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Cooperative Constrained Enclosing Control of
Multirobot Systems in Obstacle Environments

Ke Lu, Shi-Lu Dai, Member, IEEE, and Xu Jin, Member, IEEE

Abstract— This paper develops a novel cooperative con-
strained control framework to solve the moving-target en-
closing problem for multirobot systems, where safe navi-
gation and formation precision are concerned in obstacle
environments. When moving obstacles block the encircling
motion, the enclosing formation contracts towards the tar-
get with a precise spacing pattern. Without a priori knowl-
edge of environment information, the mobile robot group
can track and enclose a moving target while guaranteeing
limited sensing requirements and collision avoidance with
the target, neighbouring robots, and obstacles. Under the
precision constraint, with an encircling speed assigned to
only one robot, the mobile robots are driven by their neigh-
bours until all robots enclose the target as a whole. With the
help of velocity observers, the robot group can converge to
a small neighborhood of the desired enclosing formation
without knowing the target’s velocity. Simulation results
demonstrate the effectiveness of the proposed constrained
control strategy.

Index Terms— Target enclosing, barrier function, limited
sensing, collision avoidance, obstacle avoidance.

[. INTRODUCTION

Over the last few decades, cooperative control of multia-
gent systems has received considerable attention [1]-[4]. In
particular, the objective of enclosing control is to attain a
formation orbiting around a target for entrapment, protection,
or surveillance. This enclosing formation can block the way
to a specific surrounded area, and also can simultaneously
provide different perspectives of a target. For example, when
the information of interest is a general view of a monitoring
target/area rather than a single view of one sensor, sensor data
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from all vehicles cooperatively monitoring a ground target/area
is fused to provide comprehensive information or a view of the
entire field. This problem has been widely studied in [5]-[10],
where a stationary or moving target is enclosed by a group of
autonomous agents. Tracking and encircling a moving target
becomes more challenging when the target’s velocity is not
available for the control algorithm. For the case where the
position or velocity of a target is unknown, observers are
typically constructed for multiagent systems to estimate the
unknown information [11], [12]. In terms of the enclosing
formation, multiple agents are driven to surround a target with
even distribution in [13], [14]. However, in some applications,
an even distribution might not be preferred, and in contrast,
the convergence to any prescribed spacing formation along the
circle might provide a better performance [15]-[18].

On the one hand, coordination control design is usual-
ly concerned with the safety problem, which requires that
collisions with neighbouring agents or/and obstacles never
occur. On the other hand, an onboard sensor can only work
reliably within a certain range due to its limited sensing
capability, which is another safety hazard. In [19], [20], the
problems of collision avoidance and connectivity maintenance
for multiagent systems are addressed by handling inter-agent
distance constraints. In the context of enclosing control, the
inter-agent collision avoidance is taken into account to enhance
the target enclosing performance in [21], [22]. Although some
works have addressed the problem of collision avoidance
with either the target or neighbours, the obstacle avoidance
is also of great importance for enclosing control design since
the operating environment is often severe and cluttered. In
such an obstacle-cluttered environment, an elastic formation
is preferred [23], where multiagent systems generate a time-
varying formation to avoid the obstacle, but the environment
information is required to be known a priori.

Constrained control design can ensure the system output to
remain within a certain range specified by safety requirements.
This constrained control problem has been extensively studied,
e.g., [24]1-[26], where different kinds of barrier functions are
developed for constrained control systems. Due to the advan-
tage in handling constrained systems, barrier functions have
been employed to guarantee the collision avoidance or/and
limited sensing capabilities for multiagent systems [27]-[32].
In addition, potential functions [33]-[37] can be integrated
into control Lyanpunov synthesis to drive autonomous agents
convergence to a desired formation without any collision with
obstacles. Even though the safety problem has been partially
addressed in the aforementioned works, the moving-target
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enclosing control problem with the concern of safety and
precision constraints is still a challenging issue. On the one
hand, the enclosing control design is required to simultaneous-
ly meet constraint requirements from the target, neighbouring
agents, and obstacles during the encircling motion. On the
other hand, due to the higher priority of obstacle avoidance,
formation errors sometimes are inevitably required to deviate
from the origin, which implies the formation precision against
safety. Consequently, the constraints with different types arise
in the moving-target enclosing control design. A loose inter-
agent constraint implies formation error tolerance, allowing
the enclosing formation to be elastic for obstacle avoidance
without violating any constraint. In contrast, a tight inter-agent
constraint can force the multiagent systems to converge to a
precise formation. Furthermore, the target-agent distance and
the spacing among neighbouring agents cannot be too small or
too large, which implies the two side constraints. In contrast,
the relative distance to the obstacles cannot be too small only,
which means the one side constraint. Hence, the aforemen-
tioned control algorithms cannot be directly extended to the
enclosing formation control design in obstacle environments.
How to develop a constrained control framework without the
knowledge of target’s velocity is an important research topic
yet to be examined.

In this work, we develop a novel cooperative constrained
control framework to solve the moving-target enclosing prob-
lem for a group of nonholonomic mobile robots in obstacle
environments. The novelty of the work lies on the constrained
control framework where the constraints from both safety
navigation and formation precision are considered such that (i)
the limited sensing requirements and collision avoidance with
the target, neighbouring robots, and obstacles are guaranteed
despite the lack of target’s velocity; and (ii) while only one
robot is assigned an encircling speed, the robot group can
converge to a small neighbourhood of the desired formation,
enclosing a moving target. Different from [12]-[15] where
an even spacing formation is generated, or a desired spacing
pattern is obtained by adjusting robot’s velocity or position,
the formation precision constraint studied in this work forces
the robots to generate a desired spacing formation and revolve
around a moving target. Compared with the works [5], [22]
that prevent collisions with either the target or neighbouring
robots, the presented algorithm further considers the limited
sensing constraint and collision avoidance with moving obsta-
cles. The contributions of this work are summarized as follows.

(i) A novel cooperative constrained control strategy is pro-
posed to address the moving-target enclosing problem,
where both safety navigation and formation precision are
considered, despite the lack of target’s velocity.

(i) The safety constraints, which considers the limited sens-

ing capability of onboard sensors, and target-robot/inter-

robot collision avoidance, allow for the embedded po-
tential function deforming the enclosing formation for
obstacle avoidance.

The presented algorithm enables mobile robots to avoid

collision with the nearest static or moving obstacle with-

out a priori knowledge of environment information, and

(iii)

the local minima problem resulted from potential func-
tions is prevented with the target’s trajectory sufficiently
far from obstacles.

(iv) With an encircling speed assigned to only one robot, the
precision constraint drives the robot group to converge to
a desired spacing formation and enclose a moving target.

