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Abstract—Objective: Semi-active exoskeletons combin-
ing lightweight, low powered actuators and passive-elastic
elements are a promising approach to portable robotic as-
sistance during locomotion. Here, we introduce a novel
semi-active hip exoskeleton concept and evaluate human
walking performance across a range of parameters using
a tethered robotic testbed. Methods: We emulated semi-
active hip exoskeleton (exo) assistance by applying a vir-
tual torsional spring with a fixed rotational stiffness and
an equilibrium angle established in terminal swing phase
(i.e., via pre-tension into stance). We performed a 2-D
sweep of spring stiffness x equilibrium position param-
eters (30 combinations) across walking speed (1.0, 1.3,
and 1.6 m/s) and measured metabolic rate to identify de-
vice parameters for optimal metabolic benefit. Results: At
each speed, optimal exoskeleton spring settings provided a
~10% metabolic benefit compared to zero-impedance (ZI).
Higher walking speeds required higher exoskeleton stiff-
ness and lower equilibrium angle for maximal metabolic
benefit. Optimal parameters tuned to each individual (user-
dependent) provided significantly larger metabolic benefit
than the average-best settings (user-independent) at all
speeds except the fastest (p = 0.021, p = 0.001, and p =
0.098 at 1.0, 1.3, and 1.6 m/s, respectively). We found signif-
icant correlation between changes in user’s muscle activity
and changes in metabolic rate due to exoskeleton assis-
tance, especially for muscles crossing the hip joint. Conclu-
sion: A semi-active hip exoskeleton with spring-parameters
personalized to each user could provide metabolic benefit
across functional walking speeds. Minimizing muscle ac-
tivity local to the exoskeleton is a promising approach for
tuning assistance on-line on a user-dependent basis.
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|. INTRODUCTION

XOSKELETONS have been increasingly successful at
providing enhanced walking performance by reducing the
metabolic rate of the user [1]. Exoskeletons (exos) showing the
largest metabolic benefits typically use control systems opti-
mized to generate assistive torques at a target joint (e.g., ankle
or hip) with timing and magnitude set specifically for a fixed gait
(e.g., walk or run) and locomotor demand (e.g., speed or grade)
on a treadmill [2]-[7]. These studies have provided a valuable
foundation upon which the field is poised to expand. Indeed,
a grand challenge remains to develop exos that can provide
assistance outside the laboratory across the full functional range
of locomotion modes (i.e., gaits, speeds, grades, stairs, unstruc-
tured terrain, etc.) used in everyday life. Toward this end, more
research is needed to uncover strategies that are versatile enough
to provide useful assistance across a broad range of locomotion
behaviors in a form-factor that is streamlined and easy to use
and maintain. Our goal here was to build on recent studies that
have started to examine how exo assistance should change with
gait [6], across speed [8], and according to the target joint for
assistance [9]. Comprehensively examining users’ physiological
response to single-joint exo assistance strategies across walking
speed is an important first step.

Taking clues from basic neuromechanics and energetics stud-
ies that address the joint-level mechanisms humans use to adapt
locomotion behavior in response to changing demands could
help guide versatile exoskeleton assistance strategies [10], [11].
For example, above self-selected walking speeds (>~1.3 m/s),
there are stereotypical changes in lower-limb joint mechanics
that accompany higher metabolic rate and metabolic cost of
transport [10], [12]. As walking speed increases, both positive
and negative mechanical work done on the center of mass
increase in proportion to net metabolic rate [13]. To effectively
handle the increased demand for mechanical work, humans
increase muscle power output at all lower-limb joints, with hip
(>40%) outpacing ankle (<40%) at the fastest speeds [10],
[12], [14]. Observing which joints inject positive work into the
gait cycle could provide guidance regarding where to place exo
motors and when to activate them. Joint-level biomechanics
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can also be characterized by the relationship between the net
muscle-tendon moment and the joint angle during steady-state
movement, the quasi-stiffness. In fact, the quasi-stiffness of the
lower-limb joints is modulated with speed. Throughout stance
phase, quasi-stiffness increases with speed at all joints with
the exception of the knee during weight acceptance [15]-[17].
The quasi-stiffness could provide guidance regarding stiffness
and engagement timing of exo springs to provide unpowered
elastic torque assistance. More studies are needed to understand
whether and how exo assistance strategies should change in ac-
cordance with changing mechanical properties of the lower-limb
joints across walking speed.

Given the goal to provide metabolic benefit across walking
speeds, the hip joint emerges as a desirable target for exo
assistance. Indeed, as previously mentioned, the hip muscle-
tendons are major positive power generators during walking
and become increasingly important at the fastest speeds [14].
It is also worth noting that the hip emerges as an even clearer
power source uphill [11] and during accelerations [18], [19].
Further, simulation studies have predicted hip musculature may
consume more energy during walking than muscles at the ankle
[20]. This could be in part, due to morphological differences in
ankle vs. hip muscle-tendons that make efficiency of positive
work lower at the hip [21]. Focusing exo assistance on the least
efficient lower-limb joint could yield more ‘bang-for-buck’ in
terms of metabolic energy savings of the user. In addition to the
physiological basis for focusing on the hip, it is also important
to consider that the metabolic penalty due to added load of
an exo placed at the hip would be small compared to other
joints. Carrying added mass close to the body center or mass
is relatively cheap compared to carrying it distally on the legs
[22].

