi(t) < eθi <
Ω̄θi(t) ≤ ēθi, with eθi = ēθi ≤ π/2. Then, the control laws
are designed as

vi =
1

cos eθi
||uid||, wi = uθi + ūθi + ûθi

where uθi = −k3iΩ̄θiΩθiηθi − ∂eθi
∂Ω̄θi

˙̄Ωθi − ∂eθi
∂Ωθi

Ω̇θi, ūθi =

uiF + tan eθi
ηθi

∂eθi
∂ηθi

[H2i(u1i − û1i) − H1i(u2i − û2i)], i ∈ N̄ ,
ūθn = unF − tan eθn

ηθn

∂eθn
∂ηθn

H1n
ω̄

sin βn
, ûθi = −ηθi

∂ηθi

∂eθi
(L2

1vi +

L2
2vi +L2

1i +L2
2i +L2

αi,i+
), i ∈ N̄ , ûθn = −ηθn

∂ηθn

∂eθn
(L2

1vn +

L2
2vn + L2

1n + L2
2n), and uiF =

uidxFy−uidyFx

uT
iduid

with L1vi =

L1i cos(ϕi−θi)vi, L2vi = L2i sin(ϕi−θi)vi, L1i = Lβi

sin2 βi

cos βi
,

L2i = Lϕi sinβi + Lαi,i+
sinβi, i ∈ N̄ , L2n = Lϕn sinβn,

Lj =
1

uT
iduid

(uidx
∂uidy

∂j −uidy
∂uidx

∂j ), j = βi, ϕi, αi,i+ . Note

that the term tan eθi
ηθi

∂eθi
∂ηθi

in ūθi will not tend to infinity when
the angle error eθi in the denominator tends to zero due to the
property limx→0

sin x
x = 1.

Theorem 1: Under Assumptions 1–2, consider robot kine-
matics (1) and the dynamics (2) with the control laws (18)
and (19), and the adaptive laws (20) and (21), then we have
the following results.
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(i) Every robot can avoid collisions with the target and its
next-neighbouring robot, while guaranteeing the limited
sensing requirement during the encircling motion.

(ii) The subtended angle βi(t) and the separation angle
αi,i+(t) eventually converge to a small neighborhood of
the desired angles βdes,i and αdes,i,i+ , respectively.

(iii) The estimation error ˜̄vi0(t), the dynamics of bearing angle
ϕ̇i(t), and the signal ui(t) are bounded.

Proof: (i) Consider the Lyapunov function for the robot n as

Vn =
r0
2
η2βn +

1

2γn
˜̄v2n0 (24)

whose derivative along (2), (6), (8), (17), the control law (19),
and the adaptive law (21) produces

V̇n =− k1nΩ̄βnΩβn

∂ηβn
∂eβn

η2βn − σn ˜̄v
2
n0 − σn ˜̄vn0v̄0

+ r0ηβn
∂ηβn
∂Ω̄βn

˙̄Ωβn −
(
ηβn

∂ηβn
∂Ω̄βn

˙̄Ωβn

)2

+ r0ηβn
∂ηβn
∂Ωβn

Ω̇βn −
(
ηβn

∂ηβn
∂Ωβn

Ω̇βn

)2

−H1nφ
T
nv0 − v̄0

H2
1n√

H2
1n + ε2

. (25)

By completion of squares, we have

r0ηj
∂ηj
∂Ω̄j

˙̄Ωj ≤
1

2

(
ηj

∂ηj
∂Ω̄j

˙̄Ωj

)2

+
r20
2
, j = βi, αi (26)

r0ηj
∂ηj
∂Ωj

Ω̇j ≤
1

2

(
ηj

∂ηj
∂Ωj

Ω̇j

)2

+
r20
2
, j = βi, αi (27)

−σi ˜̄vi0v̄0 ≤σi

2
˜̄v2i0 +

σi

2
v̄20 , i ∈ N . (28)

For the term Ω̄βnΩβn
∂ηβn

∂eβn
in (25), it follows from (17) that

Ω̄jΩj

∂ηj
∂ej

=
(Ω̄jΩj)

2(Ω̄jΩj + e2j )

(Ω̄j − ej)2(ej +Ωj)
2
> η2j , j = βi, αi. (29)