II. PROBLEM FORMULATION
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Fig. 1. lllustration of enclosing a target by multiple mobile robots in an
obstacle environment.

Consider a moving target is enclosed by a group of n >
2 nonholonomic mobile robots in a plane. Let the index set
N ={1,...,n}. The kinematics of robot 3, i € N/, is modeled
as

. cos 0,(t)
pit) = [ sin 0;(t)
0i(t) = wi(t)

} u(t) (1)

where p;(t) = [z;(t) v:(t)]T € R? is the position of robot
i with respect to a global coordinate frame, 6;(¢) is its
heading angle, v;(t) and w;(t) are the linear and angular
velocity control inputs, respectively. As shown in Fig. 1, the
onboard sensor of robot i is installed at the position pg;(t) =
[z5i(t) ysi(t)]T which is shifted a non-zero distance d from
p;(t) along direction 6;(t). The position pg;(t) is described
by psi(t) = pi(t) + d[cos 0;(t) sinb;(t)]T whose dynamics is
modeled as

Psi(t) = Hi(t)ui(t) 2
where wu;(t) = [v;(t) w;(t)]T and H;(t) is defined as
cosB;(t) —dsinb;(t)
Hi(t) = sinf;(t)  dcosb;(t) )

It should be noted that det(H;(t)) = d implies H;(t) is
invertible with d # 0. The moving target is governed by

po(t) = vo(t)

where p()(t) = [{E()(t) yo(t)]T € R? and 'U()(t) € R? are the
position and velocity of the target, respectively. The relative
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distance between the onboard sensor of robot 7 and the moving
target is defined as

pi(t) = v/ (@si(t) — 20()? + (ysi(t) = 90(t))? ()

whose derivative yields

pi(t) = @7 (O)[psi(t) = vo ()] )
where ¢;(t) = %&’;"m = [cos ¢;(t) sin¢;(¢)]T is the unit

vector from the target pointing to the onboard sensor, and ¢;(t)
is the bearing angle of vector ;(t) as shown in Fig. 1. The unit
vector @;(t) = [cos(¢(t) £ 5) sin(¢;(t)+75)]” is orthogonal
to ;(t), where =7 denotes the opposite directions.

Assumption 1: The target’s velocity and acceleration are
bounded, i.e., ||[vo|| < 01 and ||0g]| < 02 where g1 and g9
are positive constants.

A. Limited Sensing and Collision Avoidance With Target

A geometrical radius r; centered at the position of the sensor
covering the robot ¢ is labeled as a safety region. The other
safety radius of the target is labeled as 7. Collision avoidance
and limited sensing require that

p, < pi(t) <pi (6)

where p, = Ti + 70 and p; denote the safety distance and
the maximum sensing range, respectively. Define the relative
distance error as

€pi (t) = P (t) — Tdes,i N

where 74c5; is the desired radius centered at the target.
Substituting (7) into (6) yields

_Qpi < epi(t) < éPi (8)

where €pi = Tdes,i — P, and €,; = p; — T'qes,; With 0 < P, <
Tdes,i < ﬁz

Assumption 2: At the initial time t = 0, the robot 4, ¢ €
N does not violate the constraint requirement on the relative
distance, that is, p, < pi(0) < p; holds.

B. Collision Avoidance With Neighbouring Robots

For convenience of presentation, define the index set N =
N\ n. The encircling speed is assigned to any robot in
the group, and this robot is labeled as robot n. Then, its
previous neighbor is labeled as robot n—1 in the clockwise or
counterclockwise radial order around the target pg according to
the encircling motion direction until all robots are well defined.
In terms of this definition, the robot i, i € N, has its next-
neighbouring robot 7 4 1 labeled as 7;. According to the arc
length formula, the collision avoidance between neighbouring
robots is established resulted from the minimal radius P, and
the corresponding minimal included angle. As shown in Fig.
1, the included angle o; ;4 (t) between robot i, i € N, and its
next-neighbouring robot 74 can be calculated as

e (PR Opo )
i () (|p0i<t>||pm+ (t>|>

where po;(t) = psi(t) — po(t), poi, (t) = psiy (t) — po(t), and
cos™! is the inverse cosine function. The robot i, i € N, is

assumed to have access to the relative position of the target
and its next-neighbour robot 7, via an onboard sensor, e.g.,
a laser radar, such that their included angle is computable.
For inter-robot collision avoidance, the constraint of minimal
included angle o, ;, is imposed on the included angle a; ;4 (t)
between the robot 7, i € A/, and its neighbour 7, that is,

Qg < Oy (). )

According to the neighbouring robot definition, the first robot
(robot 1) is the next-neighbour of the last robot (robot n).
However, constraint (9) is not imposed on their included
angle, since robot n is designed to circle the moving target
independent to the others. Define their included angle v, 1 and
in view of the definition of neighbouring robots, we obtain

ana(t) =21 =) aii, () (10)
ieEN

which implies that the included angle v, 1(t) between the
first and the last robots depends on the rest of included angles
;i (t). Moreover, the lower bound of «, 1(t) relies on the
upper bounds of «; ;. (), that is, Q, 1 <21 — D ien Qi
which prevents collision between the first and the last robots.
Thus, we define the following constraint on the included angle

Qi (t) < 5&1'71‘_'_ .
Therefore, the following inequality
1D

is required to prevent collisions between each robot and its
next neighbour, where Qg and &;;, are respectively the
minimal and maximal included angles. Define the included
angle error as

Qi < (1) <@g,

eai(t) = iy, (t) — Qdes,ii, (12)

where auges,i i, 1S the desired included angle. Substituting (12)
into (11) produces

—Ci < eai(t) < € (13)

where €,; = Qdes,i i, —Q;;, and €a; = @i, — Odes,ii, With
0<a;,, <adesii, <Qis,-

Remark 1: According to the definition of neighbouring
robots, the desired included angles ages,i;, correspond to
the encirclement of the target, and we know that agesn,1 =
2m — Eie & Qdes,i iy » Which implies that the desired included
angle oges,n,1 between the first and the last robots is not
specified and relies on Qges i, ¢ € N. Thus, in view of
(10), the included angle error e,y (t) = an1(t) — Adesn,1 =
— D ;eN €ai(t), which indicates that the included angle error
€an(t) depends on the sum of included angle errors between
each robot 4, i € N, and its next-neighbouring robot 7.
Hence, the small error e, (t) requires that all errors ey (t),
i € N, converge to a small neighborhood of zero.

