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Oscillations of BV measures on unbounded nested fractals

Patricia Alonso Ruiz and Fabrice Baudoin

Abstract. Motivated by recent developments in the theory of bounded variation functions on
unbounded nested fractals, this paper studies the exact asymptotics of functionals related to
the total variation measure associated with unions of n-cells. The oscillatory behavior observed
implies the non-uniqueness of BV measures in this setting.

1. Introduction

Functions of bounded variation (BV) and their bounded variation measures are tightly
connected to the geometry of the underlying space. Already in the 1920s, Caccioppoli
characterized the perimeter measure of Euclidean sets as the BV measure associated
with the corresponding indicator functions, cf. [6]. He observed that the perimeter of
any measurable £ C R coincides with the total variation norm of 1, i.e.,

ID1£|(RY) := sup { /E divg dx:¢ € C.(RY), [|¢]loo < 1} = Perimeter(E). (1)

This observation led to a general definition of sets with finite perimeter as being those
for which the left hand side of (1) is finite. Sets of finite perimeter are thus also referred
to as Caccioppoli sets.

The above characterization provided a natural way to extend the concept of (finite)
perimeter beyond the Euclidean setting that would consist in finding a suitable ana-
logue of div ¢. An especially successful approach was found in the concept of weak
upper gradients, developed in seminal works by Koskela [14] and Shanmugalin-
gam [22]. This theory has led to many developments in the understanding of the inter-
connection between analytic and geometric properties of a variety of metric measure
spaces admitting enough rectifiable curves. We refer the reader to [10] and references
therein.

Another successful approach to characterize the BV measure (1) in the context
of metric measure spaces, that bypasses the above mentioned rectifiability require-
ments, relies on early work due to Korevaar and Schoen [13]. In this case, | D1 ||(R9)
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is comparable to

r—>0t «/—

The latter expression, with the same scaling /7, extends to Riemannian manifolds
and more generally to Dirichlet spaces with Gaussian heat kernel estimates; see [,
2, 19]. When the heat kernel satisfies sub-Gaussian estimates, as the nested fractals

hmmf—/ / Lz (x) _dlE(y)l dy dx. (2)
R4 JB(x,r) r

(X, d, n) considered in the present paper do, general BV functions and their total
variation measures were introduced in [3, Section 4]. These measures are comparable
to

I"

b (X) = Timinf - / /B N r)wdu(y)du(x) 3)

where f € LY(X, u), dj, is the Hausdorff dimension and d,, is the so-called walk
dimension of the space. o is a suitable critical exponent that guarantees a finite
non-trivial liminf in (3) for sufficiently many functions. In the case of Gaussian heat
kernel estimates, this exponent is known to be oy = 1/2, cf. [2, Section 4.2], while
for unbounded nested fractals oy = dp,/dy; see Section 2.4 and [3, Section 4] for
details. Intuitively and loosely speaking, the parameter dj, — o1 dy, can be interpreted
as a minimal dimension of the measure theoretical boundary of open sets; see [3, Sec-
tion 2.4]. One advantage of (3) is that it allows to perform rather explicit computations
in specific examples, a feature that will be key in proving the non-uniqueness of BV
measures in Section 4.3 when f = 1g and £ C X is expressible as a finite union of
cells. To that end, the BV measure (3) will be expressed in terms of the functional

~ 1
Ryey= g [ 1@ = 0ldno) dnco. @

A third approach to characterize the perimeter measure in the context of nested
fractals and other Dirichlet spaces with sub-Gaussian heat kernel estimates makes use
of the intrinsic diffusion process associated with the underlying space. Defining the
functional

eraééum—ﬂMmmwmmwmw 5)

forany f € L(X, u), it was proved in [3, Theorem 4.2] that BV functions are char-
acterized as those integrable for which sup,. o r 19w M #(r) is finite, and for these it
holds that

1
limsup ——— T My(t) < llmsup—Mf(r) < llmmf—Mf(r)
t—>0+t -0t

1
< hm 1nf M £(2). (6)
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The first and third inequalities above follow from [3, Lemma 4.13], and the second
from [3, Theorem 4.9]. The heat semigroup based characterization of BV functions
combines ideas going back to de Giorgi [7] and Ledoux [17], which had been used to
prove the analogue result in the Riemannian manifold setting with &y = 1/2; see [20].
In fact, the exact characterization of the BV measures, or total variation of func-
tions, on a Riemannian manifold M through the heat semigroup has only been proved
recently in [1]. Namely, for any BV function f', both lim sup and liminf in (6) coin-

T
ZLH& z—ﬁd“f(fl (N

The present paper shows that nested fractals behave quite differently. In particular, we

cide and moreover

IDII(M) =

find unbounded nested fractals that present an oscillatory behavior of the BV measure
of certain indicator functions. This fact, recorded in Theorem 1.1, is therefore a refine-
ment of the estimates (6) when f is the indicator function of a finite union of cells
like those illustrated in Figure 1. Such functions were proved to be BV in [3, The-
orem 5.1]. For such a union of n-cells U = UlNzl K (i), one defines its boundary dU
to be the set of all vertex points that intersect its complement.

