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Cooperative Constrained Enclosing Control of
Multirobot Systems in Obstacle Environments

Ke Lu, Shi-Lu Dai, Member, IEEE, and Xu Jin, Member, IEEE

Abstract—This paper develops a novel cooperative con-
strained control framework to solve the moving-target en-
closing problem for multirobot systems, where safe navi-
gation and formation precision are concerned in obstacle
environments. When moving obstacles block the encircling
motion, the enclosing formation contracts towards the tar-
get with a precise spacing pattern. Without a priori knowl-
edge of environment information, the mobile robot group
can track and enclose a moving target while guaranteeing
limited sensing requirements and collision avoidance with
the target, neighbouring robots, and obstacles. Under the
precision constraint, with an encircling speed assigned to
only one robot, the mobile robots are driven by their neigh-
bours until all robots enclose the target as a whole. With the
help of velocity observers, the robot group can converge to
a small neighborhood of the desired enclosing formation
without knowing the target’s velocity. Simulation results
demonstrate the effectiveness of the proposed constrained
control strategy.

Index Terms—Target enclosing, barrier function, limited
sensing, collision avoidance, obstacle avoidance.

I. INTRODUCTION

Over the last few decades, cooperative control of multia-
gent systems has received considerable attention [1]–[4]. In
particular, the objective of enclosing control is to attain a
formation orbiting around a target for entrapment, protection,
or surveillance. This enclosing formation can block the way
to a specific surrounded area, and also can simultaneously
provide different perspectives of a target. For example, when
the information of interest is a general view of a monitoring
target/area rather than a single view of one sensor, sensor data
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from all vehicles cooperatively monitoring a ground target/area
is fused to provide comprehensive information or a view of the
entire field. This problem has been widely studied in [5]–[10],
where a stationary or moving target is enclosed by a group of
autonomous agents. Tracking and encircling a moving target
becomes more challenging when the target’s velocity is not
available for the control algorithm. For the case where the
position or velocity of a target is unknown, observers are
typically constructed for multiagent systems to estimate the
unknown information [11], [12]. In terms of the enclosing
formation, multiple agents are driven to surround a target with
even distribution in [13], [14]. However, in some applications,
an even distribution might not be preferred, and in contrast,
the convergence to any prescribed spacing formation along the
circle might provide a better performance [15]–[18].

On the one hand, coordination control design is usual-
ly concerned with the safety problem, which requires that
collisions with neighbouring agents or/and obstacles never
occur. On the other hand, an onboard sensor can only work
reliably within a certain range due to its limited sensing
capability, which is another safety hazard. In [19], [20], the
problems of collision avoidance and connectivity maintenance
for multiagent systems are addressed by handling inter-agent
distance constraints. In the context of enclosing control, the
inter-agent collision avoidance is taken into account to enhance
the target enclosing performance in [21], [22]. Although some
works have addressed the problem of collision avoidance
with either the target or neighbours, the obstacle avoidance
is also of great importance for enclosing control design since
the operating environment is often severe and cluttered. In
such an obstacle-cluttered environment, an elastic formation
is preferred [23], where multiagent systems generate a time-
varying formation to avoid the obstacle, but the environment
information is required to be known a priori.

Constrained control design can ensure the system output to
remain within a certain range specified by safety requirements.
This constrained control problem has been extensively studied,
e.g., [24]–[26], where different kinds of barrier functions are
developed for constrained control systems. Due to the advan-
tage in handling constrained systems, barrier functions have
been employed to guarantee the collision avoidance or/and
limited sensing capabilities for multiagent systems [27]–[32].
In addition, potential functions [33]–[37] can be integrated
into control Lyanpunov synthesis to drive autonomous agents
convergence to a desired formation without any collision with
obstacles. Even though the safety problem has been partially
addressed in the aforementioned works, the moving-target
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enclosing control problem with the concern of safety and
precision constraints is still a challenging issue. On the one
hand, the enclosing control design is required to simultaneous-
ly meet constraint requirements from the target, neighbouring
agents, and obstacles during the encircling motion. On the
other hand, due to the higher priority of obstacle avoidance,
formation errors sometimes are inevitably required to deviate
from the origin, which implies the formation precision against
safety. Consequently, the constraints with different types arise
in the moving-target enclosing control design. A loose inter-
agent constraint implies formation error tolerance, allowing
the enclosing formation to be elastic for obstacle avoidance
without violating any constraint. In contrast, a tight inter-agent
constraint can force the multiagent systems to converge to a
precise formation. Furthermore, the target-agent distance and
the spacing among neighbouring agents cannot be too small or
too large, which implies the two side constraints. In contrast,
the relative distance to the obstacles cannot be too small only,
which means the one side constraint. Hence, the aforemen-
tioned control algorithms cannot be directly extended to the
enclosing formation control design in obstacle environments.
How to develop a constrained control framework without the
knowledge of target’s velocity is an important research topic
yet to be examined.

In this work, we develop a novel cooperative constrained
control framework to solve the moving-target enclosing prob-
lem for a group of nonholonomic mobile robots in obstacle
environments. The novelty of the work lies on the constrained
control framework where the constraints from both safety
navigation and formation precision are considered such that (i)
the limited sensing requirements and collision avoidance with
the target, neighbouring robots, and obstacles are guaranteed
despite the lack of target’s velocity; and (ii) while only one
robot is assigned an encircling speed, the robot group can
converge to a small neighbourhood of the desired formation,
enclosing a moving target. Different from [12]–[15] where
an even spacing formation is generated, or a desired spacing
pattern is obtained by adjusting robot’s velocity or position,
the formation precision constraint studied in this work forces
the robots to generate a desired spacing formation and revolve
around a moving target. Compared with the works [5], [22]
that prevent collisions with either the target or neighbouring
robots, the presented algorithm further considers the limited
sensing constraint and collision avoidance with moving obsta-
cles. The contributions of this work are summarized as follows.

(i) A novel cooperative constrained control strategy is pro-
posed to address the moving-target enclosing problem,
where both safety navigation and formation precision are
considered, despite the lack of target’s velocity.

(ii) The safety constraints, which considers the limited sens-
ing capability of onboard sensors, and target-robot/inter-
robot collision avoidance, allow for the embedded po-
tential function deforming the enclosing formation for
obstacle avoidance.

(iii) The presented algorithm enables mobile robots to avoid
collision with the nearest static or moving obstacle with-
out a priori knowledge of environment information, and

the local minima problem resulted from potential func-
tions is prevented with the target’s trajectory sufficiently
far from obstacles.

(iv) With an encircling speed assigned to only one robot, the
precision constraint drives the robot group to converge to
a desired spacing formation and enclose a moving target.

II. PROBLEM FORMULATION
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Fig. 1. Illustration of enclosing a target by multiple mobile robots in an
obstacle environment.

Consider a moving target is enclosed by a group of n ≥
2 nonholonomic mobile robots in a plane. Let the index set
N = {1, ..., n}. The kinematics of robot i, i ∈ N , is modeled
as

ṗi(t) =

[
cos θi(t)
sin θi(t)

]
vi(t)

θ̇i(t) = ωi(t)

(1)

where pi(t) = [xi(t) yi(t)]
T ∈ R2 is the position of robot

i with respect to a global coordinate frame, θi(t) is its
heading angle, vi(t) and ωi(t) are the linear and angular
velocity control inputs, respectively. As shown in Fig. 1, the
onboard sensor of robot i is installed at the position psi(t) =
[xsi(t) ysi(t)]

T which is shifted a non-zero distance d from
pi(t) along direction θi(t). The position psi(t) is described
by psi(t) = pi(t) + d[cos θi(t) sin θi(t)]

T whose dynamics is
modeled as

ṗsi(t) = Hi(t)ui(t) (2)

where ui(t) = [vi(t) ωi(t)]
T and Hi(t) is defined as

Hi(t) =

[
cos θi(t) −d sin θi(t)
sin θi(t) d cos θi(t)

]
. (3)

It should be noted that det(Hi(t)) = d implies Hi(t) is
invertible with d ̸= 0. The moving target is governed by

ṗ0(t) = v0(t)

where p0(t) = [x0(t) y0(t)]
T ∈ R2 and v0(t) ∈ R2 are the

position and velocity of the target, respectively. The relative
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distance between the onboard sensor of robot i and the moving
target is defined as

ρi(t) =
√
(xsi(t)− x0(t))2 + (ysi(t)− y0(t))2 (4)

whose derivative yields

ρ̇i(t) = φT
i (t)[ṗsi(t)− v0(t)] (5)

where φi(t) =
psi(t)−p0(t)

ρi(t)
= [cosϕi(t) sinϕi(t)]

T is the unit
vector from the target pointing to the onboard sensor, and ϕi(t)
is the bearing angle of vector φi(t) as shown in Fig. 1. The unit
vector φ̄i(t) = [cos(ϕi(t)± π

2 ) sin(ϕi(t)± π
2 )]

T is orthogonal
to φi(t), where ±π

2 denotes the opposite directions.
Assumption 1: The target’s velocity and acceleration are

bounded, i.e., ||v0|| ≤ ϱ1 and ||v̇0|| ≤ ϱ2 where ϱ1 and ϱ2
are positive constants.

