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1 Introduction

1.1 Reduced Hartree-Fock equation

Despite the success of the density functional theory (DFT), its computational difficulties remain a major
bottleneck. Filoche and Mayboroda initiated a series of recent works on the landscape function [18], which
led to a further simplification of the DFT by introducing the Poisson-landscape (PL) equation [19,37]. The
landscape theory and numerical simulations [2-4,19,37,43] suggest that solving the PL equation can be an
efficient and accurate replacement of the original DFT. This success undoubtedly demands a rigorous
mathematical justification and a theoretical foundation.

DFT originated as a systematic way to study the large many-body quantum system by using a self-
consistent 1-body approximation. Parallel to its development, a number of effective theories existed along
with DFT; examples include the Hartree-Fock theory, the Bardeen-Cooper-Schrieffer (BCS) theory, and
the Thomas-Fermi theory of electrons. While DFT enjoyed a similar energy functional as the more complex
Hartree-Fock theory and the BCS theory, inheriting a form of accuracy, it also gravitated toward
the Thomas-Fermi theory to study the simpler electron density instead of density matrices. Owing to
these characteristics, the Kohn-Sham (KS) energy and the equation of DFT were developed [21,22]. These
equations and their related theory have become a mainstay of modern condensed matter physics. Some
notable areas of application include semi-conductor design, deformation theory in solid mechanics, and
quantum chemistry. In the mean time, a plethora of mathematical studies also ensued, for example, see
[17,23,26,27,30-33,35,42].
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The KS equation is a set of functional equations for the electron density p, which is often simplified to
the reduced Hartree-Fock equation (REHF) to illuminate core mathematical properties while maintaining its
key features [8-10,13,20,28,29,41]. This is achieved by ignoring the exchange-correlations terms in the KS
equation. In the same spirit, we will also consider this simplified REHF in our work and be consistent with
the aforementioned landscape theory in [19,37].

Consider a semi-conductor at a positive temperature, 8-, with a background charge distribution ,* and
a band-offset potential V.2 We choose physical units such that as many physical constants are set to 1 as
possible. In this case, the REHF equation states that the material’s electron density, p, is given by

p = denfip(B(-A + V — ¢ — ), 1
where u is the chemical potential/Fermi energy, fep is the Fermi-Dirac distribution
1
A) = i 2
feo() s 2

¢ is the electric potential solving the Poisson equation
-Ap =x — p, (3)
and den is the density operator defined via
(denA)(x) = A(x, x), (4)

where A is an operator on I*(R3) and A(x, y) is the integral kernel of A (see Appendix A for more details). If
A has a full set of eigenbasis ¢, with eigenvalues A;, then denA has the more familiar expression:

(denA)(x) = Zflflsb,-lz(x)- (5)

We remark that while equation (1) is an equation for microscopic electronic structures of matter, dopant
potentials and band-offsets often vary on another larger mesoscopic scale. A precise formulation of the
problem would require a homogenized version of (1) where mesoscopic parameters such as the dielectric
operator emerge. However, we will make the possibly unphysical assumption that (1) is already homo-
genized and the dielectric constant is 1 purely for mathematical simplicity (Remark 1.6).

Moreover, we further restrict ourselves to the semi-classical regime and modify (1) as follows:

p = denfep(B(-€’A + V - ¢ — ), (6)

where € « 1 is the semi-classical parameter. In addition, in semi-conductor models, the band-offset poten-
tial V is piecewise constant (often viewed as a realization of a random potential of Anderson type). We
restrict our study to a potential of the form V = Vyin + 6V, where Vyin is a constant, V, is a piecewise
constant function, and § « 1is a small parameter, i.e., V is a piecewise constant potential being close to a
constant Vpi,. (See more precise definition of V in the next subsection.) In this regime, one natural effective
equation for (6) is expressed as follows:

B 3 §
- (2me)?

p [ dpfio B + Vain + 8V, - ¢ - ), @
R3

where ¢ solves (3) as mentioned earlier, and Vyin and V, will be specified later. However, the piecewise
constant V renders semi-classical analysis potentially ineffective. That is, the error of the difference
between the right-hand side of (6) and the right-hand side of (7) cannot be meaningfully controlled.
Consequently, a form of regularization is needed. There were previous results in semi-classical analysis

1 In semiconductor production, such a background charge is usually called a dopant density/doping level

2 For simplicity, we only consider the conduction band potential (band edge) Viona = V — ¢. The band-offset potential V is
defined to be V;pg + ¢. We refer readers to [19] and references therein for more details of these terminologies in semi-conductor
models.
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dealing with potentials without any assumption on regularity, see, e.g., [29]. The PL equation presents a
different regularization method that preserves both the spectrum of the Hamiltonian H = —£?A + V — ¢ and
the density p (more details can be found in the proof of Theorem 1.3). We want to emphasize that the PL
equation was proposed as a computational simplification rather than a regularization method for the semi-
classical expansion initially, see more discussion in the next subsection.

1.2 Landscape theory and the PL equation

In one view, the landscape theory presents a partial diagonalization of the Schridinger Hamiltonian
H=—£?A + V- ¢ [4]. In [18], if H > 0, the landscape function u is defined as follows:

Hu =1, (8)
and the landscape potential W is defined as follows:
W=1/u. 9)
Conjugating H by u, we obtain
uHu = —-&2A — 2uleVu - eV + W. (10)

We remark here that u~'Hu has the same spectrum as H. This forms the basis for isospectral regularization
as mentioned at the end of the previous section. Ignoring the drift term in u~'Hu, this suggests that we
should modify equation (7) as follows:

P = s | I B + W ), ok
R3
where
W=1/u, (12
(A +V-u=1. (13)

This equation was proposed as a computational simplification to the REHF and studied in the physical work
[19,34,37]. Together with (3), they bear the name PL equation.

Numerical solution to the REHF equation requires an extensive computation of a large number of
eigenvalues and eigenfunctions of the Hamiltonian H. Although various eigensolvers have been developed
for this purpose (for a survey, see [6,40]), such a direct computation remains a challenge in large-scale
systems, particularly in high dimensions. In the specific setting of semi-conductor physics with random
potentials, the landscape function u alleviates this problem through the approximation that the ith lowest
eigenvalue E; of the Hamiltonian H can be numerically predicted by the ith smallest local minimum of the
landscape potential W (defined in (9)), W:

d

where d is the spatial dimension [2]. Following this success, [2] showed further that the number of eigen-
values below E, Ny(E), of H can he approximated by

Ny(E) = P J dpdxlyp2, wex < (15)

numerically. This approximation enjoys a more accurate prediction than the usual Weyl’s law on average.
We note that the left-hand side of (15) is
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'[pT=0,y=E9 (16)
R3

where pr_g,,_r is the electron density at zero temperature with y = E (cf. (6)). Consequently, we expect that
the solutions to the PL equation (11) are good approximations to the density of electrons. In [19], the self-
consistent PL. model was introduced and allows the authors of [19] to bypass solving the Schrodinger
equation. According to the real modeling exercises in [34], the landscape model considerably reduced
the computation time, compared to a conventional Schrédinger solver.

Up to now, many of the stated advantages of the landscape theory have mostly been proven useful for
numerical purposes. The current article is the first rigorous mathematical treatment of the PL model. The
goal of the current work is to introduce a rigorous treatment of the PL equation as an effective equation of
the REHF equation in the semi-classical limit. Other related rigorous mathematical treatments of the land-
scape theory for different models can be found in [3,5,16,39,43].

1.3 Results

We limit ourselves to the periodic setting in which physical quantities are periodic on Q = R3/(LZ)3 = [0, L],
while the quantum states are on R>. That is, quantities such as p, k, V, or ¢ are periodic while the associated
operators, such as H = —€?A + V — ¢, act on L%(R?) (see Appendix A for more details).

Moreover, let X = R? or Q and LP(X; ) be the usual L space of F valued functions on X, whereF = R
or C. In the special case when [F = C, we denote LP(X) = LP(X; C). We endow LP(X; F) with its standard
p-norms. Similarly, we equip LX(X; F) its standard inner product. Due to the periodic nature of Q, we
identify I2(Q; F) with

feLi(R3%F): f is (LZ)? periodic and J[fP < cot. (17)
(4]

We let H5(Q;F) c I2(Q;F) denote the associated Sobolev spaces of order s with periodic boundary condi-
tions. The identification of H5(Q;F) with H* periodic functions on R persists. When F = C, we will suppress
the symbol C. The conversion from L2(R3;F) to I2(Q;F) is done via the density operator den, introduced in
(4). That is, the den of a periodic operator on L?(R3) is a periodic function, with fundamental domain Q.3
Next, we restrict our study to the following type of piecewise constant potentials, which can be viewed as a
(hence any) realization of a random potential of Anderson type.

Definition 1.1. Let 0 < L € Z. An (LZ)3 periodic potential V is called landscape admissible if V is a strictly
positive and piecewise constant, given by

V) = Y wx(x-j), for xeQq, (18)
je&3

where 0 < wj € R is (LZ)? periodic in j and y(x) is the indicator function of [0, 1)>. We note that a
landscape admissible function V is real valued by this definition.

3 For simplicity, we restrict ourselves to the periodic boundary condition to avoid technical issues. It is slightly easier to carry
out the landscape theory on periodic domains, see, e.g., the work in [2,3,16]. For the REHF with an Anderson type random
potential, one would expect similar results for different boundary conditions, especially for relatively large domain size. Such
intuition comes from the ergodicity of the random potential. For example, one can see the discussion in [7] for the IDS of the
Anderson model with different boundary conditions. Unfortunately, we were not able to extend our results for the REHF and PL
(PL equations) to the Dirichlet boundary condition.
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Our assumption on the external potential V is that V is Landscape admissible with a positive minimum,
and the gap between its maximum and minimum is much smaller compared to its minimum. For simplicity,
we will assume the external potential is given in the form

V(X) = Vmin + 6V(x), (19)
where Vpin = infV(x) >0, 0 <6 <1, and V,(x) is a piecewise constant function as (18) satisfying
infV, = 0, supV, = 1.

Throughout the article, we will write A £ Bor A = O(B) if A < CB for some constant C independent of €,
8, B, and .

Our first result shows that the density on the right-hand side of (6) can be approximated by the right-
hand side of (11). This result will be proved in Section 3.

Theorem 1.1. Let V be a Landscape admissible potential given in the form (19). In addition, assume that

(1) B>B,,0<e<e,and0 <6 < b, where B, > 1, &, < 1, 8, < 1 are constants only depending on Viin, the
dimension d, and the domain size L.

(2 ¢ € H(Q; R) and ¢l < 6,

(3) Vimin — M = C > 0, where C is a constant independent of 6 and &.