Moreover, in (25), we have −H1iφ
T
i v0 ≤ ||H1iφ

T
i || ||v0|| ≤

|H1i|v̄0, and thus in view of Lemma 1, the following inequality

|H1i|v̄0 − v̄0
H2

1i√
H2

1i + ε2
< εv̄0, i ∈ N (30)

holds. Substituting (26)–(30) into (25) yields

V̇n < −k1nη
4
βn − σn

2
˜̄v2n0 +

σn

2
v̄20 + εv̄0 + r20. (31)

Completing the squares, for any variable x ∈ R, we obtain

(x2 − 1)2 ≥ 0 ⇒ −x4 ≤ −2x2 + 1. (32)

Hence, it follows from (24) that V̇n in (31) leads to V̇n <

−µnVn + Cn, where µn = min{ 4k
1
2
1n

r0
, σnγn} and Cn =

σn

2 v̄20 + εv̄0 + r20 + 1, which implies that

Vn < (Vn0 −
Cn

µn
) exp(−µnt) +

Cn

µn
. (33)

It follows from (24) and (33) that ηβn and ˜̄vn0 are bounded.
Hence, the precision constraint (14) is never violated according
to (16), which further satisfies the constraint requirement (9).

As a result, the constraint imposed on the subtended angle (7)
is guaranteed, which implies that, in view of (5), the relative
distance ρn(t) is also bounded, i.e., 0 < ρ

n
< ρn(t) < ρ̄n.

Consider the Lyapunov function for the robot i, i ∈ N̄ , as

Vi =
r0
2
η2βi +

r0
2
η2αi +

1

2γi
˜̄v2i0 (34)

whose derivative along (2), (6), (8), (12), (17), (22), (23), the
control law (18), and the adaptive law (20) gives

V̇i =− k1iΩ̄βiΩβi

∂ηβi
∂eβi

η2βi − k2iΩ̄αiΩαi

∂ηαi
∂eαi

η2αi

+ r0ηβi
∂ηβi
∂Ω̄βi

˙̄Ωβi −
(
ηβi

∂ηβi
∂Ω̄βi

˙̄Ωβi

)2

−H1iφ
T
i v0

+ r0ηβi
∂ηβi
∂Ωβi

Ω̇βi −
(
ηβi

∂ηβi
∂Ωβi

Ω̇βi

)2

−H2iφ̄
T
i v0

+ r0ηαi
∂ηαi
∂Ω̄αi

˙̄Ωαi −
(
ηαi

∂ηαi
∂Ω̄αi

˙̄Ωαi

)2

− v̄0
H2

1i√
H2

1i + ε2

+ r0ηαi
∂ηαi
∂Ωαi

Ω̇αi −
(
ηαi

∂ηαi
∂Ωαi

Ω̇αi

)2

− v̄0
H2

2i√
H2

2i + ε2

− r0ηαi
∂ηαi
∂eαi

ϕ̇i+ −
(
ηαi

∂ηαi
∂eαi

)2

− σi ˜̄vi0 ˆ̄vi0. (35)

By completion of squares, we have

−r0ηαi
∂ηαi
∂eαi

ϕ̇i+ ≤ 1

2

(
ηαi

∂ηαi
∂eαi

)2

+
1

2

(
r0ϕ̇i+

)2

. (36)

Substituting (26)–(30), (32), and (36) into (35) yields

V̇i <− 2k
1
2
1iη

2
βi − 2k

1
2
2iη

2
αi −

σi

2
˜̄v2i0 +

1

2

(
r0ϕ̇i+

)2

+ C∗
i (37)

with C∗
i = 2εv̄0 + 2r20 + σi

2 v̄
2
0 + 2, which implies that

the convergence of Vi requires the boundedness of ϕ̇i+ , i.e.,
|ϕ̇i+ | ≤ Cϕi+ . In view of (2), (5), (23), and the control law
(19), the bearing angle dynamics for the robot n is given by

ϕ̇n =
ω̄

r0
− φ̄T

nv0
ρn

(38)

where ω̄ > 0 is a design parameter, r0 is the disk target’s
radius, φ̄T

n is the unit vector, v0 is the target’s velocity with
||v0|| ≤ v̄0, and 0 < ρ

n
< ρn according to (33). Hence, the

dynamics ϕ̇n is bounded, i.e., |ϕ̇n| ≤ Cϕn, which implies that
V̇i < −µiVi+Ci holds for i = n−1, in view of (34) and (37),

where µi = min{ 4k
1
2
1i

r0
,
4k

1
2
2i

r0
, σiγi} and Ci = C∗

i +
1
2 (r0Cϕi+)