A. Limited Sensing and Collision Avoidance With Target
A geometrical radius ri centered at the position of the sensor

covering the robot i is labeled as a safety region. The other
safety radius of the target is labeled as r0. Collision avoidance
and limited sensing require that

ρ
i
< ρi(t) < ρ̄i (6)

where ρ
i
= ri + r0 and ρ̄i denote the safety distance and

the maximum sensing range, respectively. Define the relative
distance error as

eρi(t) = ρi(t)− rdes,i (7)

where rdes,i is the desired radius centered at the target.
Substituting (7) into (6) yields

−eρi < eρi(t) < ēρi (8)

where eρi = rdes,i − ρ
i
and ēρi = ρ̄i − rdes,i with 0 < ρ

i
<

rdes,i < ρ̄i.
Assumption 2: At the initial time t = 0, the robot i, i ∈

N does not violate the constraint requirement on the relative
distance, that is, ρ

i
< ρi(0) < ρ̄i holds.

B. Collision Avoidance With Neighbouring Robots
For convenience of presentation, define the index set N̄ =

N \ n. The encircling speed is assigned to any robot in
the group, and this robot is labeled as robot n. Then, its
previous neighbor is labeled as robot n−1 in the clockwise or
counterclockwise radial order around the target p0 according to
the encircling motion direction until all robots are well defined.
In terms of this definition, the robot i, i ∈ N̄ , has its next-
neighbouring robot i+ 1 labeled as i+. According to the arc
length formula, the collision avoidance between neighbouring
robots is established resulted from the minimal radius ρ

i
and

the corresponding minimal included angle. As shown in Fig.
1, the included angle αi,i+(t) between robot i, i ∈ N̄ , and its
next-neighbouring robot i+ can be calculated as

αi,i+(t) = cos−1

(
pT0i(t)p0i+(t)

||p0i(t)||||p0i+(t)||

)
where p0i(t) = psi(t)− p0(t), p0i+(t) = psi+(t)− p0(t), and
cos−1 is the inverse cosine function. The robot i, i ∈ N̄ , is

assumed to have access to the relative position of the target
and its next-neighbour robot i+ via an onboard sensor, e.g.,
a laser radar, such that their included angle is computable.
For inter-robot collision avoidance, the constraint of minimal
included angle αi,i+

is imposed on the included angle αi,i+(t)

between the robot i, i ∈ N̄ , and its neighbour i+, that is,

αi,i+ < αi,i+(t). (9)

According to the neighbouring robot definition, the first robot
(robot 1) is the next-neighbour of the last robot (robot n).
However, constraint (9) is not imposed on their included
angle, since robot n is designed to circle the moving target
independent to the others. Define their included angle αn,1 and
in view of the definition of neighbouring robots, we obtain

αn,1(t) = 2π −
∑
i∈N̄

αi,i+(t) (10)

which implies that the included angle αn,1(t) between the
first and the last robots depends on the rest of included angles
αi,i+(t). Moreover, the lower bound of αn,1(t) relies on the
upper bounds of αi,i+(t), that is, αn,1 ≤ 2π −

∑
i∈N̄ ᾱi,i+ ,

which prevents collision between the first and the last robots.
Thus, we define the following constraint on the included angle

αi,i+(t) < ᾱi,i+ .

Therefore, the following inequality

αi,i+
< αi,i+(t) < ᾱi,i+ (11)

is required to prevent collisions between each robot and its
next neighbour, where αi,i+ and ᾱi,i+ are respectively the
minimal and maximal included angles. Define the included
angle error as

eαi(t) = αi,i+(t)− αdes,i,i+ (12)

where αdes,i,i+ is the desired included angle. Substituting (12)
into (11) produces

−eαi < eαi(t) < ēαi (13)

where eαi = αdes,i,i+ −αi,i+
and ēαi = ᾱi,i+ −αdes,i,i+ with

0 < αi,i+
< αdes,i,i+ < ᾱi,i+ .

Remark 1: According to the definition of neighbouring
robots, the desired included angles αdes,i,i+ correspond to
the encirclement of the target, and we know that αdes,n,1 =
2π−

∑
i∈N̄ αdes,i,i+ , which implies that the desired included

angle αdes,n,1 between the first and the last robots is not
specified and relies on αdes,i,i+ , i ∈ N̄ . Thus, in view of
(10), the included angle error eαn(t) = αn,1(t) − αdes,n,1 =
−
∑

i∈N̄ eαi(t), which indicates that the included angle error
eαn(t) depends on the sum of included angle errors between
each robot i, i ∈ N̄ , and its next-neighbouring robot i+.
Hence, the small error eαn(t) requires that all errors eαi(t),
i ∈ N̄ , converge to a small neighborhood of zero.

Assumption 3: At the initial time t = 0, the robot i, i ∈
N̄ , does not violate the constraints imposed on the included
angles, i.e., αi,i+

< αi,i+(0) < ᾱi,i+ .
It is clear from Assumption 3 and the neighbouring robot

definition that the inter-robot collision along radial direction
will not happen for t ≥ 0 if the designed control laws
guarantee the included angle constraints (11).
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C. Formation Precision

The formation precision requires that the robots maintain
the desired spacing formation to surround a target even when
their encircling motions are blocked by obstacles. Accordingly,
the included angle error (12) is further restricted by

−Ωαi(t) < eαi(t) < Ω̄αi(t), i ∈ N̄ (14)

where Ωαi(t) > 0 and Ω̄αi(t) > 0 are the designed decreasing
C1 functions such that the included angle error eαi(t) is driven
to a small neighbourhood of zero as time evolves. Moreover,
the constraint requirement (14) should satisfy the angle error
constraint (13), that is, the following inequality

−eαi ≤ −Ωαi(t) < eαi(t) < Ω̄αi(t) ≤ ēαi, i ∈ N̄ (15)

is satisfied. It is clear that if the constraint requirement (14)
is guaranteed by the designed controller, the inequality (13)
holds, and thus the constraint imposed on the included angle
(11) is never violated. A brief summary of different types of
constraints considered in this work can be seen in Table I.

TABLE I

Constraint
Types

Constrained
Objects Purposes Eq.

No.

Safety
Constraints

Relative
Distances

To avoid collisions with the
target and neighbouring
robots, and to guarantee
limited sensing requirements.

(6)

Included
Angles (11)

Precision
Constraints

Included Angle
Errors

To ensure convergence to a
small neighbourhood of the
desired spacing formation.

(14)

Remark 2: When obstacles block the enclosing motion, the
robots are expected to shrink their enclosing radii to surround
the target and avoid obstacles simultaneously. This implies that
the formation error (7) in the radial direction is expected to
deviate from the origin due to the higher priority of obstacle
avoidance, but the safety constraint (8) cannot be violated.
Thus, the precise formation only requires that the included
angle should not deviate much from its desired value, which
indicates the desired spacing is maintained during the motion.
Remark 3: As discussed in Remark 1, small included angle

errors eαi, i ∈ N̄ are preferred, such that eαn(t) converges
to a small neighbourhood of the origin. Thus, the precision
constraint (14) is further designed to ensure that included angle
errors should not deviate much from zero. As a result, the
robots are driven to surround a moving target with a precise
spacing formation in obstacle environments, despite the lack
of accurate knowledge of target’s velocity.
Enclosing Control Objective: The enclosing control objec-

tive is to design cooperative control laws for robot i, i ∈ N ,
such that:

(i) the robot i avoids collisions with the target, neighbouring
robots, and obstacles, while guaranteeing the limited
sensing requirements during the encircling motion; and

(ii) the included angle error eαi(t) will converge to a small
neighbourhood of zero with or without obstacles.

