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ABSTRACT: Rapid bond forming reactions are crucial for effi-
cient bioconjugation. We describe a simple and practical strat-
egy for facilitating ultra-rapid electrophilic cysteine arylation.
Using a variety of sulfone-activated pyridinium salts, this un-
catalyzed reaction proceeds with exceptionally high rate con-
stants, ranging from 9800 to 320,000 M-1-s-1,in pH 7.0 aqueous
buffer at 25 °C. Such reactions allow for stoichiometric biocon-
jugation of micromolar cysteine within minutes or even sec-
onds. Even though the arylation is extremely fast, the chemistry
exhibits excellent selectivity, thus furnishing functionalized
peptides and proteins with both high conversion and purity.

Fast chemoselective reactions are critical for efficient chemical
synthesis, particularly bioconjugation chemistry.l4 These
transformations frequently entail rapid functionalization of un-
protected biomacromolecules at low concentrations to afford
products with high selectivity.

In the context of protein and peptide modification, many syn-
thetic approaches employ the cysteine side chain as a reactive
handle due to its high nucleophilicity, wide distribution, but
low abundance.5-6 Over the past decades, many classes of elec-
trophiles have been discovered for cysteine-based functionali-
zation of proteins and peptides, substantially expanding the bi-
omacromolecular chemical space and allowing for advanced
proteomic investigations.7-29

Despite important advances in this area, limitations remain. A
major challenge in bioconjugation chemistry is identifying re-
actions that can efficiently operate at micromolar or lower con-
centrations under biocompatible conditions: neutral, aqueous
solutions at ambient temperatures. To achieve 97% conversion
within one hour, a minimum second-order rate constant (kz) of
100 M-1.s-1is required for stoichiometric conjugation at 100
uM.2-4 Extrapolating from this analysis, efficient equimolar la-
beling of 1 uM target substrates needs reactions with an even
higher k2 of 10,000 M-1:s-1, a value rarely achievable in the ab-
sence of enzymes or other catalysts. A number of elegant rea-
gents have been developed that exhibit cysteine reactivity ap-
proaching such rate constants, ranging from 100 to 5,500
M-1.s-1under physiologically relevant conditions. Examples in-
clude 4-chloro-7-nitrobenzofurazan,® heteroaromatic sul-
fones,20 palladium-aryl complexes,30 and 2-formyl phenyl-
boronic acid derivatives.31-32 Here, we present a straightfor-
ward method for ultra-rapid, highly selective cysteine arylation

with second-order rate constants around 100,000 M-1-s-1in pH
7.0 aqueous buffers at ambient temperatures.
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Figure 1. A. Model arylation reaction between CAP reagents
and glutathione (GSH, y-glutamylcysteinylglycine). B. Struc-
tures of select CAP reagent cations. lodide or tetrafluoroborate
counter anions are omitted. C. Half-lives of electrophilic pyri-
dinium salts in pH 7.0 50 mM PIPES buffer containing 100 mM
KCI at 25 °C. The half-lives in water at 25 °C were 8-15 times
longer. CAPS5 reacts with GSH and water via sulfone substitu-
tion and chlorine replacement, respectively.

We hypothesize that two major factors limit the application of
conventional organic electrophiles for rapid cysteine bioconju-
gation - (i) insufficient thiol reactivity and (ii) general water
incompatibility, particularly poor aqueous solubility. To cir-
cumvent these issues, we previously demonstrated a conven-
ient method for cysteine arylation with pyridinium (CAP) salts,
including N-methyl-o-fluoropyridinium iodide (CAP1, Fig. 1B)
and its derivatives.33 The advantageous reactivity of these wa-
ter-soluble organic salts arises from the cationic nature of the
electrophiles and highly polarized C-F bonds.3435 Specifically,
the reaction between CAP1 and glutathione (GSH) showed a



high second-order rate constant of 116 M-1-s-1 in pH 7.0 aque-
ous buffers at 25 °C and thus allowed for efficient functionali-
zation of cysteine in the 100 uM concentration range (Fig. 1C).