2,
with Cϕi+ = Cϕn. Then, we have

Vi < (Vi0 −
Ci

µi
) exp(−µit) +

Ci

µi
. (39)

It follows from (34) and (39) that ηβi, ηαi, and ˜̄vi0 are bound-
ed. Hence, the precision constraints (14) and (15) are never vi-
olated according to (16), which further satisfies the constraint
requirements (9) and (13). As a result, the constraints imposed
on the subtended angle (7) and the separation angle (11) are
guaranteed, which implies that, in view of (5), the relative
distance ρi(t) is also bounded, i.e., 0 < ρ

i
< ρi(t) < ρ̄i.
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According to (2), (23), and the control law (18), the bearing
angle dynamics for the robot i is given by

ϕ̇i =
1

ρi

(
u2i − ˆ̄vi0

H2i√
H2

2i + ε2

)
− φ̄T

i v0
ρi

(40)

where ρi, eαi, and ˆ̄vi0 are bounded due to the boundedness
of ηβi, ηαi, and ˜̄vi0. Furthermore, it is clear that ∂eαi

∂Ω̄αi
, ∂eαi

∂Ωαi
,

∂ηαi

∂Ω̄αi
, ∂ηαi

∂Ωαi
, and ∂ηαi

∂eαi
are bounded, since the constraint (15)

is guaranteed. As a result, the dynamics ϕ̇i for the robot i− 1
is bounded, which implies that V̇i in (37) for the robot i,
i ∈ N̄ , can yield (39). It is concluded from (33) and (39)
that ηβi, i ∈ N , and ηαi, i ∈ N̄ , are bounded. Therefore, the
constraints on the subtended angle βi in (7) and the separation
angle αi,i+ in (11) are never violated, which means that the
limited sensing requirement and collision avoidance with the
moving target and the next-neighbouring robot are guaranteed.
(ii) In terms of (33) and (39), we have Vi < Ci

µi
as

t → ∞, which implies that ηβi and ηαi will converge into
the sets {ηβi : |ηβi| <

√
2Ci

r0µi
, i ∈ N} and {ηαi : |ηαi| <√

2Ci

r0µi
, i ∈ N̄}, respectively. The size of convergence is

directly associated with k1i, k2i, σi, γi, ε, Cϕi+ , v̄0, and r0.
Furthermore, from (16), we have that as t → ∞, the errors eβi
and eαi will converge into the sets {ej : −Λj ≤ ej ≤ Λ̄j},

where Λj =
ϱΩj−ϱΩ̄j−Ω̄jΩj

2ϱ +

√
(ϱΩj−ϱΩ̄j−Ω̄jΩj)

2+4ϱ2Ω̄jΩj

2ϱ ,

Λ̄j =
ϱΩ̄j−ϱΩj−Ω̄jΩj

2ϱ +

√
(ϱΩj+Ω̄jΩj−ϱΩ̄j)2+4ϱ2Ω̄jΩj

2ϱ , with

ϱ =
√

2Ci

r0µi
, j = βi, αi. Using the L’ Hopital’s rule, we obtain

limϱ→0 Λj = 0 and limϱ→0 Λ̄j = 0, which indicates that a
small Ci and a large µi are preferred such that the errors eβi
and eαi will converge to small neighbourhoods of the origin.
For a large µi, large design parameters k1i, k2i, and γi are
desirable. To obtain a small Ci, a small tuning number ε is
favored. As a result, the subtended angle βi and the separation
angle αi,i+ eventually converge to a small neighborhood of the
desired angles βdes,i and αdes,i,i+ , respectively.
(iii) Now, we recall from (33) and (39) that 1

2γi
˜̄v2i0 <

(Vi0 − Ci

µi
) exp(−µit) +

Ci

µi
≤ c0, where c0 is the upper

bound of initial condition, which implies |˜̄vi0| <
√
2γic0.

Furthermore, limt→∞ Vi < Ci

µi
implies that the estimation

error ˜̄vi0 is ultimately uniformly bounded by
√

2γiCi

µi
. In view

of (38) and (40), the dynamics of bearing angle ϕ̇i is bounded.
The signal ui is also bounded due to the boundedness of ηj ,
ej , Ω̄j , Ωj ,

˙̄Ωj , Ω̇j , j = αi, βi, and ˆ̄vi0.