III. MOVING-TARGET ENCLOSING CONTROL DESIGN

This section presents a constructive design technique of
moving-target enclosing control for system (1) to achieve the
control objective mentioned above. Although there are more
than one moving obstacles in the environment, the proposed
control algorithm only considers to avoid the nearest one
(shown in Fig. 1), whose velocity is governed by ṗob(t) =
vob(t) with pob(t) = [xob(t) yob(t)]

T ∈ R2 and vob(t) ∈ R2

being the position and velocity, respectively. The relative
distance between the target and the nearest obstacle is defined
as

ρ0c(t) =
√
(x0(t)− xob(t))2 + (y0(t)− yob(t))2 (16)

where the positions p0(t) = [x0(t) y0(t)]
T and pob(t) =

[xob(t) yob(t)]
T can be measured by an onboard sensor, e.g.,

a laser radar. For encircling motion, define that the robot’s
orbit is a set of positions {p′

si(t)| ||p
′

si(t) − p0(t)|| = ρi(t)},
which describes a circle centered at the target p0(t) with radius
ρi(t). Thus, the position p∗si(t) = [x∗

si(t) y∗si(t)]
T , which is

the crosspoint of target-obstacle connecting line and the orbit
(shown in Fig. 1), corresponds to the shortest distance ρ∗i (t)
from positions p

′

si(t) to the obstacle. The relative distance
between the position p∗si(t) and the obstacle is given by

ρ∗i (t) =
√
(x∗

si(t)− xob(t))2 + (y∗si(t)− yob(t))2 (17)

whose derivative yields

ρ̇∗i (t) = φ∗T
i (t)[ṗ∗si(t)− vob(t)]

where φ∗
i (t) =

p∗
si(t)−pob(t)

ρ∗
i (t)

is the unit vector from the obstacle
pointing to p∗si(t), and ṗ∗si(t) is the velocity of robot’s onboard
sensor when it is exactly at position p∗si(t). In the presence of
an obstacle, the robot i, i ∈ N , is required to avoid the moving
obstacle, that is,

rci < ρ∗i (t) (18)

where rci = ri+rob denotes the safety distance that allows the
passage of the robot i with rob being the geometrical radius
covering the nearest obstacle. Furthermore, the robot i does not
take evasive action until the relative distance ρ∗i (t) is less than
a pre-defined obstacle avoidance range Rci, that is, ρ∗i (t) <
Rci with rci < Rci ≤ ρ̄i. It is reasonable that the obstacle
avoidance range Rci is less than the limited sensing range ρ̄i.

Assumption 4: The obstacle’s velocity is bounded, i.e.,
||vob|| ≤ ϱ3 with constant ϱ3 > 0.

Assumption 5: There is enough separation distance for the
robot i to avoid collisions with the target and the obstacle
simultaneously, that is, ρ0c(t) > ρ

i
+ rci.

Remark 4: The shortest distance ρ∗i (t) defined in (17) is
employed to construct the potential function (20) for obstacle
avoidance. However, it is not necessarily to know the corre-
sponding position p∗si(t) for calculation of ρ∗i (t). Alternatively,
ρ∗i (t) can be obtained by the following geometrical relation-
ship

ρ∗i (t) = ρ0c(t)− ρi(t) (19)

where ρ0c(t) and ρi(t) are defined in (16) and (4), respectively.
Furthermore, in view of (19), Assumption 5 implies that
ρ0c(t) = ρ∗i (t)+ρi(t) > ρ

i
+rci. Consequently, we obtain that
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ρ∗i (t) > rci as ρi(t) → ρ+
i
, and ρi(t) > ρ

i
as ρ∗i (t) → r+ci,

which implies ρi(t) → ρ+
i

and ρ∗i (t) → r+ci cannot occur
simultaneously. Noted that x → a+ denotes x tending to a
with x > a, whereas x → a− denotes x tending to a with
x < a, where x is a variable and a is a constant or a variable.
The potential function with respect to the shortest distance

ρ∗i (t) is designed for obstacle avoidance as follows

V ∗
ci(t) =

1

2
δ∗2i (t) (20)

with

δ∗i (t) =


1

ρ∗
i (t)−rci

, rci < ρ∗i (t) ≤ Mci

Aciρ
∗2
i (t)−Bciρ

∗
i (t) + Cci, Mci < ρ∗i (t) < Rci

0, ρ∗i (t) ≥ Rci

where Aci = 27
4(Rci−rci)3

, Bci = 27Rci

2(Rci−rci)3
, Cci =

27R2
ci

4(Rci−rci)3
, Mci = 2rci+Rci

3 with rci < Mci < Rci due to
rci < Rci, and δ∗i (t) is a C1 function with respect to the
relative distance ρ∗i (t). Noted that δ∗i (t) has the following
properties: i) δ∗i (t) → +∞ as ρ∗i (t) → r+ci, and ii) δ∗i (t) = 0
as ρ∗i (t) ≥ Rci. If V ∗

ci(t) never goes to infinity, which implies
that ρ∗i (t) never tends to r

+
ci, then no collision with the obstacle

is guaranteed. The derivative of δ∗i (t) along (17) produces

δ̇∗i (t) =
∂δi
∂ρ∗i

φ∗T
i (t)[ṗ∗si(t)− vob(t)] (21)

with

∂δ∗i
∂ρ∗i

=


−1

(ρ∗
i (t)−rci)2

, rci < ρ∗i (t) ≤ Mci

2Aciρ
∗
i (t)−Bci, Mci < ρ∗i (t) < Rci

0, ρ∗i (t) ≥ Rci.

However, during the encircling motion, the robot i, i ∈ N ,
is not always at the position p∗si(t). Thus, in the presented
obstacle avoidance strategy, the robot i takes evasive action
when the position p∗si(t) gets close the moving obstacle, which
means that although the robot i is not at the position p∗si(t), it
still moves towards the target in the direction −φi(t) to avoid
the obstacle. Hence, the potential function with respect to the
current position is designed as

Vci(t) =
1

2
δ2i (t), δ̇i(t) = − ∂δi

∂ρ∗i
φT
i (t)[ṗsi(t)− vob(t)] (22)

where δi = δ∗i and ∂δi
∂ρ∗

i
=

∂δ∗i
∂ρ∗

i
preserve the magnitudes of (20)

and (21), respectively, and −φi(t) indicates φ∗
i (t) pointing

towards the target whereas φi(t) pointing away from the target.
Remark 5: Consider the relative distances ρ

′

i(t) between all
positions p

′

si(t) in the orbit and the nearest obstacle. It is clear
that V ∗

ci(ρ
∗
i ) > Vci(ρ

′

i), since ρ∗i (t) is the shortest distance
among ρ

′

i(t), and the potential function increases with the
decrease in the distance according to (20) and (21). Thus,
if the designed controller guarantees V ∗

ci(ρ
∗
i ) never tending to

infinity, which implies rci < ρ∗i (t) < ρ
′

i(t), then robot i at any
position of the orbit will not hit the obstacle. It is interpreted
from (22) that the moving obstacle is rotated around the target
to a virtual position such that the virtual obstacle, robot i, and
the target are collinear, where robot i lies between the target
and the virtual obstacle. The virtual obstacle moves towards
the robot i along the radius direction −φi(t). Hence, robot i

is controlled to simultaneously avoid the target and the virtual
obstacle.

To satisfy constraints (8) and (14), the following universal
barrier function is applied in the control design

Vj(t) =
1

2
η2j (t), j = ρi, αi (23)

with

ηj(t) =
Ω̄j(t)Ωj(t)ej(t)

(Ω̄j(t)− ej(t))(ej(t) + Ωj(t))
, j = ρi, αi

where ηj(t), j = ρi, αi, are the transformed error variables,
Ω̄ρi(t) = ēρi and Ωρi(t) = eρi are constants from (8),
Ωαi(t) > 0 and Ω̄αi(t) > 0 are time-varying functions from
(14). ηj(t) has the following properties: i) ηj(t) → −∞ when
ej(t) → −Ω+

j (t); ii) ηj(t) → +∞ when ej(t) → Ω̄−
j (t); and

ηj(t) = 0 if and only if ej(t) = 0.
Remark 6: It follows from (23) that when the transformed

errors ηj(t) converge to a small neighbourhood of zero, that
is, |ηj | ≤ ϱj , j = ρi, αi, with constants ϱj > 0, the error
variables ej converge to the sets {ej : −Λj ≤ ej ≤ Λ̄j , as t →
∞} where

Λj =
κj +

√
κ2
j + 4ϱ2j Ω̄jΩj

2ϱj
, Λ̄j =

κ̄j +
√
κ̄2
j + 4ϱ2j Ω̄jΩj

2ϱj

with κj = −Ω̄jΩj −ϱjΩ̄j +ϱjΩj and κ̄j = −Ω̄jΩj +ϱjΩ̄j −
ϱjΩj . Using the L’ Hopital’s rule, we obtain that

lim
ϱj→0

Λj = 0, lim
ϱj→0

Λ̄j = 0

which implies that the smallest possible value ϱj is preferred
such that the errors ej converge to a small neighbourhood of
zero.