Assumption 3: At the initial time ¢ = 0, the robot i, 7 €
N, does not violate the constraints imposed on the included
angles, i.e., a;;, <, 0) < @iy -

It is clear from Assumption 3 and the neighbouring robot
definition that the inter-robot collision along radial direction
will not happen for ¢ > 0 if the designed control laws
guarantee the included angle constraints (11).
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C. Formation Precision

The formation precision requires that the robots maintain
the desired spacing formation to surround a target even when
their encircling motions are blocked by obstacles. Accordingly,
the included angle error (12) is further restricted by

—Q,(1) < eai(t) < Qailt), i €N (14)
where Q_;(t) > 0 and Q,;(t) > 0 are the designed decreasing
C* functions such that the included angle error e,;(t) is driven
to a small neighbourhood of zero as time evolves. Moreover,
the constraint requirement (14) should satisfy the angle error
constraint (13), that is, the following inequality

—€ai £ ~Qoi(t) < €ailt) < Qailt) < Eaiy i €N (15)
is satisfied. It is clear that if the constraint requirement (14)
is guaranteed by the designed controller, the inequality (13)
holds, and thus the constraint imposed on the included angle
(11) is never violated. A brief summary of different types of
constraints considered in this work can be seen in Table 1.

TABLE |
Constraint Constrained Purposes Eq.
Types Objects p No.
Relative To avoid collisions with the ®
Safety Distances target and neighbouring )
Constraints Included robots, and to guarantee an
Angles limited sensing requirements.
To ensure convergence to a
Precmpn Included Angle small neighbourhood of the (14)
Constraints Errors . . .
desired spacing formation.

Remark 2: When obstacles block the enclosing motion, the
robots are expected to shrink their enclosing radii to surround
the target and avoid obstacles simultaneously. This implies that
the formation error (7) in the radial direction is expected to
deviate from the origin due to the higher priority of obstacle
avoidance, but the safety constraint (8) cannot be violated.
Thus, the precise formation only requires that the included
angle should not deviate much from its desired value, which
indicates the desired spacing is maintained during the motion.

Remark 3: As discussed in Remark 1, small included angle
errors ey, 1 € N are preferred, such that e, (t) converges
to a small neighbourhood of the origin. Thus, the precision
constraint (14) is further designed to ensure that included angle
errors should not deviate much from zero. As a result, the
robots are driven to surround a moving target with a precise
spacing formation in obstacle environments, despite the lack
of accurate knowledge of target’s velocity.

Enclosing Control Objective: The enclosing control objec-
tive is to design cooperative control laws for robot i, i € N,
such that:

(i) the robot ¢ avoids collisions with the target, neighbouring
robots, and obstacles, while guaranteeing the limited
sensing requirements during the encircling motion; and

(ii) the included angle error e,;(t) will converge to a small
neighbourhood of zero with or without obstacles.

[1l. MOVING-TARGET ENCLOSING CONTROL DESIGN

This section presents a constructive design technique of
moving-target enclosing control for system (1) to achieve the
control objective mentioned above. Although there are more
than one moving obstacles in the environment, the proposed
control algorithm only considers to avoid the nearest one
(shown in Fig. 1), whose velocity is governed by p.,(t) =
Vob(t) With pop(t) = [Top(t) Yob(t)]T € R? and vop(t) € R?
being the position and velocity, respectively. The relative
distance between the target and the nearest obstacle is defined
as

poc(t) = /(2o (t) = zob(1))? + (yo(t) — b (1))>  (16)

where the positions po(t) = [zo(t) yo(t)]T and puy(t) =
[Zob(t) Yob(t)]T can be measured by an onboard sensor, e.g.,
a laser radar. For encircling motion, define that the robot’s
orbit is a set of positions {p.;(t)| ||p.;(t) — po(t)|| = pi(t)}.
which describes a circle centered at the target po(¢) with radius
pi(t). Thus, the position p%;(t) = [x%,(t) vy (¢)]T, which is
the crosspoint of target-obstacle connecting line and the orbit
(shown in Fig. 1), corresponds to the shortest distance p (t)
from positions p,;(t) to the obstacle. The relative distance
between the position p%;(¢) and the obstacle is given by

pi () = \J@ii(0) — 2a()? + (3(0) — von(D)?

whose derivative yields

pi (t) = @i T (D02 () — vob (1))

where ¢} (t) = %(tp)ob(t)

pointing to p*, (), and p?; (t) is the velocity of robot’s onboard
sensor when it is exactly at position p?,(¢). In the presence of
an obstacle, the robot i, 7 € N, is required to avoid the moving
obstacle, that is,

a7

is the unit vector from the obstacle

ra < 1) (18)

where r.; = r; 47, denotes the safety distance that allows the
passage of the robot ¢ with 7., being the geometrical radius
covering the nearest obstacle. Furthermore, the robot 7 does not
take evasive action until the relative distance p} (¢) is less than
a pre-defined obstacle avoidance range R.;, that is, p}(t) <
R.; with r,; < R.; < p;. It is reasonable that the obstacle
avoidance range R.; is less than the limited sensing range p;.

Assumption 4: The obstacle’s velocity is bounded, i.e.,
[lvon|| < 03 with constant g3 > 0.

Assumption 5: There is enough separation distance for the
robot ¢ to avoid collisions with the target and the obstacle
simultaneously, that is, po.(t) > p;+ e

Remark 4: The shortest distance p}(t) defined in (17) is
employed to construct the potential function (20) for obstacle
avoidance. However, it is not necessarily to know the corre-
sponding position pZ,(¢) for calculation of p} (). Alternatively,
pi(t) can be obtained by the following geometrical relation-
ship

p; (t) = poc(t) — pi(t) (19)

where po.(t) and p;(t) are defined in (16) and (4), respectively.
Furthermore, in view of (19), Assumption 5 implies that
poc(t) = p;(t)+pi(t) > p,+7c;. Consequently, we obtain that
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pi(t) > rei as pi(t) — pf, and pi(t) > p, as pi(t) — v,
which implies p;(t) — p+ and p;(t) — r} cannot occur
simultaneously. Noted that  — a* denotes z tending to a
with x > a, whereas x — a~ denotes = tending to a with
x < a, where x is a variable and « is a constant or a variable.