Then there exists V;; € R with
0 < Vigin — Veut = O(8Y%), (20)
and two effective potentials W, = 1/u; and W, = 1/ up satisfying
(=&°A + (V = Vour = $us = 1, @)
(—&2A + (V = Vg = 1. (22)

Moreover, the density has the asymptotic expansion

1
denfio(B(-20 + V= ~ ) = s [ dpfeo(B? + W+ Ve = ) + R -
R3
o= jdpfmm(p W=+ Ve~ ) + R o
where
IRl zy» IR 2y s €341 2B-1p-BVau—p=8""), (25)

Theorem 1.1 provides the foundation for a rigorous justification of the PL equation. In addition, (22)
suggests that a simpler effective equation is also possible. More precisely, let

Frenr(¢h, p) = denfip(B(—€?A + V - ¢ — ), (26)
Fou(g, p) = (27r£)3 JdpfFD(B(P + W+ Vour — 1)), Q7)
Fisc(¢, ) = (27re)3 JdpfFD(B(P +Wa— @+ Vo — W), (28)

where Wi = 1/u; and W5 = 1/u, and u; and u; are given in (21) and (22), respectively. LSC stands for “land-
scape regularized semi-classical,” and we will henceforth call this new F;s¢ the landscape regularized semi-
classical (LSC) regime. We note that F;g¢ is a further simplification of Fp; and more closely resembles the
semi-classical approximation (7). Inserting p = F(¢, p) for F = Fpgyy, Fpr, Fisc into equation (3), we obtain
the REHF, PL, and LSC equation, respectively, for the electric potential ¢:
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-A¢p = x — F(¢, ). (29)

One advantage of F = Fics is that (29) is the Euler-Lagrange equation of a certain (energy) functional
(Appendix B). This ensures that the linearization in ¢ is self-adjoint, whereas the linearization of Fpy, is not
self-adjoint in general. More importantly, the potential W does not depend on ¢, and it only depends on the
underlying material property due to V. One may further incorporate the doping features into V the addition
of an ansatz due to doping and electron density. That is, if p, is an a prioti estimate for p, with associated
electric potential ¢b,, we may look for solutions to (29) of the form p = p, + p’ and ¢ = ¢, + ¢'. By sub-
stituting these expressions into (29) and upon minor modification, we obtain

. 1
= Gy

jdpfm(ﬂ(p2 S W= ¢+ Vi — 1) — P
|R3

where W = 1/ii and ii solves
(—€2A + V - g — Vil = 1.

Hence, all the material and doping properties are stored in W, which is independent of ¢'.

Finally, to state our main result relating the REHF, PL, LSC equations, and the associated electric fields,
we specify additional assumptions.
Assumption 1. (Semi-classical regime). The semi-classical parameter

e<e ™ (30)

for some large constant C > 0 only depending on Vp,, the dimension d, and the domain size L.

Assumption 2. (Low temperature). There is some K € R such that 0 < K < Vi, — pt and the inverse tem-
perature f8 satisfies

X 4
K< logg: %) <Vgn—M, and 6% (%) : (31)

Remark 1.2. The positive temperature assumption ! > 0 is crucial for our main results. For technical
reasons, the linearization of the density function relies on a large but finite 8, see, e.g., Lemma 6.3. Our
approach does not apply to the zero temperature case. At the zero temperature, the REHF equations in
disordered media have been studied in [9], when the interaction is short range. Still many questions remain
open at the zero temperature, especially for REHF with Anderson background and long interactions. We
refer readers to these work and references therein for more related results.

Assumption 3. (Conservation of charge). The doping potential x € I?(Q; R). Moreover,
1
o= ) 62
Q
is a fixed constant.

Theorem 1.3. (Main result) Let assumptions in Theorem 1.1 and Assumptions 1-3 hold. Assume that
(RS H%(Q; R) x R solves (29) with F being any one of (26), (27), or (28), and
I9ollzza) < 6. (33)

Then there exists Cy, C; > 0 and a unique ¢ € H(Q; R) such that ¢y — Pllgzqy < 08" and (¢, ) solves (29)
with F being any other one of (26), (27), or (28). Moreover,

gy — Pliry < 2", (34)
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Theorem 1.3 has an immediate corollary in terms of the density p. Rearranging (29), the corresponding
equations for the density are as follows:

p=F(, W, (35)
-Ap =k —p. (36)

Corollary 1.4. Retain the assumptions in Theorem 1.3. Assume that (p,, ) € (x + H%(Q; R)) x R solves
(35)—(36) with F being any one of (26), (27), or (28), and

llx — polla=2qy < 6- (37)

Then there exists Cy, G, > 0 and a unique p € x + H%Q; R) such that lp, — pllg-q) S %" and (p, p) solves
(35) and (36) with F being any other one of (26), (27), or (28). Moreover,

!
oy — plla-2qy < /2. (38)

Remark 1.5. Corollary 1.4 answers the challenge posed in the introduction. It justifies [19, 37] on a math-
ematically rigorous level in the semi-classical regime at low temperature (or large B).

Remark 1.6. We noted in the paragraph before equation (6) that the dielectric constant is taken to be 1.
However, as one will see from the proof of our main result Theorem 1.3, so long as the dielectric constant is
strictly positive, the same conclusion can be derived, albeit with more cumbersome proofs.

Remark 1.7. Note that in both Theorem 1.3 and Corollary 1.4, a solution to (29) is a pair: either (¢, p) or
(p, u). Because of this particular view of solution, equation (29) has an important dilation symmetry
(detailed below). Moreover, since k is real, another important complex conjugation symmetry exists. We
now discuss these two symmetries and their consequences in light of Theorem 1.3 and Corollary 1.4.

(1) (Dilation symmetry)

(‘ps P) = (Qb + f,ﬂ = t) (39)

fort e R.
(2) (Complex conjugation) If x and V are real valued and y € R, then

(¢, 1) — (CP, ) (40)
is a symmetry of (29) where C¢ = ¢ is the complex conjugation of ¢.

Dilation requires one to regard all solutions (¢, ) related by a dilation as a single solution. In this way, the
uniqueness of solution is regarded as uniqueness among an equivalence class. Nevertheless, since we fixed
i in Theorem 1.3 and Corollary 1.4, a particular representative of the equivalence class is chosen, and there
is no ambiguity in the word “unique.” Perhaps a better way to view this is to consider ¢ + u as the solution
instead of (¢, ). In this way, one avoids the equivalence class description. Nevertheless, since we are
interested in the difference of two solutions (34), any choice of either point of view causes no harm.
Moreover, the complex conjugation symmetry (and the uniqueness of solution) ensures that any solution
to (29) with real x, V, and y is necessarily real. Thus, the conclusions regarding the reality of ¢ and p in
Theorem 1.3 and Corollary 1.4, respectively, are in fact superfluous.

One also note that the PL equation with (27) does not have the dilation symmetry, contrasting the case
of (26) and (28). Whether this difference makes numerical approximations using (27) less desirable is out of
the scope of this article, since (27) respects the dilation symmetry in leading order € if € < 1.

Theorem 1.3 could help us to prove existence of solutions for the three classes of equations REHF, PL,
and LSC simultaneously. However, we were unable to prove the smallness assumption (33) in general.
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However, we believe this condition should hold in many cases if [[kl|ggq) < 6 (for related results, see
[15,25,38]). Nevertheless, we provide an existence result to the simplest case, the LSC equations, via varia-
tional principle for completeness sake. Since this type of existence result is well studied in the literature, we
will not enumerate all previous works. The interested reader is referred to, for example, [1,11,12,14,36].

Theorem 1.8. (LSC existence) If k — ko € H2(Q; R) (see (32) for definition of ko), there exists a solution
(¢, w) € HA(Q; R) x R to the LSC equation (28).

Proof. This is a direct corollary of Theorem B.1. O

1.4 Outline of the proof

The proof consists of mainly two parts. The first part is an leading order expansion of electron density,
p = denfip(B(—&?A + V — ¢ — p)) as stated in Theorem 1.1, via the effective potentials W = 1/u. We start in
Section 2 from several quantitative estimates for the landscape function u, solving (-€?A + v — ¢)u = 1 (for
some abstract v, ¢), and the associated effective potential W = 1/u in terms of the parameter § and &. Then
we prove the leading order expansion Theorem 1.1 in Section 3 following an analysis of the landscape
potential in Section 2. In Section 3, we work in a more general setting for a density p = denf(-&2A + v) for
some analytic function f (under mild assumptions). The Schrodinger operator (and the associated density)

is conjugated by the landscape function u=}(-&2A + v)u, and then estimated by a contour integral ﬁjr (for

some I' in the complex plane around the spectrum of the Schridinger operator). Then we expand the
contour integral as a Taylor series of the effective potentials W. The leading-order terms in the expansion
will contribute to the first terms in equations (23) and (24). The higher order terms in the expansion will
contribute to the remainder and will be estimated as the error terms, using the quantitative estimates
obtained in Section 2. The remainder/error estimates also rely on some estimates of the Schatten p-norm
of commutators [W, R] and Kato-Seiler-Simon inequality for a trace.

The second patt is to use Theorem 1.1 to prove Theorem 1.3, relating the REHF, PL, LSC equations, and
the associated electric fields. To do that, we digress briefly in Section 4 to establish a relationship between
the parameters €, 8, J, etc. as a result of the constraint of the integrability condition

[x= [Fa.m, 1)
0

0

obtained by integrating (29) over Q. To prove Theorem 1.3, we rewrite the REHF, PL, and LSC equations in
the form -A¢ = x — F(¢, u), where F is one of (26)—(28). We assume that (¢, y) is a solution of equation for
a choice of X = REHF, PL, or LSC. We look for a solution, ¢, of the corresponding equation ¥ = REHF, PL,
and LSC, Y # X, near (¢, ) of the form ¢ = ¢, + @. The first step is to linearize F at ¢,. The linearization
leads to an equivalent equation (—-A + M)@ = k' + N(¢), where L = -A + M is a positive operator with
M = dgF (¢, Wlp-¢, the Gateaux derivative of F at ¢y, and N is a nonlinear operator. The quantitative
positive lower bounds of L for all three cases X are obtained in Section 6. The crucial technical Lemma
6.3 to the linear analysis is based on unpublished notes of Chenn and L. M. Sigal, and proved in Lemma 6 of
[15], via Fourier transforming the kernel of the density and careful branch-cutting. This lemma is one place/
reason that we need to work with a positive temperature -1, and are not able to extend our work to the zero
temperature case. The nonlinear analysis is presented in Section 7, provided the error estimates given by
Theorem 1.1. The results from Section 4 and the assumptions of Theorem 1.3 provide the proper scaling
regime to control our estimates in both the linear and nonlinear analysis. Finally, putting together the linear
and nonlinear analysis in Sections 6 and 7, the core proof of Theorem 1.3 is finished by a standard fixed
point argument in Section 3.
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2 Landscape function in the semi-classical regime

In this section, we will obtain several estimates for the landscape function u in the semi-classical regime.
These estimates will play an important role in the proof of the main result. The landscape function u is the
solution to

(-e2A +v - =1 (42
on Q = [0, L] with periodic boundary condition, where ¢p € H2(Q) with [|¢pllz2 < §andv = V — Veye = Vigin + 6Vp
is in the form (19) satisfying O < Vmin = infv = infV — Vo = 6%, and infV, = 0, supV}, = 1.

