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Formation Control for an UAV Team with
Environment-Aware Dynamic Constraints
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Abstract—State-of-the-art literature on constrained multiagent
system operations can only deal with constant or at best time-
varying constraint requirements. Such constraint formulations
cannot respond well to the dynamic environment and presence of
external agents outside of the multiagent system. In this work, we
consider a formation tracking problem for a group of unmanned
aerial vehicles (UAVs) in the presence of a physical attacker. The
safety/performance constraint functions are environment-aware
and dynamic in nature, whose formulation depends on certain
path parameters and presence of the attacker. The dependence on
path ensures adaptation to the dynamic operation environment.
The dependence on the attacker ensures swift adjustment based
on the relative distances between the attacker and agents. UAV
desired paths and desired path speeds can also be both path-
and attacker-dependent. Composite barrier functions have been
proposed to address the constraint requirements. Neural network
is used to approximate unknown attacker velocity, where the ideal
weight matrix is learned by adaptive laws. Besides, unknown
system parameters and external disturbances are estimated by
adaptive laws. The proposed formation architecture can ensure
formation tracking errors converge exponentially to small neigh-
borhoods near the equilibrium, with all constraint requirements
met. At the end a simulation study further illustrates the
proposed scheme and demonstrates its efficacy.

Index Terms—Environment-aware dynamic constraints, multi-
agent systems, adaptive neural network control, robust formation
tracking

I. INTRODUCTION

FORMATION control of unmanned aerial vehicles
(UAVs), especially quadrotors, has many practical ap-

plications in surveillance [1], [2], search and rescue [3],
contour mapping [4], [5], source locating [6], object lifting
and transporting [7]–[10], just to name a few.

Safety and performance constraints on motion control for
multiagent systems has been rigorously studied in recent
years. Violation of such requirements can lead to perfor-
mance degradation and/or system damage, which can result
in operation failures. Common approaches in handling con-
straint requirements include control barrier functions (CBFs)
[11]–[14], barrier functions/barrier Lyapunov functions (BLFs)
[15]–[18], and model predictive control (MPC) methods [19]–
[23]. However, these algorithms can only deal with constant or
at best time-varying safety constraint requirements. Constant
constraints are often conservative in formulation, as control
engineers have to assume worst case scenarios throughout the
entire operation. Time-varying safety constraints give system
designers more flexibility, yet many environmental factors,
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such as space- or geometry-related environment boundaries
are not time-dependent. This requires the safety/performance
constraints should be environment-aware in response to the
complex environment.

Furthermore, in practical scenarios, external agents outside
of the multiagent systems can also influence the safety and
performance constraint formulations. Consider a real-world
example from the nature, where a fish school faces attacks
from predators. We can observe that each fish will attempt
to swim as close to other fish as possible while avoiding
collisions; whereas in the absence of predators, the inter-fish
distances can be relaxed inside the fish school. Meanwhile, to
ensure survival, each fish should not separate too far from the
rest of the school. Similarly, when an “attacker” is approaching
an autonomous multiagent system, the safety and performance
constraints should adapt dynamically, with the desired path
and desired path speed also change accordingly. This requires
the safety/performance constraint should be dynamic in nature,
which depend on the presence of external agents.

It is worth pointing out that the “attacker” considered here
is a physical attacker, which is different from the well-studied
cyber-attacks on multiagent systems in the literature, including
[24]–[29]. These works have extensively examined strategies
to mitigate cyber-attacks for multi-UAV systems, including
deception attacks, replay attacks, denial-of-service attacks,
false-data injection attacks, camouflage attacks, and actuation
attacks. However, to launch such cyber-attacks on multi-
agents systems often requires sophisticated skills or enormous
resources, which can make such attacks not economically
worthwhile from the attacker’s viewpoint. Compared with
cyber-attacks, the physical attacker considered in our work are
non-cyber attacks that are much easier to launch and require
less skills and resources from the attacker. Therefore, such
attacks pose greater risks than cyber-attacks.

Our recent work [30] published in this journal proposed
constrained path-following control architectures for a ground
vehicle, where the constraint requirements depend on a path
parameter, instead of being merely constants or time-varying.
The work focuses on the spatial path following task without
temporal restrictions, and hence can result in less aggressive
dynamic behavior. However, our work [30] only focuses on a
single vehicle operating on a two-dimensional plane, hence is
not suitable for addressing multiagent UAV system operations
in a 3D space. Moreover, the constraint requirements in [30]
cannot respond to the presence of external agents outside of
the multiagent system.

In this paper we consider a formation tracking problem
for a team of UAVs in the presence of a physical attacker,
where each UAV is communicating with its neighbors over
an undirected topology. For the first time in the literature, we

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3295354

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on November 09,2023 at 01:35:00 UTC from IEEE Xplore.  Restrictions apply. 



2

consider environment-aware dynamic constraint requirements
on safety and performance. First, for the performance con-
straints, the UAV team needs to track the desired path closely
under disruptions from the physical attacker. More specifically,
the line-of-sight (LOS) distance between each UAV and its
reference path should not be too large. Second, for the safety
constraints, we need to guarantee that the LOS relative dis-
tance between any two UAVs cannot be either too small or too
large. At the same time, the UAV team needs to avoid collision
with the attacker, which can adjust velocity depending on
the relative coordinates between the attacker and agents in
the UAV team. Due to the complex operating environment
for the UAV team, these safety and performance constraint
requirements cannot be merely constant or time-varying, but
instead need to depend on path parameters and the attacker.
The UAV desired paths and desired path speeds are also path-
and attacker-dependent. The proposed algorithm incorporates
adaptive neural network control scheme to address unknown
attacker velocity. Besides, unknown system parameters and
uncertainties are estimated by adaptive laws. The algorithm
will ensure exponential convergence of all position and attitude
tracking errors, while at the same time guarantee safety and
performance of the team.

Main technical novelties can be summarized as:
1. Unlike existing works on control barrier functions (CBFs)
[11]–[14], barrier Lyapunov functions (BLFs) [15]–[18], and
model predictive control (MPC) methods [19]–[23], which
can only address constant or at best time-varying constraint
requirements, in this work we consider environment-aware
dynamic constraint functions that are both path- and attacker-
dependent. The dependence on path ensures that constraint
functions can adapt to the dynamic operation environment. The
dependence on the attacker ensures that constraint functions
can be dynamically adjusted, based on the relative distances
between the attacker and agents.
2. We consider the UAV desired paths and desired path speeds
are also path- and attacker-dependent.
3. Unlike some literature on multiagent system path following,
which only incorporates one environment-related path parame-
ter for the whole team [31]–[33], in this work each agent in the
UAV team has its own path parameter, making the proposed
algorithm a fully distributed one.

We will use the following standard notations in this paper.
First, R is real number set and Im denotes the m × m
identity matrix. Moreover, (·)T is the transpose of (·), | · |
represents absolute values for scalars, and ||·|| represents
Euclidean norms for vectors and induced norms for matrices.
Furthermore, we use cθ to denote cos θ, sθ to denote sin θ,
and tθ to denote tan θ. We also write ˙(·) as the first order
time derivative of (·), if (·) is differentiable, and (̈·) as the
second order time derivative of (·). Besides, for any two
vectors v1, v2 ∈ R3, the cross-product operator S(·) gives
S(v1)v2 = v1×v2. It is also true that S(v1)v2 = −S(v2)v1 and
vT

1 S(v2)v1 = 0. Next, ⊗ represents the Kronecker product. In
addition, for any matrix A ∈ Rn×m where A = [A1, · · · , Am]
and Aj ∈ Rn, j = 1, · · · ,m, the vector operator vec(·) gives
vec(A) = [AT

1 , · · · , AT
m]T ∈ Rnm. Finally, SO(3) = {Ω ∈

R3×3 | ΩTΩ = I3} is a set of orthogonal matrices in R3×3

and S2 = {x ∈ R3 | ||x|| = 1} is a set of unit vectors in R3.

II. PROBLEM FORMULATION

A. Basic Graph Theory and Notations

A weighted undirected graph is represented by G = (V, E),
where V = {1, · · · , N} is a nonempty set of nodes/agents,
and E ⊂ V ×V is the set of edges/arcs. (j, i) ∈ E implies that
agent i can receive information from its neighboring agent j,
and vice versa. In this case, agent j is called a neighbor of
agent i. Furthermore, Ni denotes the set of neighbors of agent
i and |Ni| represents the number of neighbors. In our following
controller design and stability analysis, we suppose that each
agent in the group has at least one neighbor, which means that
|Ni| ≥ 1 (i = 1, · · · , N ). The topology of a weighted graph
G is often represented by the adjacency matrix A = [aij ] ∈
RN×N , where aij = 1 if (j, i) ∈ E ; otherwise aij = 0. It is
assumed that aii = 0, and the topology is fixed, i.e., A is time
invariant. Define āi =

∑N
j=1 aij as the weighted in-degree of

node i and Ā = diag(ā1, · · · , āN ) ∈ RN×N as the in-degree
matrix. The graph Laplacian matrix is L = Ā − A ∈ RN×N .

B. System Dynamics

We consider a group of N quadrotors (i = 1, · · · , N ), where
each has the following dynamics

mip̈i(t) = −Fi(t)R(Θi(t))ez +migez +N1i(t), (1)

Θ̇i(t) = T (Θi(t))ωi(t), (2)
Jiω̇i(t) + S(ωi(t))Jiωi(t) = τi(t) +N2i(t), (3)

where pi(0) = pi10 ∈ R3, ṗi(0) = pi20 ∈ R3, Θi(0) = Θi0 ∈
R3, ωi(0) = ωi0 ∈ R3 are initial conditions. Moreover, mi ∈
R, mi > 0 is the mass of the ith quadrotor (i = 1, · · · , N ), and
Ji ∈ R3×3 is a symmetric positive definite matrix representing
the inertia of the ith quadrotor (i = 1, · · · , N ). The position
and attitude in the inertial reference frame are represented
as pi(t) = [xi(t), yi(t), zi(t)]

T ∈ R3 and Θi(t) =
[φi(t), θi(t), ψi(t)]

T ∈ R3, respectively. Fi(t) ∈ R and
τi(t) ∈ R3 represent the thrust and torques of the ith quadrotor
(i = 1, · · · , N ), respectively. N1i(t) ∈ R3 and N2i(t) ∈ R3

denote the external disturbances. Furthermore, g ∈ R is the
gravitational acceleration and ez = [0, 0, 1]T ∈ R3 is a
unit vector. R(Θi(t)) ∈ SO(3) is a rotation matrix, which
translates the translational velocity vector in the body-fixed
frame into the rate of change of the position vector in the
inertial frame

R(Θi)

=

[
cθicψi sφisθicψi − cφisψi cφisθicψi + sφisψi
cθisψi sφisθisψi + cφicψi cφisθisψi − sφicψi
−sθi sφicθi cφicθi

]
.