Remark 7: Based on the bearing-only measurement, the
presented angle constrained strategy limits to the disk target.
Regarding to cases where the target is not circular, the pro-
posed constrained control framework is also compatible for the
position measurement. The orthogonal-vector-based control
design incorporated with universal BLFs has advantages in
constrained target enclosing problem, in which the formation
errors to be constrained can be distance or angle errors along
two orthogonal directions. In addition, universal BLFs can
handle the constraints with different types (asymmetric or
symmetric) and nature (time-varying or time-invariant) in a

uniform framework. Specifically, the enclosing formation is
partially specified by the relative distance ρi(t) in (4), in-
stead of the subtended angle. Consequently, the distance error
eρi(t) = ρi(t)− rdes,i is imposed on both safety and precision
constraints, that is, −eρi ≤ −Ωρi(t) < eρi(t) < Ω̄ρi(t) ≤ ēρi
where eρi = rdes,i − ρ

i
and ēρi = ρ̄i − rdes,i with rdes,i

being the desired radius, and ρ
i
and ρ̄i respectively being the

lower and upper bounds of ρi(t). Then, the position-based
controllers are designed as ui = G−1

i (φiu1i + φ̄iu2iρi −
φiû1i−φ̄iû2i), i ∈ N̄ , and ui = G−1

i (φiu1i−φiû1i+φ̄iω̄ρi),
i = n, where u1i = −k1iΩ̄ρiΩρiηρi −

∂eρi
∂Ω̄ρi

˙̄Ωρi − ∂eρi
∂Ωρi

Ω̇ρi,

u2i = −k2iΩ̄αiΩαiηαi − ∂eαi

∂Ω̄αi

˙̄Ωαi − ∂eαi

∂Ωαi
Ω̇αi − ηαi

∂ηαi

∂eαi
,

H1i = ηρi
∂ηρi

∂eρi
, and H2i = ηαi

ρi

∂ηαi

∂eαi
with φi being the unit

vector from the target pointing to the onboard sensor.
Remark 8: When the precision constraints (14) and (15) are

not considered, the transformed error given in (16) becomes
ηj =

ējejej
(ēj−ej)(ej+ej)

where the constraints are time-invariant
in view of (9) and (13). Accordingly, in control laws (18) and
(19), terms u1i and u2i become u1i =

cos βi

sin2 βi
(−k1iēβieβiηβi)

and u2i =
1

sin βi
(−k2iēαieαiηαi − ηαi

∂ηαi

∂eαi
), respectively.

IV. SIMULATION STUDIES

A. MATLAB Simulation
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Fig. 2. The phase-plane trajectories with control inputs.

Comparative simulations with and without precision con-
straints are carried out using the proposed control algorithm,
where the mobile robots are expected to surround a target with
even distribution. The target moves from p0(0) = [0 0]T with
v0 = [0.2 0.1 sin(0.1t)]Tm/s which is unknown to all robots.
The onboard sensor is shifted a distance d = 0.2m, and the
safety radii of the robots and the target are ri = 0.5m and
r0 = 1m, respectively. The angle constraints are selected as
βmin,i = 7π/180rad, βmax,i = π/6rad, αi,i+

= π/6rad, and
ᾱi,i+ = 11π/24rad such that α5,1 = 2π−

∑
ᾱi,i+ = π/6rad.

The desired angles are set as βdes,i = π/9rad, i ∈ N , and
αdes,i,i+ = 2π/5rad, i ∈ N̄ . The precision constraint functions
are taken as Ωβi(t) = (eβi − 0.005) exp(−0.3t) + 0.005,
Ω̄βi(t) = (ēβi − 0.005) exp(−0.3t) + 0.005, Ωαi(t) =
(eαi − 0.012) exp(−0.3t) + 0.012, and Ω̄αi(t) = (ēαi −
0.012) exp(−0.3t) + 0.012, where eβi = 13π/180, ēβi =
π/18, eαi = 7π/30, and ēαi = 7π/120 according to (9) and
(13). The design parameters are k1i = 2, k2i = 5, γi = 15,
i ∈ N , σ1 = 0.1, σi = 0.01, i ∈ N \1, ε = 0.01, and ω̄ = 0.5.
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Fig. 3. The profiles of subtended angle errors. (a) The proposed controller.
(b) The controller without precision constraints.
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Fig. 4. The profiles of separation angle errors. (a) The proposed controller.
(b) The controller without precision constraints.