Theorem 2.1. Let 2 < p < co. Let v be given as earlier. Assume that 0 < g, § < 1 are small as in Theorem 1.1.
Let W=1/u, where u solves the landscape function (42) with periodic boundary condition on Q, then
IVWllpqy < CO™3G-Pe7, (43)
AWy < CE™+0-De27, (44)
where C depends on d and p only.
We start by estimating Vsu in the 12 and L% norms first for s = 0, 1, 2, Theorem 2.1 is proved at the end of

this section by interpolation. As a remark, we will write the LP(Q) and H*(Q) norms as |-|, and [-||zs,
respectively, when there is no ambiguity.

Proposition 2.2. Retain the definitions in Theorem 2.1. If u solves (42) with periodic boundary condition on (Q,
then there is a constant C such that

lullzqy < C5-1/4, (45)
IVullzq) < C6'%71/2, (46)
Autl| 2y < C55/8e7312, (47)

Proof of Proposition 2.2. The first inequality (45) follows from the fact that the Hamiltonian
H=—-&2A+v— ¢ is bounded below by Vpin — C8 2 Vmin /2 =~ §Y/# for some constant C. We prove (46)
and (47).

Notice that V is only discontinuous on a subset Qg = {x = (3, ...,x4) € Q : x; € Z} ¢ Q and piecewise
constant elsewhere. Let Q, be the € neighborhood of the discontinuities of V:

Q. ={xeQ:|x—yl<eg, yeQo (48)

It is easy to check that |Q,| < L9 (where recall that Q is diffeomorphic to [0, L]4). Let 5, be a standard smooth
bump function supported on B ;3(0) such that

0 < 1,00 <n(0) =&, I lpgsy =1, |Vn| sedL (49)

First, we prove (46) for u, =1, # (1/V) where ¥V = v — ¢». Then we use u, to approximate u for our
estimates. Let vy denote the average of V on Q and Viin = 6%, Viax = Vinin + 6 = 6Y/%. Since ||plz < 8 by
assumption,

[V — vl < 6. (50)
We rewrite
1
Ug = — + Uf, (51)
Vo

where
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ul=n, * [% - i] (52)

For any x € Q, using (50), we see that

vueol< [

v (x - y)(% - Vio](y)‘ dy

1 -
<maxiyn = [ 10 - wIdy
H:n B:,fz(x)
< max|Vn, |62V — volloo | Be /2(X)
< SleEdE—d—l — 61;’25—1_

Thus, on Q,, we have
62
J-|Vu£|2dx < 4—J-|£‘1|2dx < 82674%7Q,| < Coe7, (53)
Vmin
0, Q,

for some constant C. On the other hand, on QE,

[Vul| = qst% = S*Z—? sém‘g*vﬂ.
It follows that
[ vuipax < [in, « vepax
o mn o (54)
S S‘IIIHEIIiI(Ra)IIVdJII% sé61.2.82=46.
By combining (53) and (54), we see that
IVuel, = [IVugl, < C8'2112, (55)
Next, we decompose
u=u; +u, (56)

where u' is defined by this expression. We will control the size of u’ using energy estimates. We note that
1
', He') 2 EVu'l + IV — pu'l; = V'l + Evmmllu‘llﬁ- (57)

This provides an energy lower bound. On the other hand,
Hu' = Hu — Hu, = €2Au; + 1 — Vu,. (58)
It follows that
(', Hu')| < [(V', e2VuR)| + [, 1 = V)| < IV Vil + W'l - vuel,. (59)

This is an energy upper bound. We now estimate the term ||1 — Vu,[l,. We write ¥ = v, + 8V’ where v is the
mean of v on Q and V' is defined by this expression with

V'lleo < 1. (60)

Together with (51), we note that

'
Vue — 1=+ V)1 /vo+u) - 1= 6L + vou, + &v'ul. (61)
Vo
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By using (50) and applying Young’s inequality to (52), we see that

1
lulleo < —IV - vl s 8§12, (62)
Vin

By applying (60) and (62) to (61), we see that

11 - Vitelloo < 6 /Vinin + Vimax6Y2 + 6612 < §3/4, (63)
Thus, on Q.,
[ 1 - Fucpx < @¥2104 < 6%. .
0.
For any x € QF,
1 1 1 1
00 - u| < [Nz - <=9l dy < = [P - 90 - Vidy.  (5)
v . v v Vain ,

We remark that the domain of integration is in fact B ;7 since 1, is supported on a ball of radius & /2 at the
origin. To estimate the last line, we have

1 1
16(x) — plx — )| < JI%(X ~ ty) yldt < )] j IV (x - ty)ldt. (66)
0 0

Since n,(y) has support of radius O(¢) centered at the origin, it follows from equations (65) and (66) that

2
dx

~ 1
[ - e < v, ”:(x) Cu)
of o Y

. 2 (67)
<& [a [ay [atm.ivec - v
of \rR? 0
We perform Holder’s inequality (in the dtdy-integral) on the integrand |n,(y)||V¢(x - ty)| via the grouping
M WMIIVPGx — )] = In. NI 22V (x - ty)])

to obtain

2

1
[ av [atmivge - o))
R? o

IA

[ay jdflﬂg(y)l Jo jdrms(y)uwx - )f
R} 0 R 0

1
[ ay [atmnvge - .
RP 0

By inserting this into equation (67), we obtain

1
[ 1= Fucpx < e2 [ ax [ dy [atinIIvex - R < cAveR < ces, ©9)

o of R 0

Combining the estimates on Q. (64) and QE (68), we have
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11 — Vuel, < C83/41/2, (69)

Together with (57) and (59), and using 2ab < a? + b? for any real numbers a, b, we see that

IV’ + éa”"uu'u% (70)
< (el V' | )(eC8 27112 + (C83/4€1/%57118) (61 8|[u’ |5/ 2) (71)
g%éuwn% + %Wﬁnu*uﬁ + C'6e. (72)

Subtracting the first two terms of (72) from both (72) and (70), we see that
evu'l + 8"4u'l < CBe.
Therefore,
IVu'l; < 6212 and |u'l, < 63/812 (73)

By combining with (55) and (56), we see that ||Vull, < C6'2¢71/2 for some constant C. This proves (46).
Finally, we estimate the 2 norm of —Au. Recall that v = V — ¢. By using equations (42), (69), and (73),
we see that

gAuly = 11 - Vullr < 11 - Vuelh + IVu'll, < C63/4el/2 4+ v, CE3/8g112, (74)

Therefore, £2||Aul; < C6°/8¢!/2, Dividing both sides by &2 proves (47). a

Proposition 2.3. Retain the definitions in Theorem 2.1. If u solves (42) with periodic boundary condition, then
IVullzeoqy < C6°/871, (75)
lAull=oqy < C83/%2, (76)
where C depends on d and L only.
Proof of Proposition 2.3. Define w via u(x) = w(ex). Since u solves the landscape equation (42), @ solves
(-A + v)w = 1, where Vv(x) = v(ex) — ¢(ex). Moreover,
IVeullzeq) = e IVe@llpoe1gy - (77)

Consequently, we estimate the sup-norm of Vw. As mentioned earlier, let vy denote the average of v on Q.
We decompose v; = Vo + 6V, where v, is defined by this expression. We remark that the mean of v, over e'Q
is 0 and

-1<vi<l. (78)
Let Hp = —-A + vy and R = Hj'. We see that
w = (Ho + 6V = ¥ (~1)"6"(RV"R1 = — ¥ (~1)"8"(RV))"1. (79)
Vo
n=0 nz0
It follows that
Yo = iZ(—1)"'5"'V(Rv;)“1. (80)
Vo nz1
We claim that
C
IRl )10y < — (81)
Vo

1]
VRV|= < G—,
VRVl 2\/E (82)
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for some constants C; and G. For the sake of continuity, we defer the proof of the claims to the end of this
section as they are simple corollaries of Young’s inequality. Since the integral kernel of R is positive and by
using equations (78), (81), and (82), we see that (80) can be estimated as follows:

C__ 6 b g

Vol € ———————==<C <
T w1 -8/v) o vl

since vo > Vmin = 6%, Together with equations (75) and (77) is proved pending claims (81) and (82).
Now we prove the claims (81) and (82). Equation (81) is standard. For the sake of completeness, we carry

e—vo Xl
= Then
4 x|

(RAH(X) = g * f.

out the corresponding estimates. Let g(x) =

It follows from Young’s inequality that

e ¢
IRl 0y 1m0y < € [ dx -z (83)
R3

4t|x| Vo

for some constant C. Similarly, we estimate (82). We note that
(VRv)(0) = (V8) * V. (84)

Since

C
Vgl = | dxgC)(yWo + XI™) = — (85)
ﬂ£ ﬂ£ Vo

for some universal constant C, claim (82) follows by Young’s inequality.
Finally, using
-Aw =1 - v,
we see that
lAwlleo = 11 — Velloo - (86)

By equations (79) and (81), and the fact 6 = Vimax — Vimin < 6% = Vigin,

8 /Vmin 8 4
11 - vl < C Y 67IRIE, < Cr—Llmin ¢ 0 s3/8, 87
o < €L OIRE, < G < 6 ®7

for some constant C. Together with (77) and (86), this proves (76). The proof of Proposition 2.3 is now
complete. O
Proof of Theorem 2.1. Since W =1/u,
VW] = (1/ud)|Vu| < v2..IVul.
We now interpolate between equations (46) and (75). Recall Viin = 8'/%, Vinax = Vimin + 6 = 61/%, we see that
1 p-1

IVWIl, < vZaxlIVull, < 8%/4(85/8e 1y 7 (812 12)2/p < 61+iG—De 5

This proves (43). By differentiating VW once more, we see that

[AW] < 2W3 [Vul? + W2|Au| < 2v2, [VuP + v, |Aul. (88)
Since
P2
IAWI, < IAWIZ IAWIB?, (89)

equations (75), (76), and (88) show that
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1AWl < 53;’&(55;’85—1)2 + p2/4g3/4g-2 < 55142, (90)

Similarly, equations (46), (75), (76), and (88) show that

1AW, < 624 Vullo IVull, + 6% 4lAull (o1
< 83/4(85/8-1) (51126112 4 §2/4(55/8¢-312) (92)
< §9/8¢312, (93)

By combining (90) and (93) and using (89), one can compute that

p-1

AW, < C5 e (94)

This proves (44). O

3 Leading-order expansion of electron density

We first state a more general theorem from which Theorem 1.1 follows. Then, we prove Theorem 1.1 while
delaying the proof of the more general theorem until the end of the section. Let

H.={zeC:Rz+c>0}. (95)

We have the following general result.

Theorem 3.1. Let 2 < p < 3. Assume the following hypotheses hold.
(1) Suppose that f is analytic on H. for some constant ¢ > 0 and

[ e+ ivpiax < oy 96)

uniformly in y for y in on any compact set.

