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1 Introduction 

1.1 Reduced Hartree-Fock equation 

Despite the success of the density functional theory (DFT), its computational difficulties remain a major 

bottleneck. Filoche and Mayboroda initiated a series of recent works on the landscape function [18], which 

led to a further simplification of the DFT by introducing the Poisson-landscape (PL) equation [19,37]. The 

landscape theory and numerical simulations [2-4,19,37,43] suggest that solving the PL equation can be an 

efficient and accurate replacement of the original DFT. This success undoubtedly demands a rigorous 

mathematical justification and a theoretical foundation. 

DFT originated as a systematic way to study the large many-body quantum system by using a self- 

consistent 1-body approximation. Parallel to its development, a number of effective theories existed along 

with DFT; examples include the Hartree-Fock theory, the Bardeen-Cooper-Schrieffer (BCS) theory, and 

the Thomas-Fermi theory of electrons. While DFT enjoyed a similar energy functional as the more complex 

Hartree-Fock theory and the BCS theory, inheriting a form of accuracy, it also gravitated toward 

the Thomas-Fermi theory to study the simpler electron density instead of density matrices. Owing to 

these characteristics, the Kohn-Sham (KS) energy and the equation of DFT were developed [21,22]. These 

equations and their related theory have become a mainstay of modern condensed matter physics. Some 

notable areas of application include semi-conductor design, deformation theory in solid mechanics, and 

quantum chemistry. In the mean time, a plethora of mathematical studies also ensued, for example, see 

[17,23,26,27,30—33,35,42]. 
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The KS equation is a set of functional equations for the electron density p, which is often simplified to 

the reduced Hartree-Fock equation (REHF) to illuminate core mathematical properties while maintaining its 

key features [8—10,13,20,28,29,41]. This is achieved by ignoring the exchange-correlations terms in the KS 

equation. In the same spirit, we will also consider this simplified REHF in our work and be consistent with 

the aforementioned landscape theory in [19,37]. 

Consider a semi-conductor at a positive temperature, B-!, with a background charge distribution x,! and 

a band-offset potential V.2 We choose physical units such that as many physical constants are set to 1 as 

possible. In this case, the REHF equation states that the material’s electron density, p, is given by 

p = denfin(B(-A + V- $ - w), a 
where jy is the chemical potential/Fermi energy, fgp is the Fermi-Dirac distribution 

1 
feo@ = a 2) 

¢ is the electric potential solving the Poisson equation 

Ap = k-p, (3) 

and den is the density operator defined via 

(denA)(x) = AQ, x), (4) 

where A is an operator on L?(R3) and A(x, y) is the integral kernel of A (see Appendix A for more details). If 

A has a full set of eigenbasis @, with eigenvalues Aj;, then denA has the more familiar expression: 

(denA)(x) = LAIGPOO. (5) 

We remark that while equation (1) is an equation for microscopic electronic structures of matter, dopant 

potentials and band-offsets often vary on another larger mesoscopic scale. A precise formulation of the 

problem would require a homogenized version of (1) where mesoscopic parameters such as the dielectric 

operator emerge. However, we will make the possibly unphysical assumption that (1) is already homo- 

genized and the dielectric constant is 1 purely for mathematical simplicity (Remark 1.6). 

Moreover, we further restrict ourselves to the semi-classical regime and modify (1) as follows: 

p = denfrn(B(-e7A + V-  - »)), (6) 

where € < 1 is the semi-classical parameter. In addition, in semi-conductor models, the band-offset poten- 

tial V is piecewise constant (often viewed as a realization of a random potential of Anderson type). We 

restrict our study to a potential of the form V = Vin + 6Vp, where Vmin is a constant, Vp is a piecewise 

constant function, and 6 « 1 is a small parameter, i.e., V is a piecewise constant potential being close to a 

constant Vin. (See more precise definition of V in the next subsection.) In this regime, one natural effective 

equation for (6) is expressed as follows: 

p J afeo BC? + Vain + 5¥p ~~ 0), @ 
Fs 

_ 1 

~ rep 

where ¢ solves (3) as mentioned earlier, and Vin and V, will be specified later. However, the piecewise 

constant V renders semi-classical analysis potentially ineffective. That is, the error of the difference 

between the right-hand side of (6) and the right-hand side of (7) cannot be meaningfully controlled. 

Consequently, a form of regularization is needed. There were previous results in semi-classical analysis 

1 In semiconductor production, such a background charge is usually called a dopant density/doping level. 
2 For simplicity, we only consider the conduction band potential (band edge) Vaona = V - . The band-offset potential V is 
defined to be Veona + . We refer readers to [19] and references therein for more details of these terminologies in semi-conductor 
models.
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dealing with potentials without any assumption on regularity, see, e.g., [29]. The PL equation presents a 

different regularization method that preserves both the spectrum of the Hamiltonian H = -e2A + V - @and 

the density p (more details can be found in the proof of Theorem 1.3). We want to emphasize that the PL 

equation was proposed as a computational simplification rather than a regularization method for the semi- 

classical expansion initially, see more discussion in the next subsection. 

1.2 Landscape theory and the PL equation 

In one view, the landscape theory presents a partial diagonalization of the Schrédinger Hamiltonian 

H = -«A + V - [4]. In [18], if H > 0, the landscape function u is defined as follows: 

Hu =1, (8) 

and the landscape potential W is defined as follows: 

W=1/u. (9) 

Conjugating H by u, we obtain 

uHu = -e7A — 2ueVu - eV + W. (10) 

We remark here that u-'Hu has the same spectrum as H. This forms the basis for isospectral regularization 

as mentioned at the end of the previous section. Ignoring the drift term in u-'Hu, this suggests that we 

should modify equation (7) as follows: 

P= Gop | Pho Be? + Ww, a 
oe 

where 

W=1/u, (12) 

(-eA+V-g)u=1. (13) 

This equation was proposed as a computational simplification to the REHF and studied in the physical work 

[19,34,37]. Together with (3), they bear the name PL equation. 

Numerical solution to the REHF equation requires an extensive computation of a large number of 

eigenvalues and eigenfunctions of the Hamiltonian H. Although various eigensolvers have been developed 

for this purpose (for a survey, see [6,40]), such a direct computation remains a challenge in large-scale 

systems, particularly in high dimensions. In the specific setting of semi-conductor physics with random 

potentials, the landscape function u alleviates this problem through the approximation that the ith lowest 

eigenvalue E; of the Hamiltonian H can be numerically predicted by the ith smallest local minimum of the 

landscape potential W (defined in (9)), Wi: 

d 
E,~ ( + ow, (14) 

where d is the spatial dimension [2]. Following this success, [2] showed further that the number of eigen- 

values below E, Ny(E), of H can be approximated by 

1 
Ny(E) = we J dpdx1y?. wo<k (15) 

RKO 

numerically. This approximation enjoys a more accurate prediction than the usual Weyl’s law on average. 

We note that the left-hand side of (15) is
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Jeroues (16) 
R 

where Pr_o,,-¢ is the electron density at zero temperature with y = E (cf. (6)). Consequently, we expect that 

the solutions to the PL equation (11) are good approximations to the density of electrons. In [19], the self- 

consistent PL model was introduced and allows the authors of [19] to bypass solving the Schrédinger 

equation. According to the real modeling exercises in [34], the landscape model considerably reduced 

the computation time, compared to a conventional Schrédinger solver. 

Up to now, many of the stated advantages of the landscape theory have mostly been proven useful for 

numerical purposes. The current article is the first rigorous mathematical treatment of the PL model. The 

goal of the current work is to introduce a rigorous treatment of the PL equation as an effective equation of 

the REHF equation in the semi-classical limit. Other related rigorous mathematical treatments of the land- 

scape theory for different models can be found in [3,5,16,39,43]. 

1.3 Results 

We limit ourselves to the periodic setting in which physical quantities are periodic on Q = R3/(LZ)? = [0, LP, 
while the quantum states are on R?. That is, quantities such as p, x, V, or @ are periodic while the associated 

operators, such as H = -€7A + V - @, act on L7(R3) (see Appendix A for more details). 

Moreover, let X = R? or Q and L?(X; F) be the usual L? space of F valued functions on X, whereF = R 

or C. In the special case when F = C, we denote L?(X) = L?(X; C). We endow L?(X; F) with its standard 

p-norms. Similarly, we equip L?(X; F) its standard inner product. Due to the periodic nature of Q, we 

identify L?(Q; F) with 

f¢ L2(R?; F): f is (LZ) periodic and fur <co}. (17) 
a 

We let H°(Q;F) c L?(Q;IF) denote the associated Sobolev spaces of order s with periodic boundary condi- 

tions. The identification of H°(Q;F) with HS periodic functions on R? persists. When F = C, we will suppress 

the symbol C. The conversion from 17(R?;F) to L?(Q;F) is done via the density operator den, introduced in 

(4). That is, the den of a periodic operator on L?(R?) is a periodic function, with fundamental domain 0.3 

Next, we restrict our study to the following type of piecewise constant potentials, which can be viewed as a 

(hence any) realization of a random potential of Anderson type. 

Definition 1.1. Let 0 < L € Z. An (LZ)? periodic potential V is called landscape admissible if V is a strictly 

positive and piecewise constant, given by 

Vox) = Yaox@-j), for xO, (18) 
jel? 

where 0 < w €R is (LZ)? periodic in j and y(x) is the indicator function of [0, 1)?. We note that a 

landscape admissible function V is real valued by this definition. 

3 For simplicity, we restrict ourselves to the periodic boundary condition to avoid technical issues. It is slightly easier to carry 
out the landscape theory on periodic domains, see, e.g., the work in [2,3,16]. For the REHF with an Anderson type random 
potential, one would expect similar results for different boundary conditions, especially for relatively large domain size. Such 
intuition comes from the ergodicity of the random potential. For example, one can see the discussion in [7] for the IDS of the 
Anderson model with different boundary conditions. Unfortunately, we were not able to extend our results for the REHF and PL 
(PL equations) to the Dirichlet boundary condition.
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Our assumption on the external potential V is that V is Landscape admissible with a positive minimum, 

and the gap between its maximum and minimum is much smaller compared to its minimum. For simplicity, 

we will assume the external potential is given in the form 

VQOd = Vain + 6Vp00), (19) 

where Vmin = infV(x) > 0, 0 <6 <1, and V,(x) is a piecewise constant function as (18) satisfying 

infV, = 0, sup Vp = 1. 
Throughout the article, we will write A < Bor A = O(B) if A < CB for some constant C independent of €, 

6, B, and x. 

Our first result shows that the density on the right-hand side of (6) can be approximated by the right- 

hand side of (11). This result will be proved in Section 3. 

Theorem 1.1. Let V be a Landscape admissible potential given in the form (19). In addition, assume that 

(1) B>B,0<e<e, and0 <6 <6,, where B, > 1, €, < 1, 6, < 1 are constants only depending on Vmin, the 

dimension d, and the domain size L. 