(4)

Moreover, define a body-fixed frame with the origin being
at the center of mass for each quadrotor, and the rotational
velocities with respect to this body-fixed frame are denoted by
ωi(t) = [ωxi(t), ωyi(t), ωzi(t)]

T ∈ R3. Besides, T (Θi(t)) is
a transformation matrix that relates the angular velocity in the
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body-fixed frame to the rate of change of Euler angles in the
inertial frame, and is given by

T (Θi)=

[ 1 sφitθi cφitθi
0 cφi −sφi
0 sφi/cθi cφi/cθi

]
. (5)

As shown in Appendix A (see (57)–(61)), the rotational
dynamics (2) and (3) can be rewritten as

Mi(Θi(t))Θ̈i(t) + Ci(Θi(t), Θ̇i(t))Θ̇i(t)

= ΨT(Θi(t))J
T
i τi(t) + ΨT(Θi(t))J

T
i N2i(t), (6)

where Ψ(Θi(t)), Mi(Θi(t)), and Ci(Θi(t), Θ̇i(t)) are given
in (57), (60), and (61), respectively.

C. Path-Following Formation with a Physical Attacker

ith UAV
Desired Path

Desired Position

Attacker

Fig. 1. A brief graphical illustration for the ith UAV (i = 1, · · · , N ) path
following in the presence of a physical attacker.

See Figure 1 for an illustration of the ith quadrotor
(i = 1, · · · , N ) path-following problem in the presence of
a physical attacker. The LOS distance dai(t) between the ith
quadrotor and attacker is

dai ,
√

(xi − xa)2 + (yi − ya)2 + (zi − za)2, (7)

where pa(t) = [xa(t), ya(t), za(t)]T is the attacker position.
The desired path for the ith quadrotor (i =

1, · · · , N ) is denoted by pdi(si(t), dai(t)) ,
[xdi(si(t), dai(t)), ydi(si(t), dai(t)), zdi(si(t), dai(t))]

T ∈
R3, where si(t) ∈ R is a path parameter evolving with
time. As pointed out in Figure 1, pdi(si(t), dai(t)) is any
arbitrary point on the desired path, not necessarily the
vehicle’s closest/projection point on the desired path. Finally,
vdi(si(t), dai(t)) is the desired path speed associated with the
path parameter si(t) and attacker distance dai(t).

D. System Performance and Safety Constraints

For the ith quadrotor (i = 1, · · · , N ), define the LOS
distance tracking error dei(t, si(t), dai(t)) as

dei ,
√

(xi − xdi)2 + (yi − ydi)2 + (zi − zdi)2. (8)

Besides, the desired LOS relative distance between ith and jth
(j ∈ Ni) quadrotors Lij(si(t), dai(t), sj(t), daj(t)) is

Lij ,
√

(xdi − xdj)2 + (ydi − ydj)2 + (zdi − zdj)2, (9)

and the actual LOS relative distance dij(t) is

dij ,
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (10)

During the formation operation, certain system constraint
requirements need to be satisfied, in order to ensure precise
and safe operation. These constraints are environment-aware
and dynamic in nature. First, the LOS distance tracking error
for the ith quadrotor dei(t, si(t), dai(t)) (i = 1, · · · , N ) has
to satisfy the following performance constraint

dei(t, si(t), dai(t)) < ΩHi(si(t), dai(t)), (11)

where, for all t ≥ 0, ΩHi(si(t), dai(t)) > 0 is the user-
defined constraint requirement for the distance tracking error
dei(t, si(t), dai(t)), and is at least three-times continuously
differentiable and has bounded derivatives with respect to
the path parameter si(t) and LOS attacker distance dai(t).
Moreover, ΩHi(si(t), dai(t)) is designed such that when t = 0,
dei(0, si(0), dai(0)) < ΩHi(si(0), dai(0)).

It is easy to see from (8) that dei(t, si(t), dai(t)) ≥ 0 at all
time. However, in order to avoid singularity in the controller
design later in the analysis, it is needed for dei(t, si(t), dai(t))
to be bounded away from the origin. Therefore, the constraint
requirement (11) is modified as

0 < εei < dei(t, si(t), dai(t)) < ΩHi(si(t), dai(t)), (12)

where εei is any arbitrarily small positive number. Note that
(12) is equivalent to

−εei < dεei(t, si(t), dai(t)) < ΩdHi(si(t), dai(t)), (13)

where dεei(t, si(t), dai(t)) , dei(t, si(t), dai(t)) − 2εei and
ΩdHi(si(t), dai(t)) , ΩHi(si(t), dai(t))− 2εei.

Remark 2.1: In the analysis to be presented later, we will
show that the distance tracking error dei(t, si(t), dai(t)) will
converge to a small neighbourhood of 2εei, which is a shifted
equilibrium point bounded away from zero. This ensures that
the tracking error will decrease over time, yet stay positive
at all time. This equilibrium shift method to avoid singularity
in the control design is common in the literature [34]–[36].
More discussion on how the modified constraint requirement
(13) can help avoid singularity in the control design can be
seen in the later Remark 3.2.

Second, each quadrotor in the group needs to avoid collision
with the attacker at all time. Namely, the ith quadrotor (i =
1, · · · , N ) needs to satisfy the following safety constraint

dai(t) > Ωai(si(t)), (14)

where Ωai(si(t)) > 0 is a user-defined path-dependent con-
straint requirement, which is designed to be at least three-times
continuously differentiable and has bounded derivatives with
respect to si(t). Moreover, Ωai(si(t)) is designed such that
when t = 0, dai(0) > Ωai(si(0)).

Furthermore, define the LOS relative distance tracking error
between the ith and jth quadrotors (i = 1, · · · , N , j ∈ Ni) as

deij(t, si(t), dai(t), sj(t), daj(t))

, dij(t)− Lij(si(t), dai(t), sj(t), daj(t)), (15)
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where sj(t) ∈ R is the path parameter for the jth quadrotor
and daj(t) ∈ R is the LOS distance between the jth quadrotor
and attacker. The following safety constraint needs to be met

deij(t, si(t), dai(t), sj(t), daj(t))

∈
(
−ΩLij(si(t), dai(t), sj(t), daj(t)),

ΩHij(si(t), dai(t), sj(t), daj(t))
)
, (16)

where, for all t ≥ 0, ΩHij(si(t), dai(t), sj(t), daj(t)) > 0
is the path- and attacker-dependent higher
bound for deij(t, si(t), dai(t), sj(t), daj(t)), and
−ΩLij(si(t), dai(t), sj(t), daj(t)) < 0 is the lower
bound, with 0 < ΩLij(si(t), dai(t), sj(t), daj(t)) <
Lij(si(t), dai(t), sj(t), daj(t)). The higher and lower
constraint functions are both at least three-times
continuously differentiable and have bounded derivatives
with respect to the path parameters si(t) and sj(t) and
LOS attacker distances dai(t) and daj(t). Moreover,
the higher and lower bounds are designed such that
when t = 0, deij(0, si(0), dai(0), sj(0), daj(0)) ∈(
−ΩLij(si(0), dai(0), sj(0), daj(0)),ΩHij(si(0), dai(0), sj(0),
daj(0))

)
. The constraint requirement (16) means that the

inter-quadrotor distances cannot be either too small or too
large, such that the collision avoidance and formation keeping
can be ensured.

Last but not least, the attitude tracking error for the ith
quadrotor (i = 1, · · · , N ) is defined as

zΘi(t) = [zφi(t), zθi(t), zψi(t)]
T = Θi(t)−Θdi(t), (17)

where Θdi(t) = [φdi(t), θdi(t), ψdi(t)]
T ∈ R3 is the desired

attitude to be specified later.

E. Control Objective

The control objective for the path-following formation
tracking problem is to design a control framework for the ith
quadrotor (i = 1, · · · , N ) such that:
1) The LOS distance tracking error dei(t, si(t), dai(t)) for
the ith quadrotor can converge into an arbitrarily small
neighborhood of the equilibrium;
2) The LOS relative distance tracking error
deij(t, si(t), dai(t), sj(t), daj(t)) between the ith and
jth (j ∈ Ni) quadrotors can converge into an arbitrarily small
neighborhood of zero;
3) For the ith quadrotor, the attitude tracking error
zΘi(t) = [zφi(t), zθi(t), zψi(t)]

T can converge into an
arbitrarily small neighborhood of zero;
4) The ith quadrotor satisfies its desired speed assignment
vdi(si(t), dai(t)). That is, zsi(t) = ṡi(t) − vdi(si(t), dai(t)),
can converge into an arbitrarily small neighborhood of zero;
5) The environment-aware dynamic constraints (13), (14),
and (16) will not be violated during the formation operation.

Next, we introduce the following unit vectors before pre-
senting the assumptions needed for analysis and discussion of
our main theoretical results. First, the unit vector between the
ith quadrotor and attacker is defined as Eai = 1

dai
[xi−xa, yi−

ya, zi − za]T ∈ S2. Similarly, the unit vector between the ith
quadrotor and its desired path Eei and unit vectors between

the ith quadrotor and its neighboring agents Edij (j ∈ Ni) are
defined as Eei = 1

dei
[xi − xdi, yi − ydi, zi − zdi]

T ∈ S2 and
Edij = 1

dij
[xi − xj , yi − yj , zi − zj ]T ∈ S2.

Assumption 2.1: For the ith quadrotor (i = 1, · · · , N ), the
physical attacker is “avoidable”, which requires unit vectors
Eai, Eei, and Edij (j ∈ Ni) are not on the same plane.