(2 v=V - ¢ =0, where V =V — Vi and ¢ are as in Theorem 2.1.

(3) ¢ € H(Q; R) and |9l ) < 6.

(4) The parameters0 < € < &,, and 0 < § < 8,, where €, < 1, 8. < 1 are constants only depending on Vyy,, the
dimension d, and domain size L.

(5) W =1/u denotes the landscape potential, where u solves

(€A + V)u = 1. (97)

Then,

denf(—€2A + v — @) = ! J-d f(p?2 + W — @) + £3*1/PRem
¢ 2e)? pJ(p P , (98)
R3

where

IRemlzz) < G [ @) (99)
_§l/4

for some p-dependent constant C, > 0.

Proof of Theorem 1.1. Let V and ¢ be as given through the assumptions of Theorem 1.1. We would like to
apply Theorem 3.1 to both (23) and (24) simultaneously.

We note that the Fermi-Dirac function has poles on the imaginary axis in imZ. Thus, we decompose
V = Vipin + 6V = Vo + V as in (19), where we choose Voyt = Vimin — 6'/% such that



DE GRUYTER On an effective equation of the reduced Hartree-Fock theory == 15

Vimax = C-161/4, (100)

where C is the constant given in lower bound of the integral in (99). Consequently, we pick f(z) in Theorem
3.1 to be

f(2) = fen(B(z + Veur — W))- (101)

Thus, H. is chosen with ¢ = Vigax — J.

To prove (23), we apply Theorem 3.1 with the potential v=¥ — ¢ = V — Vot — ¢ and ¢ = 0. To prove
(24), we apply Theorem 3.1 with v =¥ = V — V;; and ¢ = 0. Finally, we check that the remaining assump-
tions of Theorem 3.1 are satisfied for the aforementioned choices. Notice in either case, vpip = 6/ — 6 = §/4
and Vgax = Viin + 6 = 6174,

By the second item of Theorem 1.1 and the Sobolev inequality, [|¢ll,, < 6.Since§ « landV-u>C>0
(Assumptions 1 and 3 of Theorem 11), we see that Ve — u > O(1) > 0. Hence, the function f(z) =
fo(B(z + Ve — W) is analytic on Hy,,, (definition (95)), and Assumption 1 of Theorem 3.1 is satisfied.
Clearly, items 2-4 of Theorem 3.1 are satisfied by v and ¢.

Item 5 of Theorem 3.1 can also be satisfied since ¥ > 0.

It follows by Theorem 3.1 that the L2 norm of the remainder Rem (98) is bounded above by

(4]
e [ dnfon (B + Ve — ) £l A ", (102
_5[.!’4
This proves the errors in (23) and (24). O

The remainder of this section is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. First, we remark that the potential functions v and ¢ are real and bounded. It follows
that their associated Hamiltonian —A + v — ¢ is self-adjoint (on L*(R?)), so that the spectral theory of self-
adjoint operator and its associated analytic tools apply. Moreover, the landscape function u solving (97),
and the landscape potential W = 1/u are also real.

Let f be a meromorphic function as given in the hypotheses of Theorem 3.1. We note that

u(-e2A + v)u = —€2A — 2e2Vu -V + u'L, (103)

Let us denote
U=-2u'e?Vu -V +ul - p. (104)

Consequently,
denf(-€?A + v — ) = denf(-&A + U). (105)

Since —€2A + U has the same spectrum as —£2A + v — @, we see that the spectrum of —€2A + U is contained
in [Vipin — 0(8), 00) C [Viin /2, 00), by item (2) of the assumptions in Theorem 3.1. Thus, by using Cauchy’s
theorem, we can write

f(-eA+ U) = %J'f(z)(z - (-&’A + U)), (106)
T

where the contour I is given in Figure 1.
For simplicity, we will denote

=52 (107)

for the rest of the article. Let

W=1/u, (108)
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Figure 1: We identify the complex plane C with R? via z = x + iy for (x, ¥) € R2. The contourT is denoted by the blue dashed line,
extending to positive real infinity. The spectrum of —£2A + v — @ is contained in the solid black line. The orange line is where
Rz = —c and f(z) is analytic for Rz > —c.

Then,

W=1/u-¢o

(109)
denf(-€?A + v — ) = denf(-&2A + U) (110)
- dencﬁf(z)R(W, W), @)
where
RW,W)=(z- (-2 A + U))' = (z - (€27 + 222WIWWW .V + W))! (112)
To extract leading orders and for z € C not in the positive real line, we define
= (z + e2A)1 (113)
Re(W) = T R™IH" (114)
nz0
Ry(W) = Z WRn+1, (115)
n=0
It follows from (111) that
denf(—&?A + v - @) = den@f(z)RL(W) + @f(z){R(W W) — Ri(W)) (116)
Translation invariance of —A shows that for any n

denR" = J ~ p?)"dp.

e (2n8)3 (z-p)dp

denpfR(W) = ¥, riedentRr

By using Cauchy’s formula and Taylor’s theorem, the first term den(j)f (z)Rr(W) can be computed as follows
nz=0

(2n£)3n§0.|. P (ﬁf @

(117)
2)n+1

(118)

DE GRUYTER
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f‘“’(pz)w
(2ne)3,:§,j, t!
(2::5)3 _[dpf(p + W). (120)

Recalling that W = W — ¢, this gives the leading order term in equation (98). It remains to estimate the error term
$FRW, W) - RyW). (121)

The following Lemma is the main work horse in this estimate, whose proof is delayed until the conclusion of
the proof of Theorem 3.1. The Lemma involves the Schatten p-norm &P(Q) given in Appendix A. O

Lemma 3.2. Let 2 < p. Assume that the assumptions in Theorem 3.1 hold and let W and W be given by (108)
and (109), respectively. Then

C1£—3fp 7p-2 1/

11 - e28)RW, W) — Re(W)ller() < ——-6 @€'/, (12)
G- F)
-3/ 7p-2
IRW, W) - R(W))A - £D)ler(a) < (f‘*‘—a.iam”p, i
2~ @

for some C; and G, that depend on p and where d(z) is the distance from z to the positive real line.

Assuming Lemma 3.2, we complete the proof of Theorem 3.1. Let 2 < p < 3 and g be the Holder con-
jugate of p such that% + % — 1. Recalling the definition of Ry (W) in (115), we may apply Lemma 3.2 and
Lemma A.1 (from the Appendix) to obtain

dendpf )R, W) - (D) - ||cj§f(z)den[R(W. W) - RN - 281 — 2y (124)
LP(0) SP()
Ay _ ' _
s ||<f>f(z)[R(W, W) - RWI - £20) Lm (125)
=\
3 1-1(1+2/p) . O
S . .r[ &Nt - e | t126)

provided vpay is much smaller than mfd(z} Since Vpax = 6% « ¢ provided § small, we choose our contour
to be such that

¢ > d(z) = 206V4, (127)

where C is from (126). This proves (99).

Proof of Lemma 3.2. We will prove (123) only. The proof for (122) is similar. For W and W given in (108) and
(109), respectively, recall from (104) that

U=2WIVW.V + W. (128)
We expand the resolvent using the resolvent identity
R(W, W)= (z - (-€?A + U))™
=(z - (-EN)" + (z - (-2N)WU(z - (-&2A + U))!
= ) (RU)'R.

nz0

(129)
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We will consider each of the nth order terms separately. Let us denote
Yo = (RU)R. (130)
Since commutator of —e2A with W is higher order, to leading order, we have

¥, = W'R™! + higher order (h.o.), (131)

where h.o. will be computed after this paragraph. Summing over n, to leading order,

R(W, W) =) W'R™! + h.o. (132)
nz0
=R(W) + h.o. (133)

Now we compute the higher order terms coming from y, - W"Rm+1 where ¥, is given in (130). Let us
introduce the following notations for clarity of exposition.
(1) We denote

Wy, = 2W- vy, (134)

Note that W;; is associated with the first order derivative part of

U=22WIWVW.-V+W. (135)

(2) We denote
Wi = —2VW, (136)
Wy = —AW. (137)

These terms came from the commutator
[R, W] = R(—2e2VW -V + (~e2AW))R = R(e2Wy; -V + €2Wh)R (138)
when we commute W in y, to the left to obtain W"R™1.
A simple way to keep track of the Wj’s is to note that W; has i derivatives taken, while j stands for the jth

such quantity (in order of their introduction).
We write U = £2W;; -V + W. Then

Y, = R(e2Wi; -V + W)R --- R(2Wy -V + W)R. (139)
If we write y, by expanding all the aforementioned brackets, we obtain
n-1
Yo= RW)'R + £ ) (RW)/(RW; - eV)(RW)" 1R + y, (140)
i=0

where yr: is defined by this expression and contains terms with at least two factors of £2W}; -V. By commuting
W to the left, we see that

(RW)R = W'R™1+ Y W 'R[R, WIR--YRW)*IR. (141)
O<i<j<n
It follows that
Y, = W'Rn (142)
+ Y WRIR, WIR--{RW) iR (143)
O=zi<j<n
n-1 . .
+£) (RW)(RW - eV)(RW)" IR (144)
i=0

+ Y (145)
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where we note that the leading term W"R™*! was used in the computation for (120). We now proceed to
estimate the terms (143)—(145) individually.
First, we estimate the Schatten p-norm of commutators (Appendix A) of (143) .

Lemma 3.3. Let 2 < p. Let W be given in (109). Then

e3Ip

I[R, Wlllsr@) < Cd(z)251+%(1f2—1fp)glfp_ (146)
where d(z) is the distance from z to the positive real line.
Proof. We compute
[R, W] = R(e2Wy; -V + €2Why)R. (147)
Kato-Seiler-Simon inequality shows that
IR, Wlllsrqy < elRWpllsrylleVRIs=q) + IRlls=(q)el WnRls?q) (148)
< %(8||W12||p + €2 Wallp). (149)
Recalling definitions (136) and (137), we see that
IWaall, < CIVW ], (150)
IWall, < CIAW,. (151)
By definition (109) of W, Theorem 2.1 proves (146). O

By applying Lemma 3.3 to equation (143), we see that

g3/Pn2Cn

= d( )n+1
z
SP(Q)

Y WRIR, WIR--YRW)"IR(1 - €2A) WIS 675 . (152)

O<i<j<n

This concludes the estimate for (143).
We can estimate (144) in the spirit of the estimate (143) by using an analog of (152). We obtain

n-1 -3/ppCn
_ - e2'PnC" o
£ Y RWYRW - eV)RWYTRA = 2)| < T WS el Wal, (153)
i=0 &P(Q)
S3/epcn . u
< ﬁnwngla%slm (154)

Finally, we estimate (145). The term y, consists of all possible terms of the form
RXRX; --- RX4R, (155)

where X; is one of W or eW;; -(eV) with at least two of the latter factor. Without loss of generality, we assume
that X; = eWy; -(eV). By Lemma A.1, Theorem 2.1 and Proposition 2.3, we see that

e3/rc
IRXRX, --- RX,R(1 — €20)llerq) < e ||R8Wu||sf’(u)||EVRX2||6°°(Q)HHRXiHem(ﬂ) (156)
i=3
£—3ercrl - 1
< —(IWlleo + €llttlloo IV W)™ VWl lutllo (157)

d(z)"
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e-3/pCn

7 -1/4 = -1/4
< W("W"m + &5/ HIVWloo ) eV W, 6714, (158)

Combining (152) (for (143)), (154) (for (144)), (158) (for (145)), and using the binomial theorem (or a mod-
ification thereof), the fact 6 < Vign = 64 and Theorem 2.1, we see that

e3/pcn

Tp-2
"(Vn _ W"R““)(l N 523)"61’(0) < d(z)ml (51;’4 i 83—1,-’11(591"85—1));1—15?51)’.0 (159)
E—3}’pcﬂ p-2
< o (614 4 e6-V4(6%/8c )-1575 1/P, (160)
Together with (129), (123), and Lemma 3.2 are now proved. O

4 Consequence of the integrability condition

Before we move on to the proof of the main result Theorem 1.3, we dedicate this short section to elucidate
the implied relationships between different parameters &, 8, B, and u. We achieve this through the integr-
ability of the Poisson equation (41), which we now recall and elaborate.