Figure 1. Unions of cells in the Vicsek set (left) and in the Sierpiriski gasket (right).

Theorem 1.1. Let (X, d, i) be unbounded nested fractals as described in Section 2,
with length scaling factor L, Hausdorff dimension dy and walk dimension d,. There
exist positive and bounded periodic functions ® and ¥ with period L=% and L™,
respectively, such that for any finite union of cells U C X,

. 1 ) 1 ~
tl_l)l’(I)1+ CD(— lnt)mMIU ([) = rg[(l;l+ \I-'(ll'li")rThMIU (r) = |8U| (8)

Here, |0U| equals the number of points in the boundary of U. In the case of the

unbounded Vicsek set or Sierpinski gasket, the function V is non-constant.

While this oscillatory behavior was expected in view of the on-diagonal oscil-
lations of the heat kernel at small scales in these settings (see, e.g., [9, 11]), the
non-uniqueness of the BV measure is less straightforward to obtain. In fact, we can
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presently prove the function W in (8) to be non-constant (see Section 4.3), thus set-
tling a question raised in [3, Remark 4.23]. However, the methods currently available
fail to show that property for the function @, which is also still open in the case of
other heat-kernel related functionals [9]. Besides, the nature of the functional My ()
seems to make the techniques that successfully led Kajino to prove on-diagonal oscil-
lations in [11] not applicable in this case. The question remains the subject of future
investigations.

Conjecture 1.2. The periodic function ® in (8) is non-constant.

Proving Conjecture 1.2 would illustrate further the stark contrast between the L!
theory and the L? theory on fractals since for any function f in the domain of the
Dirichlet form & associated with the heat kernel p; (x, y), one has the following exact
limit

0+ 2t / / | f(xX) = fFO)Ppe(x, y)du(x) du(y) = E(f. f).

The paper is organized as follows: Section 2 describes the unbounded nested fractals
considered as underlying spaces. Section 3 deals with the part of the proof of The-
orem 1.1 concerning the heat kernel functional :M;,,, while Section 4 provides the
proof corresponding to the Korevaar—Schoen functional M 1, - This last section also
contains specific examples and proves the fact that W is non-constant, which, in par-
ticular, implies the non-uniqueness of the BV measures.

2. Notations and set up

2.1. Compact nested fractals

To set the framework and notation throughout the paper, this section briefly recalls
the construction of planar simple nested fractals as introduced by Lindstrgm in [18];
see also [15]. For L > 1, an L-similitude is a map ¢ : R? — R such that

Y(x) = L"A(x) + b,

where A is a unitary linear map and b € R¢. The factor L™ is called the contraction
ratio of 1. Given a collection of L-similitudes {1; }l_1 in R9, there exists a unique
non-empty compact set K C R¢ such that

M
K =|Jvi(K) = ¥(K).

i=1
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Each map v; has a unique fixed point ¢; and we denote by V := {g; f‘i , the set of all
fixed points. A fixed point x € V is called an essential fixed point if there exist y € V
and i # j such that ¥;(x) = ¥;(y); we denote by VO the set of all essential fixed
points. For any n € N, we further write V® := w"(V(©) and

y ) = U v,
neN

Finally, we define the word spaces W, :={1,2,..., M }", foreachn > 1, and Wy, :=
{1,2,..., M}N . Each finite word w = (i1, ..., i,) € W, addresses the map ¥, :=
Yy, o--- oy, and the set Ay, := ¥y, (A) for any A C K. Deviating from the original
terminology in [18] to the currently more established one, K, will be called an n-cell
with set of vertices Vu()o).

Definition 2.1. Let (K, ¥1, ..., ¥ar) be as described above. The set K is called a

nested fractal if the following conditions are satisfied:
M VO =2
(2) Connectivity. For any i, j € Wy, there exists a sequence of 1-cells Vi(()o), e ,Viio)
such thatio = 7,1 = j and V. n V@ #£0,for1 <r <k;

(3) Symmetry. For any x,y € V| the reflection in the hyperplane given by
Hyy ={z € R% : |x — z| = |y — z|} maps n-cells to n-cells;

(4) Nesting. For any w,v € W, and w # v, Ky, N K, = Vu(,o) N Vv(o);

(5) Open set condition. There exists a non-empty bounded open set U such that
Yi(U),1 <i <M, are disjoint and ¥(U) C U.

In addition, we will require that any two n-cells intersect at most at one point, i.e.,

VO NyOeqo,1)

for any v, w € W}, and n € N. This property may possibly follow from the conditions
imposed for nested fractals and it is still an open question whether that is actually the
case; see [4, Remark 5.25].