Remark 2.2: For the ith quadrotor, Assumption 2.1
means that its position pi(t), desired path coordinate
pdi(si(t), dai(t)), neighboring agents position pj(t) (j ∈ Ni),
and the attacker position pa(t) cannot be on the same plane.
When Assumption 2.1 is satisfied, the control law ui intro-
duced in (33) will be non-singular. More discussion can be
seen in Remark 3.3.

Remark 2.3: It is worth pointing out that Assumption
2.1 is not restrictive. Note that the desired path coordinate
pdi(si(t), dai(t)) for the ith quadrotor can depend on both
the path parameter si(t) and LOS attacker distance dai(t),
which has two degrees of freedom. Therefore it is relatively
easy to modify the desired path coordinate to satisfy this
“avoidability” assumption.

Assumption 2.2: The ith UAV desired path
pdi(si(t), dai(t)) and desired path speed vdi(si(t), dai(t))
are at least three-times and twice continuously differentiable,
respectively, with bounded derivatives concerning si(t) and
dai(t). Furthermore, for the reference attitude we require that
φdi(t) ∈ (−π2 ,

π
2 ), θdi(t) ∈ (−π2 ,

π
2 ), and ψdi(t) ∈ [−π, π],

where ψdi(t) is at least once continuously differentiable and
has bounded derivatives with respect to time.

Assumption 2.3 ([37], [38]): The thrust Fi(t) and external
disturbances N1i(t) and N2i(t) for the ith quadrotor are
uniformly bounded with unknown bounds.

Assumption 2.4: The attacker velocity is continuous and is
related with the relative positions between the quadrotors and
attacker, that is, the attacker velocity can be expressed as
va(Za) with Za = [ · · · , xi − xa, yi − ya, zi − za, · · ·︸ ︷︷ ︸

i = 1, · · · , N

]T ∈

R3N . Furthermore, the attacker velocity va(Za) is unknown.
Remark 2.4: Assumption 2.4 means that the physical at-

tacker has a certain level of intelligence. Therefore, the
physical attacker problem considered in this work cannot be
addressed by well-established obstacle-avoidance mechanisms
that only consider static or time-varying obstacles.

Assumption 2.5: The mass mi for the ith quadrotor (i =
1, · · · , N ) is known. However, the ith UAV inertia Ji is
unknown such that for any z ∈ R3, J iz

Tz < zTJiz < J̄iz
Tz,

where J̄i and J i are unknown positive constants. As a direct
result, the symmetric positive definite inertia matrix Mi(Θi) in
(60) is also unknown and bounded, such that for any z ∈ R3,
M iz

Tz < zTMi(Θi)z < M̄iz
Tz, where M̄i and M i are

unknown positive constants.
Assumption 2.6 ([38]): The attitude of the ith quadrotor is

confined such that φi ∈ (−π2 ,
π
2 ), θi ∈ (−π2 + εθi,

π
2 − εθi)

and ψi ∈ [−π, π] for some εθi > 0.
Remark 2.5: From (1)–(3), we see that quadrotors’ posi-

tion and attitude dynamics are highly coupled. For example,
left/right movement can be archived by rolling, and for-
ward/backward motion can be realized by pitching. Hence
improper roll and pitch motions can cause aggressive motions
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of quadrotors, which will not only affect system performance
but can also destabilize the quadrotor dynamics and result in
system failure.

The following lemmas are required for the controller design
and theoretical analysis to be presented.

Lemma 2.1 ([39]): For any constant ε > 0 and any variable
z ∈ R, we have 0 ≤ |z| − z2

√
z2+ε2

< ε.

Lemma 2.2 ([40]): Let A ∈ Rn×m, B ∈ Rm×l, and C ∈
Rl×k. Then vec(ABC) = (CT ⊗A)vec(B).

To simplify the discussion and analysis to be presented, we
will omit the variables’ dependence on time, state, and path
parameters when there is no potential for any confusion.

F. Radical Basis Function Neural Networks

In our formation control design, radical basis function neural
networks (RBFNNs) [41]–[45] will be utilized to estimate the
unknown attacker velocity va(Za) : R3N → R3. Specifically,
for a continuous nonlinear function va(Za) defined over a
compact set ΩZa ⊂ R3N , there exist RBFNNs WT

a Ba(Za)
given as

va(Za) = WT
a Ba(Za) + εa(Za),

where Za ∈ ΩZa ⊂ R3N is the input vector, Wa =
[wa1, · · · , wan]T ∈ Rn×3 is the ideal weight matrix where
wak = [wak1, wak2, wak3]T ∈ R3 (k = 1, · · · , n),
n ≥ 1 is the number of neural network nodes, Ba(Za) =
[b1(Za), · · · , bn(Za)]T ∈ Rn is the basis function vector,
and εa(Za) = [εa1(Za), εa2(Za), εa3(Za)]T ∈ R3 is the
approximation error satisfying ||εa(Za)|| ≤ ε̄a, where ε̄a > 0
is a given precision level. The basis function bk(Za) is usually
selected as the following Gaussian-like function [46]–[48]

bk(Za) = exp

[
− (Za − νk)T(Za − νk)

ζ2
k

]
, k = 1, · · · , n,

with νk = [νk1, · · · , νk3N ]T ∈ R3N being the receptive field’s
center and ζk ∈ R being the width of the Gaussian-like
function bk(Za). Moreover, Wa is defined as

Wa := arg min
Ŵa∈Rn×3

{
sup

Za∈ΩZa

∣∣∣∣∣∣va(Za)− ŴT
a Ba(Za)

∣∣∣∣∣∣}.
G. Composite Barrier Function

Here we introduce the structure of “composite barrier func-
tion”. Specifically, to address the environment-aware dynamic
constraint requirements (11) and (14), which are on the LOS
distance tracking error dei and attacker distance dai, the
following transformed error variables are introduced

ηei =
ΩdHidεei

(ΩdHi − dεei)(εei + dεei)
, ηai =

1

dai − Ωai
. (18)

Note that ηei = 0 only when dεei = 0 and ηai → 0 only when
dai → +∞. The “composite barrier function” to deal with the
constraint requirements (11) and (14) is designed as

Vei =
1

2
η2

ei +
1

2
η2

ai. (19)

Remark 2.6: The function (19) is called “composite barrier
function”, since it takes environment-aware dynamic con-
straint requirements into consideration. Note that the perfor-
mance and safety constraints are on different distance tracking
variables. On the one hand, when the performance constraint
(11) is to become violated, we get dεei → ΩdHi, and hence
Vei → +∞. On the other hand, when the safety constraint (14)
is to become violated, we will have dai → Ωai, and hence
Vei → +∞. Therefore, by keeping the “composite barrier
function” uniformly bounded through closed-loop analysis, we
can ensure that environment-aware dynamic constraint require-
ments (11) and (14) will be satisfied during the operation.

Next, regarding the environment-aware dynamic constraint
requirement (16) on the LOS relative inter-quadrotor distance
tracking error deij (i = 1, · · · , N , j ∈ Ni), the following
transformed error variable is introduced

ηeij =
ΩHijΩLijdeij

(ΩHij − deij)(ΩLij + deij)
. (20)

The barrier function used to deal with the safety constraint
requirement (16) is designed as

Veij =
1

2
η2

eij . (21)

III. CONTROL DESIGN AND MAIN RESULTS

Here we present the controller design procedure based on
backstepping, which will lead to our formation algorithm
design and main theoretical results.

A. Distance Control Design and Results

Step 1:
First we consider the position kinematics of the quadro-
tors. Design the Lyapunov function as V1 =

∑N
i=1

(
Vei +∑

j∈Ni Veij

)
, and its time derivative leads to

V̇1 =

N∑
i=1

(
ηeiη̇ei + ηaiη̇ai +

∑
j∈Ni

ηeij η̇eij

)
. (22)

For ηeiη̇ei + ηaiη̇ai (i = 1, · · · , N ) in (22) we get

ηeiη̇ei + ηaiη̇ai = ηei(gesiṡi +GT
epiṗi −GT

eaiṗa)

+ ηai(gasiṡi +GT
apiṗi −GT

aaiṗa). (23)

where gesi ∈ R, gasi ∈ R, Gepi ∈ R3, Gapi ∈ R3, Geai ∈ R3,
and Gaai ∈ R3 such that

gesi ,
∂ηei

∂ΩdHi

∂ΩdHi

∂si
− ∂ηei

∂dεei
ET

ei

∂pdi

∂si
, gasi ,

∂ηai

∂Ωai

dΩai

dsi

Geai ,
∂ηei

∂ΩdHi

∂ΩdHi

∂dai
Eai −

∂ηei

∂dεei
ET

ei

∂pdi

∂dai
Eai,

Gaai ,
∂ηai

∂dai
Eai, Gepi , Geai +

∂ηei

∂dεei
Eei, Gapi , Gaai,

and recall Eei ∈ S2 and Eai ∈ S2 are defined in Section II-E.
Similarly, for ηeij η̇eij (i = 1, · · · , N , j ∈ Ni) in (22) we
obtain

ηeij η̇eij = ηeij

(
geijsiṡi + geijsj ṡj +GT

eijpiṗi +GT
eijpj ṗj

−GT
aij ṗa

)
, (24)
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where

geijsi ,
∂ηeij

∂ΩHij

∂ΩHij

∂si
+

∂ηeij

∂ΩLij

∂ΩLij

∂si

− ∂ηeij

∂deij
ET
Lij

∂pdi

∂si
, geijsi ∈ R,

geijsj ,
∂ηeij

∂ΩHij

∂ΩHij

∂sj
+

∂ηeij

∂ΩLij

∂ΩLij

∂sj

+
∂ηeij

∂deij
ET
Lij

∂pdj

∂sj
, gηijsj ∈ R,

Geijpi ,
∂ηeij

∂ΩHij

∂ΩHij

∂dai
Eai +

∂ηeij

∂ΩLij

∂ΩLij

∂dai
Eai

+
∂ηeij

∂deij
Edij −

∂ηeij

∂deij
ET
Lij

∂pdi

∂dai
Eai,

Geijpj ,
∂ηeij

∂ΩHij

∂ΩHij

∂daj
Eaj +

∂ηeij

∂ΩLij

∂ΩLij

∂daj
Eaj

− ∂ηeij

∂deij
Edij +

∂ηeij

∂deij
ET
Lij

∂pdj

∂daj
Eaj ,

Gaij , Geijpi +Geijpj , Geijpi, Geijpj , Gaij ∈ R3,

in which recall Edij ∈ S2 is defined in Assumption 2.1.
Furthermore, unit vectors ELij ∈ S2 and Eaj ∈ S2 are
defined as ELij = 1

Lij
[xdi − xdj , ydi − ydj , zdi − zdj ]

T

and Eaj = 1
daj

[xj − xa, yj − ya, zj − za]T, respectively.
Hence, from (22), V̇1 yields to

V̇1 =
N∑
i=1

(
hsiṡi +HT

piṗi −HT
aiṗa

)
, (25)

where

hsi = ηeigesi + ηaigasi + 2
∑
j∈Ni

ηeijgeijsi, hsi ∈ R,

Hpi = ηeiGepi + ηaiGapi + 2
∑
j∈Ni

ηeijGeijpi, Hpi ∈ R3,

Hai = ηeiGeai + ηaiGaai + 2
∑
j∈Ni

ηeijGeijpi, Hai ∈ R3.