Let F = Fregr, Fpp or Fisc (26)—(28). By integrating the left- and right-hand sides of (29), we obtain an
equation of the form

K 1 '[x L JF
0= — = — .
Q] Q] (161)
0 0

The goal of this section is to prove bounds on y given that (161) holds.

Lemma 4.1. Let V be a bounded potential as in (19) and ko € R > O and ¢l < 6. Let Assumptions 1-3 and
(161) hold. Assume also that (161) holds for any F given in (26)—(28). Then,

O<p and V-pu>K. (162)

Proof. We consider the special case where F = Fisc, and all other cases follow from Theorem 1.1. In this
case, Assumption 3 implies

1

k‘ T —
" 2reyiql

J.dXJ.dpfFD(ﬁ(pz + W- (p + 1"Em i .u))s (163)
a Rr?

where u = 1/ W solves
(A + V- Vgdu-=1. (164)

Let 8(p) denote the right-hand side of (163). We first note that 8(u) is increasing in y since fgp is a decreasing
function. So it suffices for us to check that 8(0) < kg < 8(Vyin — K). For a generic € R,

[ dofiop? + BOW - b + Ve~ ) -
R3
- 572 [ aain(@? + BOV ~ § + Ve~ ) (166)
0

Since ||¢|z < 8, we can find a constant C such that

W= ¢ + Vet > Vigin — O(8Y%) — O(8) > Vigin — C8Y/4, (167)
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(W- ¢+ Vo) — (Vimin — K) < K + O(6Y%) + 0(8) < K + C8/4. (168)

Thus, we see that
fen(@ + BW — ¢ + Ve — 0)) =~ e T e AWV, (169)
fin(@? + BUAW = ¢ + Vew) = (Vain = K))) = €70 P-4+ V= Vourr ), (170)

where we recall that A = B means A < B < A. It follows that
6(0) < 5—33—3;"29—,8[1’,.,13—66”“)’ (171)
O(Vein — K) 2 5-3,8—3”9—5@’*'55”4) (172)

for some constant C > 0. Thus, Assumption 2 shows that a solution 0 < py < Vin — K of 8(py) = ko
exists. O

Corollary 4.2. Let Assumptions 1-3 hold. Assume also that (161) holds and ||pllgzqy < 6. Then

£3B-3120-PVin-p+C6"") < 1 < £-3B-3/20~F(Vaun—p—C6""") (173)

for some constant C > 0.
Proof. By Theorem 1.1, it suffices for us to assume that (163) hold. Lemma 4.1 shows that V—u > K > 0.

Since f is large, the Fermi-Dirac distribution fep(B(p? + V — u)) is well approximated by e-#e(V-1, By
integrating dp, we have that

Jdpg—ﬁf ~ 312, a74)
R3
where we recall that A = B means A < B < A. Moreover,
o BVn-p+C8'"%) o o—BW-¢p+Veur—10) < o-B(Vium—p-C6"*)_ (175)
It follows by (163) that (173) is proved. O

5 Proof of the main result: Theorem 1.3

Proof of Theorem 1.3. Recall that we can write the REHF, PL, and LSC equations (29) in the form
-A¢ = x — F(¢, ), (176)

where F is one of (26)—(28).

For a fixed choice of X = REHF, PL, or LSC, let (¢,, 1) denote a solution of equation X satisfying the
assumptions of Theorem 1.3. We look for a solution, ¢, of the corresponding equation ¥ = REHF, PL, and
LSC, Y + X, near (¢, u) of the form ¢p = ¢, + . By substituting this ansatz into (29) of the Y equation, we
obtain

—Ady — Ap = x = Fr(¢g + @, 1) a77)
=X = Fr(o, 1) + Fy(¢o, W) — Fr (@ + @, 1) (178)

Rearranging, we obtain
~A¢ = X' + Fr(¢o, W) — Fr(do + @, 1), (179)

where
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k' =k — F(¢y, W) + A, (180)
= FX(‘P(]: ,‘J) - FY(Q'){); ,U) (181)
Theorem 1.1, and the scaling in Assumption 1 and 2 show that

Iz § &3/ eBens') o gl2gChs"" o p1/2Glogle™sH ¢ g1/2-Go'" (182)

for some constant C;, independent of £ and 6. Let M denote the Gateaux derivative of F at ¢b,:
M = dgF($, Wlg-g,- (183)
We see that (179) can be written as follows:
(-A + M)g = x' + N(¢p), (184)
where N is defined by this expression. Let us denote
L=-A+M. (185)
The rest of the analysis rests upon the following abstract lemma and subsequent theorems.
Lemma 5.1. (Main lemma) Let H; and H> be two Hilbert spaces such that ‘Hy c ‘H> is dense (in the H>

topology). Let L be an operator on H; with domain H; and N be a function on H; with range in H,. Assume
that L is invertible on H, and there is a 0 < m € R such that

1L gy, < MY, (186)
and

IN(b) = N(@ i, < Cu(llla + b )iy — bl (187)

for some constant Cy on a ball of radius at least Cm!|x'|l4, centered the origin for some constant C > 0. Let
k' e Ha If

Ix'llz, < m and (188)
Cull'lle, < m?, (189)

then there exists a unique solution ¢ on the set

{(0 € 71 Il < %m(ﬁﬁl} (190)
to the equation
Lo = k' + N(p). (191)
Moreover,
lplla, < Ml - (192)

Proof. This is just the implicit function theorem with explicit estimates written out. See, e.g., Chapter XIV of

[24]. a
Let L be given by (185) for either one of F = Fggyr, Fp, or Fisc and

mo = 8", (193)

Theorem 5.2. Let the assumptions of Theorem 1.3 hold. Then L is bounded below on [2(Q):

ILflz) 2 Cill (—A + m§?)fl ) (194)
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for some constants C and any f € HX(Q).
Let N be defined via (184) for F being any one of Fgegr, Fpr, or Fisc. Then we have the following result.

Theorem 5.3. Let the assumptions of Theorem 1.3 hold. The nonlinear operator N has the following estimate
IN(¢y) — N(@)lrxq) < C3m5c“(ﬁ¢1||ﬂ1(n) + H(f)gllﬁl(n))"@l - ¢l (195)

for ¢, and ¢, in HY(Q) provided |$;ll ;1) < m§’ for some large constant Gy, where my is given in (193).

Theorems 5.2 and 5.3 are proved in Sections 6 and 7, respectively. Section 4 provides some preliminary
estimates on parameters g, f, i, etc. due to the integrability condition (41).

Now we apply Lemma 5.1 to (184). We take ;= HX(Q) and #; = L2(Q). By Theorem 5.2, the linear
estimate (186) of Lemma 5.1 is satisfied with

m = Ce%®" (196)

for some constant C; and G, given in (194). Moreover, Theorem 5.3 shows that Cy of Lemma 5.1 can be taken
to be

Cy = G C8", (197)
where G and Cj; are constants given in (195). Together with equation (182), we see that
'l < Culix' 2y < Ce'2-6"" « min(m, m?) (198)

by Assumption 1. This proves (189) of Lemma 5.1. Consequently, Theorem 1.3 is proved by Lemma 5.1. We
remark that the reality of ¢ is established by the complex conjugation symmetry (40) of (29) and the
uniqueness of solution from the aforementioned fixed point argument. O

6 Linear analysis

In this section, we prove Theorem 5.2in three parts: in each of the following subsections, we prove a version
of Theorem 5.2 for the case of REHF, PL, and LSC in Theorems 6.1, 6.8, and 6.9, respectively.

6.1 Proof of Theorem 5.2: REHF case

Let
Mgenr = dgFrenr lp-g, (199)

be the Gateaux derivative of Frenp(-,1) at (¢, 1) (cf. (183)). Recall that Lggur = —A + Mggnr and that mg is
defined by (193).

Theorem 6.1. Let the assumptions of Theorem 1.3 hold. Then Lygyy is a positive self-adjoint operator on L2(Q)
and

Lpeur =2 -A + mg (200)

for some constant C.

We begin by recording a few auxiliary lemmas first.
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Lemma 6.2. Let the assumptions of Theorem 1.3 hold. For any @ € 1%(Q), we have
M = ~denfen Bz + Ve = 1)z — W79z~ ), (201)
where
h=-A+V - Vet — g (202)
Moreover, Mgeyr is a bounded positive self-adjoint operator on L2(Q) with
IMrerrlle=) < mo©. (203)
for some constant C.
Proof of Lemma 6.2. We will only prove (203). The rest of the properties are proved in [13]. We remark that

h is self-adjoint on LX(R3) since each of the potential functions V and ¢, is real. Let f, g € LA(Q). Let Trg
denote the trace per volume () operator (Appendix A):

1
Trpd = ﬁTrxﬂA, (204)

where A is an operator on I2(R3) and Xg is the indicator function of Q. Since V — Vi — ¢, is bounded, we
see that h is self-adjoint. Moreover,

1
11 - 20)(z — h) e < (1 + %], (205)

where d(z) is the distance from z to the contour, T (see Figure 1 for definition of T'), of integration in
1
P =5 (206)
T

Let GP(Q) denote the standard Schatten norm associated to Tty (Appendix A). By (205), the definition of den
(rigorously defined via (A6)), and the Kato-Seiler-Simon inequality, we see that
1

H(g’ Mgenr f) 1) = @fm(ﬁ(z - W) Trag(z — hy ' (z - h)? (207)

< Pifio Bz - Wl - 1 ez ~ 1 ey

2
< |1+ 25| PoBCz - Wllglro ol - 207 B, (208)
z —
<e3 W Il 10Q) Ilf[tf,z(ﬂ) 5

Since fen(B(z — Veur — 1)) is holomorphic on {z : Rz > u — Voue}, we may choose the contour such that
|d(2)| = O(IVillo) = O(6"*) (20) and

(8, Mgnr f)rxq) s B1671% 3 Veup-6") g 2 Iy (209)

where we note that the additional factor of f~! came from integration in z. By Corollary 4.2, we see that (203)
follows. This proves the G*(Q) bound for Mggyr. One can see that Mgeyr is self-adjoint by using the tracial
characterization (207) and the cyclicity of trace. O

Let
[VI=+-A, (210)

where the square root is taken via the Borel functional calculus under periodic boundary condition on Q.
The following lemma is crucial to our linear analysis and is based on unpublished notes of Chenn and I. M.
Sigal, and proved in Lemma 6 of [15] with £ = 1.
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Lemma 6.3. Assume that v > 0.