(2) p € H(Q; R) and |Ipllizqy < 4, 

(3) Vin — # => C > 0, where C is a constant independent of 6 and €. 

Then there exists Vey, € R with 

0 < Vinin — Vout = O(6"/*), (20) 

and two effective potentials W, = 1/u and W) = 1/w satisfying 

(-€7A + (V — Veur — $))u = 1, (21) 

(-e2A + (V = Veu)up = 1. (2) 

Moreover, the density has the asymptotic expansion 

denfin(B(-e°M + V— WD) = ES | defo Bem? + Wi + Vw ~ 1D) + Bi ey) 
@ 

= oe | Pho BP? + We + Vu ~ WD) + Re @) 
@ 

where 

IRilizay» IRollizqay < e178 te Ban H-8 9), (25) 

Theorem 1.1 provides the foundation for a rigorous justification of the PL equation. In addition, (22) 

suggests that a simpler effective equation is also possible. More precisely, let 

Fasns(, 2) = denfin(B-e%A + V- b— 1), 26) 
Fabs) = ess | defo Be? + Wi + Vw ~ 1), en 

2 
1 scl = GES | defo BO? + Wi— + Vou ~ Ws 8) 

Fa 
where W, = 1/u and W) = 1/u) and w and wp are given in (21) and (22), respectively. LSC stands for “land- 

scape regularized semi-classical,” and we will henceforth call this new Fisc the landscape regularized semi- 

classical (LSC) regime. We note that Fisc is a further simplification of Fp, and more closely resembles the 

semi-classical approximation (7). Inserting p = F(@, ) for F = Frrur, Fer, Fisc into equation (3), we obtain 

the REHF, PL, and LSC equation, respectively, for the electric potential p:
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Ag = x - Fg, p)- (29) 

One advantage of F = Fics is that (29) is the Euler-Lagrange equation of a certain (energy) functional 

(Appendix B). This ensures that the linearization in @ is self-adjoint, whereas the linearization of Fp, is not 

self-adjoint in general. More importantly, the potential W; does not depend on @, and it only depends on the 

underlying material property due to V. One may further incorporate the doping features into V the addition 
ofan ansatz due to doping and electron density. That is, if pp is an a priori estimate for p, with associated 

electric potential ¢, we may look for solutions to (29) of the form p = py + p’ and p = $y + '. By sub- 

stituting these expressions into (29) and upon minor modification, we obtain 

-Ag' = Gap | seas + $" + Vea ~ 10) ~ Pos 

where W = 1/ii and ii solves 

(eA + V- by — Veit = 1. 

Hence, all the material and doping properties are stored in W, which is independent of ¢. 
Finally, to state our main result relating the REHF, PL, LSC equations, and the associated electric fields, 

we specify additional assumptions. 

Assumption 1. (Semi-classical regime). The semi-classical parameter 

e< eo" (30) 

for some large constant C > 0 only depending on Vain, the dimension d, and the domain size L. 

Assumption 2. (Low temperature). There is some K € R such that 0 < K < Vin — and the inverse tem- 
perature B satisfies 

< HE and 6 (sy 31 B Vinin — He s BS G1) 

Remark 1.2. The positive temperature assumption £"! > 0 is crucial for our main results. For technical 

reasons, the linearization of the density function relies on a large but finite £, see, e.g., Lemma 6.3. Our 

approach does not apply to the zero temperature case. At the zero temperature, the REHF equations in 

disordered media have been studied in [9], when the interaction is short range. Still many questions remain 

open at the zero temperature, especially for REHF with Anderson background and long interactions. We 

refer readers to these work and references therein for more related results. 

Assumption 3. (Conservation of charge). The doping potential x < L7(Q; R). Moreover, 

ai! Ko = —|xk 
19] (2) a 

is a fixed constant. 

Theorem 1.3. (Main result) Let assumptions in Theorem 1.1 and Assumptions 1-3 hold. Assume that 

(o; #) € H?(Q; R) x R solves (29) with F being any one of (26), (27), or (28), and 

Iolli#ay < 6- (33) 

Then there exists C;, @ > 0 and a unique @ € H?(Q; R) such that fy — lla) < 660" and (@, ») solves (29) 

with F being any other one of (26), (27), or (28). Moreover, 

Ifo - Pla) < (34)
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Theorem 1.3 has an immediate corollary in terms of the density p. Rearranging (29), the corresponding 

equations for the density are as follows: 

p=F,), (35) 

Ap =k -p. (36) 

Corollary 1.4. Retain the assumptions in Theorem 1.3. Assume that (Pg, #) € (k + H™ 2(Q; R)) x R solves 

(35)-(36) with F being any one of (26), (27), or (28), and 

I — pola) < 6. (7) 

Then there exists C;, G > 0 and a unique p € x + H-(Q; R) such that llpy — pla) < 2&5" and (p, u) solves 

(35) and (36) with F being any other one of (26), (27), or (28). Moreover, 

Up — pllir-%ay < eto", (38) 

Remark 1.5. Corollary 1.4 answers the challenge posed in the introduction. It justifies [19, 37] on a math- 

ematically rigorous level in the semi-classical regime at low temperature (or large f). 

Remark 1.6. We noted in the paragraph before equation (6) that the dielectric constant is taken to be 1. 

However, as one will see from the proof of our main result Theorem 1.3, so long as the dielectric constant is 

strictly positive, the same conclusion can be derived, albeit with more cumbersome proofs. 

Remark 1.7. Note that in both Theorem 1.3 and Corollary 1.4, a solution to (29) is a pair: either (#, y) or 

(p, #). Because of this particular view of solution, equation (29) has an important dilation symmetry 

(detailed below). Moreover, since x is real, another important complex conjugation symmetry exists. We 

now discuss these two symmetries and their consequences in light of Theorem 1.3 and Corollary 1.4. 

(1) (Dilation symmetry) 

@wWrG+tu-o G9) 

forte R. 

(2) (Complex conjugation) If x and V are real valued and p € R, then 

Hw Ch, w) (40) 

is a symmetry of (29) where C@ = @ is the complex conjugation of ¢. 

Dilation requires one to regard all solutions (, j/) related by a dilation as a single solution. In this way, the 

uniqueness of solution is regarded as uniqueness among an equivalence class. Nevertheless, since we fixed 

hin Theorem 1.3 and Corollary 1.4, a particular representative of the equivalence class is chosen, and there 

is no ambiguity in the word “unique.” Perhaps a better way to view this is to consider @ + yas the solution 

instead of (@, ). In this way, one avoids the equivalence class description. Nevertheless, since we are 

interested in the difference of two solutions (34), any choice of either point of view causes no harm. 

Moreover, the complex conjugation symmetry (and the uniqueness of solution) ensures that any solution 

to (29) with real x, V, and yp is necessarily real. Thus, the conclusions regarding the reality of @ and p in 

Theorem 1.3 and Corollary 1.4, respectively, are in fact superfluous. 

One also note that the PL equation with (27) does not have the dilation symmetry, contrasting the case 

of (26) and (28). Whether this difference makes numerical approximations using (27) less desirable is out of 

the scope of this article, since (27) respects the dilation symmetry in leading order € if € « 1. 

Theorem 1.3 could help us to prove existence of solutions for the three classes of equations REHF, PL, 

and LSC simultaneously. However, we were unable to prove the smallness assumption (33) in general.
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However, we believe this condition should hold in many cases if |[xllyq) < 6 (for related results, see 

[15,25,38]). Nevertheless, we provide an existence result to the simplest case, the LSC equations, via varia- 

tional principle for completeness sake. Since this type of existence result is well studied in the literature, we 

will not enumerate all previous works. The interested reader is referred to, for example, [1,11,12,14,36]. 

Theorem 1.8. (LSC existence) If x — ko ¢ H?(Q; R) (see (32) for definition of xo), there exists a solution 

(@, ) € H2(Q; R) x R to the LSC equation (28). 

Proof. This is a direct corollary of Theorem B.1. a 

1.4 Outline of the proof 

The proof consists of mainly two parts. The first part is an leading order expansion of electron density, 

p = denfgp(A(-e7A + V - ¢ — p)) as stated in Theorem 1.1, via the effective potentials W = 1/u. We start in 

Section 2 from several quantitative estimates for the landscape function u, solving (-e2A + v - @)u = 1 (for 
some abstract v, @), and the associated effective potential W = 1/u in terms of the parameter 6 and €. Then 

we prove the leading order expansion Theorem 1.1 in Section 3 following an analysis of the landscape 

potential in Section 2. In Section 3, we work in a more general setting for a density p = denf(—e7A + v) for 

some analytic function f (under mild assumptions). The Schrédinger operator (and the associated density) 

is conjugated by the landscape function u-\(—e2A + v)u, and then estimated by a contour integral ah, (for 

some T in the complex plane around the spectrum of the Schrédinger operator). Then we expand the 

contour integral as a Taylor series of the effective potentials W. The leading-order terms in the expansion 

will contribute to the first terms in equations (23) and (24). The higher order terms in the expansion will 

contribute to the remainder and will be estimated as the error terms, using the quantitative estimates 

obtained in Section 2. The remainder/error estimates also rely on some estimates of the Schatten p-norm 

of commutators [W, R] and Kato-Seiler-Simon inequality for a trace. 

The second part is to use Theorem 1.1 to prove Theorem 1.3, relating the REHF, PL, LSC equations, and 

the associated electric fields. To do that, we digress briefly in Section 4 to establish a relationship between 

the parameters €, 8, 1, etc. as a result of the constraint of the integrability condition 

fr fra.n, (at) 
Qa Q 

obtained by integrating (29) over Q. To prove Theorem 1.3, we rewrite the REHF, PL, and LSC equations in 

the form -A@ = x — F(@, ), where F is one of (26)—(28). We assume that (po, /) is a solution of equation for 

a choice of X = REHF, PL, or LSC. We look for a solution, ¢, of the corresponding equation Y = REHF, PL, 

and LSC, Y # X, near (fp, /) of the form # = $o + @. The first step is to linearize F at %p. The linearization 

leads to an equivalent equation (-A + M)g = x! + N(g), where L = -A + M is a positive operator with 
M = dgF(o, Wlp-4, the Gateaux derivative of F at ¢o, and N is a nonlinear operator. The quantitative 
positive lower bounds of L for all three cases X are obtained in Section 6. The crucial technical Lemma 

6.3 to the linear analysis is based on unpublished notes of Chenn and I. M. Sigal, and proved in Lemma 6 of 

[15], via Fourier transforming the kernel of the density and careful branch-cutting. This lemma is one place/ 

reason that we need to work with a positive temperature f~!, and are not able to extend our work to the zero 

temperature case. The nonlinear analysis is presented in Section 7, provided the error estimates given by 

Theorem 1.1. The results from Section 4 and the assumptions of Theorem 1.3 provide the proper scaling 

regime to control our estimates in both the linear and nonlinear analysis. Finally, putting together the linear 

and nonlinear analysis in Sections 6 and 7, the core proof of Theorem 1.3 is finished by a standard fixed 

point argument in Section 3.
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2 Landscape function in the semi-classical regime 

In this section, we will obtain several estimates for the landscape function u in the semi-classical regime. 