Based on these results, we speculated that pyridinium salts that
are even more electron-deficient would enable ultra-rapid cys-
teine arylation under mild conditions. We thus chose to func-
tionalize the pyridinium ring with a strongly electron-with-
drawing methyl sulfone group,3¢ which can serve both as an ef-
fective activator for the electrophilic aromatic system and a
good leaving group during the substitution.12 19-20,37-41 Accord-
ingly, two water-soluble pyridinium salts were synthesized, in-
cluding N-methyl-4-methylsulfonyl pyridinium (CAP3) and N-
methyl-2-methylsulfonyl pyridinium (CAP4) tetrafluorobo-
rates (Fig. 1B). The kinetic study with GSH revealed the re-
markable reactivity of CAP3 and CAP4, with respective k2 val-
ues of 9,800 and 120,000 M-1-s-1 in pH 7.0 PIPES buffer at 25
°C (Fig. 1C, S1, and S15). In pH 7.4 PBS, CAP4 reacted with GSH
at 200,000 M-1.s-1; in pH 8.0 Tris, the rate constant reached
870,000 M-1-s-1 (Fig. S3 and S4). Such extreme reactivities en-
able ultra-rapid arylation of sub-micromolar cysteine within
minutes. Even so, CAP3 and CAP4 showed a long half-life of ap-
proximately 140 h and 18 h in water at 25 °C, respectively (Fig.
1C, S14, and S17). Such persistence allows for the convenient
storage and handling of aqueous stock solutions, significantly
simplifying experimental protocols. Compared to CAP1-2,
CAP3-5 show an even greater preference for cysteine arylation
over hydrolysis, ensuring the high chemoselectivity of the bio-
conjugation. Moreover, the cysteine arylation also proceeds
very rapidly even atlow pH or in water, conditions occasionally
encountered but not typically preferred due to the low reactive
thiolate availability. These attributes demonstrate the versatil-
ity of this chemistry for different synthetic applications (Fig. S2,
S7,S304, and S311). In addition to these two prototypical pyr-
idinium salts, we further synthesized a ditopic labeling reagent,
N-methyl-2-chloro-6-methylsulfonyl pyridinium tetrafluorob-
orate (CAP5), bearing a chloride and the methyl sulfone moiety
as the leaving groups. Reactivity investigation suggested that
CAPS5 also undergoes ultra-rapid reaction with equimolar GSH
at approximately 320,000 M-1-s-1 through sulfonyl group sub-
stitution, an extremely fast reaction under very mild conditions
without any catalyst (Fig. 1C, S18, S317-322). Together with N-
methyl-o-chloropyridinium iodide, commonly known as Muk-
aiyama reagent,*2 and other CAP reagents previously reported
(Fig. 1B-1C),33 these substituted pyridinium salts comprise a li-
brary of convenient cysteine arylating reagents with rate con-
stants that span five orders of magnitude and that are amena-
ble for a multitude of synthetic tasks.

We next investigated synthetic applications of CAP3 and CAP4.
As revealed by NMR and high-performance liquid chromatog-
raphy (HPLC) studies, the reaction of GSH with 1.1 equiv. of
CAP3 and CAP4 afforded the corresponding sulfur arylated
product in both high conversion (>99%) and purity (73-98%,
Fig. S25-26 and 29-30). For more structurally complicated
peptides containing other nucleophilic residues, CAP3 and
CAP4 also enabled efficient cysteine bioconjugation with re-
markable chemoselectivity. We first arylated oxytocin, a
nonapeptide hormone containing a disulfide bond, which can
be reduced by tris(2-carboxyethyl)phosphine (TCEP). With
100 pM reduced oxytocin, 2.1 equiv. of the pyridinium salts la-
beled both cysteine residues in pH 7.0 PIPES buffer at room
temperature, yielding essentially pure product in 99% conver-
sion within 5 min (Fig. 2C, S46-47, and S51-52). Similarly, the
disulfide-containing 14-mer peptide somatostatin also rapidly
reacted with CAP3 or CAP4 under mild conditions to give dou-
bly arylated products in both high conversion and purity (Fig.