The derivative of ηj produces

η̇j =
∂ηj
∂Ω̄j

˙̄Ωj +
∂ηj
∂Ωj

Ω̇j +
∂ηj
∂ej

ėj , j=ρi, αi (24)

where

∂ηj
∂Ω̄j

=
−Ωje

2
j

(Ω̄j − ej)2(ej +Ωj)
,

∂ηj
∂Ωj

=
Ω̄je

2
j

(Ω̄j − ej)(ej +Ωj)
2

∂ηj
∂ej

=
Ω̄jΩj(Ω̄jΩj + e2j )

(Ω̄j − ej)2(ej +Ωj)
2
.

Since the target’s velocity v0 is not available for feedback, the
robot i estimates the target’s velocity v̂0i with estimation error
ṽ0i = v̂0i − v0. The velocity observers are designed as

˙̂v0i = Γ0i

(
−K0iv̂0i−φi

(
ηρi

∂ηρi
∂eρi

−δi
∂δi
∂ρ∗i

))
, i ∈ N (25)

with Γ0i = diag(σ0ij) ∈ R2×2 and K0i = diag(k0ij) ∈ R2×2,
j = {1, 2}, where σ0ij > 0, k0ij > 0 are design parameters.
The control laws for the robot i, i ∈ N , are designed as

ui= H−1
i (φiu1i + φ̄iu2i + v̂0i), i ∈ N̄ (26)

ui= H−1
i (φiu1i + φ̄iω̄ρi + v̂0i), i = n (27)
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with

u1i =− k1i

(
∂ηρi
∂eρi

ηρi − δi
∂δi
∂ρ∗i

)
u2i =− k2iΩ̄αiΩαiηαiρi −

∂eαi
∂Ω̄αi

˙̄Ωαiρi −
∂eαi
∂Ωαi

Ω̇αiρi

− ηαi
ρi

∂ηαi
∂eαi

− ηαi
∂ηαi
∂eαi

ρi

where k1i > 0, k2i > 0 are control gains, φi and φ̄i are
orthogonal unit vectors defined in (5), H−1

i is the inverse
matrix defined in (3), and ω̄ > 0 is a design parameter.
Remark 7: The controllers (26) and (27) indicate that the

robot n is constrained by both the moving target and the
obstacle via terms about ηρn and δn with no constraints from
other robots, while robot i, i ∈ N̄ , is further constrained by
its neighbour i+ (terms about ηαi in u2i). Inside the obstacle
avoidance range, the robots adjust their encircling radii along
φi to meet both constraint requirements from ηρi and δi.
Consider the bearing angle ϕi(t) defined in (5), control laws

(26) and (27), the dynamics of ϕi can be derived as

ϕ̇i = φ̄T
i

ṗsi − v0
ρi

=
φ̄T
i ṽ0i
ρi

+Θi, i ∈ N (28)

where Θi =
u2i

ρi
, i ∈ N̄ , and Θi = ω̄, i = n. The dynamics

of included angle αi,i+ is given by

α̇i,i+ = ϕ̇i − ϕ̇i+ = φ̄T
i

ṗsi − v0
ρi

− ϕ̇i+ , i ∈ N̄ (29)

where ϕi and ϕi+ are defined in (5), and ϕ̇i is given in (28).
Remark 8: In terms of (2) and (27), when δn = 0 and

eρn → 0, we have ṗsn → φ̄nω̄rdes,n + v̂0n. The first part
means that the robot n revolves around the moving target at
speed φ̄nω̄rdes,n with direction φ̄n and magnitude ω̄rdes,n.
The second part means that the robot n tracks the moving
target with estimation velocity v̂0n. If the estimation error
ṽ0i → 0, then we have ṗsn → φ̄nω̄rdes,n + v0, which further
implies that ϕ̇n → ω̄ by (28). By contrast, the controller (26)
for robot i, i ∈ N̄ , lacks the encircling speed term φ̄iω̄ρi
for revolving around the moving target. In terms of (2) and
(26), when δi = 0 and ej(t) → 0, j = ρi, αi, we know
that ṗsi → v̂0i. This indicates that the robot i only tracks the
moving target with estimation velocity v̂0i, without encircling
motion. Additionally, if the estimation error ṽ0i → 0, then
ṗsi → v0, which further implies ϕ̇i → 0 according to (28).
Remark 9: The encircling speed φ̄iω̄ρi can be treated as an

external disturbance with the direction φ̄i and the magnitude
ω̄ρi that forces the whole formation to revolve around a
moving target. Furthermore, it follows from (12) and (29)
that the convergence of included angle error eαi(t) depends
on both bearing angles dynamics ϕ̇i and ϕ̇i+ . However, the
robot i, i ∈ N̄ , only accesses to the relative position without
the knowledge of ϕ̇i+ from its neighbour, while tracking the
desired included angle αdes,i,i+ . With a higher magnitude of
encircling speed, the included angle may not converge to its
desired value, which implies enclosing formation distortion. To
handle such a problem, the precision constraint is introduced
to ensure the convergence to the desired spacing formation.
Therefore, when any robot is assigned an encircling speed,

the rest of robots are driven by their next-neighbouring robots
to surround a moving target with small spacing errors.

The robot n is constrained by both the moving target and
the obstacle without any constraint from other robots, while
robot i, i ∈ N̄ , is further constrained by its neighbour i+
as discussed in Remark 7. Hence, Theorem 1 and Theorem
2, respectively, provide the analysis without and with the
consideration of inter-robot constraints.

Theorem 1: Under Assumptions 1–2 and 4–5, consider
robot kinematics (1) and system (2) with the velocity observer
(25) and the control law (27) for robot n, then we have the
following results.
(i) The robot n avoids collisions with the target and obsta-

cles, while guaranteeing the limited sensing requirements
during the encircling motion.

(ii) The control input vector un(t) in (27) and dynamics of
ϕn(t) in (28) are bounded.

(iii) When the robot n is outside the obstacle avoidance range,
i.e., ρ∗n(t) ≥ Rcn, the relative distance error eρn(t)
and the estimation error ṽ0n(t) will converge to small
neighborhoods of the origin.

Proof: See Appendix A.
Theorem 2: Under Assumptions 1–5, consider robot kine-

matics (1) and system (2) with the velocity observer (25) and
the control law (26) for robot i, i ∈ N̄ , then we have the
following results.
(i) The robot i avoids collisions with the target, next-

neighbouring robot, and obstacles, while guaranteeing
the limited sensing requirements during the encircling
motion.

(ii) The control input vector ui(t) in (26) and dynamics of
ϕi(t) in (28) are bounded.

(iii) When the robot i is outside the obstacle avoidance range,
i.e., ρ∗i (t) ≥ Rci, the relative distance error eρi(t)
and the estimation error ṽ0i(t) will converge to small
neighborhoods of the origin.

(iv) The included angle error eαi(t) will converge to a small
neighbourhood of zero with or without obstacles.

Proof: See Appendix B.
Remark 10: In view of (46) and (47), V̇i in (47) requires

the boundedness of ϕ̇i+ from the neighbour i+. Due to the
boundedness of ϕ̇n, V̇n−1 in (46) can lead to (47), which im-
plies ϕ̇n−1 is bounded (Theorem 2(ii)). Hence, it is concluded
that for robot i ∈ N , V̇i in (47) can be obtained from (46)
and ϕ̇i is bounded, and thus the proof is omitted.