'
—denédzfpg(ﬁ(z + )z + 20 lp(z + £20)1 = o J tfen(B(t + v), ( ? j :zV: ](0. (211)
In view of Lemma 6.3, define
Mec = J dfin (Bt + W+ Vit — by — 1) £ 3 1) (12)
= e |V| F—|ev| j
where W =1/u and
(€A + V- Vpdu=1. (213)

We remark that when M. acts on the zero-(0-) eigenvectors of |V| (i.e., constants), it is assumed that the
integrand in (212) is interpreted as follows:

1 Jat +0l) _ 1
6‘°g( it 0 ]‘ N e

for t > 0, to ensure continuity of the integrand. Finally, we recall that my = 5" was defined in (193).

Lemma 6.4. Let the assumptions of Theorem 1.3 hold. Let p,q > 2 san's}j/% + é = %, then
\Mrgxr f — Mc fllza) < €'/PmgCiif sy (215)
for some constant C. Consequently, picking p = 2 and q = co, and by Sobolev’s inequality,

| Meexe f — Mse fllzy s €°mgCIIflea)- (216)

Proof. We start with equation (201). Let u solve the shifted landscape equation (213). By conjugating inside
den by u, we obtain

Mg = —dencjifm(ﬁ(z + Veur — W)ROW, WR(W, W), @)

where W = 1/u, W = 1/u — ¢, and R(W, W) is defined in (112). Similarly, we recall the definition of Rg(W)
and RL(W) in (114) and (115), respectively. We write
R, = R(W, W) - Ru(W), (218)

and define Ry similarly. Then, we may rewrite Mgeyr [ as follows:

Megse f = —den(jifm(ﬁ(z + Vet — J)R(W)Re(W) (219)
—den(f)fm(ﬁ(z + Veut — W)[RUR(W, W) (220)
+R(W, W)fRg + RifRg] (21)

We first consider the leading-order term on right-hand side of (219).
Micat = ~denPfin (B + Vet ~ IORLC )R- @

On I%(R3), the operators (z + £€2A)™ have integral kernels

1 )
d eP),
(21)3 J; p(z — e2p?)yn (223)
R
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By inserting (223) into (222), we see that

1

(Mieaa f)(x) = @

A1) Npr——
dz J. dpdydg ), feo(B(z + Veur — W) X SO0,
@ R3xRIxR3 ng:zl ® t~ K (z — 52p2)n(z _ Ezqz)m ( )

For any real numbers A and B, we note that

dk 1 ok 1
“e-ae-p Y k!mm:glmm z- Az -B)" (225)

It follows by Taylor’s theorem that

(Miead f)(x) = ﬁ(ﬁdz J dpdydq ) feo(B(z + Veur — 1))
R3xR3xR3 k=0
L GO d f) £l-0Xx-y)
K dzX (z - e2p?)(z - e2¢?)
1
= W@dz J- dpdydqgfep(B(z + Vout — W)
R3><R3><|R3

x f) iP-)x-y),
(z - &p? - W)(z - €%> - W(x)

By Fourier transforming back to the position basis, we have that
(Mhead f)(X) = (ﬁdeFn(B(z + Vo — W)den|(z — h(0))f(z - h()) (0, (226)
where
h(x) = —€2A + W(x) — ¢o(x), (227)

and W =1/u is defined by (213). Note that h(x) depends on x and is a family of translation invariant
operators indexed by x. Consequently, by Lemma 6.3, we see that
Mlead = Msc’ (228)

where M, is given in (212).
We now estimate the error terms in (220) and (221). We only consider the term

den@pfin(BCz + Ve - WIRISRCW, ), (229)

and the other terms in (220) and (221) are similar. By Lemma A.1, forany 2 < p, g and% + é = %,
denPin(BCz + Ve~ IORROW, )| < Plim(AC: + Ve - IS5 (@30)
x IRL(1 - e2B)ller@ (1 — £28) Yl IRW, W)(1 - £2)lle=@)- (6£3)

Since we chose V — Vo = 6'/% (see (20) of Theorem 1.1), d(z) can be chosen to be of order 61/% » ¢ (see
Figure 1 with v = V - V; and ¢ = ¢,). By Kato-Seiler-Simon inequality, Lemma 3.2, and our choice of
scaling in Assumption 1, it follows that

_ 1 - T
. SE€ 3+1/pB1e-FVeu==0"")|| f I 9 qr), (232)
3Q)

denhfin Bz + Vew ~ IORIROW, W)|

where the extra factor # comes from integrating frp(8(z — Veur — 1)) in z. Corollary 4.2 shows that (215) holds
Lemma 6.4 is proved. O

Since Mgenr is self-adjoint, we have the following unsurprising corollary for the adjoint M. of M.



DE GRUYTER On an effective equation of the reduced Hartree-Fock theory == 27

Corollary 6.5. Let the assumptions of Theorem 1.3 hold. If f € HXQ), then
IMeesr f — Macfllzay s €°moCIf ) (233)

for some constant C and my is given in (193).

Proof. We will use the notations R(W, W), Rg(W), Ry(W), and R’ given in (112), (114), (115), and (218),
respectively. Let f € HY(Q). Instead of expanding Mgeyr f as in (219), we switch the roll of R; and Rg:

Mg f = —den(ﬁfm(ﬁ(z + Ve — W)Re(W)fRL(W) (234)
- denpfin(B(z + Veut ~ WRLOW, W) @)
+ R(W, W)fR] + RgfR;]. (236)

Since My is computed from (219), we note that (234) is nothing but M. The higher order terms (235) and
(236) are dealt with in the same fashion as Lemma 6.4. The proof of the corollary is complete. a

Let us denote

G(x) =x 10g(| X—+1|) (237)
x-1
In this notation,
<
1 1 At
M=—J. t+ W- + Vet — P))—G| — |dt. 238
sC 8”283 fFD(ﬁ( ()b{) cut p))m (£|V|] ( 3 )
0
Define
<
1 1 A4t
M, = o BW-d+Var-1) | o-B—— G| 225 |dt.
0 8nle3 ’ Jat [£|V|] (239)

0

Since fgp(x) approaches e® exponentially fast if x is large, we have the following corollary.

Corollary 6.6. Let the assumptions of Theorem 1.3 hold. If f € LX(Q), then
IMeexe f — Mo fllzy» IMf — Mifllz) < €72mg Il (240)

for some constant C and my, is given in (193).
Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let
m= MREHF - M(]. (241)

Lemma 6.4 and Corollary 6.5 show that
Imflizay, Im*fllzq) s €/2mgCIflzq) (242)
for f € I2(Q), where C is a fixed constant. Since Mgeyr is self-adjoint, by (241), we see that
Mgeye = (M5 + m*)(Mo + m) (243)
= MgMp + m*Mp + Mgm + m*m. (244)

It follows that
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oo

o0
M]%EHF — % J.e_.BtLG E e—2ﬂ(W—¢a+sz—.u) J-e_ﬂtLG ﬂ + m*MD + Mo*m + m'm
64 Jat \ g]v] Jat \ gV

Jat

2
(a4
1
2 £ 8¢ P(Vnax+poleo—1) Je‘ﬁ‘—G ~— || + mMp + Mjm.
)= Jat e o

By Corollary 4.2, Lemma 6.2, and equation (242), we see that
- 2
Mz 2 m§| [ e G/EemVD) | — emqa1 - A7, (245)
0

where my is given in (193) and C is a constant. Since we know that Mgggr > 0, we apply max(-,0) to the right-
hand side of (245) (so that we can take its square root). Since the right-hand side of (245) is purely a function
of |V|, the usual commutative algebra rules apply. Moreover, since the square-root operator is operator
monotone, we conclude that

oo
1 Jat
Mgerr = m§ J e-ﬁf—G[—] - e2mztQa - A). (246)
t eV
. Ja VI

To complete the proof of Theorem 6.1, we need the following Lemma, whose proof is delayed until after the
current proof.

Lemma 6.7.
( #_1 ¢ m)dt 1 .
Oe T [fivl > 2050 - feh) (247)

By combining equation (246) and Lemma 6.7, we see that

1
—A + Myggp 2 —A + m§—— — £/2m;(1 - A)
REHF 0 JB(I ~ Bl 0 (248)
2 A +m§ — e2Zmzt(1 - A). (249)
By Assumption 1, the proof of Theorem 6.1 is complete, modulo the proof of Lemma 6.7, which we shall
provide in the immediate paragraph that follows. O
Proof of Lemma 6.7. Let p = ¢|V| and x = %. By our convention, if p = 0%, then G(co) = 2. In this case,
(247) is bounded below by
[s0)
2 n

ef—dt= |-. 250
! Jat \/; g

Otherwise, we assume that p > 0.
By elementary calculus, we have the following two estimates

+1

log X >2x forxc<1, (251)
log el > 2 for x > 1. (252)
x—1 X

Equation (247) becomes
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5] I'a o0
1 JE 1
e thP——G(x)dt > 2 —Ze‘ﬁ‘ + | —eft (253)
.([ Jat .([ p J Jt
Bp? . o0 .
—f —_—e !’
33;’2 2 J- Vet + \/EJ NG (254)
pZ
T 1
_ —t -
_J_ JJ‘e +Jﬁe . (255)
BY?

We can compute the bracketted term explicitly as a function of Bp2 Elementary calculus shows that the

terms in the bracket in (255) is bounded below by —— i ﬂpz)

Jt 2B + Bp?)

This proves (247). O

J'e—tﬂi G)dt > ! (256)
0

6.2 Proof of Theorem 5.2: PL case

Let V and ¢ = ¢, satisfy the assumption of Theorem 1.1. Let
h=-eA+ V- ¢y - Vous (257)
where 1y is given under Theorem 1.1. Let also
hg = ug‘lhu.). (258)

Let ug denote the landscape function solving hug = 1 and Wy = 1/up its landscape potential. Define the
function, mpg, on Q via

mpy, = _,3(2115)_3 J- dpf; 1];D(J9(1'32 + Wo + Ve — ) Wo. (259)
)

Theorem 6.8. Lef the assumptions of Theorem 1.3 hold. The linear operator L given in (185) with F = Fp (see
(28)) is
L = Lpp = —A + mpphy?, (260)
where mpr, Wy, and ug are seen as multiplication operators. Moreover,
ILps fllzqy 2 (=D + m§)flq) (261)

for some constant C, where my is given in (193).