Moreover, the term Hpi in (25) can be rewritten as

Hpi = hpaiEai + hpeiEei +
∑
j∈Ni

hpdijEdij = ET
pihpi, (26)

where

hpai = ηei

(
∂ηei

∂ΩdHi

∂ΩdHi

∂dai
− ∂ηei

∂dεei
ET

ei

∂pdi

∂dai

)
+ ηai

∂ηai

∂dai

+ 2
∑
j∈Ni

ηeij

(
∂ηeij

∂ΩHij

∂ΩHij

∂dai
+

∂ηeij

∂ΩLij

∂ΩLij

∂dai

− ∂ηeij

∂deij
ET
Lij

∂pdi

∂dai

)
∈ R,

hpei = ηei
∂ηei

∂dεei
∈ R, hpdij = 2ηeij

∂ηeij

∂deij
∈ R,

hpi = [hpai, hpei, · · · , hpdij , · · ·︸ ︷︷ ︸
j ∈ Ni

]T ∈ R|Ni|+2,

Epi = [Eai, Eei, · · · , Edij , · · ·︸ ︷︷ ︸
j ∈ Ni

]T ∈ R(|Ni|+2)×3.

Now, taking (26) into (25) yields

V̇1 =
N∑
i=1

(
hsiṡi + hT

piEpiṗi −HT
aiṗa

)
, (27)

where, by using Lemmas 2.1 and 2.2, the term −HT
aiṗa (i =

1, · · · , N) can be expressed as follows

−HT
aiṗa = −HT

ai

(
WT

a (Ba(Za)−Bai +Bai) + εa(Za)
)

≤ −HT
ai(Ŵ

T
ai − W̃T

ai)Bai + δ̄a ||Hai||
< −ŵT

ai(Hai ⊗Bai) + w̃T
ai(Hai ⊗Bai)

+ δ̄a
||Hai||2√
||Hai||2 + ε2

i

+ δ̄aεi,

where W̃ai = Ŵai −Wa, Ŵai ∈ Rn×3 is the estimation of
Wa by the ith quadrotor, ŵai = vec(ŴT

ai) ∈ R3n, wa =
vec(WT

a ) ∈ R3n, w̃ai = vec(W̃T
ai) ∈ R3n, δ̄a ,

√
n ||Wa|| +

ε̄a is unknown, and Bai , Ba(Zai) with Zai = [xi −
xa, yi−ya, zi−za, · · · , xj − xa, yj − ya, zj − za, · · ·︸ ︷︷ ︸

j ∈ Ni

]T ∈

R3|Ni|+3. Besides, εi > 0 is an arbitrarily small number
introduced in view of Lemma 2.1.

Next, define the fictitious velocity tracking error as zvi =
Epiṗi − αpi, with the stabilizing function αpi ∈ R|Ni|+2 (i =
1, · · · , N ) designed as

αpi =
hpi

hT
pihpi

(
−Keiη

2
ei −Kaiη

2
ai −

∑
j∈Ni

Keijη
2
eij − hsivdi

+ ŵT
ai(Hai ⊗Bai)− δ̂ai

||Hai||2√
||Hai||2 + ε2

i

)
,

(28)

where Kei > 0, Kai > 0, and Keij > 0 are the control gains
and δ̂ai is the estimation of δ̄a.

Remark 3.1: In (28), ||hpi|| = 0 does not cause singularity
in the stabilizing function design. ||hpi|| = 0 implies that
hpai = 0, hpei = 0, and hpdij = 0 (j ∈ Ni) at the
same time, which implies ηei = 0, ηai = 0, and ηeij = 0.
When this happens, all terms inside the bracket on the right-
hand-side of (28) are zero. According to L’Hôpital’s rule, we
have lim||hpi||→0 αpi = αpi(vdi, ŵai, δ̂ai). Since vdi is the
desired speed assignment along the path, which is selected as
a bounded function, and the boundedness of ŵai and δ̂ai is to
be shown in Theorem 3.1, hence αpi(vdi, ŵai, δ̂ai) is bounded.
Thus, singularity of αpi will not happen.

Hence, (27) yields

V̇1 <
N∑
i=1

(
hT
pizvi −Keiη

2
ei −Kaiη

2
ai −

∑
j∈Ni

Keijη
2
eij

+ hsizsi + w̃T
ai(Hai ⊗Bai)

− δ̃ai
||Hai||2√
||Hai||2 + ε2

i

+ δ̄aεi

)
, (29)

where δ̃ai = δ̂ai − δ̄a and the path speed error is defined as
zsi = ṡi − vdi.
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Step 2:
At this step, we consider the translational dynamics of the
quadrotors. Design the Lyapunov function candidate at this
step as V2 =

∑N
i=1

1
2z

T
vizvi, and its time derivative gives

V̇2 =
N∑
i=1

zT
vi

[
Epigez −

1

mi
ui0 −

1

mi
EpiFi(Ri −Rdi)ez

+
1

mi
EpiN1i + Ėpiṗi − α̇pi

]
, (30)

in which we denote ui0 = Epiui ∈ R|Ni|+2, ui = FiRdiez ∈
R3, and

α̇pi = Hαai(ṗi − ṗa) +
∑
j∈Ni

Hαaij(ṗj − ṗa) +Hαpiṗi

+
∑
j∈Ni

Hαpij(ṗi − ṗj) + hαsiṡi +
∑
j∈Ni

hαsij ṡj

+
∂αpi
∂ŵai

˙̂wai +
∂αpi

∂δ̂ai

˙̂
δai

= Hαpiṗi +Gαai(ṗi − ṗa) +
∑
j∈Ni

Gαpij(ṗi − ṗj)

+ hαsiṡi +
∑
j∈Ni

hαsij ṡj +
∂αpi
∂ŵai

˙̂wai +
∂αpi

∂δ̂ai

˙̂
δai, (31)

where Gαai = Hαai +
∑
j∈Ni Hαaij and Gαpij = Hαpij −

Hαaij , with Hαpi =
∂αpi

∂(pi−pdi)
∈ R(|Ni|+2)×3 and Hαpij =

∂αpi
∂(pi−pj) ∈ R(|Ni|+2)×3. Moreover, Hαai ∈ R(|Ni|+2)×3,
Hαaij ∈ R(|Ni|+2)×3, hαsi ∈ R|Ni|+2 and hαsij ∈ R|Ni|+2

are given in Appendix B (see (62)–(65)). Moreover, Ėpiṗi in
(30) can be expressed as

Ėpiṗi = ξpiṗi + ξaiṗa + ξsiṡi +
∑
j∈Ni

Epdij(ṗi − ṗj), (32)

where

ξpi = Epai + Epei − Epei
∂pdi

∂dai
ET

ai, ξpi ∈ R(|Ni|+2)×3,

ξai = −Epai + Epei
∂pdi

∂dai
ET

ai, ξai ∈ R(|Ni|+2)×3,

ξsi = −Epei
∂pdi

∂si
, ξsi ∈ R|Ni|+2,

in which Epai, Epei, and Epdij are expressed as

Epai = [QT
aiṗi, 03, · · · , 03︸ ︷︷ ︸

|Ni|+ 1 zero vectors

]T ∈ R(|Ni|+2)×3,

Epei = [03, Q
T
eiṗi, 03, · · · , 03︸ ︷︷ ︸

|Ni| zero vectors

]T ∈ R(|Ni|+2)×3,

Epdij = [03, 03, · · · , QT
dij ṗi, · · · ]T ∈ R(|Ni|+2)×3,

where 03 = [0, 0, 0]T ∈ R3, Qai =
daiI3−(pi−pa)ET

ai

d2
ai

∈

R3×3, Qei =
deiI3−(pi−pdi)E

T
ei

d2
ei

∈ R3×3, and Qdij =
dijI3−(pi−pj)ET

dij

d2
ij

∈ R3×3, j ∈ Ni. For the matrix Epdij ,

j ∈ Ni, the (2 + Iij)th column vector is QT
dij ṗi and other

columns are zero vectors, where Iij is the index of j in the
set Ni.

Remark 3.2: In (32), singularity can only happen when
dei = 0, dai = 0, or dij = 0, j ∈ Ni. However, in view
of the performance and safety constraint requirements (12),
(14), and (16), we have dei > εei > 0, dai > Ωai > 0, and
dij > 0, hence dei = 0, dai = 0, and dij = 0 will not happen
if (12), (14), and (16) are satisfied. Therefore, singularity will
not occur in (32).