The parameters L and M are called the length scaling factor and the mass scaling
factor of K, respectively. In particular, with respect to the Euclidean distance d(x, y),

d(Yrw(x), Y () = L™"d(x, y),

for any x,y € K and w € W, whereas the normalized Hausdorff measure &t on K
satisfies
wW(Ky) = p(Yp(K)) =M™ forallw € W,.
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The Hausdorff dimension of K is thus given by
_logM
"~ logL’

h

The two main examples in the present paper are the Vicsek set and the Sierpiriski
gasket illustrated in Figure 2.

Figure 2. The Vicsek set (left) and the Sierpinski gasket (right).

Example 2.2 (Sierpifiski gasket). Letq; =0,g> = land gz = e’ be three points in
R?2 = C regarded as the vertices of an equilateral triangle of side length one. Further,
define i (z) := %(Z —qi) + qi fori =1,2,3. The Sierpiriski gasket Ksg is the unique
non-empty compact set such that

3
Kso = | vi(Kso).

i=1

Its associated standard measure | is a normalized Hausdorff measure that satisfies

p(¥i, 00 ¥y, (Ksg)) = 37"

foriy, ... in € {1,2,3}. Thus, Ksg is a nested fractal with scaling factor Lsg = 2,
. . log 3 log 5
and mass scaling factor Msg = 3. In particular, dj, = % and d,, = 12§2'

Example 2.3 (Vicsek set). Let g1 = (0,0), g2 = (0,1), g3 = (1,0) and g4 = (1, 1)
be the corners of a unit square and let g5 = (1/2,1/2). For each 1 <i < 5 define the
map i (z) := %(z — ¢i) + qi- The Vicsek set Kys is the unique non-empty compact
set such that S
Kys = U Vi (Kvs).
i=1

Its associated standard measure [ is a normalized Hausdorff measure that satisfies

w(i, o0, (Kys)) = 5"

foreachiy,..., i, €{1,2,3,4,5}. Thus, the Vicsek set Kvs is a nested fractal with
scaling factor Lys = 3 and mass scaling factor Mys = 5. In particular, dy, = izig

log 15
and dy, = Tog3 -
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2.2. Unbounded nested fractals

An unbounded nested fractal arises as a blow-up of a compact nested fractal. We refer
to [5, 12, 15] and also [23] for different constructions. Without loss of generality, we
will assume from now on that y/; = L~ x and consider the unbounded nested fractal
K defined as

00
Koo . — U K
n=1

where K" = L"K. Its associated set of essential fixed points is defined analog-
ously as VO(OO) = U?:o Vy, where V,, = L"V©  and Vn(oo) = L"V® _The associated
standard Hausdorff measure, denoted by {*, satisfies uf (K ™) = M" and it is
dp-Ahlfors regular, i.e.,

crin < u(°°)(B(x,r)) < Crn 9)

for any x € K and r > 0.

2.3. Brownian motion and heat kernels

Brownian motion (X;);>0 on a simple planar nested fractal K and its associated
unbounded fractal K () was rigororusly constructed in [16, 18]; see also [8, 15].
This Brownian motion is a Hunt diffusion process whose associated heat semigroup
{PtK <°o)},20 admits a jointly continuous heat kernel with respect to the dj,-dimen-

() We denote this kernel by pk o) (x, y). It satisfies the

sional Hausdorff measure u
scaling property

(c0) (o0)
pE T (x.y) = MpK,,, (Lx. Ly) (10)

forany x,y € K () and ¢ > 0, as well as the sub-Gaussian estimates

d , dw l_
¢yr—dnldu exp(—c2< (x.y) )dJ 1)

t
(oo} _ d X, du} 1_
<pr (. y) S eyl CXP(—C‘*(%)W l) (11)

for every (x, y) € K{® x K(®) and t > 0, cf. [15, Theorems 5.2 and 5.5]. The
parameter dy > 0 is the dimension of the Brownian motion X; in the shortest path
metric, while the parameter d,, is the dimension of X; in the Euclidean metric. The
latter is usually called the walk dimension of K (°)

The estimates (11) were obtained under a particular assumption [15, Assump-
tion 2.2] on the underlying metric that is satisfied in the case of planar simple nested
fractals, cf. [12, Appendix]. Although in general d; # d,,, we will assume throughout
of the paper that d; = d,, since that is the case in the examples that are presented. The
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main results are likely true after possibly minor changes without the assumption d; =
dw, however the paper focuses on building the most immediate counterexamples,
leaving a generalization for possible future work.