The potential function with respect to the shortest distance
pi(t) is designed for obstacle avoidance as follows

Vi) = 6*2( ) (20)
with
PHORE rei < pi(t) < Mo
07 () = 4 Acipi®(t) = Beipf(t) + Cein Mei < pi(t) < Rei
27 27R.; o
where A, = oo B, = SRy, ., =
27RZ;

T —yss Mei = 2l with v < M < Rei due to
rei < Rei, and 87 (t) is a C! function with respect to the
relative distance p;(t). Noted that ¢} (¢ ) has the following
properties: i) 87 (t) — 400 as p}(t) — rf, and i) 67 (t) = 0
as pf(t) > Re;. T VE(L) never goes to infinity, which implies
that p; () never tends to 7, then no collision with the obstacle
is guaranteed. The derivative of 6 (¢) along (17) produces

6 (t) = ot %‘T(t) (5 (t) — vob (t)] 2D
with
—1 *
057 (GIOEIEL Tei < p;(t) < Me;
ap* = 2Acip>; (t) - Bcia Mci < P;—k (t) < Rci
) o) > Rer

However, during the encircling motion, the robot i, i € N,
is not always at the position p*,(¢). Thus, in the presented
obstacle avoidance strategy, the robot ¢ takes evasive action
when the position p?; () gets close the moving obstacle, which
means that although the robot ¢ is not at the position p%,(t), it
still moves towards the target in the direction —; () to avoid
the obstacle. Hence, the potential function with respect to the
current position is designed as

95;
Ip;

Valt) = 502(1), 8i(t) = — poroT (D [pai(t) — v (1)] 22)
where §; = 6} and 85 = g i preserve the magnitudes of (20)
and (21), respectlvely, and —;(t) indicates i (t) pointing
towards the target whereas ;(t) pointing away from the target.

Remark 5: Consider the relative distances p; () between all
positions p;i(t) in the orbit and the nearest obstacle. It is clear
that V%(p¥) > Vii(p;), since pi(t) is the shortest distance
among p;(t), and the potential function increases with the
decrease in the distance according to (20) and (21). Thus,
if the designed controller guarantees Vp’g(p;*) never tending to
infinity, which implies r; < p}(t) < p,(t), then robot ¢ at any
position of the orbit will not hit the obstacle. It is interpreted
from (22) that the moving obstacle is rotated around the target
to a virtual position such that the virtual obstacle, robot 7, and
the target are collinear, where robot 7 lies between the target
and the virtual obstacle. The virtual obstacle moves towards

the robot ¢ along the radius direction —;(t). Hence, robot 4

is controlled to simultaneously avoid the target and the virtual
obstacle.

To satisfy constraints (8) and (14), the following universal
barrier function is applied in the control design

1
V;(t) = 577?(15), j=pi,ai (23)
with
) = (OO

@0 - OO +,m) 7~
where 7n;(t), j = pi, «i, are the transformed error variables,
Q,i(t) = €, and Q,(t) = e, are constants from (8),
Q.;(t) > 0 and Qi (¢ ) > 0 are time-varying functions from
(14). n;(t) has the following properties: i) ;(¢t) — —oo when
e;(t) = fﬂj(t); ii) n;(t) — 400 when e;(t) — Qj_ (t); and
n;(t) = 0 if and only if e;(¢) = 0.

Remark 6: It follows from (23) that when the transformed
errors 1;(t) converge to a small neighbourhood of zero, that
is, |n;| < 0, j = pi, o4, with constants g; > 0, the error

variables e; converge to the sets {ej : fAj <e; < Aj, ast —
oo} where
A Kj + /6] +403Q;9Q; - Rj+ 4 /R3 + 403050,

with k= —Qij — Qij + Q7QJ and Kj = _Qij + Qij —
0j£2;. Using the I’ Hopital’s rule, we obtain that

lim A; =0, lim A;j=0

0;—0 0;—0
which implies that the smallest possible value o; is preferred
such that the errors e; converge to a small neighbourhood of
Zero.

The derivative of 7; produces

0 0 on
0 = mQ—&— iy —&——ej,] pi, o

00, 7 o, T b, @
where
Iy _ —9¢3 Iy _ Qe]
0% (8 —ej)*(e; +9Q,)7 09;  (—ej)(e; +Q;)?
oy 9;(89; + ef)
dej  (Q5 —ej)2(ej +2;)%

Since the target’s velocity vg is not available for feedback, the
robot ¢ estimates the target’s velocity 0p; with estimation error
Uo; = Vo; — vo. The velocity observers are designed as

) i 0 )
Doi = Foi(—KOi@Oi—SOi <77p1 gnp —0; gp*))’ i€ N (25)
€pi

)

with T'g; = diag((fol‘j) € R?*2 and Ko = diag(kOij) S R2X2,
Jj = {1,2}, where g¢;; > 0, ko;; > 0 are design parameters.
The control laws for the robot i, i € N, are designed as
w;= H; ' (piuri + @iug; + 9oi), i €N
u;= H; ' (pjuri + @iwp; + 9oi), i =n

(26)
27
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with the rest of robots are driven by their next-neighbouring robots
Mpi d6; to surround a moving target with small spacing errors.
ur; = — ki < Je i — 04 9 p*> The robot n is constrained by both the moving target and
(] 3 . . .
B P 826 . e . the obstacle without any constraint from other robots, while
g = — k2,000 Maipi — 8(2&9‘“'01 -3 Qm. Q.0 robot 4, i € N, is further constrained by its neighbour 7
5 5 av o as discussed in Remark 7. Hence, Theorem 1 and Theorem
_ Nai 9Mai nai&pi 2, respectively, provide the analysis without and with the
pi Ocai deqi consideration of inter-robot constraints.

where ki; > 0, ko; > 0 are control gains, ¢; and @; are
orthogonal unit vectors defined in (5), H, 1is the inverse
matrix defined in (3), and @ > 0 is a design parameter.
Remark 7: The controllers (26) and (27) indicate that the
robot n is constrained by both the moving target and the
obstacle via terms about 7,,, and d,, with no constraints from
other robots, while robot i, ¢ € N, is further constrained by
its neighbour ¢ (terms about 7,; in u9;). Inside the obstacle
avoidance range, the robots adjust their encircling radii along
; to meet both constraint requirements from 7,; and J;.
Consider the bearing angle ¢;(t) defined in (5), control laws
(26) and (27), the dynamics of ¢; can be derived as
Gim T B o ey
Pi Pi
where ©; = “2i € N, and ©; = @, i = n. The dynamics
of included anéle ;i is given by

(28)