2C, S34-35, and S39-40). The reaction of CAP4 with structur-
ally diverse substrates, including ADH-1 and the 22-mer C-type
natriuretic peptide, also exhibited near quantitative conver-
sion, underscoring the broad scope of this chemistry. Notably,
as confirmed by HPLC and tandem mass spectrometry (MS)
studies, both CAP3 and CAP4 exclusively arylated the cysteine
side chains of all peptides investigated, highlighting the marked
preference of these pyridinium electrophiles with the thiol
moiety over other nucleophiles, including lysine, histidine, ty-
rosine, serine, threonine, and the unprotected N-terminus (Fig.
2C, S62-79). This observation is in good agreement with our
kinetic studies of CAP reagents with common biological nucle-
ophiles and can also be predicted by Mayr’s nucleophilicity pa-
rameters.43-45 For example, the reaction of CAP4 with cysteine
is about five to six orders of magnitude faster than that with
histidine, lysine, or tyrosine analogs (Fig. S10-12).
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Figure 2. A. Typical protocol for dual labeling of disulfide-con-
taining peptides using CAP reagents. B. The amino acid se-
quence of structurally diverse peptides. C. Labeling of reduced
various peptides using CAP3 or CAP4. *Directly arylated at 100
uM with 105 pM CAP4 without TCEP.

Prompted by these results, we utilized the CAP-based strategy
for constructing macrocyclic peptides6-4 through cysteine sta-
pling reactions. Our initial effort focused on using this pyri-
dinium salt to arylate the reduced disulfide bond in oxytocin
and somatostatin. The presence of two electrophilically distinct
carbon atoms with SNAr reactivity separated by five orders of
magnitude makes CAP5 particularly suitable for this stapling
chemistry (Fig. 1C). The exceedingly more reactive sulfone-
substituted carbon can initiate an ultra-rapid intermolecular
C-S bond forming reaction at high substrate dilution, a condi-
tion usually necessary in biomacromolecule cyclization reac-
tions.50-51 In contrast, the substantially lower electrophilicity of
the chlorinated carbon disfavors similar intermolecular pro-
cesses to prevent undesired peptide oligomerization or
polymerization but still allows for a feasible intramolecular
cysteine arylation reaction, exclusively rendering monomeric
cyclized peptides. The stapling reaction of oxytocin and soma-
tostatin with CAP5 experimentally supports the high efficiency
of this chemistry (Fig. 3B). In both cases, the macrocyclic pep-
tides were obtained within 5 min under very mild conditions
with high conversion as indicated by HPLC analysis (Fig. S80-
81, S86, and S105-106). Tandem MS studies further confirmed
that the cyclization results from the desired dual cysteine ary-
lations.



We next developed bipyridinium salts that featured two inde-
pendent electrophilic aromatic systems, respectively bearing a
chlorine and a sulfone leaving group. A series of regioisomers,
CAP6-8, were synthesized to allow for the precise modification
of the structural parameters of the cyclized peptides. Analo-
gous to CAP5, CAP6-8 also facilitated ultra-rapid, highly selec-
tive macrocyclization of reduced somatostatin in pH 7.0 PIPES
buffer at 25 °C within 5 min, generally furnishing the antici-
pated products in high purity (Fig. 3B, S89, S94-95, and S100).
The remarkable efficiency of the transformation was observed
across all three regioisomeric stapling reagents and the reac-
tion concentrations tested (25-100 uM), indicating the broad
scope and universal applicability of this strategy for different
synthetic purposes.

A. Peptide stapling with ditopic CAP derivatives
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Figure 3. A. Typical protocol for stapling reaction of disulfide-
containing peptides using ditopic CAP reagents. Reaction effi-
ciencies of oxytocin and somatostatin stapling using various
CAP reagents are shown. B. Select HPLC chromatograms of the
reaction mixture of CAP-enabled peptide stapling, indicating
the high purity of the crude product (asterisks indicate impuri-
ties from the HPLC mobile phase).