The estimates (11) also provide the following bound on the exit time of balls
proved in [9, Lemma 2.3] which will be used in Lemma 3.2. Here and in the sequel,
we define tye ;= inf{r > 0: X, ¢ U} forany U C K{*,

Lemma 2.4. For any closed set U C K there exist ¢y, co > 0 such that

1
_(dx.USHAW \ Ty —1
Py(tye <t) <cye 62( ! ) "

(12)
forany x € U andt > 0.

In addition, Section 3 will deal with the process killed outside of a compact set
F C K whose associated Dirichlet heat kernel we denote by pF(x,y). For any
A C F and x € F, this kernel satisfies

Py(X, € A, < tpe) = / pF (e y)d™ (), (13)
A

and the scaling invariance property

p;ﬁw(F)(ww(x),l//w(y)) = anfndwt(x’ y) 14

forany x,y € F,and w € W,, n > 1, cf. [9, Theorem 3.2 (ii)].

2.4. Korevaar—-Schoen-Sobolev and BV spaces on fractals

The BV measures investigated in the present paper were introduced in [3] to study
the case p = 1 of the heat semigroup based Besov spaces B?%(K (*°)) defined below.
These spaces also admit a Korevaar—Schoen—Sobolev characterization, cf. Theo-
rem 2.7, which will be key to prove in Section 4.3 the non-trivial oscillations of the
BV measures on the Vicsek set and the Sierpiniski gasket.

Definition 2.5 (Heat semigroup Besov classes). For any p > 1 and « > 0, define the
heat semigroup Besov seminorm

I/

— (c0) 1/p
pai=sipr ([ Tyl - f0)P D w0du )
t>0 Koo} J K (o)
and the heat semigroup based Besov class

B (K = {f e LP(K*, ul>y: || f

lpa < oo}.

It was proved in [21, Proposition 4.14] that (B?%(K () || -
is a complete Banach space.

o T llLrxw)
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Definition 2.6 (BV class). Forany r > O and f € LY(K {0 f0)) et

o= | £0) = SO ™ () din ™ ().
Feh JKg(oo) JB(x,r)nK (o)
The BV class is defined as

PR = 1 LK) - g )< o)

r—0t

In the framework of unbounded nested fractals, the space BV (K {e0)) is known to
contain linear combinations of indicator functions of n-cells (see [3, Theorem 5.1]),
and is therefore dense in L' (K{*?, 14(°°)). The main motivation for the present work
is the close relation between the BV class BV(K ‘) and the Besov classes defined
above. Introducing the functional

(o0)
s = [ [ 1@ = f0IE T ) au® @ dn =), as)
for f € LY(K {00) ;L("O)), an immediate consequence of [3, Theorem 4.24] is the

following characterization of BV.

Theorem 2.7 (Heat semigroup characterization of BV functions). For an unbounded
nested fractal K {00) yyith Hausdorff dimension dy, and walk dimension d,,

B V(K(oo)) — BL:4n/dw (K(OO))

with equivalent norms. More precisely, there exist constants c1, cp > 0 such that for
every f € BV(K®)),

c1supt dh/d“’Mf(t) < sup—Mf(r) <c3 hmlnft dh/d“’M (1).
>0

2.5. A renewal lemma

One of the main ingredients in the proof of Theorem 3.1 and Theorem 4.1 is the
following renewal lemma adapted from [9, Lemma 3.5]. Here and throughout the
paper, given any two functions f, g: (0, +00) — R, we will write

J@) ~g)

if there exist constants c1, ¢ > 0 such that for every ¢ € (0, 1],

1

1f(6) — g(1)] < cre—e2t 7 (16)
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Lemma 2.8 (Renewal lemma [9]). Let o, f > 0 with a > 1, § < 1 and suppose
f:(0,400) — (0, +00) is a continuous bounded function such that

S @) = af(Be).
Then, there exists a periodic function 6 with period B such that, ast — 0T,
f(t) =70 0(—In1) + o(t1F).

Proof. Let g(t) = e f(e™"), where y = —11;1—%‘ so that

f(&) =t"g(=1In1).

For ¢t € (0, 1], by definition of the relation 2~ in (16), we have

1
|tYg(—1Int) —aB¥tYg(—Int —InB)| < cie™ ! dw—1

and therefore
1
|tyg(_ lnt) _aﬁytyg(— Int — ll’lﬁ)l < Cle—CQt dw—1 ’

which implies

1
—cat dw—1

lg(—=Int) — g(—Int —InB)| < c1t Ve
Thus, for¢t > 1,
lg(=Int) —g(—=Int —InB)| < cot7?,

and hence
g(t) — g(t —InB)| < cre2M!

for some constants ¢y, ¢, > 0 and ¢ € R. Setting

+o00
0(t):= Y (gt —kInp)—g(t —(k +1)Inp)),
k=—00
the lemma follows. ]

3. Heat semigroup functional

The aim of this section is to prove the first part of the main result, Theorem 1.1, which
involves the heat semigroup functional M (¢) from (15).
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Theorem 3.1. Let K be an unbounded nested fractal as in Section 2 with Haus-
dorff dimension dy, and walk dimension dy . There exists a bounded periodic function
@ : (0, +00) — [a, b] with period L% and 0 < a < b such that, for any finite union
of n-cells U C K(OO),

hm O(—Int)————

t—0+

1
nran M (0 = [0V, (17)

where |0U | denotes the number of points in the boundary of U.