These estimates will play an important role in the proof of the main result. The landscape function u is the 

solution to 

(-eA+v-)u=1 (42) 

onQ = [0, LF with periodic boundary condition, where g € H(Q) with |IP|l;z < 6 andv = V — Veut = Vmin + 6Vp 

is in the form (19) satisfying 0 < Vmin = infv = infV — Veut ~ 6", and infV, = 0, sup Vp = 1. 

Theorem 2.1. Let 2 < p < oo. Let v be given as earlier. Assume that 0 < €, 5 < 1 are small as in Theorem 1.1. 

Let W = 1/u, where u solves the landscape function (42) with periodic boundary condition on Q, then 

IVa) < CONEDe-F, (43) 

IAWilz%(a) < C5** (44) 

where C depends on d and p only. 

We start by estimating Vsu in the L? and L® norms first for s = 0, 1, 2. Theorem 2.1 is proved at the end of 

this section by interpolation. As a remark, we will write the L?(Q) and H*(Q) norms as ||-llp and |)- lls, 

respectively, when there is no ambiguity. 

Proposition 2.2. Retain the definitions in Theorem 2.1. If u solves (42) with periodic boundary condition on Q, 

then there is a constant C such that 

lula) < Co, (45) 

IWullzq) < C62, (46) 

[Aull 2¢q) < C55!%e3/2, (a7) 

Proof of Proposition 2.2. The first inequality (45) follows from the fact that the Hamiltonian 

H=-&A+v-@ is bounded below by Vmin — C5 2 Vmin /2 ~ 6/4 for some constant C. We prove (46) 

and (47). 

Notice that V is only discontinuous on a subset Qo = {x = (%, -..,X4) € Q : x € Z} c O and piecewise 

constant elsewhere. Let Q, be the € neighborhood of the discontinuities of V: 

QO, = {xe Q:|x-yl<e, ye Ao}. (48) 

It is easy to check that |Q,| < eL4 (where recall that Q is diffeomorphic to[0, L]4). Let n, be a standard smooth 

bump function supported on B, ;(0) such that 

0 <n.(x) < n,(0) = €4, Ingle) = 1, [Vel s ot. (49) 

First, we prove (46) for u- = 1, * (1/) where ¥ = v — @. Then we use u, to approximate u for our 

estimates. Let vo denote the average of 7 on Q and Vin = 6", Vmax = Vmin + 6 = 6/4, Since |lplliz < 6 by 

assumption, 

IV — Vollo < 6. (50) 

We rewrite 

1 
Mem set us, (51) 

where
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1 
Up= Me * (2 - 2) (52) 

For any x € Q, using (50), we see that 

wuts f dy Vn. - v2 - ae 

1 re <maxivni> fie - wdIay 
min Bria) 

< max|V7,|5-"/I7 — Volloo|Be 200] 
<6 Redg-d-l = § 121 

Thus, on Q,, we have 

2 
f IvulPdx <  fietrar < 0°6-44e10,| < C6e4, (53) va, 
a, mn Oe 

for some constant C. On the other hand, on as, 

@) , IVull = 2 Ne * 

It follows that 

Jivusrax s2— fin, « vardx 
Cc min ~c af af (54) 

SOM IVPIE < 7+ P - 5? = 5. 

By combining (53) and (54), we see that 

[WVuelle = Vuze < C6e1/, (55) 

Next, we decompose 

u=u,t+u', (56) 

where uw’ is defined by this expression. We will control the size of u’ using energy estimates. We note that 

(u!, Hu’) > e7Vu'l + Lv ~ bu’ > eilvu'lh + Sin. (57) 

This provides an energy lower bound. On the other hand, 

Hu’ = Hu — Hu, = €2Au, + 1 - Vue. (58) 

It follows that 

Ku’, Hu')| < |(Vu', €°Vu,)| + [(u’, 1 — Pu,)| < €7Vu'lpllVuelly + lu'lalld — Puella. (59) 

This is an energy upper bound. We now estimate the term ||1 — 7u,|). We write 7 = vo + dv’ where vo is the 

mean of v on Q and v’ is defined by this expression with 

W'lleo <1. (60) 

Together with (51), we note that 

' 
Vue — 1 = (vo + 5v/\(A/vo + ul) -— 1 = 6 + vou! + Sv'ul. (61) 

Yo
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By using (50) and applying Young’s inequality to (52), we see that 

1 )_ 
Iutglloo $ a = Volloo < 61/2, (62) 

By applying (60) and (62) to (61), we see that 

[11 — Vutelloo < 5 /Vmin + Vmax5"? + 66"? < 63/4, (63) 

Thus, on Q,, 

Jit tucpar s "P04 < 5%e. (64) 
Oo, 

For any x € 0S, 

1 1 1 1 |Fe - uo] < Jncvrl eo - do-ylays He Jone ~ $x-yyldy. 5) 

We remark that the domain of integration is in fact B, )2 since n, is supported on a ball of radius € /2 at the 

origin. To estimate the last line, we have 

1 1 

1G) - $6 - y)1 < fivece - 9 ylae < Wtf Iv6Ce - gla (66) 
0 o 

Since 7,(y) has support of radius O(e) centered at the origin, it follows from equations (65) and (66) that 

fir tucPar s vaae f 
of 

2 

<2 faf[o [amonisoee - vl . 
of RO 

We perform Hélder’s inequality (in the dtdy-integral) on the integrand |7,(y)||V@(x — ty)| via the grouping 

MeOMIVGE — OL = NOE? InE7 IVP = ty) 

2a - wcof ax 
Vv 

(67) 

to obtain 

1 2 

| Jay farmconivrge - 2) 
RO 

< | fay farmon fy famonvoee - vs 
RO RO 

1 

Jay farmoniroe - 9yr. 
RO 

IA 

By inserting this into equation (67), we obtain 

f 0 

1 

fir — vucPar s 22 f dx f dy [ arin, onivece - w9P < CerIVE < Cer (68) 
of of 

Combining the estimates on Q, (64) and af (68), we have
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1 — Tuell, < C674e'/2, (69) 

Together with (57) and (59), and using 2ab < a? + b? for any real numbers a, b, we see that 

eivu' + 55"!lu'B (70) 
< (elVu'lb)(eC5"eV) + (C63/4eN/25-1/8)(51/8 "| /2) (71) 

<Feiwu'B + zou‘iw'B + Clée. (72) 

Subtracting the first two terms of (72) from both (72) and (70), we see that 

evi + 6/4Iju'lB < Cée. 

Therefore, 

IWu'ly < 67"? and |lu'lp < 6?8eN?, (73) 

By combining with (55) and (56), we see that ||Vull, < C5"/e~!/? for some constant C. This proves (46). 

Finally, we estimate the L? norm of —Au. Recall that 7 = V — @. By using equations (42), (69), and (73), 

we see that 

[Aull = [1 — Pull < 1 — Puella + [lVu'lly < C63/4e/? + VmaxC63/8e'/?, (74) 

Therefore, €\|Aull) < C5°/8e!/?. Dividing both sides by e? proves (47). a 

Proposition 2.3. Retain the definitions in Theorem 2.1. If u solves (42) with periodic boundary condition, then 

lIVulli=(a) < C5°/8e", (75) 

[Aullz=(a) < C67/4e~, (76) 

where C depends on d and L only. 

Proof of Proposition 2.3. Define w via u(x) = w(e-!x). Since u solves the landscape equation (42), w solves 

(-A + v,)w = 1, where v,(x) = v(ex) — p(ex). Moreover, 

[VSullr(ay = € SVS aollz(e10) + (77) 

Consequently, we estimate the sup-norm of Vw. As mentioned earlier, let vo denote the average of v on Q. 

We decompose ¥; = Vo + 5v;, where v, is defined by this expression. We remark that the mean of v; over e710 

is 0 and 

-l<vyisl. (78) 

Let Ho = —A + vo and R = Ho!. We see that 

1 
@ = (Ho + bv, = Y (-1yre"(Rvz"Ri = — Y (-1)r6"(Rvzy"1. (79) 

n20 n20 

It follows that 

vo = +S arervirviy. (80) 
n21 

We claim that 

G 
IR, 1%") < (81) 

Yo 

6 
IIVRvelli~ < G—, (82) 

Wo
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for some constants C; and . For the sake of continuity, we defer the proof of the claims to the end of this 

section as they are simple corollaries of Young’s inequality. Since the integral kernel of R is positive and by 

using equations (78), (81), and (82), we see that (80) can be estimated as follows: 

Cc. 6 
Ve <———  * < . Wolo < Ta 7m) Wie = “vee 

since Vo > Vmin 2 6'/4. Together with equations (75) and (77) is proved pending claims (81) and (82). 

Now we prove the claims (81) and (82). Equation (81) is standard. For the sake of completeness, we carry 

out the corresponding estimates. Let g(x) = = Then 

(RNC) = g * f. 

It follows from Young’s inequality that 

evel ¢ 

am] Vo (89) Riser umeiny < Cf de 
4 

for some constant C. Similarly, we estimate (82). We note that 

(WRvg)(x) = (Vg) * Ven (84) 

Since 

Jivst= farsooie + br) = = (85) 
R? R? 

for some universal constant C, claim (82) follows by Young’s inequality. 

Finally, using 

—Aw =1- vw, 

we see that 

[Aa|loo = []1 — vetalloo « (86) 

By equations (79) and (81), and the fact 5 = Vmax — Vmin < 6'/4 = Vin, 

6 I = vidlleo < CY SIRI, < CS min__ < ¢. 3/4 > Thre < 64, (87) 

for some constant C. Together with (77) and (86), this proves (76). The proof of Proposition 2.3 is now 

complete. a 

Proof of Theorem 2.1. Since W = 1/u, 

VW = (1/u2)|Vul < v2.41Vul. 

We now interpolate between equations (46) and (75). Recall Vin = 6"/4, Vmax = Vmin + 5 = 6'/4, we see that 

a IVWp < Veax Vully < 8214(§5/8e AYP (GU ll2)2/P < 6HG- 

This proves (43). By differentiating VW once more, we see that 

[AW| < 2W3 |Vul? + W2|Aul < 2v3.. |Vul? + vea,/Aul. (88) 

Since 

pe 
JAW], < IAW? AWB”, (89) 

equations (75), (76), and (88) show that



14 —— lias Chenn et al. DE GRUYTER 

[AWlloo < 63/4(65/8e12 + S24G3/4e2 < 65/42, (90) 

Similarly, equations (46), (75), (76), and (88) show that 

IAW < 6? VulloollVulla + 6?/4|.Aulla (91) 

5 67/4(65/8e“N) (GeV?) + 62/4(55/8e-3/2) (92) 
< 69/8 _3/2, (93) 

By combining (90) and (93) and using (89), one can compute that 

IAW], < Core, (94) 

This proves (44). im} 

3 Leading-order expansion of electron density 

We first state a more general theorem from which Theorem 1.1 follows. Then, we prove Theorem 1.1 while 

delaying the proof of the more general theorem until the end of the section. Let 

H. ={zeC:Rz+c> Of (95) 

We have the following general result. 