U24

. . . B p-—vo . . _
QG :¢i—¢i+ :SO;TFL—@H ieN

(3

where ¢; and ¢;, are defined in (5), and <;§Z is given in (28).
Remark 8: In terms of (2) and (27), when 6,, = 0 and
epn — 0, we have psp, — @nirges,n + Von. The first part
means that the robot n revolves around the moving target at
speed @,Wrdes,, With direction @,, and magnitude Wrges p.
The second part means that the robot n tracks the moving
target with estimation velocity g,. If the estimation error
vg; — 0, then we have pg,, — $,W0Tges,n + Vo, Which further
implies that qbn — @ by (28). By contrast, the controller (26)
for robot i, i € N, lacks the encircling speed term @;wp;
for revolving around the moving target. In terms of (2) and
(26), when 6; = 0 and e;(t) — 0, j = pi, i, we know
that pg; — 0g,. This indicates that the robot ¢ only tracks the
moving target with estimation velocity 9g;, without encircling
motion. Additionally, if the estimation error vg; — 0, then
DPsi — vg, which further implies ¢; — 0 according to (28).
Remark 9: The encircling speed @;wp; can be treated as an
external disturbance with the direction ¢; and the magnitude
wp; that forces the whole formation to revolve around a
moving target. Furthermore, it follows from (12) and (29)
that the convergence of included angle error e,;(t) depends
on both bearing angles dynamics QS, and (bl .- However, the
robot 4, 1 € N, only accesses to the relative position without
the knowledge of b; , from its neighbour, while tracking the
desired included angle ages,i,;, . With a higher magnitude of
encircling speed, the included angle may not converge to its
desired value, which implies enclosing formation distortion. To
handle such a problem, the precision constraint is introduced
to ensure the convergence to the desired spacing formation.
Therefore, when any robot is assigned an encircling speed,

(29)

Theorem 1: Under Assumptions 1-2 and 4-5, consider
robot kinematics (1) and system (2) with the velocity observer
(25) and the control law (27) for robot n, then we have the
following results.

(i) The robot n avoids collisions with the target and obsta-
cles, while guaranteeing the limited sensing requirements
during the encircling motion.

The control input vector uy,(t) in (27) and dynamics of
¢n(t) in (28) are bounded.

When the robot n is outside the obstacle avoidance range,
ie., pi(t) > Ry, the relative distance error e, (t)
and the estimation error ¥, (t) will converge to small
neighborhoods of the origin.

Proof: See Appendix A.

Theorem 2: Under Assumptions 1-5, consider robot kine-
matics (1) and system (2) with the velocity observer (25) and
the control law (26) for robot i, i+ € A/, then we have the
following results.

(ii)
(iii)

(i) The robot 7 avoids collisions with the target, next-
neighbouring robot, and obstacles, while guaranteeing
the limited sensing requirements during the encircling
motion.

The control input vector u;(¢) in (26) and dynamics of
¢i(t) in (28) are bounded.

When the robot i is outside the obstacle avoidance range,
ie., pi(t) > R, the relative distance error ep;(t)
and the estimation error ¥g;(¢) will converge to small
neighborhoods of the origin.

The included angle error e,;(t) will converge to a small
neighbourhood of zero with or without obstacles.

Proof: See Appendix B.

Remark 10: In view of (46) and (47), V; in (47) requires
the boundedness of & , from the neighbour 7. Due to the
boundedness of én, Vn_l in (46) can lead to (47), which im-
plies gz'Sn_l is bounded (Theorem 2(ii)). Hence, it is concluded
that for robot i € A, V; in (47) can be obtained from (46)
and ¢; is bounded, and thus the proof is omitted.

Remark 11: When the obstacle is static, its velocity v,
vanishes in the derivative of potential function (22). Accord-
ingly, in Theorem 1(i) and Theorem 2(i), v, in (31) and (42) is
replaced by v, with ||vg|| < 01 (Assumption 1). The analysis
of static obstacle avoidance is similar to the proof of Theorems
1-2 under the same control strategy (25)—(27), and then is
omitted here.

(ii)
(iii)

(iv)

V. SIMULATION STUDIES

Simulation studies of a group of five nonholonomic mobile
robots are conducted using the control laws (25) and (27) for
the robot 5, and (25) and (26) for the robot i, i € {1,...,4}.
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Fig. 2. The phase-plane trajectories of robots, target, and obstacles.

Let the index set N = {1,...,5} and Ny = N \ 5. The target
moves from the initial position py(0) = [5 5]7. The target’s
velocity is given by vg = [0.2 0.25in(0.05t)]Tm/s which is
unknown to all robots. In an obstacle environment, there are
two moving obstacles whose geometrical radii are r,,; = 3m
and 7,52 = 2m, respectively. They move from the positions
Pop1 = [53 19]7 and popo = [—5 35(1 — /2)]T, respectively,
with the velocities vop; = [0 — 0.6]7m/s and vop2 =
[7v/27 cos(2m/1000t — 7/4)/100 — 7+/27 sin(27/1000t —
7/4)/100]7 m/s. We set the maximal sensing range p; = 30m,
and the safety radii of the target and robot ¢ being 7o = 1m
and r; = 0.5m, 7 € N, respectively. Thus, the safety distance
is p, = 1.5m. Moreover, the included angle is restricted by
a;; = m/6rad and a;;, = 1lm/24rad, i € N, such
that a5 ; = m/6rad. We chose the obstacle avoidance range
R¢; = 15m, the desired radius rges; = 5m, ¢ € N, and the
desired included angle cvges,ii, = 27 /brad, i € N,. In view
of (14), the included angle error is further restricted by the
following user-defined precision constraint functions

Q.,(t) = (e,; — 0.005) exp(—0.6t) + 0.005
Qui(t) = (£ai — 0.005) exp(—0.6t) + 0.005

where €,; = Qdes,iip — Q;;, = 7r/30 and €n; = @y, —
desiiy = 77 /120 according to (13). The onboard sensor is
shifted by d = 0.2m, and the design parameters are selected
as k1; = 5, ko; = 1, w = 0.5, I'y; = diag(60, 60), and Ky, =
diag(80, 80). The initial states of the robots are [z1 y; 61]7 =
[9 7 O]T, [.IQ Y2 QQ}T = [6 12 — 7T/3]T, [373 Y3 93]T =
[—1 11 O]T, [I4 Yq 94]T = [—4 5 7T/6]T, [565 Ys 05]T =
[3 2 — 3’/T/4]T, and 12}01' = ’12)02 = ’ﬁog = 12104 = 'l£)05 =0.