Now, for the ith quadrotor (i = 1, · · · , N ), the control law
ui ∈ R3 is designed as

ui = (ET
piEpi)

−1ET
piui0, (33)

ui0 = mi

[
(ξpi −Hαpi −Gαai)ṗi + (ξsi − hαsi)vdi

−
∑
j∈Ni

hαsijvdj +
∑
j∈Ni

(Epdij −Gαpij)(ṗi − ṗj)

+ δ̂ai
ξaiξ

T
aizvi√∣∣∣∣ξT

aizvi
∣∣∣∣2 + ε2

i

+ δ̂i
EpiE

T
pizvi√∣∣∣∣ET

pizvi
∣∣∣∣2 + ε2

i

+ δ̂ai
GαaiG

T
αaizvi√∣∣∣∣GT

αaizvi
∣∣∣∣2 + ε2

i

+
(
BT

ai ⊗ ξai
)
ŵai

+
(
BT

ai ⊗Gαai

)
ŵai +Kvizvi + Epigez + hpi

− ∂αpi
∂ŵai

˙̂wai −
∂αpi

∂δ̂ai

˙̂
δai

]
, (34)

where Kvi > 0 is a control gain, εi > 0 is a design
constant, and δ̂i is the estimation of the unknown constant δ̄i
satisfying

∣∣∣∣∣∣− 1
mi
Fi(Ri −Rdi)ez + 1

mi
N1i

∣∣∣∣∣∣ ≤ δ̄i. Moreover,

adaptive laws ˙̂wai and ˙̂
δai will be introduced in (39) and (40),

respectively.
Remark 3.3: In (33), the square matrix ET

piEpi ∈ R3×3 is
required to be invertible to ensure that the control law ui is
non-singular. According to the definition of Epi ∈ R(|Ni|+2)×3

in (26), rank(Epi) = rank(ET
pi) = min(|Ni|+2, 3) = 3 since

each agent in the group has at least one neighbor (|Ni| ≥ 1)
and the “avoidable” condition in Assumption 2.1 is satisfied
during the operation. Therefore, rank(ET

piEpi) = 3, hence
ET
piEpi is invertible.
Remark 3.4: In (34), we can observe that the relative ve-

locities between each UAV and its neighboring agents are
used for the controller design. This condition is not restrictive
in practical applications since it can be easily achieved by
methods such as optical flow [49], [50] and visual odometry
[51], [52], which does not require real-time bidirectional
communications with neighboring agents.

According to (29) and (30), we can derive

V̇1 + V̇2

<
N∑
i=1

{
−Keiη

2
ei −Kaiη

2
ai −

∑
j∈Ni

Keijη
2
eij −Kviz

T
vizvi

+ hsizsi + zT
vi(ξsi − hαsi)zsi −

∑
j∈Ni

zT
vihαsijzsj

− δ̃ai
||Hai||2√
||Hai||2 + ε2

i

− δ̃ai

∣∣∣∣ξT
aizvi

∣∣∣∣2√∣∣∣∣ξT
aizvi

∣∣∣∣2 + ε2
i
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− δ̃ai

∣∣∣∣GT
αaizvi

∣∣∣∣2√∣∣∣∣GT
αaizvi

∣∣∣∣2 + ε2
i

− δ̃i

∣∣∣∣ET
pizvi

∣∣∣∣2√∣∣∣∣ET
pizvi

∣∣∣∣2 + ε2
i

+ w̃T
ai(Hai ⊗Bai)− w̃T

ai

[
(GT

αaizvi)⊗Bai

]
− w̃T

ai

[
(ξT

aizvi)⊗Bai

]
+ (3δ̄a + δ̄i)εi

}
, (35)

where δ̃i = δ̂i − δ̄i (i = 1, · · · , N ).
Next define Vs =

∑N
i=1

1
2z

2
si, its time derivative gives

V̇s =
N∑
i=1

zsi

(
s̈i −

∂vdi

∂si
ṡi −

∂vdi

∂dai
ET

ai(ṗi − ṗa)

)
. (36)

Now, design the path parameter timing law s̈i (i =
1, · · · , N ) as

s̈i = −Ksizsi +
∂vdi

∂si
ṡi +

∂vdi

∂dai
ET

aiṗi − zT
vi(ξsi − hαsi)

+
∑
j∈Ni

zT
vjhαsji − δ̂ai

zsi

∣∣∣∣∣∣∂vdi

∂dai
Eai

∣∣∣∣∣∣2√
z2
si

∣∣∣∣∣∣∂vdi

∂dai
Eai

∣∣∣∣∣∣2 + ε2
i

− ∂vdi

∂dai
(Eai ⊗Bai)

T
ŵai − hsi, (37)

where si(0) = si10 and ṡi(0) = si20 are initial conditions and
Ksi > 0 is a control constant.

Therefore, considering (35) and (36), we can get

V̇1 + V̇2 + V̇s

<
N∑
i=1

{
−Keiη

2
ei −Kaiη

2
ai −

∑
j∈Ni

Keijη
2
eij −Kviz

T
vizvi

−Ksiz
2
si − δ̃ai

||Hai||2√
||Hai||2 + ε2

i

− δ̃ai

∣∣∣∣ξT
aizvi

∣∣∣∣2√∣∣∣∣ξT
aizvi

∣∣∣∣2 + ε2
i

− δ̃ai

∣∣∣∣GT
αaizvi

∣∣∣∣2√∣∣∣∣GT
αaizvi

∣∣∣∣2 + ε2
i

− δ̃ai
z2
si

∣∣∣∣∣∣∂vdi

∂dai
Eai

∣∣∣∣∣∣2√
z2
si

∣∣∣∣∣∣∂vdi

∂dai
Eai

∣∣∣∣∣∣2 + ε2
i

− δ̃i

∣∣∣∣ET
pizvi

∣∣∣∣2√∣∣∣∣ET
pizvi

∣∣∣∣2 + ε2
i

+ w̃T
ai(Hai ⊗Bai)

− w̃T
ai

[
(GT

αaizvi)⊗Bai

]
− w̃T

ai

[
(ξT

aizvi)⊗Bai

]
− w̃T

ai (Eai ⊗Bai) zsi
∂vdi

∂dai
+ (4δ̄a + δ̄i)εi

}
. (38)

Finally, design the adaptive laws for the estimators ŵai, δ̂ai,
and δ̂i (i = 1, · · · , N ) as the following

˙̂wai = nwai

(
−(Hai ⊗Bai) + (GT

αaizvi)⊗Bai

+ (ξT
aizvi)⊗Bai + (Eai ⊗Bai) zsi

∂vdi

∂dai

)
− σwaiŵai, (39)

˙̂
δai = nδai

(
||Hai||2√
||Hai||2 + ε2

i

+

∣∣∣∣ξT
aizvi

∣∣∣∣2√∣∣∣∣ξT
aizvi

∣∣∣∣2 + ε2
i

+

∣∣∣∣GT
αaizvi

∣∣∣∣2√∣∣∣∣GT
αaizvi

∣∣∣∣2 + ε2
i

+
z2
si

∣∣∣∣∣∣∂vdi

∂dai
Eai

∣∣∣∣∣∣2√
z2
si

∣∣∣∣∣∣∂vdi

∂dai
Eai

∣∣∣∣∣∣2 + ε2
i

)

− σδaiδ̂ai, (40)

˙̂
δi = nδi

∣∣∣∣ET
pizvi

∣∣∣∣2√∣∣∣∣ET
pizvi

∣∣∣∣2 + ε2
i

− σδiδ̂i, (41)

where ŵai(0) = ŵai0, δ̂ai(0) = δ̂ai0, and δ̂i(0) = δ̂i0,
with ŵai0, δ̂ai0, and δ̂i0 being the initial conditions. nwai,
nδai, nδi, σwai, σδai, and σδi are positive design constants.
Design the Lyapunov function candidates for the estimators
as Vwa =

∑N
i=1

1
2nwai

w̃T
aiw̃ai, Vδa =

∑N
i=1

1
2nδai

δ̃2
ai, and

Vδ =
∑N
i=1

1
2nδi

δ̃2
i .

Denote Vpos = V1 +V2 +Vs +Vwa +Vδa +Vδ , for its time
derivative we can get V̇pos <

∑N
i=1

(
−Keiη

2
ei − Kaiη

2
ai −∑

j∈Ni Keijη
2
eij − Kviz

T
vizvi − Ksiz

2
si − σwai

2nwai
w̃T

aiw̃ai −
σδai
2nδai

δ̃2
ai− σδi

2nδi
δ̃2
i +c1i

)
, where c1i = σwai

2nwai
wT

a wa + σδai
2nδai

δ̄2
a +

σδi
2nδi

δ̄2
i + (4δ̄a + δ̄i)εi (i = 1, · · · , N ). Hence,

V̇pos < −κ1Vpos + %1, (42)

where κ1 , mini, j∈Ni(2Kei, 2Kai, 2Keij , 2Kvi, 2Ksi, σwai,

σδai, σδi), %1 ,
∑N
i=1 c1i. The aforementioned design proce-

dure leads to the following theoretical result.
Theorem 3.1: With the thrust laws (33) and (34), adaptive

laws (39), (40), and (41), and the path parameter timing law
(37), the quadrotor team described by (1) under Assumptions
2.1-2.5 will have the following results:

i) The environment-aware dynamic constraint requirements
(13), (14), and (16) will be met during formation.

ii) The transformed output tracking errors ηei and ηeij (i =
1, · · · , N , j ∈ Ni) will converge into the set{

x = ηei, ηeij : |x| < εη, εη =

√
2%1

κ1

}
, (43)

which implies that the output tracking errors dei and deij

will converge into the following regions{
dei : max(εei, 2εei + εχLi

) < dei < 2εei + εχHi

}
,

(44){
deij : −ειLij < deij < ειHij

}
, (45)

where εχHi
and εχLi

are expressed as

εχHi

=

 [εη(ΩdHi − εei)− ΩdHi]

+
√

[εη(ΩdHi − εei)− ΩdHi]2 + 4ε2
ηΩdHiεei


2εη

,

εχLi

=

 [εη(ΩdHi − εei) + ΩdHi]

−
√

[εη(ΩdHi − εei) + ΩdHi]2 + 4ε2
ηΩdHiεei


2εη

.
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Moreover, ειHij and ειLij can be written as

ειHij =


−(ΩHijΩLij − εη(ΩHij − ΩLij))

+

√
Ω2

HijΩ
2
Lij + ε2

η(ΩHij + ΩLij)
2

− 2εηΩHijΩLij(ΩHij − ΩLij)


2εη

,

ειLij =


−(ΩHijΩLij + εη(ΩHij − ΩLij))

+

√
Ω2

HijΩ
2
Lij + ε2

η(ΩHij + ΩLij)
2

+ 2εηΩHijΩLij(ΩHij − ΩLij)


2εη

.

iii) For each quadrotor, the path speed error zsi(t) =
ṡi(t) − vdi(si(t), dai(t)) satisfies lim supt→∞ |ṡi(t) −
vdi(si(t), dai(t))| < εη .

iv) The adaptive laws (39), (40), and (41), and the path
parameter timing law (37), are all uniformly bounded.
Proof: From (42) we have

Vpos(t) <
(
Vpos(0)− %1

κ1

)
e−κ1t +

%1

κ1
. (46)

The boundedness of Vpos implies boundedness of ηei, ηai,
and ηeij (i = 1, · · · , N , j ∈ Ni). Hence, the constraint
requirements (13), (14), and (16) are satisfied during the
operation.