The proof of Theorem 3.1 follows a strategy developed by Hambly in [9] and is
divided into several lemmas presented in the next subsection.

3.1. Preliminary lemmas

To show Theorem 3.1, we introduce the auxiliary functional
(o0)
Man@yi= [ [ pF™ ot ) au o) (18)

for any two compact A, B C K () andr > 0. As a consequence of Lemma 4.5, the
asymptotic behavior of the functional My g (¢) will mainly depend on the behavior of
the heat kernel near A U B. In the sequel, the r-neighborhood of any A C K {°°) will
be denoted by

Ay = {x e K d(x, 4) < r}.

Lemma 3.2. For any compact sets A, B C K and r > 0,
AUB),
Man@ = [ [ P ) il () au) o).

Proof. By definition of Dirichlet kernel, cf. (13),

[ [ PP ) = ) a0 = [ Bt @ B < vaum 0 dn ) ).
Moreover,

Py(X; € B) = Px(X; € B,t < t(auB),)c) + Px(X: € B, 1 > 1((4UB),)c):
hence

[Px(X; € B) = Px(X; € Bt < tauB))c)| < Px(t > t(auB),)c)

1
o (dx.(AUB) AW N Ty —1
< creeel ‘ )
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where the last inequality follows from Lemma 2.4. Since d(x, ((A U B),;)¢) > r for
any x € A, we obtain

- (rdw)ﬁ
Py (t > tauB),)c) < cre” 2\ T ,

which yields

1
rdw ) dyw—1

< cl,u(oo)(A)e_CZ(T n

The next step consists in proving a scaling and a localization property of the func-
tional My p(¢) that will allow us to compare its behavior across different levels. In
particular, when the sets A, B are well separated, the associated functional M4 p(?)
becomes asymptotically negligible.

Lemma 3.3 (Scaling lemma). For any w € Wy, n > 1, and compact sets A, B C
K (o),
CMA,B(I) ~ Man/,w(A),v,w(B)(L_ndwl). (19)

Proof. From Lemma 3.2 and the scaling property of the heat kernel (14),

My (4), 9 (B) (1)

s [ [ OO (1) ) ) du ) )
w(4) JYw(B)
= [A /B P A gy (). g () dp ™ () A (o)
b2 [ [ PP g 0. (0) e 0) ) )
— AUB);—n,
~ M ”/A/Bpintisz (x. ) du® (y) dp '™ (x)
— (co)
= [ [ B ) a3 aun
~ M " My g(L"v7). n

Lemma 3.4 (Localization lemma). Let A, B C K{®) pe compact and let AcC 4,
B C B be such that d(A, B\ B) >0, d(A\ A, B\ B) > 0 and d(A\ 4, B) > 0.
Then,

MA,B(I) i MA“’E(I).

In particular, if d(A, B) > 0,
My,p(t) >~ 0.
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Proof. Decomposing A x B accordingly,

Map(t) = fA fB K () dit® () dp (x)
- f 7 / pK (x, ) dp'® (y) dpn'* (x)
AJB
+// K (6, 3) dpt () dpt (x)
AJB\B
4 / ) / K () dp () dp ()
A\A JB\B

(o)
4 / ) /~p,’< () di™ () dp™ ().
ANAJB

The result now follows by observing that the upper heat kernel estimate (11) implies

d(Uy, Up)®w )dwl—l)

PzK(w (x,y) < cqt~9nldw CXP(—02< ;
for any sets Uy, U C K(®) and x € Uy and y € Us. [

Remark 3.5. The results presented in this section actually hold in a much larger class
of fractals than that of unbounded nested ones, including infinitely ramified fractals.
Proceeding further will however require to restrict ourselves to the framework of
unbounded nested fractals.

3.2. Proof of Theorem 3.1

We will now combine the results in the previous sections to prove Theorem 3.1. When
doing so, it becomes necessary to stay in the framework of nested fractals as defined
in Definition 2.1. In particular, the assumption

|Kw N Ky| €10, 1} (20)
for any n-cells K,,, K, and n > 1 will play an important role.

Lemma 3.6. Let w,v € Wy, w # v. There exists a periodic function 8, ,,: (0, +00) —
R with period L=% such that

ap ap
Mk, K, (1) = [Ky N Ky|tdw 0,y (—Int) +0(tdw) (21)
ast — 0.