The simulation results are presented in Figs. 2—4. The
trajectories of the target, robots, and obstacles are shown
in Fig. 2, where the robot group avoids moving obstacles
and encloses the target towards the desired shape. Fig. 3(a)
shows that when the robots move towards the target to avoid
obstacles, the relative distance errors deviate from the origin
but their corresponding error bounds —e,; and é,; are never
violated, which implies that the collision avoidance with the
target and the limited sensing requirements are guaranteed.
Besides, as shown in Fig. 3(b), the included angle error
between each robot i, i € N and its next neighbour i
converges to a small neighborhood of the origin even though

8 2 ‘

~

>

Y

o

o ———

Linear velocity control inputs (m/s)
S
Angular velocity control inputs (rad/s)

afl, ap o "
WAL LAk w A 8
Ay AraA -9
A Y WV (W4 Vs b“v‘ ‘}’?‘Jg LA
. 54
(%4 W Y
1 v b 4
0 -5
50 100 150 200 50 100 150 200
Time(s) Time(s)
(a) (b)

Fig. 4. The control inputs. (a) The linear velocity control inputs. (b) The
angular velocity control inputs.

the robots take evasive action. This further guarantees the
convergence of included angle error between the robot 1 and
the robot 5 as discussed in Remark 1. It is also seen from
Fig. 3(b) that all included angle errors never exceed their
error bounds, which ensures the precise spacing pattern with
and without the presence of obstacles. The control inputs are
shown in Fig. 4.

V. CONCLUSION

This paper solves the moving-target enclosing problem for
nonholonomic multirobot systems in obstacle environments
with the concern of safety navigation and formation precision.
A novel cooperative constrained control framework guarantees
that the mobile robots can track and enclose a moving target
without violating constraints from limited sensing require-
ments and collision avoidance with the target, neighbouring
robots, and moving obstacles. The robot group can converge
to a small neighborhood of the desired enclosing formation
without the need of target’s velocity.

VI. APPENDIX

A. Proof of Theorem 1

Proof: (i) The Lyapunov function candidate for the robot n is
designed as

1, 1

Vo= 5o + iﬁoTann Don + Ven (30)
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whose derivative along (2), (5), (7), (22), (24), the velocity
observer (25), and the control law (27) produces

Vn = mn n
e " op:

) Uon KOnUOn

n

~ Io}) T el
vgnKOnvo — 6,L§@£vm — UOTnF(mlvo 31

where v, = vg — Vop. Under Assumptions 1 and 4, v, is
bounded, i.e., ||vy,|| < 0. By the completion of squares and
Assumption 1, we have

62 ~ ~ /\max (KOi) 2

— g Koivo < Elvg;‘KOiUOi + 9e2 01 (32)
€1
- 1. €5 . 1~ )\max Pi‘l
— 09, Lg; 00 < =09, 15; oi + #Q% (33)
2 2e5
with constants €; > 0 and e5 > 0. Hence (31) leads to
. on 19
Vn < -k n - mn 571 - G n
- ' (5epn e apq*m) Uon nto
6,

— 0y "B 08 U + C (34)
where G,, = Ko, — %K(m — %Fanl > (0 with the proper
selection of Ky,, I'g,, €1, and €3, and C,, = Mg +
Amdx(l“on )

53 03 being a positive constant. Since the potential
function (22) embedded in (25) and (27) is active only inside
the obstacle avoidance range, we discuss the following two
cases.

Case I: When the robot n is outside the obstacle avoidance
range, i.e., py(t) > Rep, it follows 0, () = 0 and 8‘5” =0
according to (20)—(22). Thus, the Lyapunov function candldate
(30) and inequality (34) become

1 1 .
Vv, = 577,3” + ivoTnFO,}vOn (35)
) 677pn ? 2 ~T ~
Vn <- kln npn - 'UOnGn’U()n + Cn (36)
0epn
It follows from (23) and (24) that
(%)2 L -
de; (€ —ej)t(e; + Q) ~ (;0;)2 7
where j = pi, ai. As a result, (36) leads to
1 6 ~T ~
> _klnmnpn - UOnGnUOn + Cn (38)

Noted that Qm = €, and Q €
concluded that V,, < 0 as long as either

V fm—pn < |"7pn| or V < HUOnH
mln n

6 pnipn) Chn
Hence, V), is nonincreasing as \/ ————— < [Mpn]. It is

clear from (23) and (35) that 7,,, never tends to infinity, which
implies that the constraint (8) is never violated. As a result,
the limited sensing requirements and collision avoidance with
the target are guaranteed when p} (t) > R.,. Moreover, the
error 1),, can be reduced by increasing the gain ky,,.

are constant. It can be

Case II: When the robot n is inside the obstacle avoidance

range, i.e., Ten < py(t) < Rep, it follows §,(t) > 0 and
gi’; < 0. It follows from (34) that V,, is negative outside a

Sn Onpn :
n et OF GeorTlon 18 bounded.

compact set if either 6, 2

Firstly, we suppose 6, 8%2 is bounded ie., \6n oo < cin
with constant ¢;,, > 0. Consider the following 1nequahty

86, 1 95,
<
On " op *SD” m_2<5 80;2)

and then (34) leads to

—kin (877/)” - 5n%

0€,m, lpn aps,

where Cy,, = C,, + 1c}, + 202,. Thus, V,, < 0 as long as
either

2
Vn S ) - ﬁgnGnﬂOn + Cln

C’ln anpn 8611 Cln ~
— < n 6717 , Or A < n||
kln ’ aepn e 5/72 )\min(Gn) HUO ||
Under assumption of |d,, 22 o0 | < ¢1,, We can obtain
/ Cln a77/)77, Cln anpn a(sn
n n| = < n~— Ynq 7 |*
kln o ‘ 66pn e kln 66/171 e 6p;;

It is concluded that V, is negative as long as either

Tpn OF Ug, is outside a compact set {7, ng’" Npn ¢
on
V5 = ems B2+ e T} oor {Ton] [0l ¢

[—\/ )\mil(gn), \/ )\mil(gn) |}, which implies V,, never tends
to infinity when 7., < p(t) < Rey.

Secondly, we suppose "'”” "o 1
8””” Non| < con with constant con, > 0. Consider the
follpowmg 1nequahty

8(57;, T kln 861@ 2 1 T
< — Pra—
6 a * a5 PnUm = 2 (6718[7:;) + lenvmvm

then (34) leads to

Den T 2

bounded, i.e.,

V2 96,

n

> UOnG vOn + C2n

where Cy,, = C,, + k1,3, + ﬁpfn Thus, V,, < 0 as long
as either

V2 90

CQn anpn 2 n
2" 2 nfidni
V 1, <|faepn o ",

. )
Under assumption of |#npn| < ¢s,,, We have
on

/ C2n \/i
kln + \/70271 7

which implies

\ T <|V2 O o =~ Oy = |
kln ‘faepnnp 2 ap:L
It is concluded that V, is negative as long as either

dn or Tg, is outside a compact set {J,] 5”22 ¢

Z2m 4 2e2n ]} or {Toal [Tonl| ¢

or 702”
’ >\min (Gn)

<[lvon|l

o6,
op:

n

On
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[_ Czn CZn
Amin (Gn)’ Amin (Gn)

to infinity when 7., < p}(t) < Ren.

|}, which implies V;, never tends

Therefore, V,, may go to infinity as both §,, 25’: and anp" “Non
go to infinity. Next, we discuss the case that both 4, 25: and

anpn

“1)pn tend to infinity with the same and opposite signs.
Cons1der the following inequality

2
n n 1
_6nai<pz;vm S kln 5nai + UTUm
op;, opy,

n 4k1n m
then (34) leads to
. on 96\ 96, \ >
Vn<_kn e n_énJ kn 6n7n
- (aemnp 3921) o ( 5%)
- ﬁg;LG'ILﬁOTL + C?m

where Cs, = C, + ﬁgfn. Thus, V,, < 0 as long as
either C3,, < k1n< 77,)”> (ge on ) or C3, <

vOnG Uon. It is clear that when 877"" 1pn —> 00 and §,, 2~

ndpr
oo with opposite sign, we have 6, gﬁ” 62”” Npn — —00, which

implies
OMpn ONpn, 00y,
pn

depn x
77pn

)—)4’00.