Theorem 3.1. Let 2 < p < 3. Assume the following hypotheses hold. 

(1) Suppose that f is analytic on H- for some constant c > 0 and 

Jue + inde < oa) (96) 

uniformly in y for y in on any compact set. 

(2) v= - p> 0, where ¥ = V — Vax and ¢ are as in Theorem 2.1. 

(3) g € HQ; R) and llpllzay < 6. 
(4) The parameters 0 < € < €., and O < 6 < 6, where €, < 1, 6, < 1 are constants only depending on Vmin, the 

dimension d, and domain size L. 

(5) W =1/u denotes the landscape potential, where u solves 

(-e7A + vu =1. (97) 

Then, 

denf(-2A + v — g) = ou favre +W- 9) +€3*PRem, (98) 

R 

where 

Rem za) < Cp i FI (99) 
pus 

for some p-dependent constant C, > 0. 

Proof of Theorem 1.1. Let V and ¢ be as given through the assumptions of Theorem 1.1. We would like to 

apply Theorem 3.1 to both (23) and (24) simultaneously. 

We note that the Fermi-Dirac function has poles on the imaginary axis in imZ. Thus, we decompose 

V = Vin + 6Vp = Veur + V as in (19), where we choose Veut ~ Vin — 6'/4 such that
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Vinax = C161/4, (100) 

where C is the constant given in lower bound of the integral in (99). Consequently, we pick f(z) in Theorem 

3.1 to be 

f@) = feoBE + Vout - p))- (101) 

Thus, H, is chosen with c = Vinax — 

To prove (23), we apply Theorem 3.1 with the potential v = 7 - @ = V- Var — and g = 0. To prove 

(24), we apply Theorem 3.1 with v = ¥ = V— Vay and @ = 0. Finally, we check that the remaining assump- 

tions of Theorem 3.1 are satisfied for the aforementioned choices. Notice in either case, Vmin = 61/4 — 6 = 61/4 

and Vmax * Vmin + 6 = 61/4, 

By the second item of Theorem 1.1 and the Sobolev inequality, ||pl|,. < 6. Since 6 < 1andV-p>C>0 

(Assumptions 1 and 3 of Theorem 1.1), we see that Vaut— > O(1) > 0. Hence, the function f(z) = 

fro(B( + Veut — )) is analytic on Hy,,-» (definition (95)), and Assumption 1 of Theorem 3.1 is satisfied. 

Clearly, items 2-4 of Theorem 3.1 are satisfied by v and gy. 

Item 5 of Theorem 3.1 can also be satisfied since V > 0. 

It follows by Theorem 3.1 that the 1? norm of the remainder Rem (98) is bounded above by 

cy 

e212 | dafeo(BG + Vat ~ WD) < EPP te Alew#-8"9, (102) 
ua 

This proves the errors in (23) and (24). im} 

The remainder of this section is devoted to the proof of Theorem 3.1. 

Proof of Theorem 3.1. First, we remark that the potential functions v and ¢ are real and bounded. It follows 

that their associated Hamiltonian -A + v — ¢ is self-adjoint (on 1?(R3)), so that the spectral theory of self- 
adjoint operator and its associated analytic tools apply. Moreover, the landscape function u solving (97), 

and the landscape potential W = 1/u are also real. 

Let f be a meromorphic function as given in the hypotheses of Theorem 3.1. We note that 

u'(-e2A + v)u = -€2A — 2e2Vu -V + ue (103) 

Let us denote 

U=-2le’vu-V + ul - g. (104) 

Consequently, 

denf(-e2A + v — g) = denf(-e2A + U). (105) 

Since -e7A + U has the same spectrum as —€7A + v — 9, we see that the spectrum of -€7A + U is contained 

in [Vin — O(6), 00) ¢ [Vmin /2, 00), by item (2) of the assumptions in Theorem 3.1. Thus, by using Cauchy’s 

theorem, we can write 

f(-eA + U) = sy froc -(Cea+ uy, (106) 
T 

where the contour I is given in Figure 1. 

For simplicity, we will denote 

$=sa)e (107) 

for the rest of the article. Let 

W=1/u, (108)
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x 

Spectrum 

Figure 1: We identify the complex plane C with R? via z = x + ly for (x, y) € R. The contour is denoted by the blue dashed line, 
extending to positive real infinity. The spectrum of 2A + v — g is contained in the solid black line. The orange line is where 
Wz = -c and f(z) is analytic for Rz > -c. 

W=1/u-g. (109) 

Then, 

denf(—e7A + v — y) = denf(-<7A + U) (110) 

= denff@ Rw, Wh), an) 

where 

RW, W) = (2 - (-e2A + UD) = (@ - eA + 2e°WIVW-V + Wt (112) 

To extract leading orders and for z € C not in the positive real line, we define 

= (z+ eA), (113) 

RaW) = pre", (114) 

RW) = Dwr (115) 

It follows from (111) that : 

denf(-?A + v — g) = dengh fie Riiw) + rex, W) - R(W)). (116) 

Translation invariance of —A shows that for any n, 

denk" = Je ~ yap. 

By using Cauchy’s formula and Taylor’s theorem, the first term dengf (z)Ri(W) can be computed as follows: 

denghfe@Ricwi) = Y ffeidenti"R! a7) 
n20 

“a wp) favgr oC pal (11s)
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y fw pL in an) 
m202 aco, 

- oeF J app? + W). (220) 

Recalling that W = W — 9, this gives the leading order term in equation (98). It remains to estimate the error term 

rexrww, wy - RW). ay 

The following Lemma is the main work horse in this estimate, whose proof is delayed until the conclusion of 

the proof of Theorem 3.1. The Lemma involves the Schatten p-norm G?(Q) given in Appendix A. a 

Lemma 3.2. Let 2 < p. Assume that the assumptions in Theorem 3.1 hold and let W and W be given by (108) 

and (109), respectively. Then 

2 a a CEP? 2 sp I — ARO, W) — Re(W))lls7(ay < zw ENP, (122) 
2 ae 

Ce3 pa 
5m ellP, (123) IAW, W) — RW) - €*A)lle%ay < 

2” a 

for some C; and C; that depend on p and where d(z) is the distance from z to the positive real line. 

Assuming Lemma 3.2, we complete the proof of Theorem 3.1. Let 2 < p < 3 and q be the Hélder con- 

jugate of p such that 3 + + = 1. Recalling the definition of R,(W) in (115), we may apply Lemma 3.2 and 

Lemma A.1 (from the Appendix) to obtain 

aendhrexrew, Wr) — Rwy] = ||rierdentecw, Wy — Rica ~ ea) - ay" 124) 
IPQ) 

a) — Wy _ 2, ca ||freneew, W) - RIA - A) Lew (125) 

1 

7 sipgi- 4(1+2/p) _ ous ar we” D fueaf-< ward * (126) 

provided Vmax is much smaller than inf d(z). Since Vmax = 6!/4 « c provided 6 small, we choose our contour 

to be such that 

c > d(z) = 2C6"/4, (127) 

where C is from (126). This proves (99). 

Proof of Lemma 3.2. We will prove (123) only. The proof for (122) is similar. For W and W given in (108) and 

(109), respectively, recall from (104) that 

U=22WIVW-V + W. (128) 

We expand the resolvent using the resolvent identity 

RW, W)=(2 - (eA + U))t 
=(2 - (eA) + (2 - 2a ue - -e2A + UY 
= Y@uyr. 

n20 

(129)
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We will consider each of the nth order terms separately. Let us denote 

Yq = (RU"R. (130) 

Since commutator of -e2A with W is higher order, to leading order, we have 

Yq = W"R"*! + higher order (h.o.), (131) 

where h.o. will be computed after this paragraph. Summing over n, to leading order, 

RW, W) = )W"R™! + ho. 132) 
nz0 

=R(W) + ho. (133) 

Now we compute the higher order terms coming from y, — W"R"*!, where y, is given in (130). Let us 
introduce the following notations for clarity of exposition. 

(1) We denote 

Wy = 2WVW. (134) 

Note that Wj is associated with the first order derivative part of 

U = 2eWVW-V + W. (135) 

(2) We denote 

Wp = -2VW, (136) 

Wy = -AW. (137) 

These terms came from the commutator 

[R, W] = R(-2e2VW -V + (-e2AW))R = R(e2Wy -V + €2Wy)R (138) 

when we commute W in y, to the left to obtain W"R™*. 

A simple way to keep track of the Wj’s is to note that W; has i derivatives taken, while j stands for the jth 

such quantity (in order of their introduction). 

We write U = e2W,-V + W. Then 

Yq = R(E7Wa -V + W)R --- ReE2Wi -V + W)R. (139) 

If we write y, by expanding all the aforementioned brackets, we obtain 

n-1 

Ya = (RW)"R + € Y (RW)(RWy - eV)(RW) EAR + y', (140) 
i-0 

where y’ is defined by this expression and contains terms with at least two factors of e7W, -V. By commuting 

W to the left, we see that 

(RWyR= WR! + YO WRI, WIRY Rr. (141) 
Osicjcn 

It follows that 

Yq = W"RM (142) 

+ x W RR, WIR-A(RWYOR (143) 
sicjsn 
n-1 . . 

+e) (RWYRWy- eV(RWYOR (144) 
i=0 

+ Vos (145)
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where we note that the leading term W"R"*! was used in the computation for (120). We now proceed to 

estimate the terms (143)—(145) individually. 

First, we estimate the Schatten p-norm of commutators (Appendix A) of (143) . 

Lemma 3.3. Let 2 < p. Let W be given in (109). Then 

IR, Wilsr(a) < CH 7 7 Oph HiR-Upeti, (146) 

where d(z) is the distance from z to the positive real line. 

Proof. We compute 

[R, W] = R(e2Wy -V + €2Wa)R. (147) 

Kato-Seiler-Simon inequality shows that 

IER, Willer ay < ie + [Rll e"lWaRlleray (148) 

< = = SlWaly + €*|Wally)- (149) 

Recalling definitions (136) and (137), we see that 

[Wally < CIVWIp, (150) 

(Wall, < CIAWI,. (151) 

By definition (109) of W, Theorem 2.1 proves (146). oO 

By applying Lemma 3.3 to equation (143), we see that 

3/P, 

< eC inte. (152) 
(Q) Ie yo” 

Y WR, WIR RW)RAG - €7A) 
Osi<jsn 

This concludes the estimate for (143). 