Proof. Assume first Ky, N K, = {¢}. Consider the similitude v with fixed point ¢
and contraction factor L~!. The localization property in Lemma 3.4 implies

MK .k, (1) = My(k,),w(K,) ().
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Moreover, due to the scaling in property in Lemma 3.3, we also have
M\p(Kw),‘l’(Kv) (t) =~ MMKuhKU (L_dw t)

Therefore,
Mg, k, (1) ~ MMg,, k,(L™91)

and the renewal Lemma 2.8 yields (21). If Ky N K, = @, then d(K,, Ky) > 0, so
Mk, k,(t) = 0 and the result follows as well. [

Finally we show that the periodic function is independent of the n-cells con-
sidered.

Lemma 3.7. There exists a periodic function 0: (0, 00) — R with period L~% such
that for any pair of intersecting n-cells K,, K,

lim [Oy4(s) —6(s)] = 0.
§—>+00
Proof. Indeed, one has first
Mk, (1) = / /K P ) dpl (p) dpt ().
By scaling invariance and symmetry,

/ / KUK () dp) (3) ™ ()
Ky JKy

KUK
:/ / pr TR, ) A () dpt™ (x),
K JK>
where Ki, K, are two l-cells that intersect at one point. Thus, Mk, k,(t) =~
Mk, K, (t) and Lemma 3.6 implies the assertion with 6 := 6 5. [ ]

Proof of Theorem 3.1. Recall that K {o) satisfies (20), e.g., it is an unbounded nested
fractal like those based on the Sierpinski gasket or the Vicsek set. Let U = | J;¢; Ku;
be a finite (connected) union of n-cells. Then,

(00) oS o0
/ / () — oK™ (e ) dil™ () dp™ ()
K(oo) J K (o)
= 2/ / pK (e, y) dt®™ () d ™) (7)
U JU¢

:22/

el Y Kw;

:22/

iel Y Kuw;

/U pf ) (x, y) dp'® (x)d > ()

(c0) 00 9]
[ pE ) du® @),
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where
Ky = {Ky.w e Wy,: Ky CK*®\U, d(Ky. Ky,;) = 0}

denotes the set of n-cells in K (°°)\U that intersect K, at one point. Figure 3 shows
an example in the Sierpifiski gasket.

Ky

Figure 3. The set U is drawn in red. The two blue cells correspond to K.
Noting that }; |[Ky, | = [dU], by virtue of Lemmas 3.6 and 3.7, there exists a
periodic function 6 = 26 , such that
dp dp
My, (1) =|0U|tdw O(—1Int) + o(t dw )
Finally, since 1y € BV(K (), it follows from Theorem 2.7 that

dp
imi T dw
llin)l(l;lft My, () >0

and 4
limsupt™ dw My, (t) < +00;
t—0
hence 6 is bounded from below and above and the conclusion follows. [

4. Korevaar—-Schoen functional

The aim of this section is to show the part of the main result, Theorem 1.1, concerning
the Korevaar—Schoen-type functional

gy, 1 00 00
Ry ey= g [ o 100 = £ 0 ),

for f € BV(X). The functional M #(r) may be regarded as the metric-measure theor-
etic version of M ¢; note that the factor r—dn

property.

is necessary to obtain the correct scaling
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Theorem 4.1. Ler K¢ be an unbounded nested fractal There exists a bounded
periodic function W : (0, 00) — [c, d] with period L' and 0 < ¢ < d such that, for
any finite union of n-cells U C K (),

hmmf—lIJ( lnr)MIU(r) [0U|, (22)
rd

r—0t
where |0U | is the number of points in the boundary of U.

Remark 4.2. We stress that the function W is independent of the set U ; see Lemma 4.6.

To show Theorem 4.1, we will make use of the auxiliary functional

Fan)= o [ [ dnydneo = g [ w =m0 By an .

(23)
where A, B ¢ K and r > 0.

4.1. Scaling and localization

We start by obtaining the analogue of the scaling Lemma 3.3; note that the walk
dimension d,, is not visible yet.

Lemma 4.3. For any w € W,,, n > 1, and compact sets A, B C K f{o0),
Ma,g(r) = M" My, (4),y,B)(L7"T). 24
The same holds when Vry, is replaced by an invariant rotation of itself .

Proof. With the change of variables x = v, () and since M = L% we have
Mgy () 4 (B) (1) =~ / / dp> (y) dp'> (x)
r ¥ (A) Jyw(B)NB(x,r)
=N M=) (3) dp ) 2)
r w(B)NB(Yry (2),7)
= '™ (y) d'™)(2)
rdH f /w(BﬂB(z L"r))
=M f [ a®e)an¥e)
r BNB(z,L"r)

dH OO OO
) 4l () dp' 2)
A JBNB(z,L"r)

= M_";V(A,B(rL"). [

= M"’

We now move on to proving the analogue of the localization Lemma 3.4.
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Lemma 4.4 (Localization lemma). Let A, B C K{®) be compact and suppose A C A,
B C B are such that d(A, B\ B) > ro, d(A\ A, B\ B) > roand d(A\ A, B) > rg
for some ro > 0. Then,
Ma,p(r) = Mz 5(r)
holds for any 0 < r < rg. In particular, if A, B satisfy d(A, B) > ro > 0, then
Map(r) =0 (25)

forany 0 <r <ry.