Consequently, before both o and §,, 2 oo simultaneously

" Non &
Q,, and V6, 28 o ¢ Qsn where €, and Qs, are compact
subsets of R containing the origin such that

2 < (e ) (Gt 200537 )
on

kl” ael)” n

tending to 1nﬁmty with oppos1te sign, we can find VBU””

which implies that V,, < 0 when both anm " 1)on and 5,2 5 pi are,
respectlvely, outside compact sets €2, and Qsp. It is conclud-
ed that V < 0 before both 8"”" “Ton and 9, 2‘52 simultaneously
tend to infinity with oppos1te 31gn or as vy, is outside a

compact set, that is, {(1,n,0,) aZ”:n,m ¢ Q. On gi" ¢

Qn} or {on| [[80nl| ¢ [/ 527+ /3oty 1} which

implies V,, never tends to infinity when r.,, < pn( ) < Ren.
Next, we show that both 67”“” “1on and 6,20 g, tending to

infinity with the same sign w111 not happen. Noted that d,,(¢) >

0 and 3/‘2" < 0 when 7¢, < pk(t) < Ren, and we obtain from

(20) and (21) that

by,
On — —o0 as pi. —r}
6 *
Furthermore, it follows from (24) that 67’”" > 0, and in view
of (7), (8), and (23), we have

OMpn
depn

OMpn
depn

Npn —> —00 as pnﬁg;r, Npn — +00 a8 pp—> P, -

Thus, when p: — r1 and p, — BZ simultaneously, both

an e Mpn and 6, 2‘5: have the same sign, tending to negative

1nﬁn1ty In view of Assumption 5 and Remark 4, pf — rf
and p, — B: simultaneously cannot occur. As a result, V),

never goes to infinity when the robot n is inside the obstacle

avoidance range. Therefore, the limited sensing requirements,
and collision avoidance with both the target and the obstacle
are guaranteed when 7., < p}(t) < Rep.

(ii) It is clear from the Theorem 1(i) that V,, in (30) never
tends to infinity, which implies that its arguments 7,,, Von,
and 0, are bounded. The boundedness of 7),, indicates the
boundedness of e,, in view of (8) and (23), which further
implies 0 < p < p, < pn according to (6). The boundedness

of 1,y also implies that 77‘7" is bounded. Besides, it is clear
from (20) that the boundedess of J,, guarantees 7., < p;,, and
thus gﬁf is bounded. As a result, it is easy to verify from (27)
and (28) that signals u,, and (bn are bounded.

(iii) Completing the squares, for any variable x € R, we

have (2% — 2)? > 0 and (22 — 1)? > 0, which produces

28 < —32% + 2.

(39)

Consider Vn in (38) when the robot n is outside the obstacle
avoidance range. Substituting (39) into (38) yields

Y 3 (0 -2 2 ~T ~ ~ 5

Vn < —3k‘3 (Qan ) Bnpn — UO’I’LG Von, + C
where C, = Cy, + 2. Thus, we obtain Vi < —pnVi + Ch
from (35), where p,, = mln{len(Qan )_*’QM}

Amax (Do

which implies that
Cy
V() < <Vn(0) — )e_“"t +

fin

Cn
fin

It is further from (35) that as t — oo, we obtain %nﬁn < Ca

tn
and vOnFOn Von < 5 C , which produces

2C,
Inpn|<\/  Moonl| < e (D) (40)
/”'n mln On

As discussed in Remark 6, to ensure the convergence set of
relative distance error {e,,, : —A,, <epn < /_\pn, ast — oo}
being small, it is desirable that |1,,| < g,, in (40), with
being small as possible. Thus, small C,, and
large p,, are preferred by selecting large gains ky,, and [y,
such that the relative distance error e, (t) and the estimation

error 9y, (t) will converge to small neighborhoods of the origin
when p?(t) > Ren. m

Opn =

B. Proof of Theorem 2

Proof: (i) The Lyapunov function candidate for the robot i,
i € N, is chosen as

1 1 1
V = 7751 + naz + UOZFOz UOZ + VPM (41)

whose derivative along (2), 5), (7), (12), (22), (24), (29), the
velocity observer (25), and the control law (26) produces

. i 85; \* - Mai
Vi= ku(azp Npi — 5iap*> — k20082 oi, 2
pi ;

; aiaeai [e%
T~ 2
Mai P; o; _ (nai 877ai>
Oeqi Pi Pi Oeqi
95; DMai Mai )
5T — .
i ap: Pi Um — Nai gy — Denr ¢z+ Neovi Dewns

~T
— vOiKOivO

T -
— 0o K0iV0i + Nai

— Lo 0. (42)
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Completing the squares, we obtain

OMai @1 T0i _ €2 (Mai O\ 1
e Oeni pi 2 Di Oeqi + 2631 VoiV0i (43)
iy <, O L
- - ) - ‘. 44
77m ¢z+ - Mo O€ui + 22, 't (44)
Moreover, it follows from (23) and (24) that
_ , Q-Q Q Q; + e
dej (8 —e;)*(e; + Qj)

where 7 = pi, ai. Using the inequalities (32), (33), (43), (44),
and (45), (42) leads to

an 96 \° -
Vi < — Ky <aezz Npi — 6zap;> — koim; — Gyt
06; 1
— 8T — 2 4+ 46
B Pi Um + 22, iy (46)
where G; = KOl_éKOl_%Fa 262 I, >0, ;1 < 1, and

2
E"T? < 1 with the proper selection of Ky, I'g,, €1, €2, and

Amax (K nan
Gala and CZ* _ ax( Uz) 2 + ( ol)

constant. Since the boundedness of (bi 4, le., |¢i +| < ¢;, with
constant c;, > 0, inequality (46) gives

03 being a positive

. 877,”' (95L 2 4 ~T ~
‘/z ~ klz (aem npz 61 3pf ) lenaz UOszUOz
5 gﬁ ©Tvom + C; (47)

where C; = C} + 262 c

know that (pn is bounded and Vi for the robot n—1 can lead to
(47). Since the potential function (22) embedded in (25) and
(26) vanishes outside the obstacle avoidance range, we also
discuss the following two cases.