Remark 11: When the obstacle is static, its velocity vob
vanishes in the derivative of potential function (22). Accord-
ingly, in Theorem 1(i) and Theorem 2(i), vm in (31) and (42) is
replaced by v0, with ||v0|| ≤ ϱ1 (Assumption 1). The analysis
of static obstacle avoidance is similar to the proof of Theorems
1-2 under the same control strategy (25)–(27), and then is
omitted here.

IV. SIMULATION STUDIES

Simulation studies of a group of five nonholonomic mobile
robots are conducted using the control laws (25) and (27) for
the robot 5, and (25) and (26) for the robot i, i ∈ {1, ..., 4}.
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Fig. 2. The phase-plane trajectories of robots, target, and obstacles.

Let the index set Ns = {1, ..., 5} and N̄s = Ns \5. The target
moves from the initial position p0(0) = [5 5]T . The target’s
velocity is given by v0 = [0.2 0.2 sin(0.05t)]Tm/s which is
unknown to all robots. In an obstacle environment, there are
two moving obstacles whose geometrical radii are rob1 = 3m
and rob2 = 2m, respectively. They move from the positions
pob1 = [53 19]T and pob2 = [−5 35(1 −

√
2)]T , respectively,

with the velocities vob1 = [0 − 0.6]Tm/s and vob2 =
[7
√
2π cos(2π/1000t − π/4)/100 − 7

√
2π sin(2π/1000t −

π/4)/100]Tm/s. We set the maximal sensing range ρ̄i = 30m,
and the safety radii of the target and robot i being r0 = 1m
and ri = 0.5m, i ∈ Ns, respectively. Thus, the safety distance
is ρ

i
= 1.5m. Moreover, the included angle is restricted by

αi,i+
= π/6rad and ᾱi,i+ = 11π/24rad, i ∈ N̄s, such

that α5,1 = π/6rad. We chose the obstacle avoidance range
Rci = 15m, the desired radius rdes,i = 5m, i ∈ Ns, and the
desired included angle αdes,i,i+ = 2π/5rad, i ∈ N̄s. In view
of (14), the included angle error is further restricted by the
following user-defined precision constraint functions

Ωαi(t) = (eαi − 0.005) exp(−0.6t) + 0.005

Ω̄αi(t) = (ēαi − 0.005) exp(−0.6t) + 0.005

where eαi = αdes,i,i+ − αi,i+
= 7π/30 and ēαi = ᾱi,i+ −

αdes,i,i+ = 7π/120 according to (13). The onboard sensor is
shifted by d = 0.2m, and the design parameters are selected
as k1i = 5, k2i = 1, ω̄ = 0.5, Γ0i = diag(60, 60), and K0i =
diag(80, 80). The initial states of the robots are [x1 y1 θ1]

T =
[9 7 0]T , [x2 y2 θ2]

T = [6 12 − π/3]T , [x3 y3 θ3]
T =

[−1 11 0]T , [x4 y4 θ4]
T = [−4 5 π/6]T , [x5 y5 θ5]

T =
[3 2 − 3π/4]T , and ˆ̄v0i = ˆ̄v02 = ˆ̄v03 = ˆ̄v04 = ˆ̄v05 = 0.
The simulation results are presented in Figs. 2–4. The

trajectories of the target, robots, and obstacles are shown
in Fig. 2, where the robot group avoids moving obstacles
and encloses the target towards the desired shape. Fig. 3(a)
shows that when the robots move towards the target to avoid
obstacles, the relative distance errors deviate from the origin
but their corresponding error bounds −eρi and ēρi are never
violated, which implies that the collision avoidance with the
target and the limited sensing requirements are guaranteed.
Besides, as shown in Fig. 3(b), the included angle error
between each robot i, i ∈ N̄s and its next neighbour i+
converges to a small neighborhood of the origin even though
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Fig. 3. The evolutions of formation errors. (a) The distance errors
between each robot and moving target. (b) The included angle errors
between neighbouring robots.
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Fig. 4. The control inputs. (a) The linear velocity control inputs. (b) The
angular velocity control inputs.

the robots take evasive action. This further guarantees the
convergence of included angle error between the robot 1 and
the robot 5 as discussed in Remark 1. It is also seen from
Fig. 3(b) that all included angle errors never exceed their
error bounds, which ensures the precise spacing pattern with
and without the presence of obstacles. The control inputs are
shown in Fig. 4.

V. CONCLUSION

This paper solves the moving-target enclosing problem for
nonholonomic multirobot systems in obstacle environments
with the concern of safety navigation and formation precision.
A novel cooperative constrained control framework guarantees
that the mobile robots can track and enclose a moving target
without violating constraints from limited sensing require-
ments and collision avoidance with the target, neighbouring
robots, and moving obstacles. The robot group can converge
to a small neighborhood of the desired enclosing formation
without the need of target’s velocity.

VI. APPENDIX

A. Proof of Theorem 1

Proof: (i) The Lyapunov function candidate for the robot n is
designed as

Vn =
1

2
η2ρn +

1

2
ṽT0nΓ

−1
0n ṽ0n + Vcn (30)
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whose derivative along (2), (5), (7), (22), (24), the velocity
observer (25), and the control law (27) produces

V̇n = − k1n

(
∂ηρn
∂eρn

ηρn − δn
∂δn
∂ρ∗n

)2

− ṽT0nK0nṽ0n

− ṽT0nK0nv0 − δn
∂δn
∂ρ∗n

φT
nvm − ṽT0nΓ

−1
0n v̇0 (31)

where vm = v0 − vob. Under Assumptions 1 and 4, vm is
bounded, i.e., ||vm|| ≤ ϱm. By the completion of squares and
Assumption 1, we have

−ṽT0iK0iv0 ≤ ϵ21
2
ṽT0iK0iṽ0i +

λmax(K0i)

2ϵ21
ϱ21 (32)

−ṽT0iΓ
−1
0i v̇0 ≤ ϵ22

2
ṽT0iΓ

−1
0i ṽ0i +

λmax(Γ
−1
0i )

2ϵ22
ϱ22 (33)

with constants ϵ1 > 0 and ϵ2 > 0. Hence (31) leads to

V̇n ≤ − k1n

(
∂ηρn
∂eρn

ηρn − δn
∂δn
∂ρ∗n

)2

− ṽT0nGnṽ0n

− δn
∂δn
∂ρ∗n

φT
nvm + Cn (34)

where Gn = K0n − ϵ21
2 K0n − ϵ22

2 Γ
−1
0n > 0 with the proper

selection of K0n, Γ0n, ϵ1, and ϵ2, and Cn = λmax(K0n)
2ϵ21

ϱ21 +
λmax(Γ

−1
0n )

2ϵ22
ϱ22 being a positive constant. Since the potential

function (22) embedded in (25) and (27) is active only inside
the obstacle avoidance range, we discuss the following two
cases.
Case I: When the robot n is outside the obstacle avoidance

range, i.e., ρ∗n(t) ≥ Rcn, it follows δn(t) = 0 and ∂δn
∂ρ∗

n
= 0

according to (20)–(22). Thus, the Lyapunov function candidate
(30) and inequality (34) become

Vn =
1

2
η2ρn +

1

2
ṽT0nΓ

−1
0n ṽ0n (35)

V̇n ≤− k1n

(
∂ηρn
∂eρn

)2

η2ρn − ṽT0nGnṽ0n + Cn. (36)

It follows from (23) and (24) that(
∂ηj
∂ej

)2

=
(Ω̄jΩj)

2(Ω̄jΩj + e2j )
2

(Ω̄j − ej)4(ej +Ωj)
4
>

1

(Ω̄jΩj)
2
η4j (37)

where j = ρi, αi. As a result, (36) leads to

V̇n ≤ −k1n
1

(Ω̄ρnΩρn)
2
η6ρn − ṽT0nGnṽ0n + Cn. (38)

Noted that Ω̄ρi = ēρi and Ωρi = eρi are constant. It can be
concluded that V̇n < 0 as long as either

6

√
(Ω̄ρnΩρn)

2Cn

k1n
< |ηρn|, or

√
Cn

λmin(Gn)
< ||ṽ0n||.

Hence, Vn is nonincreasing as 6

√
(Ω̄ρnΩρn)

2Cn

k1n
< |ηρn|. It is

clear from (23) and (35) that ηρn never tends to infinity, which
implies that the constraint (8) is never violated. As a result,
the limited sensing requirements and collision avoidance with
the target are guaranteed when ρ∗n(t) ≥ Rcn. Moreover, the
error ηρn can be reduced by increasing the gain k1n.