We can estimate (144) in the spirit of the estimate (143) by using an analog of (152). We obtain 

nl 

€  (RW)'(RWy- eV)(RW)" IRC — €7A) Los <= 7G a Wiesel Wally (153) 
i-0 (0) 

e3/Pncn 1g%-2 4 
<To" IW rele, (154) 

Finally, we estimate (145). The term vy consists of all possible terms of the form 

RXRX «++ RXR, (155) 

where X; is one of W or eWy (eV) with at least two of the latter factor. Without loss of generality, we assume 

that X, = eWy -(eV). By Lemma A.1, Theorem 2.1 and Proposition 2.3, we see that 

IRXRX --- RXR - 2A)is%ay < = = y Sn C TReWilertaleVRXso) | JURX! lls~(a) (156) 
33 

3/1) 

< <Io" Fo a + ello VWeo)" MeV Wplttles (157)
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SUM ag + £541 We) MeV W pd. (158) 

Combining (152) (for (143)), (154) (for (144)), (158) (for (145)), and using the binomial theorem (or a mod- 

ification thereof), the fact 6 < Vmin = 6'/4 and Theorem 2.1, we see that 

n e3/Pcn 2-2 Il, — WR — €2A) Ilr ay < one" + 05-14(§9/8e-1))n-15 "Bp el/P (159) 
Z) 

ON gut 5 26-4698 HeV, (160) 
~ dyn! 

Together with (129), (123), and Lemma 3.2 are now proved. a 

4 Consequence of the integrability condition 

Before we move on to the proof of the main result Theorem 1.3, we dedicate this short section to elucidate 

the implied relationships between different parameters €, 6, 8, and jz. We achieve this through the integr- 

ability of the Poisson equation (41), which we now recall and elaborate. 

Let F = Frenr, For or Fisc (26)—(28). By integrating the left- and right-hand sides of (29), we obtain an 

equation of the form 

K 1 fr 1 fF oe tfx-1 fr. 
1a} J” Tay (161) 

Qa Qa 

The goal of this section is to prove bounds on p given that (161) holds. 

Lemma 4.1. Let V be a bounded potential as in (19) and xp € R > Oand|IPllyq) < 5. Let Assumptions 1-3 and 

(161) hold. Assume also that (161) holds for any F given in (26)-(28). Then, 

O<p and V-yp>KkK. (162) 

Proof. We consider the special case where F = Fisc, and all other cases follow from Theorem 1.1. In this 

case, Assumption 3 implies 

1 Ko = Terra) | sero so" +W- + Vou- Ws 063) 
4 

where u = 1/W solves 

(-e?A + V— Ve)u = 1. (164) 

Let 6(j) denote the right-hand side of (163). We first note that 6(j.) is increasing in p since fp is a decreasing 

function. So it suffices for us to check that (0) < Ko < @(Vmin — K). For a generic n € R, 

J avfeo Bp? + BOW ~ + Va ~ 0) (165) 
Fe 

an ° 
= pr | athe? + BW - p + Vout — ))- (166) 

oO 

Since ||| < 6, we can find a constant C such that 

W - @ + Vout > Vinin — O(6"/4) — O(5) > Vinin — C5"/4, (167)
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(W- $ + Vea) — (Vain — K) < K + 0(6/4) + O(6) < K + C614, (168) 

Thus, we see that 

fev @? + BOW ~ + Va — 0)) = Fe BW -O+Ve), (169) 

fev(q? + BW — + Vout) ~ (Vmin — K))) = ee BW-$+ Vea Vain+¥0, (170) 

where we recall that A = B means A < B < A. It follows that 

(0) < €3B-3/2¢-BWain-C5"'*) (171) 

O(Vinin — K) 2 €-3B-3/20-BK+ C8") (172) 

for some constant C > 0. Thus, Assumption 2 shows that a solution 0 < ply < Vmin— K of O(Up) = ko 

exists. o 

Corollary 4.2. Let Assumptions 1-3 hold. Assume also that (161) holds and |ll;2@) < 5. Then 

€-3B-3/2¢-BUain-H+ C8") < 4 < ¢-3B-3/2g-BVain--C6"*) (173) 

for some constant C > 0. 

Proof. By Theorem 1.1, it suffices for us to assume that (163) hold. Lemma 4.1 shows that V- p > K > 0. 

Since B is large, the Fermi-Dirac distribution fep(8(p? + V — )) is well approximated by e-*”'e®V-, By 

integrating dp, we have that 

faver = p3?, ara) 

R 

where we recall that A = B means A < B < A. Moreover, 

eBVnin-H+C6"*) < g-BW-+Veu-W) < g-BVinin-p—C6™'*)_ (175) 

It follows by (163) that (173) is proved. a 

5 Proof of the main result: Theorem 1.3 

Proof of Theorem 1.3. Recall that we can write the REHF, PL, and LSC equations (29) in the form 

Ap =x Fb, W), (176) 

where F is one of (26)—(28). 

For a fixed choice of X = REHF, PL, or LSC, let (fo, #) denote a solution of equation X satisfying the 

assumptions of Theorem 1.3. We look for a solution, , of the corresponding equation Y = REHF, PL, and 

LSC, Y # X, near (fo, p/) of the form ¢ = ¢y + gy. By substituting this ansatz into (29) of the Y equation, we 

obtain 

Ag — Ap =k — Filo + YB) (17) 

=k ~ Fro W) + Fedo» W) — Fr(ho + 9H) (178) 

Rearranging, we obtain 

Ap = K' + Fr(dos W) — Fr(bo + Ys Ws (179) 

where
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x! =x — Fr(Po, W) + Ady (180) 

= Fo 2) ~ Fr(bo, W)- (181) 

Theorem 1.1, and the scaling in Assumption 1 and 2 show that 

Ix'zqay < £34 2B Ve BWea #8) < gU2QCBB" < pll2pGlowte 8" < gl/2-csi* (182) 

for some constant Cj, independent of € and 6. Let M denote the Gateaux derivative of F at @o: 

M = dgF(, Wlp-o,- (183) 

We see that (179) can be written as follows: 

(-A + M)p = k' + Ng), (184) 

where N is defined by this expression. Let us denote 

L=-A+M. (185) 

The rest of the analysis rests upon the following abstract lemma and subsequent theorems. 

Lemma 5.1. (Main lemma) Let i, and H) be two Hilbert spaces such that H, c H is dense (in the Hp 

topology). Let L be an operator on H with domain F,, and N be a function on H, with range in H2. Assume 

that L is invertible on H) and there is a0 < m€R such that 

Whes9y < met, (186) 

and 

INC) ~ N,Dlots < Gu(UPales + Palen) Ps ~ Pole sr) 
for some constant Cy on a ball of radius at least Cm“ 

K€ Ap. If 

ll, centered the origin for some constant C > 0. Let 

Ix'lo, < m and (188) 

Guilx'llag «< m?, (189) 

then there exists a unique solution y on the set 

{o € Hi: Ilia < wre} (190) 

to the equation 

Lp =x' + N@). (191) 

Moreover, 

play < mK’ Ia (192) 

Proof. This is just the implicit function theorem with explicit estimates written out. See, e.g., Chapter XIV of 

[24]. oO 

Let L be given by (185) for either one of F = Frenr, Fp, or Fisc and 

mo =". (193) 

Theorem 5.2. Let the assumptions of Theorem 1.3 hold. Then L is bounded below on L*(Q): 

Ill) > Gill(-A + mF) file) (194)
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for some constants C and any f € H2(Q). 

Let N be defined via (184) for F being any one of Freur, Fer, or Fisc. Then we have the following result. 

Theorem 5.3. Let the assumptions of Theorem 1.3 hold. The nonlinear operator N has the following estimate 

INC) — Nya) < Cmg(Ipllercay + Ulhaleray) Ib, — Palla (195) 

for p, and $, in H\(Q) provided |IP,\lza) < m®§ for some large constant CG, where mo is given in (193). 

Theorems 5.2 and 5.3 are proved in Sections 6 and 7, respectively. Section 4 provides some preliminary 

estimates on parameters ¢, B, /, etc. due to the integrability condition (41). 

Now we apply Lemma 5.1 to (184). We take H; = H2(Q) and Hp = L7(Q). By Theorem 5.2, the linear 

estimate (186) of Lemma 5.1 is satisfied with 

m = Ce" (196) 

for some constant C; and G given in (194). Moreover, Theorem 5.3 shows that Cy of Lemma 5.1 can be taken 

to be 

Gy = Gee", (197) 

where G and C, are constants given in (195). Together with equation (182), we see that 

I'l < Cullk'lzqay < Ge?" <& min(m, m?) (198) 

by Assumption 1. This proves (189) of Lemma 5.1. Consequently, Theorem 1.3 is proved by Lemma 5.1. We 

remark that the reality of @ is established by the complex conjugation symmetry (40) of (29) and the 

uniqueness of solution from the aforementioned fixed point argument. a 

6 Linear analysis 

In this section, we prove Theorem 5.2 in three parts: in each of the following subsections, we prove a version 

of Theorem 5.2 for the case of REHF, PL, and LSC in Theorems 6.1, 6.8, and 6.9, respectively. 

6.1 Proof of Theorem 5.2: REHF case 

Let 

Mrcur = 4gFReur |p-5 (199) 

be the Gateaux derivative of Freur(-,) at (bp, }) (cf. (183)). Recall that [rer = —A + Mpeur and that mo is 

defined by (193). 

Theorem 6.1. Let the assumptions of Theorem 1.3 hold. Then Lpeur is a positive self-adjoint operator on L?(Q) 

and 

Lene 2 —A + m§ (200) 

for some constant C. 

We begin by recording a few auxiliary lemmas first.
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Lemma 6.2. Let the assumptions of Theorem 1.3 hold. For any y € L(Q), we have 

Masur = —den¢pfin(B + Vea ~ WE ~ hY*9le ~ hy", eon) 
where 

h=-e?A + V- Vea - bo (202) 

Moreover, Mgrur is a bounded positive self-adjoint operator on L?(Q) with 

IMaeuelle=a) < mo°. (203) 

for some constant C. 

Proof of Lemma 6.2. We will only prove (203). The rest of the properties are proved in [13]. We remark that 

his self-adjoint on 17(R) since each of the potential functions V and ¢y is real. Let f, g € L7(Q). Let Tro 

denote the trace per volume Q operator (Appendix A): 
1 

TroA = —TrXoA, 204. joy 2 (204) 

where A is an operator on 17(R?) and Xg is the indicator function of . Since V — Vex — $ is bounded, we 

see that h is self-adjoint. Moreover, 

1 
I - AYE — hy"Ils=@ < ( + ron (205) 

where d(z) is the distance from z to the contour, I (see Figure 1 for definition of I’), of integration in 

1 

$-sale (206) 
T 

Let G?(Q) denote the standard Schatten norm associated to Tro (Appendix A). By (205), the definition of den 

(rigorously defined via (A6)), and the Kato-Seiler-Simon inequality, we see that 

m® Mrenef) 0) = Pfentbe ~~) Trag@ — hy fe - hy* (207) 

< rint6e — Dlg — hy Neal — AY "lea 

1 <Ofi+ Fo] tote ~ W)llge) lez ~ €4)"Rag, (208) 

<2 te eto: 

Since frp(B(z — Ve — »)) is holomorphic on {z : Rz > uw — Vout}, we may choose the contour such that 

ld(Z)I = O(IVilloo) = 0(61/4) (20) and 

(8, Maer f)izqay < BIS e Fe Pleat het ey Ifa)» (209) 

where we note that the additional factor of B-! came from integration in z. By Corollary 4.2, we see that (203) 

follows. This proves the G~(Q) bound for Mgeur. One can see that Mgrur is self-adjoint by using the tracial 

characterization (207) and the cyclicity of trace. o 

Let 

Iv| = v-A, (210) 

where the square root is taken via the Borel functional calculus under periodic boundary condition on Q. 