Case 1: When the robot i is outside the obstacle avoidance
range, i.e., pi(t) > R, we have 0;(t) = 0 and 6‘51 = 0.
Thus, the Lyapunov function candidate (41) and 1nequahty
(47) become

. According to Theorem 1(ii), we

1 1 |
Vi =§77§i + 5’7ii + §UoTiF0i1U0i (48)
. 3%2‘ 2 2 4 ~T ~ ~
Vi <—ku 90 ) oi — koing; — 00;Givoi + Ci. (49)
Y
Using the inequality (37), (49) leads to
. 1 B B
Vi < *klimﬂm k‘zmii - U()TiGiUOi +C;. (50)
Pr==p1

It can be concluded that V; < 0 as long as \/ % <

pi| or { ]S’;l < |Nai| or m,S(G) < ||90;]|- Hence, V;
is nonincreasing as \{, % < |npil or {/ % C‘ < |Nail-

It follows from (23) and (48) that 7,; and 7q; never tend
to infinity, which indicates that the constraints (8) and (13)
are never violated. As a result, the limited sensing require-
ments, and collision avoidance with both the target and the
next-neighbouring robot are guaranteed when pf(t) > R;.

Moreover, by increasing the gains ki; and ky;, the errors 7),;
and 7),; can be reduced.

Case II: When the robot i is inside the obstacle avoidance
range, i.e., re; < pi(t) < Re;, we have ¢;(t) > 0 and ggg’; <0.
Similar to the Case II of Theorem 134), V is negative outside
a compact set if either §; 2% or anp, o i is bounded.

Za*
For |J;

; with constant ch > 0, (47) leads to
0 98, \*
V < ]{i11< nmn ;i — 511> — ]{iginii —

Ty ~
Uy Givo; + C1i

pi
Oepi op;

where C1; = C; + ch + %gfn It is concluded that VZ

is negative when {sz| 86/” “Npi & [— gllz Clis fllb

c1i |} or {Nail Nai ¢ —\4/%, \4/%
-y ey i 1

For ‘9’71“ 77p1| < ¢9; with constant cg; > 0, (47) leads to

. (977' \/i 09;
i < ki V25 — o0 | — kot
V- < 1 <\/78€pinp’ 5 6 ap*) 2i M

K2
T o~ ~
— 09;Givoi + Ca;

or {To;| [[Doill ¢

where Cy; = C; + kyic3, + i@fn It is concluded that V;

/2C5;
zap - k12il - 2C2i7

2¢; |} or {nail Mai ¢ [+ fffa Y 1} or {Boil [[dil| ¢

[_\/ Ca; \/ Ca; ]}
Amin(Gi)? Amin(Gi) -

When both np’ “1)pi and &; 3‘5*
from (47) that

. OMpi 96: \° 96 \°
Vi < = k| 55 pi — dig kil 6ig= ) — kaitias
- (3%% 5/);*) " 1( 0/)*) il

1
T o~y ~
0y GiVo; + C;

is negative when {0;| &;2 2,2271 +

tend to infinity, it is clear

0
i 9pr

where Cs; = C; + 4k11/ 02,. When 8"’” 249)p; — 00 and 5; —

oo with opposite sign, we have

ONpi ONpi 09;
k1 ( et 77pi> (8:57;%1‘ _26i8p’»“) — +00.

Oepi !

Thus, we can find Van‘” Npi ¢ Sy and de L ¢ Qs where
,; and Qs; are compact subsets of R containing the origin

such that
877;)2’ 09;
i i — 20; .
T > <8em’ e 8p;'k>

It is concluded that V; is negative when {(npi,0:)

C3; 377pi
kli < (86,31-

annpz ¢
Qi igpr & Qsi} or {1asl ¢ =y % {5 ) or
Ny lap o1 MNeai| Mad ko; 0

{Dos| ||00:l] ¢ [— \/ et \/AC?EG) |}, which implies V;
never tends to infinity when 7. < p¥(t) < Rq;.

Similar to Case IT of Theorem 1(i), both d"‘” i ap
tending to infinity with the same sign w111 not happen As
a result, V; never goes to infinity when the robot 7 is inside
the obstacle avoidance range. Therefore, the limited sensing
requirements, and collision avoidance with the target, next-
neighbouring robot, and the obstacle are guaranteed when
Teoi < p:(t) < Rg;.
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where Cy; =

Q4
(52), and (55) that VM < /ime + Ci, Where j1o; = 4I<:

and C,; = Cy; + 1, which implies that
CYO”) efﬂait +

. As a result, it is from (51)

Cai

Had Hai
1,2

§nai S

(i1) It is clear from Theorem 2(i) that V; in (41) never tends
<

to infinity, which implies that its arguments 7),;, 7qi, Uo;, and

d; are bounded. The boundedness of 7,; and 74, respectively,

indicates the boundedness of e,; and e; in view of (8), (15)
and (23), which further implies 0 < P, < pi<pi and @; ;.
a;i, < @y;, according to (6) and (11) The boundedness
deqi  Oeai d ONai

> on, > and 5 -

éai

OMpi
> 90

of n,; and 74, also implies that Dess
are bounded. It follows from (20) that the boun(fedess of §;
% s bounded. Moreover, the

9p}
is derived from the user-defined

guarantees 1 < p;, and thus 2
boundedness of Qaz and Qw i
(26) and (28) that signals u; and ¢; are bounded
(iii) Completing the squares, for any variable z € R, we
(51

functions €2,; and ;. As a result, it is easy to verify from
)* > 0, which produces

[1]

2 _
—zt < 222 +1

Vaslt) < (Vesl0) -
It follows from (52) that as t — oo, we obtain that
—Apyi < €ai <

zero with or without obstacles

H. Yamaguchi, “A cooperative hunting behavior by mobile-robot troops
The International Journal of Robotics Research, vol. 18, no. 9, pp. 931—

940, 1999.

Similar to Theorem

2Cq;
Pai

, which yields |n.;| <
1(iii), to ensure the convergence set {eq;
Agi, ast — oo} being small as possible, small C’ i and large

Mo
Lo are desirable by selecting a large gain ko;. Therefore, the
angle error e,;(t) will converge to a small neighbourhood of
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