Proof. We differentiate Fpp from (27) to obtain
dgFeL lp-¢, P (262)

~ ey " [ dpfin (B + Wo + Ve ~ k)WBAlCh — ) 'Tllp-op a63)
R3
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= mprugthlph™ (264)
= mphy'p. (265)

This proves (260).
Let Mpp, = mpthl. We note that L = Lpp, = —A + Mpr. Since Mpy, is not self-adjoint, Lp; is not self-adjoint.
However, Lp; is almost self-adjoint as described below. We rewrite

1 . 1 *
Ly = (—A + E(MPL + MPL)] + E(MPL - Mpp) (266)

=: Ll + MI;L’ (267)

where L; is self-adjoint, We show that My, is small. Indeed, we compute

2Mpy = [mer, o'l (268)
= —hg'[mev, holhg! (269)
= —hg'ug[mpr, —€2Alughy’ (270)
= —hg'ug'(~2Ampy. — 2(eVmpL)(€V))uohg’. (71)

Recalling that hug = 1 where h is given in (257), |h !y = lluglle is bounded above by

1

- = 0(671%), 272
fV — polo — Vo @72)

and [ug']e is bounded above by
supV + [ Pglloo — Veur = O(6Y/%). (273)
Thus, we see that [|hg'ugle, < 1 and [lughgtle, < 6-1/2. Hence,
IMpiflb < lI(€2Amer + 2(eVme(eV)uohg flb < 67 V2(—2Ame)lsllf s + I(€VmeL)lls I(€V)uohg flls - (274)
It follows by the Sobolev inequality, Theorem 2.1, Corollary 4.2, and definition (193) that
IMeifll < mo e “If ) (275)
Next, we provide a lower bound for %{MpL + M2 We compute

( Mp[_ + Ml;L

2
3 ) = (Mg, + Mpy)(Mpr, — Mpy) (276)

= MpMpr + MprMpr — My Mgy, — (Mp)?. 277)

We denote Vipax = supV + [|glle — Veur = O(61/%). By using the explicit form of Mpy in (265), we see that

Mg Mpy, = uph 'ug'miug*hug (278)
2 plebe¢ 2 (Veu-p +C5m)uo(vmx — £2A)2ug (279)
2 M3Cuo(Vimax — £20)2 U, (280)

where mg is given in (193) and C is a constant. Note that the last line follows from the scaling Assumptions 1
and 2 and Corollary 4.2. To estimate (280), we have that

(Vmax — €20) 1o = uo(Vimax — €2A)! + (Vmax — €20) ug, —€2A])(Vinax — €20)71. (281)
It follows from (280), Theorem 2.1, and Sobolev’s inequality (which depends on |Q|) that for any f € L%(Q),
(f, MMf) 2 M3 (Vinax — €28) o fly (282)
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2 m€luo(Vimax — £2A) " flo — mg e 4|fll, (283)
2 M| (Viax — €28) £l (284)

for suitable and possibly different constants C and C’. Together with (261), (275) is proved by (277). O

6.3 Proof of Theorem 5.2: LSC case

Similar to the PL case, let V and ¢ = ¢, satisfy the assumption of Theorem 1.1. Let up denote the landscape
function associated to the Hamiltonian

—2A + V — Vs (285)

where V_; is given under Theorem 1.1. Define the function, mysc, on Q via

mysc = —B(ZHE)_EQJ.del;D(ﬂ(Pz + Wo — ¢ + Veur — 1)), (286)
|R3

where Wp = 1/ug is the landscape potential.

Theorem 6.9. Let the assumptions of Theorem 1.3 hold. The linear operator L given in (185) with F = Fisc (28)
is

L=-A+ Myse, (287)
where mysc is seen as a multiplication operator. Moreover, L is self-adjoint on LX(Q) and

Lz-A+m§ (288)

for some constant C, where my is given in (193).

Proof. We differentiate Figc from (28) to obtain

dgFisclp-¢,9 = —Pe(2m)>/2 J dpfin(B(P* + Wo — ¢ + Veur — W)@ (289)
R3

= My, (290)

where mysc is given in (286). By Assumptions 1 and 2, we may replace fzn(x) by e*, and we obtain

e ﬁg-ae—ﬂcwo+||¢gumwml—;:)'|' dpefr 3 B112g =B Vax+Iolea1), 29D
R3

By Corollary 4.2, Assumptions 1 and 2, we see that mysc = mg for some constant C. This proves (288) and
completes the proof of Theorem 6.9. O

7 Nonlinear analysis

In this section, we prove Theorem 5.3 in three parts: in each of the following subsections, we prove a version
of Theorem 5.3 for the case of REHF, PL, and LSC in Theorems 7.1, 7.3, and 7.2, respectively.

7.1 Proof of Theorem 5.3: REHF case

Theorem 7.1. Let the assumptions of Theorem 1.3 hold. The nonlinear operator N (defined in (184)) of the
REHF equation has the following estimate:



32 —— |lias Chenn et al. DE GRUYTER

IN(¢y) — N(@llzy < Clméc’(llf.blllm(n} + ||¢2[EH‘(Q))H¢1 = ¢l (292)

for ¢, and ¢, in H(Q) provided that ||¢;llmq < mg3 for some constant C; large enough, where my is given
in (193).
Proof of Theorem 7.1. By (184), we see that
N(¢) = —denfep(B(h — ¢ — p)) + denfpp(B(h — W) + Mo, (293)
where
h=—-&A+V- ¢y — Veur (294)

(recall from Theorem 1.1 and (20) our choice of V). We remark that since ¢ is not necessarily real, the
operator h is not self-adjoint in general. However, its spectrum lies within a tubular neighborhood of the
real with width O(l¢llo) < O(lgllzz) < mS = €59 for some constant G, by assumption of Theorem 7.1. In
particular, the spectrum of h — ¢ does not intersect our contour of integration since the poles of
fen(B(z + Vewt — 1)) are —(Vye — W) + inB~'Z (Figure 1). Thus, recall that the resolvent identity is

(z—-A'-(z-B)y'=(z- A4 -B)z- By (295)

By using the Cauchy-integral, the resolvent identity, and (201), we arrive at an explicit formula for N:
N(@) = ~den(fin(BCz + Ve ~ )z - (1 = )bz~ W)Y, (296)

where @ is given in (107).
By applying the resolvent identity to (296) iteratively with A = h — ¢ and B = h (h is defined in (294)),
we arrive at

N@) =Y cﬁfm(ﬁ(z + Vet — )(=1)"den(z — b)Y Y(p(z — h)Y", (297)

nz=2

whenever the series converges, which we will demonstrate. Let

No(p) = @fpn(ﬁ(z + Vout — W)(-D)"den(z — h)y H(p(z — By )" (298)

denote the nth order nonlinearity. Our goal is to estimate the difference in the individual nth order
nonlinearities

Nu(¢)) — Nu(9,) = (ﬁfm(ﬁ(z + Veu — W)(-D)"den(z — b)Y (¢y(z - W) - (z - by P,z - by )™ (299)
To do so, we use the following expansion of nth degree monomials:

a*— b" = (a — b)a*! + b(a — b)a*? +---+ b Ya - b). (300)
By using this pattern, we see that

Nu(py) — Nu(@p,) = (ﬁfm(ﬁ(z + Vet = p))den(-1)"(z — by (¢ — ¢,)(z — W) Hy(z - By )™

+n — 1 similar terms,

(301)

where ¢, denotes ¢; or ¢,. By using the standard Schatten p-norm &7(Q) and the Kato-Seiler-Simon
inequality, (Appendix A) and by Lemma A.1 of the Appendix, we see that

"Nn((p]) - Nn(¢2)liz
< e Ui B + Veut ~ WIII@; - Bz~ Wy ~ W)l (302)

< npe e P Bl - N emld; - dob-
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It follows that
INa(p)) — Nu(@ NIy s nmaCll(Py(z — ) U=y — ¢l (303)

by the scaling in Assumptions 1-2 and Corollary (4.2). Denote d(z) to be the distance from z to the contour.
Recall that mg is given in (193) and inf d(z) = O(Viin — Vewt) = O(6V/%) by the choice of the contour (Theorem
1.1). We see that by Holder’s and Scholev inequalities,

Iz = By A @yz — WD) Mex@ < Iz - B) e~ lPyz — )& ) (304)
< nmgC67 4| ¢, 7 (305)
< nmg &gyl . (306)

By combining with (297) and the assumption that [l¢lz2q) < m§? (for some constant G large) is sufficiently
small, we conclude that the claim (292) is proved. O

7.2 Proof of Theorem 5.3: LSC case

We will prove the simpler LSC case first before embarking on the tedious yet similar proof of the PL case.

Theorem 7.2. Let the assumptions of Theorem 1.3 hold. Let ¢, ¢, € HX(Q) with|¢,l2q) < m§? for some large
constant G (mg is defined in (193)). The nonlinear operator N implicitly defined in (184) with F = Fysc (28)
satisfies the following estimates:

IN(p) — N(@)lzay < Cimg 2yl + Idsleza)ld; — dsllray, (307)

where Cy and G, are constants.

Proof. Let h = —£2A + V — V. Let up denote the landscape function solving hup =1 and W = 1/uj its
landscape potential. Similar to the REHF equation, explicitly, by (28) and Theorem 6.9, we see that

N(¢p) = (2;5)3 n;[dp(fFD(ﬁ(Pz + W — g+ Vewr — 1) — fro(BP> + W — g — @ + Vewr — 1))

(308)
+ B (B(P* + W — ¢ + Vewr — 1))).
By Assumptions 1 and 2, we may replace fiy, frp(x) by e*. It follows that
IN(¢;) — N(y)] s £ % W10kt Veut-1) J.dpe‘ﬂpzle‘ﬁ"' — e P+ B, — )
3
i (309)

< B—3f2£—3e—ﬂ(vmln— ||¢’a|lm—.l-')|e_ﬂ¢1 i e‘ﬂ¢2 + B(¢1 = ¢2)i
< mgClet — e + By - ).

Since [piloo < P2y < mg’ is smaller than 1/8 by Assumption 2, the Taylor expansion of e* and (309)
proves equation (307). O

7.3 Proof of Theorem 5.3: PL case

Theorem 7.3. Let the assumptions of Theorem 1.3 hold. Assume that ¢,, ¢, € HX(Q), and |p,llrzqy < mg’ for
some large constant C3 (mq is defined in (193)). The nonlinear operator N implicitly defined in (184) with
F = Fpy (see (27)) satisfies the following estimates:
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IN(¢y) - N(@llzay < Cm© (Il + Iyl )by — Bl (310)

where C; and G, are constants.