The following lemma is crucial to our linear analysis and is based on unpublished notes of Chenn and I. M. 

Sigal, and proved in Lemma 6 of [15] with € = 1.
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Lemma 6.3. Assume that v > 0. 

7 i pvt tf 1 Vat + |eVI 
den fasfin( BC + vz + Ayo + e7Ayt = me Joss + Yer woe lat lev . (211) 

In view of Lemma 6.3, define 

1 a a (| at + leVl Me= 5 J feo BCE + W + Vou 89 — De too( [SEL al } (212) 

where W = 1/u and 

(-e7A + V- Vouru = 1. (213) 

We remark that when M,- acts on the zero-(0-) eigenvectors of |V| (i.e., constants), it is assumed that the 

integrand in (212) is interpreted as follows: 

=—_ ) ==> (214) 

for t > 0, to ensure continuity of the integrand. Finally, we recall that mp = ** was defined in (193). 

Lemma 6.4. Let the assumptions of Theorem 1.3 hold. Let p, q > 2 satisfy ; + ; = 4, then 

[Maur f - Mscfllixa) < €V/?mo“Iflisca (215) 

for some constant C. Consequently, picking p = 2 and q = oo, and by Sobolev’s inequality, 

[Mrene f — Msc fila) < €'?mo“Iifliecay- (216) 

Proof. We start with equation (201). Let u solve the shifted landscape equation (213). By conjugating inside 

den by u, we obtain 

Maer f= ~den¢Pfio( Be + Vew — n))ROW, WFRCW, 1), a7) 

where W = 1/u, W = 1/u — $ and R(W, W) is defined in (112). Similarly, we recall the definition of Ra(W) 
and R,(W) in (114) and (115), respectively. We write 

R = RW, W) - RW), (218) 

and define Rj similarly. Then, we may rewrite Mreurf as follows: 

Mae f = ~den(Pfin( BC + Vew ~ w)RLCU FRAC) 19) 

~dengh fin( BC + Vea ~ )IRLRCW, W) (220) 

+R(W, W)fRR + RifRel (21) 

We first consider the leading-order term on right-hand side of (219). 

Mica = ~den fro BCE + Vax ~ ))RUCW FR ACW). (22) 
On [?(R3), the operators (z + €2A) have integral kernels 

— (ap—1 _-ve 
Gm fe G-epy ”. (223) 

R
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By inserting (223) into (222), we see that 

tz f dpdydg fro Be + Vea ~ 1) x APO) ot 9-9), (a00) M; = (Mea f(x) sonnet noe ( - ep? )"z - eq)" 
=— 
(ame 

For any real numbers A and B, we note that 

ak 1 1 
EGE” coke YY (225) 

namefs'tcmn © ~ AMG — BY” 

It follows by Taylor’s theorem that 

1 Mia NOD = ae hae oe DifrtBle + Ve - 10) 

x yo) ak fo) (p-ax-y) 
KR dk @-epye- eg) 

az J dpdydafen(B(e + Veur - 19) 
RIXRIXR? 

__1 

~ Qa 

x fy) i(p-aXe-y), 
@- ep? — WX) - 4g? - WO) 

By Fourier transforming back to the position basis, we have that 

(Mieaa FY) = faztvBe + Vout — W))den[(z — hd) — hOD)*CD, (226) 

where 

h(x) = -€7A + W(x) - Go), (227) 

and W = 1/u is defined by (213). Note that h(x) depends on x and is a family of translation invariant 

operators indexed by x. Consequently, by Lemma 6.3, we see that 

Miead = Mscs (228) 

where M,, is given in (212). 

We now estimate the error terms in (220) and (221). We only consider the term 

den¢p fin( BCE + Var ~ W)RUERW, W), (29) 

and the other terms in (220) and (221) are similar. By Lemma A.1, for any 2 < p, q and = + ; = 4, 

32 
d@ (230) []aench fio Bee + Vee ~ DREARY, wl, < Giliv(Be + Vax ~ 2H 

x IRL — €7A)lle@ ll — €7A)fllex@lR(W, W)A - €7A)lle~a). (231) 

Since we chose V — Vout 2 5!/* (see (20) of Theorem 1.1), d(z) can be chosen to be of order 51/4 > e (see 

Figure 1 with v = V — Vay and g = @,). By Kato-Seiler-Simon inequality, Lemma 3.2, and our choice of 

scaling in Assumption 1, it follows that 

19 
; < eFPB Ne BVen- HF WF Ipa¢q, (232) 
a) 

eng irococe + Vaw ~ W)RURW, W) 

where the extra factor 8 comes from integrating frp(B(z — Vea — })) in z. Corollary 4.2 shows that (215) holds 

Lemma 6.4 is proved. a 

Since Mgeur is self-adjoint, we have the following unsurprising corollary for the adjoint M3, of Msc.
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Corollary 6.5. Let the assumptions of Theorem 1.3 hold. If f « H2(Q), then 

Wee f - Mzflliza) < m6 “lflircay (233) 

for some constant C and mo is given in (193). 

Proof. We will use the notations R(W, W), Re(W), R,(W), and R’ given in (112), (114), (115), and (218), 
respectively. Let f ¢ H1(Q). Instead of expanding Mggurf as in (219), we switch the roll of Ry and Rr: 

Mase f = ~den¢pfin( BC + Vew ~ p)RACWYIRACH) (234) 

— dengh fn BCE + Vow ~ WDIRYLCW, 1) (235) 
+ R(W, W)fR, + RefRi). (236) 

Since M,, is computed from (219), we note that (234) is nothing but M;.. The higher order terms (235) and 

(236) are dealt with in the same fashion as Lemma 6.4. The proof of the corollary is complete. a 

Let us denote 

G00 = xtog(|=*2)}. (237) 
x-1 

In this notation, 

Me = <5 [roe + W~ $0 Vou ~ We = S ae . 238) 

Define 

1 Mo = ye FW Hot fee . 
87763 _ elV| aa (239) 

Since frp(x) approaches e* exponentially fast if x is large, we have the following corollary. 

Corollary 6.6. Let the assumptions of Theorem 1.3 hold. If f € L?(Q), then 

[exe f — Mo fllixa)» IMF — Mefllzay < mI lia) (240) 

for some constant C and mg is given in (193). 

Now we are ready to prove Theorem 6.1. 

Proof of Theorem 6.1. Let 

m = Mpeur — Mo. (241) 

Lemma 6.4 and Corollary 6.5 show that 

Imflizy, lm*fllz@ay < €'?mo “fll (242) 

for f < L?(Q), where C is a fixed constant. Since Mgeur is self-adjoint, by (241), we see that 

Mau = (Mg + m*)(Mo + m) (243) 
= MgMo + m™Mo + Mgm + mm. (244) 

It follows that
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‘co co 
1 1_f Vat 1_f Vat 

Mieur = 1 fem | fe Wo Vem fem ~— |] + m'Mo + Mgm + m'm 
NEE oare® vat Velv| J Vat “Valv) onm 

co 2 
1_of Vat 

2 € Fe BUaax# Iolo -H fe"4 ~— || + m™Mo + Mom. Je vac Verv oe MG 

By Corollary 4.2, Lemma 6.2, and equation (242), we see that 

co 2 

Mie 2 mf Jer pact Jenivi)} ~ emg ~ ay, (245) 
0 

where mp is given in (193) and C is a constant. Since we know that Mggur > 0, we apply max(-,0) to the right- 

hand side of (245) (so that we can take its square root). Since the right-hand side of (245) is purely a function 

of |V|, the usual commutative algebra rules apply. Moreover, since the square-root operator is operator 

monotone, we conclude that 
co 

1_( v4 My zm§[e®@Ha ~—} - elmo“ - A). 246 frenF 2 Mg y Tat lav mo (1 — A). (246) 

To complete the proof of Theorem 6.1, we need the following Lemma, whose proof is delayed until after the 

current proof. 

Lemma 6.7. 

co Jit 
1 4t 1 

nde tt > ———__—_.. (247) 
J Vat \elv| 2VB( — Be2A) 

By combining equation (246) and Lemma 6.7, we see that 

—A + Mggup 2 -A + mg—_+ — €¥/2me“(1 — A) (248) 
VBa - pe’) 

2 -A + m§ — €¥/2m5° - A). (249) 

By Assumption 1, the proof of Theorem 6.1 is complete, modulo the proof of Lemma 6.7, which we shall 

provide in the immediate paragraph that follows. a 

Proof of Lemma 6.7. Let p = e|V| and x = 4. By our convention, if p = 0*, then G(oo) = 2. In this case, 

(247) is bounded below by 

co) 
2 La 

e%——adt= |-. foe fea os 
Otherwise, we assume that p > 0. 

By elementary calculus, we have the following two estimates 

log xe >2x forx <1, (251) x- 

log xe >2 for x > 1. (252) 
-1 x 

Equation (247) becomes
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co io © 

pS alg ten Je Tarcee2| Sets [pe (253) 
P 

4 i 1 i 1 
= Viet +— | set (254) B72 

B amd B ip ‘ 

1 4 i i 1 
=—|—, | Vtet+ | et}. (255) 7 VB | Bp’ > pr 

We can compute the bracketted term explicitly as a function of fp”. Elementary calculus shows that the 

terms in the bracket in (255) is bounded below by —1_... 
20+ BP)" 

co 

fe*ypowoar > Tae (256) 

Oo) 

This proves (247). im} 

6.2 Proof of Theorem 5.2: PL case 

Let V and @ = gy satisfy the assumption of Theorem 1.1. Let 

h=-eA + V~ hy — Veuts (257) 

where Veut is given under Theorem 1.1. Let also 

ho = up*huo. (258) 

Let uo denote the landscape function solving hup = 1 and Wo = 1/uo its landscape potential. Define the 
function, mp,, on Q via 

mp. = ~POney? f dpfin(B(p? + Wo + Vax ~ 1) (259) 
} 

Theorem 6.8. Let the assumptions of Theorem 1.3 hold. The linear operator L given in (185) with F = Fp, (see 

(28) is 

L = Lp, = -A + mph', (260) 

where mp,, Wo, and uo are seen as multiplication operators. Moreover, 

Wer flix) 2 WA + mS) llz¢0) (261) 

for some constant C, where mg is given in (193). 