Proof. Let0 < r < rg. Splitting the double integral,

Mas(r) = / [B e ) o

d d X

rd” / /B\B)ﬂB(x r) ,u (y) ,u ( )
dp® (y) dp '™ (x)

rd” /A\A /BmB(x " w0 dp

=) a2 () dp (x)
r A\A J(B\B)NB(x,r)

and the last three terms vanish because d(A4, B \ B) > ro implies that B(x, r) N
(B \ B) = 0 forany x € A, whereas d(A \ A, B) > ro implies B(x,r) N B = @ for
any x € A\ A. ]

4.2. Finitely ramified nested fractals

This section again concentrates on the case of unbounded nested fractals like the
unbounded Sierpinski gasket, where any two n-cells Ky,, K, intersect at most at one
point, i.e.,

|Kyw N Kyl €{0,1}. (26)

It is now that the walk dimension appears when we take into account that the critical
exponent is o1 = %, cf. [3, Theorem 5.1].

Lemma 4.5. For any n € N and v, w € W, there exists a periodic function 6y y,:
(0, 00) — R such that

My, x, () = r*1 96, o (—Inr) + o(r?H)

asr — 0T,
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Proof. Assume first K, N K, = {q}. Let ¥ denote the similitude having ¢ as fixed
point. Choosing 0 < r < L™!, we have that the sets K,, ¥ (K,) and Ky, ¥ (Ky)
satisfy the conditions of Lemma 4.4 with A = K, A= ¥(Ky), B = Ky and B =
¥ (Ky). Together with the scaling Lemma 4.3, this implies

My K0y (1) = My (k)0 (k) (1) = M7 Mk, &, (rL).

In the case that K, N Ky, = @, the cells are separated at least by a factor Lt
whence (25) implies Mg, k,, () = 0. Applying the renewal Lemma 2.8 yields

_logM M log M

MKU,Kw(r)_r LT 6 (— lnr)+0( logL—l)

g M
:rmev,w(—lnr)—}—o(rm)
—r"9vw( lnr)+0(rdh)—r dw@,,w( lnr)—i—o(rd") ]

As in the case treated in Section 3, a consequence of the translation and rotation
invariance of the functional Mg, k,, (r) is that the periodic function appearing in
Lemma 4.5 is independent of the pair of cells K5, Ky,.

Lemma 4.6. There exists a periodic function 0: (0, c0) — R with period L™ such
that for any n € N and any pair of intersecting cells K, Ky, C K with v, w e W,

lgn_l,gf [Ov,w(s) —0(s)] =

Proof. Let Ky, K; C K(®) be two 1-cells that intersect at one point. Note that
K> N B(x,r) is empty for any x € K; with 0 < r < L™" and thus translation and
rotation invariance imply

My K (1) = du(y) du(x)
rdh Ky JKwnB(x,r)

. [ / dp(y) dp(x) = Mg, .x,(r)
r K| JK>NB(x,r)

for r > 0 sufficiently small. By virtue of Lemma 4.5, there exist periodic functions
0y.w(s) and 61 2 (s) such that

lim inf (0,1 (s) — 01,2(s)) = lim il}rfGD,w(— Inr) — 61 (—Inr))
§—>00 r—0

= lim il‘lf(r_dhdf;{KU,Kw (r) — r_th’ZKsz(r)) =0

r—0

which gives the assertion with 6 := 0 5. [ ]
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Proof of Theorem 4.1. Write U = I, Ky, N > 0, where K, C K{*) are n-cells.
As in Theorem 3.1, define, foreachi = 1,..., N, the index set

Ju; ={j =1....N: Ky, C KN\ U, d(Ky,. Ky;) = 0}

and note that d(Ky,, Ky;) = 0 is equivalent to d(Ky,, Ky,;) < r forany 0 <r <
diam K, /2. Thus, for each such r, we obtain

M, (1) = “ i o] i MO0 = T () )

- rdn / /1;(;; rnu¢ ) o

[ dueydee
r ¢ JB(x,r)NU

N
- dp(y) dpa(x)
reh JKyi JB(x,)nU€

N
27 [ ] dp(y) dia(x)
i—1 U< JB(x,r)NKy;

1
>l | dp(y) dpa(x)
7 r Ky B(x,r)ﬂij

Y . ook, OV

i=1jely;

N
= Z Z (‘MKw,»,ij (r) + Mk, Ky, (r)).

i=1jety;