Moreover, we have lim supt→∞ Vpos <
%1

κ1
, hence 1

2η
2
ei <

%1

κ1
when t → ∞, therefore ηei will converge to the set

(43). Similar relationship holds for ηeij . Furthermore, uni-
form boundedness of Vpos implies boundedness of adaptive
estimates ŵai, δ̂ai, and δ̂i, as well as fictitious errors zvi.

Next, note that in the range −εei < dεei < ΩdHi, ηei is a
function in dεei. Recall that dεei , dei − 2εei, with εei > 0
being an arbitrarily small constant. Hence, the range (13) gives
the range for dei given in (44). Besides, within the range of
(16), ηeij is quadratically related to deij . Hence, satisfying the
constraints (13), (14), and (16) means that the distance tracking
errors dei and deij will be confined in the ranges defined by
(44) and (45).

Furthermore, since lim supt→∞
1
2z

2
si < %1

κ1
, the speed

assignment error will satisfy |ṡi − vdi| < εη when t → ∞
for i = 1, · · · , N . Besides, the boundedness of vdi will lead
to the boundedness of ṡi(t).

Finally, boundedness of the adaptive estimates ŵai, δ̂ai, and
δ̂i, the path speed variable si, its derivative signal ṡi, and the
fictitious error zvi as well as the invertibility of ET

piEpi imply
that αpi, ui, and ui0 are all uniformly bounded. Hence, it is
clear to imply that adaptive laws (39), (40), and (41), and the
path parameter timing law (37), are all uniformly bounded.

Remark 3.5: In Theorem 3.1, using L’Hôpital’s rule yields

lim
εη→0

εχHi = 0, lim
εη→0

εχLi = 0,

lim
εη→0

ειHij = 0, lim
εη→0

ειLij = 0, (47)

for i = 1, · · · , N . This implies that when the modified error
variables ηei and ηeij converge into small neighborhoods of
zero, the relative LOS tracking error deij will converge to

a region close to zero and the actual LOS tracking error dei

will converge to a region arbitrarily close to 2εei, with εei > 0
being an arbitrarily small constant.

Remark 3.6: To reduce the set size in (43), we need to
select large κ1 and small %1. To make κ1 large, we can select
large control gains Kei, Kai, Keij , and Kvi (i = 1, · · · , N ,
j ∈ Ni), and large adaptive and path timing law parameters
σwai, σδai, σδi, and Ksi. To make %1 small, we can select
small εi, and large adaptive parameters nwai, nδai, and nδi.

B. Attitude Control Design and Results

Step 3:
Next, we select the Lyapunov function candidate as V3 =∑N
i=1

1
2z

T
ΘizΘi. With some algebraic analysis shown in Ap-

pendix C (see (66)–(71)), the stabilizing function αΘi ∈ R3

for the ith quadrotor (i = 1, · · · , N ) is designed as

αΘi = −
(
KΘi +

νΘi

2

)
zΘi, (48)

where KΘi > 0 is a control gain and νΘi > 0 is a design
constant.
Step 4:
At this step, select the Lyapunov function candidate as V4 =∑N
i=1

1
2z

T
ωiMi(Θi)zωi. With some algebraic analysis shown

in Appendix D (see (72)–(73)), the torque law for the ith
quadrotor (i = 1, · · · , N ) is designed as

τi = − Ψ(Θi)zωi ||τ̄i||2 ρ̂2
Ji√

||Ψ(Θi)zωi||2 ||τ̄i||2 ρ̂2
Ji + ε2

i

, (49)

τ̄i = TT(Θi)(Kωizωi + zΘi) + µ̂Ji
TT(Θi)zωiΞ

2
i√

||zωi||2 Ξ2
i + ε2

i

,

(50)
˙̂ρJi = nρJiz

T
ωiΨ

T(Θi)τ̄i − σρJiρ̂Ji, (51)

˙̂µJi = nµJi
||zωi||2 Ξ2

i√
||zωi||2 Ξ2

i + ε2
i

− σµJiµ̂Ji, (52)

where ρ̂Ji(0) = ρ̂Ji0 and µ̂Ji(0) = µ̂Ji0 are the initial
conditions. Kωi > 0 is a positive control gain. Ξi is introduced
in (73). ρ̂Ji is the adaptive estimate of the unknown constant
ρJi = 1

Ji
and µ̂Ji is the adaptive estimate of the unknown

constant µ̄Ji introduced in (73). nρJi, nµJi, σρJi, and σµJi
are positive design constants. Denote

Vatt = V3 + V4 + VρJ + VµJ ,

VρJ =
N∑
i=1

J i
2nρJi

ρ̃2
Ji, VµJ =

N∑
i=1

1

2nµJi
µ̃2
Ji, (53)

where ρ̃Ji = ρ̂Ji − ρJi and µ̃Ji = µ̂Ji − µ̄Ji. Af-
ter some algebraic manipulation, we can arrive at V̇att <∑N
i=1

(
−KΘiz

T
ΘizΘi −Kωiz

T
ωizωi −

σρJiJi
2nρJi

ρ̃2
Ji −

σµJi
2nµJi

µ̃2
Ji +

c2i
)
, where c2i = εi(J i+µ̄Ji)+

σρJi
2nρJi

1
Ji

+
σµJi
2nµJi

µ̄2
Ji+

1
2νΘi

Θ̄2
di

(i = 1, · · · , N ). Hence,

V̇att < −κ2Vatt + %2, (54)

where κ2 , mini
(
2KΘi,

2Kωi
M̄i

, σρJi, σµJi
)

and %2 =∑N
i=1 c2i.
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∫ ∫

pdi(si, dai)

vdi(si, dai)

vdi(si, dai) −

+

dai(t)

Attacker
Dynamics

Attacker

timing law (37)
Path parameter

ηai

ηeij

ΩHi(si, dai),Ωai(si),

i = 1, 2, · · · , N, j ∈ Ni

ΩHij(si, dai, sj , daj),

s̈i ṡi si

ΩLij(si, dai, sj , daj),

|| · ||pi(t)

−

+

−

+
|| · ||

dai(t)

Ωai(si)

dei(t, si, dai)

ΩHi(si, dai)

transformation
(18)

pdi(si, dai)

|| · ||pi(t)− pj(t)

pdi(si, dai)− pdj(sj , daj)
Lij(si, dai, sj , daj)

|| · ||

−

+dij(t)

ΩHij(si, dai, sj , daj)

deij(t, si, dai, sj , daj)

ΩLij(si, dai, sj , daj)

Error
transformation

(18)

Error
transformation

(18)

Error
transformation

(20)

ηei

ηai

ηeij

αpiStabilizing
function (28)

+
−

ET
piṗi(t)

∫

zvi ∫ δ̂i

Adaptive law (40)

Adaptive law (41)

∫ ŵai
Adaptive law (39)Hai, zvi, zsi, Bai

Hai, zvi, zsi
δ̂ai

zvi

vdi, vdj

ṗi, ṗi − ṗj

Control law
(33) and (34)

|| · ||
ui

ψdi(t)

φdi, θdi

Θdi −

+

zΘi αΘi

+

−

∫ ρ̂Ji

Fi

Decoupling
(68) and (69) Stabilizing

function (48)

Adaptive law (51)

∫ µ̂Jizωi(t) Adaptive law (52)

Control law
(49) and (50)

τi

zωi

Θi(t)

Θ̇i(t)

Path Parameter Timing Law for ith UAV

ith UAV’s
Dynamics

zsi

ηei

zvi

εei

zωi(t), τ̄i(t)

pa(t)

Fig. 2. Block diagram of the overall control algorithm.

The above design leads to the following theoretical result.
Theorem 3.2: With the UAV torque laws (49) and (50), and

adaptive laws (51) and (52), the attitude of the quadrotor team
described by (2) and (3) under Assumptions 2.1–2.6 has the
following properties:

i) The attitude tracking error of the ith quadrotor (i =
1, · · · , N ) zΘi will converge into the set{

zΘi

∣∣∣ ||zΘi|| < εη, εη =

√
2%2

κ2

}
, (55)

ii) The adaptive laws (51) and (52) are uniformly bounded.
Proof: First of all, (54) leads to

Vatt(t) <
(
Vatt(0)− %2

κ2

)
e−κ2t +

%2

κ2
, (56)

hence Vatt is uniformly bounded.

Next, we have lim supt→∞ Vatt <
%2

κ2
, hence 1

2z
2
Θi <

%2

κ2

when t → ∞, therefore zΘi will converge to the set (55).
Furthermore, boundedness of the adaptive estimates ρ̂Ji and
µ̂Ji, as well as boundedness of the fictitious error zωi, are now
obvious since Vatt is bounded. Therefore, it is straightforward
to prove the boundedness of adaptive laws (51) and (52).

Remark 3.7: Our proposed path-dependent constrained
adaptive formation control framework, which includes the
thrust laws (33) and (34), torques (49) and (50), adaptive laws
(39), (40), (41), (51), and (52), and the path parameter timing
law (37), is fully distributed since it only requires states of
the agent itself, desired path and speed signals, and relative
information of neighboring agents. Absolute information of the
neighboring agents, such as their position and velocity, is not
required in our proposed control algorithm. Such a distributed
control framework is practical and implementable for small
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UAV systems with limited communication bandwidth.
The overall control algorithm is summarized in Figure 2.