Proof. We differentiate Fp, from (27) to obtain 

GF ei |p-40P (262) 

= Beary? | dpfin(B(P? + Wo + Ve — W)WBdgI(h ~ BYAlp-o (263) 
rs



30 —— Ilias Chenn et al. DE GRUYTER 

= mpg hgh (264) 

= mpyhg'p. (265) 

This proves (260). 

Let Mp: = mpyhg'. We note that L = Lp, = —A + Mp1. Since Mp, is not self-adjoint, Lpr is not self-adjoint. 

However, Lp, is almost self-adjoint as described below. We rewrite 

Lp = (-a + $n, + Mi) + Sn, — Mp) (266) 

= 1, + Mh, (267) 

where L, is self-adjoint. We show that Mp, is small. Indeed, we compute 

2M. = [mpi ho'] (268) 

= —ho'[mp1, ho]ho" (269) 

= —ho'ug'[mpt, -€7A]uohs! (270) 

= —hg'ug(-e2Ampr — 2(eVmpz)-(eV))uoha'. (271) 

Recalling that huo = 1 where h is given in (257), [lily = lluolko is bounded above by 

TVA e = 016%), @72) 

and ||up'lo is bounded above by 

supV + [Pollo ~ Veut = O(6"/*). (273) 

Thus, we see that [Ih5"ug'Iloo <1 and |lughg'l|,. < 5-1/2, Hence, 

WMprflle < I(e2Ampr + 2(eVmpr(€V))uohg file < 6-/7I\(—€2Ampr lalla + EVM) (EV uoho' fla - (274) 

It follows by the Sobolev inequality, Theorem 2.1, Corollary 4.2, and definition (193) that 

WMprflle < mo°e"“iifllza)- (275) 

Next, we provide a lower bound for i(Mo. + Mj,)?. We compute 

(ete) = (Mi, + Mp), ~ Mf) 276) 

= MjMp. + MpyMp. — Me.Mo, - (Mp1)?. (27) 

We denote Vmax = SUPV + [IPolloo — Veut = O(6"/). By using the explicit form of Mp, in (265), we see that 

Ms.Mp1 = uoh™ug!mgug tuo (278) 

> Pe Se BVeatH+ 08" 110(Vnax — €2A)2 U9 (279) 

= M§"Uo(Vmax — 7A)? Uo, (280) 

where mp is given in (193) and C is a constant. Note that the last line follows from the scaling Assumptions 1 

and 2 and Corollary 4.2. To estimate (280), we have that 

(Vmax — €2A)" up = Uo(Vmax — €2A) + (Vmax — €2A)"[uo, —€2A](Vnax — €2A)1. (281) 

It follows from (280), Theorem 2.1, and Sobolev’s inequality (which depends on |Q)) that for any f < 17(Q), 

(fF, MMP) = me*lVmax — £70)" Uo fila (282)
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= M$" lwo(Vmax — €7A) "fla — moe" “iif (283) 

= M5WVmax — €7A)" flr. (284) 

for suitable and possibly different constants C and C’. Together with (261), (275) is proved by (277). a 

6.3 Proof of Theorem 5.2: LSC case 

Similar to the PL case, let V and @ = @p satisfy the assumption of Theorem 1.1. Let uo denote the landscape 

function associated to the Hamiltonian 

-2'A+V— Ve (285) 

where Vy; is given under Theorem 1.1. Define the function, msc, on Q via 

misc = ~B(2ney? | dpfin(B(p? + Wo ~ by + Vout ~ 2D) pas) 
3 

where Wo = 1/Uup is the landscape potential. 

Theorem 6.9. Let the assumptions of Theorem 1.3 hold. The linear operator L givenin (185) with F = Fysc (28) 

is 

L=-A+ mec, (287) 

where misc is seen as a multiplication operator. Moreover, L is self-adjoint on L?(Q) and 

L>-A+m§ (288) 

for some constant C, where mg is given in (193). 

Proof. We differentiate Fisc from (28) to obtain 

dpFisclp-9. = —Be*2ny?? | dpfin(AC? + Wo ~ by + Vex — MP 289) 
R 

= msch, (290) 

where mysc is given in (286). By Assumptions 1 and 2, we may replace fgp(x) by e~, and we obtain 

mise 2 feerBortbberter» f dpe” > BU 2—Fe-BlVnax+Heo-W, (291) 
R? 

By Corollary 4.2, Assumptions 1 and 2, we see that msc = m§ for some constant C. This proves (288) and 

completes the proof of Theorem 6.9. a 

7 Nonlinear analysis 

In this section, we prove Theorem 5.3 in three parts: in each of the following subsections, we prove a version 

of Theorem 5.3 for the case of REHF, PL, and LSC in Theorems 7.1, 7.3, and 7.2, respectively. 

7.1 Proof of Theorem 5.3: REHF case 

Theorem 7.1. Let the assumptions of Theorem 1.3 hold. The nonlinear operator N (defined in (184)) of the 

REHF equation has the following estimate:



32 —— Ilias Chenn et al. DE GRUYTER 

ING) — N@ylzxay < Come (lip lla) + UPalizay IPs — Pali%a) (292) 

for ¢, and , in H\(Q) provided that \\P,\l@) < me for some constant CG; large enough, where mo is given 

in (193). 

Proof of Theorem 7.1. By (184), we see that 

N(@) = —denfep(B(h — p — »)) + denfrp(B(h — pw) + Me, (293) 

where 

h=-2N + V—- do - Ve (294) 

(recall from Theorem 1.1 and (20) our choice of Vou). We remark that since ¢ is not necessarily real, the 

operator h is not self-adjoint in general. However, its spectrum lies within a tubular neighborhood of the 

real with width O(||Pllco) < O(IIPllzz) < me = 5°" for some constant G, by assumption of Theorem 7.1. In 

particular, the spectrum of h-@ does not intersect our contour of integration since the poles of 

‘feo(B(z + Veut — 2) are —(Veut — ) + inB'Z (Figure 1). Thus, recall that the resolvent identity is 

(c- Ay) (@ - BY = (@ - AYA - BY BY. (295) 

By using the Cauchy-integral, the resolvent identity, and (201), we arrive at an explicit formula for N: 

NG) = ~dendhfio( BE + Vew — YE = Ch ~ KBE - HY", (296) 

where @¢ is given in (107). 

By applying the resolvent identity to (296) iteratively with A = h — ¢ and B = h (his defined in (294)), 

we arrive at 

N@)= > fro(eee + Veu — )(-1)"den — hy (PE - hyy", (297) 
n>? 

whenever the series converges, which we will demonstrate. Let 

Nal) = iroBe + Veut — W)(-Irden(e — hy (pe - hy)" (298) 

denote the nth order nonlinearity. Our goal is to estimate the difference in the individual nth order 

nonlinearities 

Nu(Py) — Nn(by) = fivtece + Veut — W-D"den — hy (ye - hy" - @ - Wy, - hy". (299) 

To do so, we use the following expansion of nth degree monomials: 

a" — b" = (a — b)a™"1 + b(a — b)a"-2 +--+ b™ (a — b). (300) 

By using this pattern, we see that 

Nal by) — Nn(Pp) = robe + Veut — w))den(—1)"( — hy, — Pa) — AY, - Wy 

+n-—1 similar terms, 

(301) 

where ¢, denotes , or @,. By using the standard Schatten p-norm G?(Q) and the Kato-Seiler-Simon 

inequality, (Appendix A) and by Lemma A.1 of the Appendix, we see that 

INa(y) ~ Na(,)Ia 
< nhc? fro BE + Vax — WING, ~ XE — RYE — WH (302) 

s npeePehorIN(Gy(e — hy Hera ~ Gab
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It follows that 

INn(P,) — Na(Ppllzrqay < rIMG“I(h,(Z — hy)" "sally — Palle, (303) 

by the scaling in Assumptions 1-2 and Corollary (4.2). Denote d(z) to be the distance from Z to the contour. 

Recall that mp is given in (193) and inf d(z) = O(Vmin — Veut) = O(6"/“) by the choice of the contour (Theorem 

1.1). We see that by Hélder’s and Sobolev inequalities, 

IG - WG, - bY sway < I — bY eal, — Wa) (304) 

sng °6-"4by (305) 

s nmg°6"/IG, ah» (306) 

By combining with (297) and the assumption that |If,ll@) < me (for some constant G large) is sufficiently 

small, we conclude that the claim (292) is proved. o 

7.2 Proof of Theorem 5.3: LSC case 

We will prove the simpler LSC case first before embarking on the tedious yet similar proof of the PL case. 

Theorem 7.2. Let the assumptions of Theorem 1.3 hold. Let ¢,, @, € H?(Q) with||9ill7@a) < me for some large 

constant C; (mo is defined in (193)). The nonlinear operator N implicitly defined in (184) with F = Fsc (28) 

satisfies the following estimates: 

IN) — N@lzxa) < Come 

where C; and C are constants. 

hea) + IPrle@ IP, — Palleray, (307) 

Proof. Let h = -e2A + V — Veut- Let up denote the landscape function solving hup = 1 and W = 1/up its 

landscape potential. Similar to the REHF equation, explicitly, by (28) and Theorem 6.9, we see that 

NOD) = sf Bee? + W ~ y+ Vx ~ 1) ~ fo BCP? + W ~ oy ~ + Ve — 1) 
R? (308) 

+ Bfeo(B(p? + W- Go + Veur - W)))- 

By Assumptions 1 and 2, we may replace ffp, frp(x) by e~. It follows that 

INC) — NG) ee AW Waker») f dpete-Phs — As + Bly — 
® (309) < B3/2eFe-PVain-Iholeo-H)|eA$: — e-Pb2 + B(P, — $,)| 

S mg ‘|eP: — e-Fer + BCD, - ,)I- 

Since [IPjllo < IPillz@) < m& is smaller than 1/8 by Assumption 2, the Taylor expansion of e* and (309) 

proves equation (307). im} 

7.3 Proof of Theorem 5.3: PL case 

Theorem 7.3. Let the assumptions of Theorem 1.3 hold. Assume that ,, 6) € H°(Q), and |\Pliz@) < me for 

some large constant C3 (mo is defined in (193)). The nonlinear operator N implicitly defined in (184) with 

F = Fp, (see (27)) satisfies the following estimates:
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IN, — N@ylzxay < Come (Gara) + Uallsrcay )IM ~ Hallircays (310) 

where C; and G are constants. 