Case II: When the robot n is inside the obstacle avoidance
range, i.e., rcn < ρ∗n(t) < Rcn, it follows δn(t) > 0 and
∂δn
∂ρ∗

n
< 0. It follows from (34) that V̇n is negative outside a

compact set if either δn ∂δn
∂ρ∗

n
or ∂ηρn

∂eρn
ηρn is bounded.

Firstly, we suppose δn
∂δn
∂ρ∗

n
is bounded, i.e., |δn ∂δn

∂ρ∗
n
| ≤ c1n

with constant c1n > 0. Consider the following inequality

−δn
∂δn
∂ρ∗n

φT
nvm ≤ 1

2

(
δn

∂δn
∂ρ∗n

)2

+
1

2
vTmvm

and then (34) leads to

V̇n ≤ −k1n

(
∂ηρn
∂eρn

ηρn − δn
∂δn
∂ρ∗n

)2

− ṽT0nGnṽ0n + C1n

where C1n = Cn + 1
2c

2
1n + 1

2ϱ
2
m. Thus, V̇n < 0 as long as

either√
C1n

k1n
<

∣∣∣∣∂ηρn∂eρn
ηρn − δn

∂δn
∂ρ∗n

∣∣∣∣, or

√
C1n

λmin(Gn)
< ||ṽ0n||.

Under assumption of |δn ∂δn
∂ρ∗

n
| ≤ c1n, we can obtain√

C1n

k1n
+c1n <

∣∣∣∣∂ηρn∂eρn
ηρn

∣∣∣∣ ⇒ √
C1n

k1n
<

∣∣∣∣∂ηρn∂eρn
ηρn−δn

∂δn
∂ρ∗n

∣∣∣∣.
It is concluded that V̇n is negative as long as either
ηρn or ṽ0n is outside a compact set {ηρn| ∂ηρn

∂eρn
ηρn /∈

[−
√

C1n

k1n
− c1n,

√
C1n

k1n
+ c1n ]} or {ṽ0n| ||ṽ0n|| /∈

[−
√

C1n

λmin(Gn)
,
√

C1n

λmin(Gn)
]}, which implies Vn never tends

to infinity when rcn < ρ∗n(t) < Rcn.
Secondly, we suppose ∂ηρn

∂eρn
ηρn is bounded, i.e.,

|∂ηρn

∂eρn
ηρn| ≤ c2n with constant c2n > 0. Consider the

following inequality

−δn
∂δn
∂ρ∗n

φT
nvm ≤ k1n

2

(
δn

∂δn
∂ρ∗n

)2

+
1

2k1n
vTmvm

then (34) leads to

V̇n ≤ −k1n

(√
2
∂ηρn
∂eρn

ηρn−
√
2

2
δn

∂δn
∂ρ∗n

)2

− ṽT0nGnṽ0n+C2n

where C2n = Cn + k1nc
2
2n + 1

2k1n
ϱ2m. Thus, V̇n < 0 as long

as either√
C2n

k1n
<

∣∣∣∣√2
∂ηρn
∂eρn

ηρn−
√
2

2
δn
∂δn
∂ρ∗n

∣∣∣∣, or
√

C2n

λmin(Gn)
< ||ṽ0n||.

Under assumption of |∂ηρn

∂eρn
ηρn| ≤ c2n, we have√

C2n

k1n
+
√
2c2n <

√
2

2

∣∣∣∣δn ∂δn∂ρ∗n

∣∣∣∣
which implies√

C2n

k1n
<

∣∣∣∣√2
∂ηρn
∂eρn

ηρn −
√
2

2
δn

∂δn
∂ρ∗n

∣∣∣∣.
It is concluded that V̇n is negative as long as either
δn or ṽ0n is outside a compact set {δn| δn

∂δn
∂ρ∗

n
/∈

[−
√

2C2n

k1n
− 2c2n,

√
2C2n

k1n
+ 2c2n ]} or {ṽ0n| ||ṽ0n|| /∈
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[−
√

C2n

λmin(Gn)
,
√

C2n

λmin(Gn)
]}, which implies Vn never tends

to infinity when rcn < ρ∗n(t) < Rcn.
Therefore, Vn may go to infinity as both δn ∂δn

∂ρ∗
n
and ∂ηρn

∂eρn
ηρn

go to infinity. Next, we discuss the case that both δn
∂δn
∂ρ∗

n
and

∂ηρn

∂eρn
ηρn tend to infinity with the same and opposite signs.

Consider the following inequality

−δn
∂δn
∂ρ∗n

φT
nvm ≤ k1n

(
δn

∂δn
∂ρ∗n

)2

+
1

4k1n
vTmvm

then (34) leads to

V̇n ≤ − k1n

(
∂ηρn
∂eρn

ηρn − δn
∂δn
∂ρ∗n

)2

+ k1n

(
δn

∂δn
∂ρ∗n

)2

− ṽT0nGnṽ0n + C3n

where C3n = Cn + 1
4k1n

ϱ2m. Thus, V̇n < 0 as long as

either C3n < k1n

(
∂ηρn

∂eρn
ηρn

)(
∂ηρn

∂eρn
ηρn− 2δn

∂δn
∂ρ∗

n

)
or C3n <

ṽT0nGnṽ0n. It is clear that when
∂ηρn

∂eρn
ηρn → ∞ and δn

∂δn
∂ρ∗

n
→

∞ with opposite sign, we have δn ∂δn
∂ρ∗

n

∂ηρn

∂eρn
ηρn → −∞, which

implies

k1n

(
∂ηρn
∂eρn

ηρn

)(
∂ηρn
∂eρn

ηρn − 2δn
∂δn
∂ρ∗n

)
→ +∞.

Consequently, before both ∂ηρn

∂eρn
ηρn and δn

∂δn
∂ρ∗

n
simultaneously

tending to infinity with opposite sign, we can find ∀∂ηρn

∂eρn
ηρn /∈

Ωηn and ∀δn ∂δn
∂ρ∗

n
/∈ Ωδn where Ωηn and Ωδn are compact

subsets of R containing the origin such that

C3n

k1n
<

(
∂ηρn
∂eρn

ηρn

)(
∂ηρn
∂eρn

ηρn − 2δn
∂δn
∂ρ∗n

)
which implies that V̇n < 0 when both ∂ηρn

∂eρn
ηρn and δn

∂δn
∂ρ∗

n
are,

respectively, outside compact sets Ωηn and Ωδn. It is conclud-
ed that V̇n < 0 before both ∂ηρn

∂eρn
ηρn and δn ∂δn

∂ρ∗
n
simultaneously

tend to infinity with opposite sign, or as ṽ0n is outside a
compact set, that is, {(ηρn, δn)| ∂ηρn

∂eρn
ηρn /∈ Ωηn, δn

∂δn
∂ρ∗

n
/∈

Ωδn} or {ṽ0n| ||ṽ0n|| /∈ [−
√

C3n

λmin(Gn)
,
√

C3n

λmin(Gn)
]}, which

implies Vn never tends to infinity when rcn < ρ∗n(t) < Rcn.
Next, we show that both ∂ηρn

∂eρn
ηρn and δn

∂δn
∂ρ∗

n
tending to

infinity with the same sign will not happen. Noted that δn(t) >
0 and ∂δn

∂ρ∗
n
< 0 when rcn < ρ∗n(t) < Rcn, and we obtain from

(20) and (21) that

δn
∂δn
∂ρ∗n

→ −∞ as ρ∗n → r+cn.

Furthermore, it follows from (24) that ∂ηρn

∂eρn
> 0, and in view

of (7), (8), and (23), we have

∂ηρn
∂eρn

ηρn→−∞ as ρn→ρ+
n
,
∂ηρn
∂eρn

ηρn→+∞ as ρn→ ρ̄−n .

Thus, when ρ∗n → r+cn and ρn → ρ+
n

simultaneously, both
∂ηρn

∂eρn
ηρn and δn

∂δn
∂ρ∗

n
have the same sign, tending to negative

infinity. In view of Assumption 5 and Remark 4, ρ∗n → r+cn
and ρn → ρ+

n
simultaneously cannot occur. As a result, Vn

never goes to infinity when the robot n is inside the obstacle

avoidance range. Therefore, the limited sensing requirements,
and collision avoidance with both the target and the obstacle
are guaranteed when rcn < ρ∗n(t) < Rcn.