Proof. Let
h=-eA+ V- ¢y — Veur (311)

Let ug denote the landscape function solving hugp = 1 and Wy = 1/up its landscape potential. Let W(¢) =
[(h — ¢)'1]! be the landscape potential of h — ¢. Similar to the LSC case, by (27) and Theorem 6.8, we see
that

N@) - Jdp(fm(ﬁ(pz + W+ Ve = 10) — fio B + W) + Veus = 1)

(2178)3
+ Bfen(B(p? + Wo + Veur — P))dgW |p-09)-

Again we replace fyp, fin(x) by e, Denote by Wi = W(¢,) and W, = W(¢,). Similar to (309), it follows that
IN(¢y) — N(9py)| s mg€lePMWi-Wo) — e bW W) — B, W |5_o(p; — ). (13)

(312)

Direct computation shows that

W(¢) = o _1¢)_11 e ualzn;(—h‘lqb)ﬂuo) o
and
AW’ - W3 I'Ir, o)
Hence,

W(p) — Wo — dgW |p-0¢p = WE(h'$)’uo + higher order terms of h'¢p.

As mentioned earlier, let Viin = Vinin — Veur = O(8Y/%) (20). Since [|h @l < viind < 1 and 6 < v&, and
similar to the estimate of the nonlinearity in the LSC equation, one has

IW(@) — Wo — dgW ls-09ll, s mg“lld?le (316)

for some constant C > 0. Since ¢l < I¢;lz2q). Therefore,
lle Wi Wo) — e=BWao) — By W |g_o(y — p))II, < BPma (ol + llllee ) Ipy — byl (317)
Assumptions 1 and 2 allow the 82 to be absorbed into mgC. This implies equation (310). O
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Appendix
A Trace per volume and associated Schatten norm estimates

Let £ denote a Bravais lattice in R3 and Q its fundamental domain (e.g., the Wigner-Seitz cell). For I € R3,
let U; denote the translation operator

UHX) = flx = D. (A1)

An operator on I2(R3) is said to be translation invariant if A commutes with Uj for all I € R3, It is said to be
(L) periodic if A commutes with U; for alll € £.

Let Tr denote the usual trace on L?(R3). It is evident that no periodic or translation invariant operators
have a finite trace. Nonetheless, we consider trace per volume Q defined via

1
TrgA = ﬁTrXQA, (A2)

where ), is the indicator function of Q. If A is periodic, Trg is independent of translates of Q. Associated to
Trg is a family of periodic Schatten spaces GP(Q) given via

&7(Q) = {A € B(I*(R%)and (£) periodic : |Alls7q) < oo}, (A3)
where
JAIs g, = Tra(A AP /2. (A%)

The &P(Q) norm inherits most inequality estimates from the usual Schatten p-norm with the notable
exception that

[lAlls=@) < ClAls?@) (A5)

fails to hold for 1 < p < oo and for any C > 0.
Given an operator A4, its density denA is a measurable function on Q, if it exists, defined via the Riesz
representation theorem and the formula

Tl’fA = J-fdenA (A6)
R3

for any f € C2°(R3), where f on the left-hand side is regarded as a multiplication operator on L?(R3). When A
has an integral kernel A(x, y), that is,

(A)(x) = JA(x, vf(y)dy, (A7)
R)

then,
(deﬂA){X) = A(Xs X): (AS)

whenever A(x, x) is defined and unambiguous. We outline a few special cases, where denA is defined and
give its estimates below, which will be frequently used in the proof of the main results.

Lemma A.1. Let d =3 and% < p < 3. Suppose that A € GP(Q) and R be given by (113), then denAR and
denRA € LX(Q). Moreover,
e3a

denAR|;rq, ldenRA|;rqy <
I lzrys I lzr ) e

AllsPq), (A9)

Il
-~

1 1
where — + —
qg p
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Proof. We prove the case for RA only as the case for AR is similar. We use the LP(Q)-L9(Q) duality (where

1y é =1 for% < p, g < o). Let ¢ € LP(Q) and apply Holder’s inequality to

P
Tro[(@R)A] < I9Rllssq)lAlls @), (A10)

where Ty is the trace per volumne Q. Kato-Seiler-Simon inequality shows
e3/a
Tra[($pR)A] < C%II‘;MIL“’(G)IIA"GP(Q), (A11)

where Jz is the imaginary part of z. The proof is now completed by the LI(Q)-LP(Q) duality and the Riesz
representation theorem:

|Q[Tra(¢pRA) = Tr(¢$RA) = (¢, den(RA))q)- (Alg

B Existence of solution to the PL equation

We show that the LSC equation (see (28) and (29)) has a solution by minimizing its associated
energy functional. To this end, let n(p,x) be periodic in x and Py = IRadpq(p,x). Let s(x) =

—%(x log(x) + (1 — x)log(1 — x)). We define the entropy functional
s = | dpdrstucp, 0, aB)
R3x0
whenever the integral is convergent. Otherwise we set S(17) = co. Finally, we define
1
Frsc(n) = J dpdx(e?p? + W + Veuon(p, X) + 5((9,1 - x), (-8 (o, — rx) — BS(). (A14)
R3xQ
The associated space on which we perform our minimization is
D, = {q € MRy x Qy, 1+ pP)dpdx) : 0< <1, J. n= J-x, and p, €x+ H_I(Q)}, (A15)
R3xQ Q

where, using the notation V-1 = V(-A),
g -=1{f: Jf= 0 and VfelI2Q)!. (A16)
Q

We note that D, is not an affine space, but it is convex. Let

Lin = Jdpﬂ(P, x), (A17)

R3
L = den(p, x), (A18)

o

and define projections
1
P=—1I,,

TG (A19)

P=1-P. (A20)
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For simplicity, we will denote

LP[R3 x Q, (1 + p)*dpdx) = LP((1 + p)*dpdx) (A21)
interchangeably.
Theorem B.1. (LSC existence and uniqueness) Assume that Px € H. Then F1sc is convex and has a unique

minimizer n € Dy. If-A¢ = x — p,, then ¢ solves the PL equation (29) with F = Fysc (cf. (28)) with p induced by
the Lagrangian mulfiplier of the constraint.

Proof of Theorem B.1. We equip D, with the norm

Inlloe = 112, Olaspypan + 1Poyl-t)- (A22)

Note that D, is closed with respect to this norm.
Step 1: Euler-Lagrange equation. Let h(p,x) = e2p? + W + Vo The energy functional can be
rewritten as follows:

Fiscln) = LilaChn) + ZIV(Lin = 0By, = B LuLaso). (A23)
From this, the Euler-Lagrange equation subject to LiLyn = Lk is
hn + (=8)p, —x) = B's'(p) —pn = 0 (A24)
for a suitable u due to the constraint LjL,n = L’x. By solving for 1, we see that
1 = fin(B(h — (-A)(p, — x) — W) (A25)
By integrating equation (A25) with respect to p, we define
By = JdeFD(ﬁ(Ezpz + W Vour — @ — ). (A26)
R

Finally, set ¢p = (—,ﬂ)‘l(piI — k). We see that (¢, u) solves (29) with (28).
Step 2: Coercivity. Note that without the interaction term (Coulomb term), an unconstrained mini-
mizer to

J dpdx(%z—:zp2 + W+ th]q(p, x) — B1S(m) (A27)
RxQ
is
1 = feo(Bh). (A28)
This shows that
Fiscl) = SLala(hn) + IV (Lt = Oy ~ C, (A29)
2 Inlo, - C, (A30)

for [Inlp, large.
Step 3: Convergent subsequence. Since ¥ is coercive, we can find a minimizing sequence 1. Note
that since 0 < 17, < 1, we have that n? < n, for all1 < p < co. It follows that

"qﬂllgp((h—pz)dpd_x) < "qn[lf.l((1+p2)dp[ix) < 00. (A31)

In particular, 7, converges weakly to some n(p) for each 1 < p < co in LP(R? x Q, (1 + p?)dpdx). By testing
against compactly supported smooth functions, i.e.,
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(@, M) 2(sp?)dpd) — (@5 MIA+pP)dpdx)

for n — co, where @ is smooth compactly supported on R? x Q, which is in L? for any 1 < p < co, we see
that the n(p) = n(g) forany1 < p, g < co.
So we will denote by n the common limit. Moreover, note that for any measurable f on R3 x Q,

f
J NS = J (1+p2)dpdxrrn-w- (A32)

R0 R3x0
Taking f = 1 and noting that (1 + p2)! € L5((1 + p?)dpdx) for s > 5/2, we see that
I n=1lm | n,= _[K- (A33)
R3x0 R3x0 0

By the same reasoning with f € L%, it follows that the weak convergence can be achieved on LY(R3 x Q, dpdx).
Next, to see that 0 <p <1, let x >0 denote any compactly supported bounded function with
I{R3 x Q, dpdx) norm 1. Then

-1 J .
'[ = | iRX (A34)
R3x0

Since 0 < n, < 1, we see that

0< '[ nx <1. (A35)

R3xQ
It follows that 0 < < 1.
It remains to show that

IIPquIIH-I(m < co. (A36)

Let f € H(Q) with mean zero. Then
[ 1< Wl @+ w20+ p25o0ErsS o
R3xQ R’

By Hardy-Littlewood-Sobolev or Sobolev-Poincare and since 0 < 1 < 1, we see that

J- ﬁ] < [Ef"Hl(Q)"(l + pz)_SIGIILS(R{dp) [i(l +p2)5!6"qﬁfstti{fﬂ,dﬂ",{.ﬂs(ﬂ(},dp)' (A38)
R3x0
< Clifllg oyl + PPN o - (A39)

Since 0 < n < 1, we see that
[ 1< ety + S - B
R3x0
It follows by the Riesz representation theorem that
IPLinllgs < CHQL+ PN g < 00 (A41)

Finally, Hardy-Littlewood-Sobolev or Sobolev-Poincare shows any f € H 1{.Q) with mean zero is also in
L5(Q). For such an f,

a jpz) e L% + pY)dpdx). (A42)

Weak convergence of 1, to 1 in L¥/((1 + p?)dpdx) shows weak convergence of PLyy, to PLyn in H Q).
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In summary, 1, converges weakly to n in L? for 1 < p < co and PL, converges weakly in H_I(Q)

to PLyn.
Step 4: lower semi-continuity. By using (A23), we write
f[_sc(f]) = Lle(hq) - B_ILIIQS(II). (A43)
i s .
+=(PLE ) — 2Re(Lan, (A)'PR)) + IR ). (A44)

From this expression, it is evident that Fisc is convex in n. Hence, we may assume that 7, converges
strongly in LP for all 1 < p < co. In particular, we may assume point-wise convergence. By Fatou's
Lemma, the entropy term and all linear terms are lower semi-continuous. The Coulomb term ﬂPqullf_{_l(m
is lower semi-continuous since it is the composition of a norm and integral operators.

Step 5: conclusion. By Steps 2 and 3, we see that there is a minimizing sequence 1, converging weakly
to n € Dy. By Step 4, weak lower semi-continuity and convexity of F1sc shows that

Fisc(n) < liminf F1sc(n,). (A45)

Since 1, is a minimizing sequence, 1 is a the minimizer (uniqueness is due to convexity). Step 1 shows that
the associated (¢, p) of this minimizer solves (29) with (28). The proof of Theorem B.1 is now complete. [