We investigated the applications of these sulfone-based CAP
reagents for protein bioconjugation (Fig. 4). We explored the
reaction of two prototypical sulfone-containing pyridinium
salts, CAP3 and CAP4, with bovine serum albumin (BSA).
MALDI and intact protein MS studies indicated that both rea-
gents efficiently labeled BSA in pH 8.0 Tris or pH 7.0 PIPES at
room temperature within 15 min, revealing their remarkably
high reactivity toward the thiol group in not only small pep-
tides but also large proteins (Fig. 44, 4B, and S127-S139). We
further investigated CAP-enabled arylation of KRAS and Yer-
sinia tyrosine phosphatase (YopH) proteins, which bear multi-
ple free cysteine residues. Mass spectrometry analysis of

CAP3-arylated KRAS revealed efficient functionalization of all
three free cysteines (Fig. S140-S156). Despite its relatively
higher reactivity with small cysteine-containing peptides,
CAP4 exhibited comparatively lower efficiency of cysteine ary-
lation in KRAS (Fig. S157-S168). Whereas we observed aryla-
tion of up to all five free cysteines in YopH with CAP3 (Fig.
S$170-S182), the mass spectrometry data of CAP4-labeled
YopH only indicate arylation of three cysteines. Signals corre-
sponding to labeling at the remaining two cysteine residues
(Cys93 and Cys262) are near the detection limit, perhaps due
to inefficient reaction at these sites (Fig. S183-S195).
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Figure 4. (A) Protein structures; (B) Summary of protein label-
ing experiments with CAP3 and CAP4; (C) Generation of CAP9-
TAMRA cysteine arylating reagent with CAP9 and phenol-con-
taining TAMRA in situ; (D) Modular arylation of GFP V150C
with CAP9-TAMRA; (E) Modular arylation of BSA with CAP9-
TAMRA.

We next performed modular one-pot, two-step functionaliza-
tion of proteins using the ditopic CAP9 reagent, which bears
ortho fluorine and an ortho methyl sulfone as leaving groups
(Fig. 4C). Our NMR and HPLC studies indicated nucleophile-
specific reactivity of these two leaving groups toward hydrox-
ylation and thiolation: the C-F moiety preferentially reacts



with the hydroxyl group, but the sulfone group is rapidly sub-
stituted by cysteine (Fig. S22, S122-123, and S323-328). In
particular, the high hydroxyl reactivity of the C-F bond facili-
tates quantitative phenol arylation in pH 7.0 PIPES buffer with
CAP9, the excess of which is converted into the rather thiol-in-
ert methylsulfonyl pyridone, thus avoiding undesired cysteine
labeling with unreacted CAP9. Following this strategy, we re-
acted CAP9 with a phenol-containing tetramethylrhodamine
(TAMRA) derivative TAMRA-OH under very mild conditions
(Fig. 4C). The resulting red-fluorescent pyridinium salt, CAP9-
TAMRA, was generated in situ and promoted rapid arylation of
both BSA and cysteine-containing green fluorescent protein
(GFP V150C) in pH 7.0 PIPES buffer at room temperature,
demonstrating the versatility and high synthetic modularity of
this one-pot two-step chemistry (Fig. 4D, 4E, and S196-197).

In conclusion, the synthetic strategy presented here provides a
simple and user-friendly solution for ultra-rapid cysteine func-
tionalization under biologically compatible conditions. Pairing
cationic pyridinium systems with strongly electron-withdraw-
ing methyl sulfone moiety, this unique chemistry substantially
enhances the efficiency of cysteine arylation, with exceedingly
large rate constants of up to 870,000 M-1-s-1 under very mild
conditions without a catalyst. Significantly, their high reactivity
with cysteine does not lead to low chemoselectivity.52 Derivat-
ization of the CAP compounds with other reaction handles,
such as phenol motifs, facilitates the construction of complex
biomacromolecular scaffolds, including stapled peptides and
labeled proteins, generally in minutes - or even seconds - with
excellent purity. Given the facile accessibility of CAP reagents,
the operational ease of the method, and the ultra-rapid and se-
lective transformations, we expect wide application of this syn-
thetic platform in practical biomacromolecule modifications.
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