(ii) It is clear from the Theorem 1(i) that Vn in (30) never
tends to infinity, which implies that its arguments ηρn, ṽ0n,
and δn are bounded. The boundedness of ηρn indicates the
boundedness of eρn in view of (8) and (23), which further
implies 0 < ρ

n
< ρn < ρ̄n according to (6). The boundedness

of ηρn also implies that ∂ηρn

∂eρn
is bounded. Besides, it is clear

from (20) that the boundedess of δn guarantees rcn < ρ∗n, and
thus ∂δn

∂ρ∗
n
is bounded. As a result, it is easy to verify from (27)

and (28) that signals un and ϕ̇n are bounded.
(iii) Completing the squares, for any variable x ∈ R, we

have (x3 − x)2 ≥ 0 and (x2 − 1)2 ≥ 0, which produces

−x6 ≤ −3x2 + 2. (39)

Consider V̇n in (38) when the robot n is outside the obstacle
avoidance range. Substituting (39) into (38) yields

V̇n ≤ −3k
1
3
1n(Ω̄ρnΩρn)

− 2
3 η2ρn − ṽT0nGnṽ0n + C̄n

where C̄n = Cn + 2. Thus, we obtain V̇n ≤ −µnVn + C̄n

from (35), where µn = min{6k
1
3
1n(Ω̄ρnΩρn)

− 2
3 , 2 λmin(Gn)

λmax(Γ
−1
0n )

},
which implies that

Vn(t) ≤
(
Vn(0)−

C̄n

µn

)
e−µnt +

C̄n

µn
.

It is further from (35) that as t → ∞, we obtain 1
2η

2
ρn ≤ C̄n

µn

and 1
2 ṽ

T
0nΓ

−1
0n ṽ0n ≤ C̄n

µn
, which produces

|ηρn| ≤

√
2C̄n

µn
, ||ṽ0n|| ≤

√
2C̄n

µnλmin(Γ
−1
0n )

. (40)

As discussed in Remark 6, to ensure the convergence set of
relative distance error {eρn : −Λρn ≤ eρn ≤ Λ̄ρn, as t → ∞}
being small, it is desirable that |ηρn| ≤ ϱρn in (40), with

ϱρn =
√

2C̄n

µn
being small as possible. Thus, small C̄n and

large µn are preferred by selecting large gains k1n and Γ0n

such that the relative distance error eρn(t) and the estimation
error ṽ0n(t) will converge to small neighborhoods of the origin
when ρ∗n(t) ≥ Rcn.

B. Proof of Theorem 2
Proof: (i) The Lyapunov function candidate for the robot i,
i ∈ N̄ , is chosen as

Vi =
1

2
η2ρi +

1

2
η2αi +

1

2
ṽT0iΓ

−1
0i ṽ0i + Vci (41)

whose derivative along (2), (5), (7), (12), (22), (24), (29), the
velocity observer (25), and the control law (26) produces

V̇i =− k1i

(
∂ηρi
∂eρi

ηρi − δi
∂δi
∂ρ∗i

)2

− k2iΩ̄αiΩαi

∂ηαi
∂eαi

η2αi

− ṽT0iK0iṽ0i + ηαi
∂ηαi
∂eαi

φ̄T
i ṽ0i
ρi

−
(
ηαi
ρi

∂ηαi
∂eαi

)2

− δi
∂δi
∂ρ∗i

φT
i vm − ηαi

∂ηαi
∂eαi

ϕ̇i+ −
(
ηαi

∂ηαi
∂eαi

)2

− ṽT0iK0iv0 − ṽT0iΓ
−1
0i v̇0. (42)
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Completing the squares, we obtain

ηαi
∂ηαi
∂eαi

φ̄T
i ṽ0i
ρi

≤
ϵ2α1

2

(
ηαi
ρi

∂ηαi
∂eαi

)2

+
1

2ϵ2α1

ṽT0iṽ0i (43)

−ηαi
∂ηαi
∂eαi

ϕ̇i+ ≤
ϵ2α2

2

(
ηαi

∂ηαi
∂eαi

)2

+
1

2ϵ2α2

ϕ̇2
i+ . (44)

Moreover, it follows from (23) and (24) that

Ω̄jΩj

∂ηj
∂ej

=
(Ω̄jΩj)

2(Ω̄jΩj + e2j )

(Ω̄j − ej)2(ej +Ωj)
2
> η2j (45)

where j = ρi, αi. Using the inequalities (32), (33), (43), (44),
and (45), (42) leads to

V̇i ≤− k1i

(
∂ηρi
∂eρi

ηρi − δi
∂δi
∂ρ∗i

)2

− k2iη
4
αi − ṽT0iGiṽ0i

− δi
∂δi
∂ρ∗i

φT
i vm +

1

2ϵ2α2

ϕ̇2
i+ + C∗

i (46)

where Gi = K0i− ϵ21
2 K0i− ϵ22

2 Γ
−1
0i − 1

2ϵ2α1

I2 > 0,
ϵ2α1

2 < 1, and
ϵ2α2

2 < 1 with the proper selection of K0n, Γ0n, ϵ1, ϵ2, and

ϵα1 , and C∗
i = λmax(K0i)

2ϵ21
ϱ21 +

λmax(Γ
−1
0i )

2ϵ22
ϱ22 being a positive

constant. Since the boundedness of ϕ̇i+ , i.e., |ϕ̇i+ | ≤ ci+ with
constant ci+ > 0, inequality (46) gives

V̇i ≤− k1i

(
∂ηρi
∂eρi

ηρi − δi
∂δi
∂ρ∗i

)2

− k2iη
4
αi − ṽT0iGiṽ0i

− δi
∂δi
∂ρ∗i

φT
i vm + Ci (47)

where Ci = C∗
i + 1

2ϵ2α2

c2i+ . According to Theorem 1(ii), we

know that ϕ̇n is bounded and V̇i for the robot n−1 can lead to
(47). Since the potential function (22) embedded in (25) and
(26) vanishes outside the obstacle avoidance range, we also
discuss the following two cases.
Case I: When the robot i is outside the obstacle avoidance

range, i.e., ρ∗i (t) ≥ Rci, we have δi(t) = 0 and ∂δi
∂ρ∗

i
= 0.

Thus, the Lyapunov function candidate (41) and inequality
(47) become

Vi =
1

2
η2ρi +

1

2
η2αi +

1

2
ṽT0iΓ

−1
0i ṽ0i (48)

V̇i ≤− k1i

(
∂ηρi
∂eρi

)2

η2ρi − k2iη
4
αi − ṽT0iGiṽ0i + Ci. (49)

Using the inequality (37), (49) leads to

V̇i ≤ −k1i
1

(Ω̄ρiΩρi)
2
η6ρi − k2iη

4
αi − ṽT0iGiṽ0i + Ci. (50)

It can be concluded that V̇i < 0 as long as 6

√
(Ω̄ρiΩρi)

2Ci

k1i
<

|ηρi| or 4

√
Ci

k2i
< |ηαi| or

√
Ci

λmin(Gi)
< ||ṽ0i||. Hence, Vi

is nonincreasing as 6

√
(Ω̄ρiΩρi)

2Ci

k1i
< |ηρi| or 4

√
Ci

k2i
< |ηαi|.

It follows from (23) and (48) that ηρi and ηαi never tend
to infinity, which indicates that the constraints (8) and (13)
are never violated. As a result, the limited sensing require-
ments, and collision avoidance with both the target and the
next-neighbouring robot are guaranteed when ρ∗i (t) ≥ Rci.

Moreover, by increasing the gains k1i and k2i, the errors ηρi
and ηαi can be reduced.

Case II: When the robot i is inside the obstacle avoidance
range, i.e., rci < ρ∗i (t) < Rci, we have δi(t) > 0 and ∂δi

∂ρ∗
i
< 0.

Similar to the Case II of Theorem 1(i), V̇i is negative outside
a compact set if either δi ∂δi

∂ρ∗
i
or ∂ηρi

∂eρi
ηρi is bounded.