IV. SIMULATION STUDIES

We conduct a simulation with a team of N = 4
quadrotors in the presence of an attacker. A comparative
study with [53] is also discussed. The communication
topology is shown in Figure 3. For i = 1, 2, 3, 4, the model
parameters of the quadrotors are mi = 4kg, g = 9.81m/s2,
Ji = diag[0.109, 0.103, 0.0625]kg ·m2. Note that the units
of the position, attitude, translational and angular velocities are
m, rad, m/s, and rad/s, respectively. The attacker velocity is
given as va(Za) =

[
−0.45− 0.1 sin(2da1)− 0.15 cos(2da2)−

0.3 sin(2da3) − 0.3 cos(2da4), 0.55 + 0.1 sin(2da1) +
0.15 cos(2da2) + 0.3 sin(2da3) + 0.3 cos(2da4), −1.9 −(

0.05
da1+1 + 0.05

da2+1 + 0.05
da3+1 + 0.05

da4+1

)]T
, which is based

on relative distances from the team and unknown for
the controller design. The desired paths for agents are
given as pd1(s1, da1) =

[
0.8 cos(0.4s1) + 0.15s1 + 0.3

da1
+

0.6, 0.8 sin(0.4s1)+0.15s1+ 0.3
da1

+0.6, −0.4s1+ 0.3
da1

+2.5
]T

,
pd2(s2, da2) =

[
0.8 cos(0.4s2) + 0.15s2 + 0.3

da2
+

0.6, 0.8 sin(0.4s2)+0.15s2+ 0.3
da2

+1.75, −0.4s2+ 0.3
da2

+2.5
]T

,
pd3(s3, da3) =

[
0.8 cos(0.4s3) + 0.15s3 + 0.3

da3
+

1.75, 0.8 sin(0.4s3) + 0.15s3 + 0.3
da3

+ 0.65, −0.4s3 +
0.3
da3

+ 2.5
]T

, and pd4(s4, da4) =
[
0.8 cos(0.4s4) + 0.15s4 +

0.3
da4

+ 1.65, 0.8 sin(0.4s4) + 0.15s4 + 0.3
da4

+ 1.65, −0.4s4 +
0.3
da4

+ 2.5
]T

. The reference yaw signals are selected as
ψdi = 0, i = 1, 2, 3, 4. The desired speed assignments for
quadrotors are chosen as vdi = 1.5 − exp(−0.5si) + 0.55

dai
.

The safety constraint functions are designed as
Ωai(si) = 1.6 − 1.4 exp(−0.3si), ΩHij(si, dai, sj , daj) =

0.3 + 1.5
(

exp(−0.1si)+exp(−0.1sj)
2

)
− 0.8

dai
− 0.8

daj
, and

ΩLij(si, dai, sj , daj) = 0.4+1.1
(

exp(−0.15si)+exp(−0.15sj)
2

)
−

0.3
dai
− 0.3

daj
, i = 1, 2, 3, 4, j ∈ Ni. The performance

constraint functions for quadrotors are selected as
ΩHi(si, dai) = 0.26 + 5.34 exp(−0.15si) − 2

dai
and the

lower bounds are εei = 0.05. The external disturbances are
N1i = [0.105 sin(0.2t), 0.06 cos(0.05t), 0.03 cos(0.12t)]T

and N2i = [0.01 sin(0.14t), 0.01 sin(0.14t), 0.06 sin(0.3t)]T.
The number of neural network nodes is selected as n = 3

and the basis functions are given as bk(Zai) = exp
[
−

(Zai−νk)T(Zai−νk)
ζ2
k

]
, k = 1, 2, 3, i = 1, 2, 3, 4. For the

basis functions, the width values are given as ζ1 = ζ2 =
ζ3 = 2 and the receptive field’s centers are selected as
ν1 = 0.5 · 19, ν2 = 19, and ν3 = 1.5 · 19, where
19 = [1, 1, 1, 1, 1, 1, 1, 1, 1]T ∈ R9. We choose the
design parameters as nwai = 0.29, nδai = 0.35, nδi = 0.25,
nρJi = 0.25, nµJi = 0.35, σwai = 0.025, σδai = 0.1, σδi =
0.05, σρJi = 0.1, σµJi = 0.1, and εi = 0.1, i = 1, 2, 3, 4.
The control gains are designed as Kei = 0.25, Kai = 0.1,
Keij = 0.02, Kvi = 2, Ksi = 30, KΘi = 1.5, νΘi = 0.5,
and Kωi = 2, i = 1, 2, 3, 4, j ∈ Ni. The initial positions of
quadrotors and attacker are p1(0) = [0.5, 0.5, 0]T, p2(0) =
[0.5, 1.5, 0]T, p3(0) = [1.5, 0.5, 0]T, p4(0) = [1.5, 1.5, 0]T,

and pa(0) = [6, 0, 10]T. The initial attitudes of quadrotors
are Θi(0) = [0, 0, 0.3]T, i = 1, 2, 3, 4. The initial conditions
of translational and angular velocities of each UAV are zero.

For the artificial potential function (APF)-based controller
[53], controller gains and design parameters are β1 = 0.25,
β2 = 2, KF = 0.02, KT = 1.6, Ko = 3, δij = 0.5, δit = 0.4,
and δio = 1.6. The model parameters of quadrotors and at-
tacker dynamics are the same as we selected. Besides, external
disturbances and initial states of the UAV team and attacker
are identical for both controllers. Simulation results can be
found in Figures 4-9. The LOS attacker distance dai under
our proposed controller (M1) and APF-based controller (M2)
[53] with the safety constraint function Ωai, i = 1, 2, 3, 4,
are shown in Figure 4. It is evident that the attacker distance
dai never decreases to the level of Ωai when applying our
proposed controller (M1), implying that the safety constraint
requirement (14) is not violated, which is not the case with the
APF-based controller (M2) [53]. As we can see in Figure 4,
the safety constraint requirement for the third and forth agents
are violated when 5 ≤ t ≤ 10. Thus, under our proposed
controller, the quadrotor team is capable of collision avoidance
with the attacker during the formation operation. It is worth
noting that the attacker is approaching the quadrotor team
when 0 ≤ t ≤ 8.

UAV 1 UAV 2

UAV 3 UAV 4

Fig. 3. Undirected communication graph of the UAV team.
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Fig. 4. Comparative simulation results of our proposed controller (M1) and
artificial potential function (APF)-based controller (M2) [53].

The 3D trajectories of quadrotors and attacker are presented
in Figure 5. We can observe that four quadrotors can track
their own desired paths without collision with the attacker.
Furthermore, when the attacker moves close to the quadrotor
group during 0 ≤ t ≤ 8, the desired path for each agent is
modified to keep a safe distance from the attacker. The LOS
distance tracking errors dei, i = 1, 2, 3, 4, are shown in Figure
6 with higher bounds ΩHi and lower bounds εei. From this
figure, it can be observed that dei can converge to a small
neighborhood of 2εei without any violation of the constraint
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Fig. 5. Trajectories of quadrotors and attacker in 3D space.
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Fig. 6. LOS distance tracking errors profile with performance constraint
functions.
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Fig. 7. Inter-quadrotor distance tracking errors profile with safety constraint
functions.

requirements, where εei can be arbitrarily small positive con-
stants. When 0 ≤ t ≤ 8, the performance constraint functions
ΩHi decrease noticeably to make quadrotors get close to their
own desired paths, which have been adjusted away from the
attacker. Next, Figure 7 gives the profile of inter-quadrotor
distance tracking errors deij , i = 1, 2, 3, 4, j ∈ Ni, from
which we can see that safety constraints are never violated,
since deij always stays between the safety constrain functions
−ΩLij and ΩHij . When 0 ≤ t ≤ 8, a substantial decrease
in the path- and attacker-dependent safety constraint functions
ΩHij and ΩLij can be observed. This reduction enables the
UAV team to move towards the modified desired formation
in the presence of an approaching attacker. Attitude profiles
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Fig. 8. Attitude profile for quadrotors.
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Fig. 9. The profile of path speed ṡi and desired speed assignment vdi,
i = 1, 2, 3, 4.

for quadrotors are depicted in Figure 8. This figure shows the
convergence of the attitudes to their own desired values despite
lack of accurate model parameters and the influence of external
disturbances. Path speeds ṡi and desired speed assignments vdi

are exhibited in Figure 9. During 0 ≤ t ≤ 8, when the attacker
gets close to the quadrotor group, desired speed assignments
vdi is able to increase substantially to let each UAV move
away from the attacker quickly, and ṡi can quickly converge
to a neighborhood of vdi.

Note that in Figure 8, sudden changes of attitudes φi, θi,
and ψi, and path speeds ṡi when 5 ≤ t ≤ 10 are primarily
caused by the attacker being near the quadrotor group. Despite
the presence of attacker, quadrotors can rapidly approach their
own desired paths pdi, which have been adjusted away from
the attacker, so that the performance and safety constraint
requirements can be guaranteed. From the aforementioned
discussion, we can now conclude that the simulation results
confirm the theoretic analysis shown in Theorems 3.1 and 3.2.

V. CONCLUSION

In this work, we developed a formation tracking control
architecture for a group of UAVs in the presence of a physical
attacker. The safety and performance constraints considered
in this work are environment-aware and dynamic in nature,
whose formulation depends on certain path parameters and
presence of the attacker. The dependence on path ensures
adaptation to the dynamic operation environment. The de-
pendence on the attacker ensures that safety/performance
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constraints, UAV desired paths, and desired path speeds can be
dynamically adjusted, based on the relative distances between
the attacker and agents. We also consider path- and attacker-
dependent UAV desired paths and desired path speeds. Un-
known system parameters and external disturbances are dealt
with by adaptive laws. In the future we will look into scenarios
where both cyber and physical attacks occur for UAV teams.
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APPENDIX

A. System Dynamics

Denote Ψ(Θi) = T−1(Θi), from (2) we get

ωi = Ψ(Θi)Θ̇i. (57)

Hence, multiply JT
i on both sides of (3), and substitute (57)

into (3), the angular motion dynamics can be rewritten as

JT
i Ji

(
Ψ(Θi)Θ̈i + Ψ̇(Θi)Θ̇i

)
+ JT

i S
(

Ψ(Θi)Θ̇i

)
JiΨ(Θi)Θ̇i = JT

i τi + JT
i N2i. (58)

Now, multiply ΨT(Θi) on both sides of (58), we can get

Mi(Θi)Θ̈i + Ci(Θi, Θ̇i)Θ̇i

= ΨT(Θi)J
T
i τi + ΨT(Θi)J

T
i N2i, (59)

where

Mi(Θi) = ΨT(Θi)J
T
i JiΨ(Θi), (60)

Ci(Θi, Θ̇i) = ΨT(Θi)J
T
i S
(

Ψ(Θi)Θ̇i

)
JiΨ(Θi)

+ ΨT(Θi)J
T
i JiΨ̇(Θi). (61)

It is easy to see Mi(Θi) is symmetric and positive definite,
and for any x ∈ R3, xT

(
Ṁi(Θi)− 2Ci(Θi, Θ̇i)

)
x = 0.