By symmetry, Lemmas 4.5 and 4.6 imply that, as r — 07, the latter sum equals
N
23 | Ju | (1 0y 2 (= Inr) + 0(r¥)) = 2|0U |(r~*1 %% 60y o(—In7) + 0(r?h)):

hence (22) holds with W(z) = (260; 2(z))~".
To justify that the liminf is non-zero we invoke the definition of variation intro-
duced in [3, Section 4.2] that is given by

Var(f) = 11m mf

Mf(r)
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where o1 > 0 is the critical exponent. From [3, Theorem 5.1], it follows that a1 dy, =
dy, for p.c.f. fractals, which, together with [3, Theorem 4.9], yields

. I ~
lim inf ThMlU (r) = Var(ly) > Cl1yll1,a,/dy -

r—o0+t r
Since 1y is a non-constant function, the seminorm above is non-zero and hence (22)
is also non-zero as long as W is non-zero. ]

4.3. Non-existence of the limit

The geometric nature of the functional M 4, defined in (23) makes it possible to
prove the non-trivial oscillations of the function W in (22). In this section we continue
working with p.c.f. nested fractals and provide explicit details for the case of the
Sierpiniski gasket and the Vicsek set.

First, note that the proof of Theorem 4.1 indicates that it suffices to study the
(non)convergence of M K,.K, (r) for any pair of n-cells that meet at a point p € V™,
Because the latter functional can be written as

~ 1
Mk, (1) = =i @ u({((x, ) € Ku x Ky:d(x,y) < 7}), 27

the main idea consists in approximating that quantity for different sequences {r,; }m>1
with r,, — 0% as m — co. The choice of the sequences in the following lemma is
based in the observation illustrated in Figure 4.

L &
. o

Figure 4. Intersections of n-cells with balls of radius r,, (left) and r}, (right) in the Sierpifiski

gasket (above) and the Vicsek set (below).
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On the one hand, if p € V™ is the vertex of an n-cell Ky, and r,, := (diam K)L ™",
B(p,r)N Ky = Ky, forallr > ry, (28)

while
B(p,r)N Ky Ky forallr <ry,. (29)

On the other hand, a ball B(p, r’) with radius
r' > r) = (diam K)L™" + (diam K)L ™!

will also cover those (n + 1)-cells in the (n — 1)-cell that contained K, but did not
belong to K, itself. That is,

B(p,r)N Ky = Ky UK, forallr >r,, (30)
where
K} = U Kz, (31)
weW,+1
Kﬁ;ﬂKﬁﬁé@
and
B(p,r)N Ky, C Ky UK, forallr <r,,. 32)

Finally, notice that the number of (n + 1)-cells in K is independent of the cell and
the level. Using the previous notation, the non-existence of the limit (22) follows from
the next lemma.

Lemma 4.7. Let (K, Ky) denote a pair of n-cells with K, N K, = {p} and let
R:=#{i e W, i #1,K; N K # 0}. (33)
For any m > n large enough,
p®u({(x,y) € Kux Ky:d(x,y) < rm})

_famm for rp, = (diam K)L™™, 34
~2MT (A + RMTY) for = (diam K)L77(1 4 L7Y),

Proof. Let p € V,; \ V,—_1 be the vertex where the pair of n-cells (K,,, K) intersect.
By construction (see also Figure 4), for m > n sufficiently large, we have

Kyu U Kyy U{p} forr, = (diam K)L™™,

K:, UKY U{p} forry = (diam K)L™™(1 + L™1),
(35)

(Ku UKy) N B(p.rm) = {
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where w € W,,,—,+1 and Ky, Ky, denote the (m + 1)-cells that intersect at p, and
K. K*  their corresponding (outer) L™+ _neighborhoods.

wu’
On the one hand, the pairs of cells (K, Kyy) only intersect at one point, hence

ne M({(X’Y) € Kyu X Kyy:d(x,y) < L_m})
= //«((Kwu U va) N B(p, L_m))
= u(Kyu U Kyy) = 2u(Kyu) =2M7™.

On the other hand,
ne ,U/({(x’ y) € Kyu X va:d(xvy) < L—m(l + L_l)})
= u((Kp, UKL, NB(p, L7"(1+ L))
= p(Kyy U Kyy) = 20(Ky,) = 2M7" (1 + RM ™). .

Since M = L% in view of (27) and Lemma 4.7, we can compute explicitly the
two limits and confirm that they are different.

Corollary 4.8. For any pair of n-cells (K, Ky) in a p.c.f. nested fractal,

L~ 2 for ry, = (diam K)™™,
lim Mk, k,(rm) = . " _ _ . (9
m—>00 21 +2M~") forry = (diam K)L™™(1 + L7).

Consequently, the limit (22) does not exist.

In particular, we have R = 2 in the Sierpinski gasket and R = 1 in the Vicsek set.
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