For |δi ∂δi
∂ρ∗

i
| ≤ c1i with constant c1i > 0, (47) leads to

V̇i ≤ −k1i

(
∂ηρi
∂eρi

ηρi − δi
∂δi
∂ρ∗i

)2

− k2iη
4
αi − ṽT0iGiṽ0i + C1i

where C1i = Ci +
1
2c

2
1i +

1
2ϱ

2
m. It is concluded that V̇i

is negative when {ηρi| ∂ηρi

∂eρi
ηρi /∈ [−

√
C1i

k1i
− c1i,

√
C1i

k1i
+

c1i ]} or {ηαi| ηαi /∈ [− 4

√
C1i

k2i
, 4

√
C1i

k2i
]} or {ṽ0i| ||ṽ0i|| /∈

[−
√

C1i

λmin(Gi)
,
√

C1i

λmin(Gi)
]}.

For |∂ηρi

∂eρi
ηρi| ≤ c2i with constant c2i > 0, (47) leads to

V̇i ≤ − k1i

(√
2
∂ηρi
∂eρi

ηρi −
√
2

2
δi
∂δi
∂ρ∗i

)2

− k2iη
4
αi

− ṽT0iGiṽ0i + C2i

where C2i = Ci + k1ic
2
2i +

1
2k1i

ϱ2m. It is concluded that V̇i

is negative when {δi| δi ∂δi
∂ρ∗

i
/∈ [−

√
2C2i

k1i
− 2c2i,

√
2C2i

k1i
+

2c2i ]} or {ηαi| ηαi /∈ [− 4

√
C2i

k2i
, 4

√
C2i

k2i
]} or {ṽ0i| ||ṽ0i|| /∈

[−
√

C2i

λmin(Gi)
,
√

C2i

λmin(Gi)
]}.

When both ∂ηρi

∂eρi
ηρi and δi

∂δi
∂ρ∗

i
tend to infinity, it is clear

from (47) that

V̇i ≤ − k1i

(
∂ηρi
∂eρi

ηρi − δi
∂δi
∂ρ∗i

)2

+ k1i

(
δi
∂δi
∂ρ∗i

)2

− k2iη
4
αi

− ṽT0iGiṽ0i + C3i

where C3i = Ci+
1

4k1i
ϱ2m. When ∂ηρi

∂eρi
ηρi → ∞ and δi

∂δi
∂ρ∗

i
→

∞ with opposite sign, we have

k1i

(
∂ηρi
∂eρi

ηρi

)(
∂ηρi
∂eρi

ηρi − 2δi
∂δi
∂ρ∗i

)
→ +∞.

Thus, we can find ∀∂ηρi

∂eρi
ηρi /∈ Ωηi and ∀δi ∂δi

∂ρ∗
i

/∈ Ωδi where
Ωηi and Ωδi are compact subsets of R containing the origin
such that

C3i

k1i
<

(
∂ηρi
∂eρi

ηρi

)(
∂ηρi
∂eρi

ηρi − 2δi
∂δi
∂ρ∗i

)
.

It is concluded that V̇i is negative when {(ηρi, δi)| ∂ηρi

∂eρi
ηρi /∈

Ωηi, δi
∂δi
∂ρ∗

i
/∈ Ωδi} or {ηαi| ηαi /∈ [− 4

√
C3i

k2i
, 4

√
C3i

k2i
]} or

{ṽ0i| ||ṽ0i|| /∈ [−
√

C3i

λmin(Gi)
,
√

C3i

λmin(Gi)
]}, which implies Vi

never tends to infinity when rci < ρ∗i (t) < Rci.
Similar to Case II of Theorem 1(i), both ∂ηρi

∂eρi
ηρi and δi

∂δi
∂ρ∗

i

tending to infinity with the same sign will not happen. As
a result, Vi never goes to infinity when the robot i is inside
the obstacle avoidance range. Therefore, the limited sensing
requirements, and collision avoidance with the target, next-
neighbouring robot, and the obstacle are guaranteed when
rci < ρ∗i (t) < Rci.
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(ii) It is clear from Theorem 2(i) that Vi in (41) never tends
to infinity, which implies that its arguments ηρi, ηαi, ṽ0i, and
δi are bounded. The boundedness of ηρi and ηαi, respectively,
indicates the boundedness of eρi and eαi in view of (8), (15),
and (23), which further implies 0 < ρ

i
< ρi < ρ̄i and αi,i+

<
αi,i+ < ᾱi,i+ according to (6) and (11). The boundedness
of ηρi and ηαi also implies that ∂ηρi

∂eρi
, ∂eαi

∂Ω̄αi
, ∂eαi

∂Ωαi
, and ∂ηαi

∂eαi

are bounded. It follows from (20) that the boundedess of δi
guarantees rci < ρ∗i , and thus ∂δi

∂ρ∗
i
is bounded. Moreover, the

boundedness of ˙̄Ωαi and Ω̇αi is derived from the user-defined
functions Ω̄αi and Ωαi. As a result, it is easy to verify from
(26) and (28) that signals ui and ϕ̇i are bounded.
(iii) Completing the squares, for any variable x ∈ R, we

have (x2 − 1)2 ≥ 0, which produces

−x4 ≤ −2x2 + 1. (51)

We consider V̇i given in (50) when the robot i is outside the
obstacle avoidance range. Substituting (39) and (51) into (50)
yields

V̇i ≤ −3k
1
3
1i(Ω̄ρiΩρi)

− 2
3 η2ρi − 2k

1
2
2iη

2
αi − ṽT0iGiṽ0i + C̄i

where C̄i = Ci + 3. Thus, we obtain V̇i ≤ −µiVi + C̄i from
(48), where µi = min{6k

1
3
1i(Ω̄ρiΩρi)

− 2
3 , 4k

1
2
2i, 2

λmin(Gi)

λmax(Γ
−1
0i )

},
which implies that

Vi(t) ≤
(
Vi(0)−

C̄i

µi

)
e−µit +

C̄i

µi
.

From (48), when t → ∞, we obtain 1
2η

2
ρi ≤ C̄i

µi
and

1
2 ṽ

T
0iΓ

−1
0i ṽ0i ≤

C̄i

µi
, which produces

|ηρi| ≤

√
2C̄i

µi
, ||ṽ0i|| ≤

√
2C̄i

µiλmin(Γ
−1
0i )

.

Similar to Theorem 1(iii), small C̄i and large µi are preferred
by selecting large gains k1i and Γ0i such that the relative dis-
tance error eρi(t) and the estimation error ṽ0i(t) will converge
to small neighborhoods of the origin when ρ∗i (t) ≥ Rci.
(iv) Consider the following Lyapunov function candidate

Vαi =
1

2
η2αi (52)

whose derivative along (2), (12), (24), (29), and the control
law (26) yields

V̇αi = − k2iΩ̄αiΩαi

∂ηαi
∂eαi

η2αi + ηαi
∂ηαi
∂eαi

φ̄T
i ṽ0i
ρi

−
(
ηαi
ρi

∂ηαi
∂eαi

)2

−
(
ηαi

∂ηαi
∂eαi

)2

− ηαi
∂ηαi
∂eαi

ϕ̇i+ . (53)

According to (43)–(45), it is clear that (53) leads to

V̇αi ≤ −k2iη
4
αi +

1

2ϵ2α1

ṽT0iṽ0i +
1

2ϵ2α2

ϕ̇2
i+ (54)

with
ϵ2α1

2 < 1 and
ϵ2α2

2 < 1. Theorem 2(i) and Theorem
1(ii), respectively, show the boundedness of ṽ0i and ϕ̇i+ , i.e.,
||ṽ0i|| ≤ ϱ4 and |ϕ̇i+ | ≤ ci+ , which implies that (54) leads to

V̇αi ≤ −k2iη
4
αi + Cαi (55)

where Cαi =
1

2ϵ2α1

ϱ24 +
1

2ϵ2α2

c2i+ . As a result, it is from (51),

(52), and (55) that V̇αi ≤ −µαiVαi + C̄αi, where µαi = 4k
1
2
2i

and C̄αi = Cαi + 1, which implies that

Vαi(t) ≤
(
Vαi(0)−

C̄αi

µαi

)
e−µαit +

C̄αi

µαi
.

It follows from (52) that as t → ∞, we obtain that 1
2η

2
αi ≤

C̄αi

µαi
, which yields |ηαi| ≤

√
2C̄αi

µαi
. Similar to Theorem

1(iii), to ensure the convergence set {eαi : −Λαi ≤ eαi ≤
Λ̄αi, as t → ∞} being small as possible, small C̄αi and large
µαi are desirable by selecting a large gain k2i. Therefore, the
angle error eαi(t) will converge to a small neighbourhood of
zero with or without obstacles.
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