The initial states of the robots are [x1 y1 θ1]
T = [6 −1 −π]T ,

[x2 y2 θ2]
T = [2 3 0]T , [x3 y3 θ3]

T = [−1.2 4.8 π/12]T ,
[x4 y4 θ4]

T = [−2.3 1 π/3]T , [x5 y5 θ5]
T = [−2.2 −

3 2π/3]T , and ˆ̄vi0 = 0, i ∈ N . The design parameters in the
comparative simulations are the same except for σ1 = 0.01.
The trajectories of the target and robots with the control

inputs are plotted in Fig. 2, where the moving target is tracked
and enclosed by n = 5 mobile robots. As shown in Figs. 3–4,
the subtended angle errors and the separation angle errors with
and without precision constraints always evolve within safety
constraints, which implies that the limited sensing requirement
and collision avoidance with the target and neighbouring
robots are guaranteed. However, without the consideration of
precision constraints (see the controllers discussed in Remark
8), the subtended and separation angle errors deviate farther
from the origin (see Figs. 3(b)–4(b)). In contrast, without the
knowledge of target’s velocity v0 and the dynamics of bearing
angle ϕ̇i+ , the control laws (18) and (19) ensure the precision
constraint requirements such that all angle errors converge to
small neighbourhoods of zero.

B. Gazebo Simulation

An uneven distribution of the robots surrounding a target
is further conducted using Gazebo simulator on ROS. The
same robot model is used to emulate a disk target with the
radius of r0 = 1m. The target is assigned to track the
trajectory [xt yt]

T = [−10 sin(−0.02t) 10 cos(−0.02t) −
10]T from the initial pose of [x0 y0 θ0]

T = [0 0 0]T .
The angle constraints are selected as βmin,i = 7π/180rad,
βmax,i = π/6rad, αi,i+ = π/6rad, ᾱ1,2 = 66π/180rad,
and ᾱi,i+ = 88π/180rad, i = 2, 3, 4. The onboard sensor
is shifted a distance d = 0.2m. The desired angles are set

Fig. 5. The phase-plane trajectories with control inputs in the Gazebo
simulation.

(a) (b) (c)

Fig. 6. Snapshots taken in Gazebo. (a) t = 0s. (b) t = 100s. (c) t = 200s.

as βdes,i = π/9rad, i = 1, 3, 4, βdes,i = π/11rad, i = 2, 5,
αdes,1,2 = π/3rad, and αdes,i,i+ = 4π/9rad, i = 2, 3, 4. The
precision constraint functions are designed as Ωβi(t) = (eβi−
0.03) exp(−0.3t)+0.03, Ω̄βi(t) = (ēβi−0.03) exp(−0.3t)+
0.03, Ωαi(t) = (eαi− 0.05) exp(−0.3t)+0.05, and Ω̄αi(t) =
(ēαi−0.05) exp(−0.3t)+0.05. The design parameters are se-
lected as k1i = 0.5, k2i = 5, γi = 0.01, σi = 0.01, ε = 0.008,
and ω̄ = 0.3. The initial states of the robots are [x1 y1 θ1]

T =
[3.2 − 1.4 − 5π/9]T , [x2 y2 θ2]

T = [2.4 1.2 − π/6]T ,
[x3 y3 θ3]

T = [0.8 4 −π/12]T , [x4 y4 θ4]
T = [−2.5 3 π/3]T ,

[x5 y5 θ5]
T = [−2.8 − 1 2π/3]T , and ˆ̄vi0 = 0, i ∈ N .

The trajectories, control inputs, and different snapshot mo-
ments are demonstrated in Figs 5–6. Both subtended and
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Fig. 7. The profiles of subtended angle errors in the Gazebo simulation.
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Fig. 8. The profiles of separation angle errors in the Gazebo simulation.
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separation angle errors stay within their corresponding con-
straints, and converge to small neighbourhoods of zero shown
in Figs. 7–8, which implies the safety and precision constraint
requirements are satisfied.

V. CONCLUSION

This paper proposes a constrained control framework to
solve the moving-target enclosing problem for nonholonom-
ic multirobot systems with safety and precision constraints.
The target-robot and inter-robot angles obtained from bearing
measurements are constrained to satisfy the requirements of
limited sensing range and collision avoidance. The precision
constraint further guarantees all robots converging to a small
neighbourhood of the desired enclosing formation. Universal
BLFs and adaptive estimators are incorporated with control
design to handle different constraint requirements, despite the
lack of target’s velocity.
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