B. Step 2 of Backstepping Design

Hαai =

{
− ∂αpi
∂(pi − pdi)

∂pdi

∂dai
+

∂αpi
∂ΩdHi

∂ΩdHi

∂dai

+
∂αpi

∂(∂ΩdHi

∂si
)

∂2ΩdHi

∂si∂dai
+

∂αpi

∂(∂ΩdHi

∂dai
)

∂2ΩdHi

∂d2
ai

+
∂αpi

∂(∂pdi

∂si
)

∂2pdi

∂si∂dai
+

∂αpi

∂(∂pdi

∂dai
)

∂2pdi

∂d2
ai

+
∂αpi
∂vdi

∂vdi

∂dai

+
∑
j∈Ni

[
∂αpi

∂(pdi − pdj)

∂pdi

∂dai
+

∂αpi
∂ΩHij

∂ΩHij

∂dai

+
∂αpi
∂ΩLij

∂ΩLij

∂dai
+

∂αpi

∂(
∂ΩHij

∂si
)

∂2ΩHij

∂si∂dai

+
∂αpi

∂(
∂ΩHij

∂dai
)

∂2ΩHij

∂d2
ai

+
∂αpi

∂(
∂ΩLij

∂si
)

∂2ΩLij

∂si∂dai

+
∂αpi

∂(
∂ΩLij

∂dai
)

∂2ΩLij

∂d2
ai

]}
ET

ai +
∂αpi

∂(pi − pa)
,

(62)

Hαaij =

[
− ∂αpi
∂(pdi − pdj)

∂pdj

∂daj
+

∂αpi
∂ΩHij

∂ΩHij

∂daj

+
∂αpi
∂ΩLij

∂ΩLij

∂daj
+

∂αpi

∂(
∂ΩHij

∂si
)

∂2ΩHij

∂si∂daj

+
∂αpi

∂(
∂ΩHij

∂dai
)

∂2ΩHij

∂dai∂daj
+

∂αpi

∂(
∂ΩLij

∂si
)

∂2ΩLij

∂si∂daj

+
∂αpi

∂(
∂ΩLij

∂dai
)

∂2ΩLij

∂dai∂daj

]
ET

aj +
∂αpi

∂(pj − pa)
, (63)

hαsi =− ∂αpi
∂(pi − pdi)

∂pdi

∂si
+

∂αpi
∂ΩdHi

∂ΩdHi

∂si
+
∂αpi
∂Ωai

dΩai

dsi

+
∂αpi

∂(∂ΩdHi

∂si
)

∂2ΩdHi

∂s2
i

+
∂αpi

∂(∂ΩdHi

∂dai
)

∂2ΩdHi

∂dai∂si

+
∂αpi

∂(dΩai

dsi
)

d2Ωai

ds2
i

+
∂αpi

∂(∂pdi

∂si
)

∂2pdi

∂s2
i

+
∂αpi

∂(∂pdi

∂dai
)

∂2pdi

∂dai∂si
+
∂αpi
∂vdi

∂vdi

∂si

+
∑
j∈Ni

[
∂αpi

∂(pdi − pdj)

∂pdi

∂si
+

∂αpi
∂ΩHij

∂ΩHij

∂si

+
∂αpi
∂ΩLij

∂ΩLij

∂si
+

∂αpi

∂(
∂ΩHij

∂si
)

∂2ΩHij

∂s2
i

+
∂αpi

∂(
∂ΩHij

∂dai
)

∂2ΩHij

∂dai∂si
+

∂αpi

∂(
∂ΩLij

∂si
)

∂2ΩLij

∂s2
i

+
∂αpi

∂(
∂ΩLij

∂dai
)

∂2ΩLij

∂dai∂si

]
, (64)

hαsij =− ∂αpi
∂(pdi − pdj)

∂pdj

∂sj
+

∂αpi
∂ΩHij

∂ΩHij

∂sj

+
∂αpi
∂ΩLij

∂ΩLij

∂sj
+

∂αpi

∂(
∂ΩHij

∂si
)

∂2ΩHij

∂si∂sj

+
∂αpi

∂(
∂ΩHij

∂dai
)

∂2ΩHij

∂dai∂sj
+

∂αpi

∂(
∂ΩLij

∂si
)

∂2ΩLij

∂si∂sj

+
∂αpi

∂(
∂ΩLij

∂dai
)

∂2ΩLij

∂dai∂sj
. (65)

C. Step 3 of Backstepping Design

Recall that ui = FiRdiez , we have

ui = Fi

[
cφdisθdicψdi + sφdisψdi

cφdisθdisψdi − sφdicψdi

cφdicθdi

]
, (66)

in which we recall that Fi is the thrust of the ith quadrotor.
Here, for any designated reference yaw signal ψdi satisfying
Assumption 2.2, we define ([38])

Fi = ||ui|| , (67)
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φdi = arcsin
(ui1sψdi − ui2cψdi

||ui||

)
, (68)

θdi = arctan
(ui1cψdi + ui2sψdi

ui3

)
, (69)

where ui = [ui1, ui2, ui3]T ∈ R3, with φdi and θdi satisfying
Assumption 2.2.

Choose V3 =
∑N
i=1

1
2z

T
ΘizΘi as the Lyapunov function

candidate, which has the following time derivative

V̇3 =
N∑
i=1

zT
Θi(zωi + αΘi − Θ̇di), (70)

where we define zωi = Θ̇i − αΘi (i = 1, · · · , N ), with
the stabilizing function αΘi ∈ R3 designed in (48). Taking
derivative of φdi in (68) and θdi in (69) with respect to time
yields φ̇di = ∂φdi

∂ui
u̇i + ∂φdi

∂ψdi
ψ̇di, θ̇di = ∂θdi

∂ui
u̇i + ∂θdi

∂ψdi
ψ̇di,

where ψdi and ψ̇di are bounded according to Theorem 3.1
and Assumption 2.2, such that terms ∂φdi

∂ui
, ∂φdi

∂ψdi
, ∂θdi
∂ui

, and
∂θdi
∂ψdi

are all bounded. The result of differentiating ui in
(33) with respect to time can be combined with Theorem
3.1 to conclude the boundedness of u̇i. Therefore, Θ̇di is
bounded, which satisfies

∣∣∣∣∣∣Θ̇di

∣∣∣∣∣∣ < Θ̄di, where Θ̄di is an
unknown positive constant. Note that for any νΘi > 0,
zT

ΘiΘ̇di < ||zΘi|| Θ̄di ≤ 1
2νΘi

Θ̄2
di + νΘi

2 ||zΘi||2 . Therefore,
from (70) we can get

V̇3 <
N∑
i=1

(
−KΘiz

T
ΘizΘi + zT

Θizωi +
1

2νΘi
Θ̄2

di

)
. (71)

D. Step 4 of Backstepping Design

Taking derivative of V4 yields

V̇4 =

N∑
i=1

zT
ωi

(
ΨT(Θi)J

T
i τi + ΨT(Θi)J

T
i N2i

−Mi(Θi)α̇Θi − Ci(Θi, Θ̇i)αΘi

)
, (72)

where, for the term zT
ωi

(
ΨT(Θi)J

T
i N2i − Mi(Θi)α̇Θi −

Ci(Θi, Θ̇i)αΘi

)
, we can get

zT
ωi

(
ΨT(Θi)J

T
i N2i −Mi(Θi)α̇Θi − Ci(Θi, Θ̇i)αΘi

)
= −zT

ωiΨ
T(Θi)J

T
i Ji

(
Ψ̇(Θi)αΘi

+ Ψ(Θi)(−KΘi −
νΘi

2
)(Θ̇i − Θ̇di)

)
− zT

ωiΨ
T(Θi)J

T
i S(Ψ(Θi)Θ̇i)JiΨ(Θi)αΘi

+ zT
ωiΨ

T(Θi)J
T
i JiJ

−1
i N2i

≤ ||zωi|| ||Ψ(Θi)|| ||Ji||2
( ∣∣∣∣∣∣Ψ̇(Θi)αΘi

∣∣∣∣∣∣+
∣∣∣∣J−1

i N2i

∣∣∣∣
+
∣∣∣∣∣∣S(Ψ(Θi)Θ̇i)

∣∣∣∣∣∣ ||Ψ(Θi)αΘi||

+ Θ̄di

∣∣∣∣∣∣(KΘi +
νΘi

2
)Ψ(Θi)

∣∣∣∣∣∣
+
∣∣∣∣∣∣(KΘi +

νΘi

2
)Ψ(Θi)Θ̇i

∣∣∣∣∣∣ )
< εiµ̄Ji + µ̄Ji

||zωi||2 Ξ2
i√

||zωi||2 Ξ2
i + ε2

i

, (73)

where µ̄Ji is an unknown positive constant such
that ||Ji||2 (1 + Θ̄di +

∣∣∣∣J−1
i N2i

∣∣∣∣) ≤ µ̄Ji and
Ξi , ||Ψ(Θi)||

( ∣∣∣∣∣∣Ψ̇(Θi)αΘi

∣∣∣∣∣∣+
∣∣∣∣∣∣(KΘi + νΘi

2 )Ψ(Θi)Θ̇i

∣∣∣∣∣∣+∣∣∣∣∣∣S(Ψ(Θi)Θ̇i)
∣∣∣∣∣∣ ||Ψ(Θi)αΘi|| +

∣∣∣∣(KΘi + νΘi

2 )Ψ(Θi)
∣∣∣∣ + 1

)
is known.
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