Proof. Let 

h=-20+V- $y Ve Gu) 

Let uo denote the landscape function solving hug = 1 and Wo = 1/up its landscape potential. Let W() = 

[(h - ¢)"1P be the landscape potential of h — @. Similar to the LSC case, by (27) and Theorem 6.8, we see 

that 

1 
N@)= Ge J aC fiv(B(e? + Wo + Ve ~ 2D) ~ fo(B(0? + WO) + Vow = 1D) 

R (312) 

+ Bfro(B(p? + Wo + Veur — 1))dgW |p-0f)- 

Again we replace fp, feo(x) by e*. Denote by Wi = W(p,) and W, = W(p,). Similar to (309), it follows that 

IN(P,) — N(P,)I < mole PM — eA MO) — BdgW |g-o(, — $y)I- G13) 

Direct computation shows that 

0 - FOF TaOPT) OM) 
and 

dgWy_of! = Woh-'g'hr1. (315) 

Hence, 

W(¢) — Wo - dgW |g-06 = Wa(hr-'p)’uo + higher order terms of hg. 

As mentioned earlier, let Vin = Vinin — Veut = O(6"/) (20). Since [lhlko < Vatn5 < 1 and 6 « vS,, and 
similar to the estimate of the nonlinearity in the LSC equation, one has 

IW(p) — Wo - dgW |g-of ll, < mo“lp"llie (316) 

for some constant C > 0. Since |IPjlloo < IP,llz(@)- Therefore, 

[le POH) — e-PH2-Mo) — Ba gW |p.o(hy — Pp)ll < B2mH° (llilli? + IPallie Dy — Palle (317) 

Assumptions 1 and 2 allow the f? to be absorbed into mg‘. This implies equation (310). a 
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Appendix 

A Trace per volume and associated Schatten norm estimates 

Let £ denote a Bravais lattice in R? and Q its fundamental domain (e.g., the Wigner-Seitz cell). For / « R3, 

let U; denote the translation operator 

WiA)CO = fa - D- (Al) 

An operator on L?(R?) is said to be translation invariant if A commutes with U; for all / ¢ R3. It is said to be 

(L) periodic if A commutes with Uj for alll € L. 

Let Tr denote the usual trace on L?(R?). It is evident that no periodic or translation invariant operators 

have a finite trace. Nonetheless, we consider trace per volume © defined via 

1 
TroA = —Try, A, (A2) ao (a2) 

where Xo is the indicator function of Q. If A is periodic, Trg is independent of translates of Q. Associated to 

Tio is a family of periodic Schatten spaces G?(Q) given via 

GP(Q) = {A « B(L(R?))and (L) periodic : ||Alls%a) < cof, (A3) 

where 

WAL r¢q) = Tea(A'A)?/?. (A4) 

The G?(Q) norm inherits most inequality estimates from the usual Schatten p-norm with the notable 

exception that 

Alea < CIAlls?a) (A5) 

fails to hold for 1 < p < co and for any C > 0. 

Given an operator A, its density denA is a measurable function on Q, if it exists, defined via the Riesz 

representation theorem and the formula 

TrfA = J fdenA a8) 
2 

for any f < C2°(R?), where f on the left-hand side is regarded as a multiplication operator on L?(R3). When A 

has an integral kernel A(x, y), that is, 

Cand = [ A. vFndy, an 
d 

then, 

(denA)(x) = A(x, x), (A8) 

whenever A(x, x) is defined and unambiguous. We outline a few special cases, where denA is defined and 

give its estimates below, which will be frequently used in the proof of the main results. 

Lemma A.1. Let d = 3 and 3 < p < 3. Suppose that A € G?(Q) and R be given by (113), then denAR and 

denRA ¢€ L?(Q). Moreover, 

—3/q 

Iden ARI|7(q), IidenRAllp%¢q) < Fla (A9) 

ai 
where — + — = 1, 

qa’ P
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Proof. We prove the case for RA only as the case for AR is similar. We use the L?(Q)-L4(Q) duality (where 

3 + + =1 for 3 < p,q < co). Let g € L?(Q) and apply Hélder’s inequality to 

Tral(PR)A] < IiPRlsqllAlls%ay, (A10) 

where Trg is the trace per volumne Q. Kato-Seiler-Simon inequality shows 

e3lq 

d(z) 
Tral(@R)A] < C—— I lliay Alera, (A11) 

where 3z is the imaginary part of z. The proof is now completed by the L9(Q)-L?(Q) duality and the Riesz 

representation theorem: 

|Q|Trq(PRA) = Tr(PRA) = (f, den(RA)):2¢)- an 

B Existence of solution to the PL equation 

We show that the LSC equation (see (28) and (29)) has a solution by minimizing its associated 

energy functional. To this end, let (p,x) be periodic in x and p, = Jjs4Pn(p,20.- Let s(x) = 

ho log(x) + (1 — x)log(1 — x)). We define the entropy functional 

sep= [ dparsinty,»), (aa) 
RKO 

whenever the integral is convergent. Otherwise we set S(7]) = oo. Finally, we define 

Fisc(n) = i} dpde(e? + W + Vax)M(P.X) + $40 q ~ Ds AY", ~ O@ ~ BS). — (arg 
RO 

The associated space on which we perform our minimization is 

Dy = {n € LR} x Oy, (1 + p?)dpdx) 0 <n <1, J n= fr and p, € x+H QO}, (A15) 

RxQ 0 

where, using the notation V-! = V(-A)', 

HQ) = | fi: fr- 0 and Vife ve (A16) 
ry 

We note that D, is not an affine space, but it is convex. Let 

Ln = Jarre, »), (A17) 
R 

I= fone, x), (A18) 

a 

and define projections 

1 
P=—I), (A19) 

19] 

P=1-P. (A20)
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For simplicity, we will denote 

LP(R? x Q, (1 + p’dpdx) = LP((1 + pY’dpdx) (A21) 

interchangeably. 

Theorem B.1. (LSC existence and uniqueness) Assume that Px ¢ H 7 Then Fisc is convex and has a unique 

minimizer n € Dx. If-Agp = x - Pr then @ solves the PL equation (29) with F = F,sc (cf. (28)) with y induced by 

the Lagrangian multiplier of the constraint. 

Proof of Theorem B.1. We equip D, with the norm 

Wnllo, = In, Ollexasp?yapaxy + WPPgllar'cay- (A2) 

Note that D, is closed with respect to this norm. 

Step 1: Euler-Lagrange equation. Let h(p, x) = €2p? +W+ Vos. The energy functional can be 

rewritten as follows: 

Fiselq) = Lala(hg) + 1V-'Lin ~ ®)qy ~ Blast). (423) 

From this, the Euler-Lagrange equation subject to LyL2y = Lox is 

hn + (-A)1@, ~ x) - Bs!) - un = 0 (A24) 

for a suitable j: due to the constraint L1L2n = L’x. By solving for n, we see that 

1 = feoB - (-A)"@, - x) - Ww). (A25) 

By integrating equation (A25) with respect to p, we define 

Py = | ab fro(B(e’p? + W + Vax ~  ~ 1). (026) 
R 

Finally, set p = CAy"@, — k). We see that (@, 4) solves (29) with (28). 

Step 2: Coercivity. Note that without the interaction term (Coulomb term), an unconstrained mini- 

mizer to 

J apds( ety? + w+ Vag), 20 ~ B-'S(0) (az) 
RxO 

is 

1 = fev(Bh). (A28) 

This shows that 

Fise&a) = Slab) + S1V-KLin ~ ag, ~ 6 (A29) 

> Ilo, - C, (a30) 
for IIjllp, large. 

Step 3: Convergent subsequence. Since F;sc is coercive, we can find a minimizing sequence n,,. Note 

that since 0 < 7, < 1, we have that 7? < n, for all 1 < p < oo. It follows that 

Wtallfecasp?ydpaxy < WMallnaspydpax) < 00+ (A31) 

In particular, 7,, converges weakly to some n(p) for each 1 < p < co in LP(R3 x Q, (1 + p?)dpdx). By testing 

against compactly supported smooth functions, i.e.,
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(Ps Mn) 2C+p?)dpdx) > (Ps N)2(A+p?)dpax) 

for n > co, where g is smooth compactly supported on R? x Q, which is in L? for any 1 < p < co, we see 

that the n(p) = n(q) for any1< p,q < co. 

So we will denote by 7 the common limit. Moreover, note that for any measurable f on R3 x Q, 

J uf= [a+ rapa, - A. a3) 
RxO RxD 

Taking f = 1 and noting that (1 + p?)! € L°((1 + p?)dpdx) for s > 5/2, we see that 

1 lim m= fre (A33) n00 
RO RO a 

By the same reasoning with f ¢ L®, it follows that the weak convergence can be achieved on L'(R? x Q, dpdx). 

Next, to see that O< <1, let y>O denote any compactly supported bounded function with 

LQ? x Q, dpdx) norm 1. Then 

m= lim J n,x- (A34) 
RO 

Since 0 < 7, < 1, we see that 

Os J ™s1- (A35) 
RKO 

It follows that 0 < n <1. 

It remains to show that 

IPLinlly-¢q) < 00. (A36) 

Let f ¢ H'(Q) with mean zero. Then 

J rs tflugey f+ P®Y9!C + P>HINEPELE, 4. a3 
RxD R? 

By Hardy-Littlewood-Sobolev or Sobolev-Poincare and since 0 < 7 < 1, we see that 

J Fs pe I + PY s60, ay 10 + P>MPIL, gy ls02.a0) (38) 
Rx 

< Clflgayl + Pyne ay (A39) 

Since 0 < 7 < 1, we see that 

J fis CHa I + PIES: (040) 
RxO 

It follows by the Riesz representation theorem that 

IPLanl? < CIC. + PYM pany < 2+ (A41) 

Finally, Hardy-Littlewood-Sobolev or Sobolev-Poincare shows any f € A) with mean zero is also in 

I°(Q). For such an f, 

as € L(+ p?)dpdx). (A42) 

Weak convergence of 7, to 7 in L°/ “a. + p?)dpdx) shows weak convergence of PL, to PLiy in H™ 1).
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In summary, 7, converges weakly to 7 in L? for 1 < p < co and PL, converges weakly in AQ) 

to PLin. 

Step 4: lower semi-continuity. By using (A23), we write 

Fiscn) = LiLo(hn) — B*LiL2s(n). (A43) 
1,5 “tp = 

+5 (PLinlh,-1) ~ 2Re (Lin, (-A)"Px) 4) + IPKIF tq)" (A44) 

From this expression, it is evident that Fisc is convex in n. Hence, we may assume that 7, converges 

strongly in L? for all 1 < p< oo. In particular, we may assume point-wise convergence. By Fatou’s 

Lemma, the entropy term and all linear terms are lower semi-continuous. The Coulomb term IPLinlis aq) 

is lower semi-continuous since it is the composition of a norm and integral operators. 

Step 5: conclusion. By Steps 2 and 3, we see that there is a minimizing sequence ,, converging weakly 

to 7 € Dx. By Step 4, weak lower semi-continuity and convexity of Fisc shows that 

Fiscn) < limint Fiscn,)- (A45) 

Since 7, is a minimizing sequence, 1 is a the minimizer (uniqueness is due to convexity). Step 1 shows that 

the associated (, j/) of this minimizer solves (29) with (28). The proof of Theorem B.1 is now complete. O