Despite the inability to generate positive mechanical power,
passive devices have successfully enhanced walking perfor-
mance at the hip, with modest metabolic benefits around 3%
[23]-[25]. Success is mainly due to the lightweight nature of
passive exos and tuning the elastic properties of the system (i.e.,
stiffness and equilibrium point) to generate useful assistance
torque patterns that help the hip flex the leg into swing. A down-
side of the passive approach is that static mechanical properties
of springs and dampers are static and may not be appropriate
for all locomotion modes. To increase passive assistance adapt-
ability, electromechanical clutches have been implemented in
knee exoskeletons to modulate passive element properties and
engagement but did not allow positive power generation. [26],
[27]. Powered devices are bulky, require an energy source and
may be harder to maintain, but can modulate torque assistance
patterns on-line. In addition, powered exo assistance at the hip
shows clear (and much larger) benefit, especially when timed to
deliver torque during the early stance extension phase of walking
[4], [28]-[30].

Hybrid designs that combine elements of both passive and
active systems could allow adaptive torque assistance with lower
actuator mass. For example, semi-active systems containing both
motors and elastic elements could inject mechanical power in
one gait phase and provide torque to support bodyweight in
another, switching modes through a clutch-able transmission.
Or perhaps low-power output motors could be used to merely

switch the mechanical properties of elastic elements rather than
directly drive motion of the user. We contend that semi-active
solutions could enable high performance of active systems with
simplicity of passive systems.

A semi-active approach that combines passive and active
elements has been applied to wearable devices, but mostly
in prostheses. In one type of semi-active system, the passive
components provide the assistance to the user while the active
components are used to alter the mechanical properties or state of
the passive components. Indeed, semi-active foot-ankle prosthe-
ses can modulate stiffness step by step to emulate physiological
torques across modes like speeds, inclines, and stairs [31]-[34].
To our knowledge, semi-active lower-limb exo applications have
not yet been realized, although there are creative actuator designs
[35]-[38] and exciting theoretical concepts for how they might
function [11], [39]. To explore these concepts, impedance con-
trol (torque based on virtual passive mechanical elements) can
be implemented to mimic passive and semi-active devices to
maximize performance, as seen with an ankle-foot prosthesis
emulator [40]. Nevertheless, research addressing if/how the
optimal passive properties (i.c., torque profile) of semi-active
exo systems should change across modes and/or where active
elements can best contribute is missing. Before spending time
and effort building semi-active systems, lab-based emulator
systems could be a useful tool to explore the utility and lay
groundwork for semi-active exoskeletons.

Here, we employ a tethered exo emulator to apply hip torque
to human users and examine whether the metabolic benefit of
a virtual hip spring (i.e., a simple impedance) depends on its
passive mechanical properties across walking speed. In short,
we examined changes in users’ metabolic rate across a wide
range of stiffness and equilibrium angle of a virtual hip torsion
spring [30 sets = 5 stiffness values (k) by 6 equilibrium angles
(o) at each of three walking speeds (1.0, 1.3, and 1.6 m/s). We
hypothesized that: (i) optimal ‘semi-active’ assistance would
provide a metabolic benefit at each speed; but (ii) the optimal
assistance parameters would mirror changes in physiological
moment-angle behavior (i.e., quasi-stiffness [15]) with increas-
ing speed. That is, with increasing walking speed we expected an
increase in optimal hip exo spring stiffness (k) and a decrease in
optimal hip exo spring equilibrium angle (6p) (i.c., biased closer
to peak hip extension).

Il. METHODS

A. Impedance Controller

To evaluate human locomotion performance with a semi-
active hip exoskeleton (exo), we emulated the function of motor-
spring-clutch system using a tethered, cable-driven bilateral hip
exoskeleton [41] (Human Motion Technologies, Pittsburgh, PA)
while participants walked on an instrumented split-belt treadmill
(Bertec, Inc.) (Fig. 1(a)) with assistive torque generated by
a simple impedance controller (i.e., virtual torsional spring)
(Fig. 1(b), top schematic). During assistance to the user (STATE
1, light gray), virtual Clutch 1 engaged the spring to the user
and exo torques emulated a passive spring as a function of hip
angle, Ohip, according to a preset passive spring stiffness, £, and

equilibrium angle, 6 according to (1) below (Fig. 1(b), bottom
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Fig. 1. Emulator-based evaluation of semi-active hip exoskeleton concept. (a) We used a tethered, cable-driven hip exoskeleton to apply both
extension and flexion assistance torque for each leg. Four offboard motors pulled on Bowden cables to apply flexion and extension to each leg.
(b) The applied torque profile was based on the concept of a semi-active device comprised of a motor, spring, and transmission with a two-state
clutch mechanism. In State 1 (light gray), exoskeleton (exo) torque is transferred to the user according to a simple impedance (i.e., a virtual torsional
spring) with a pre-set equilibrium angle () and stiffness (k) (1). In this state, exo stiffness, k, modulated the magnitude of both flexion and extension
torque assistance. Equilibrium angle, 8o, was calculated as a percentage of a 5-step average peak-to-peak (P2P) hip angle with peak extension =
0% and peak flexion = 100%. 8o modulated the timing of flexion torque onset/offset (smaller 8, = later flexion torque onset), as well as the relative
magnitude of extension vs flexion torque (smaller 6, = larger extension torque bias at ground contact). In State 2 (dark gray), zero-impedance (ZI;
no torque assisting or resisting the user) mode was engaged, starting when the hip angle flexed passed 8, (~70% gait cycle) and ending with peak
hip flexion. Simultaneously, a motor loading action was used to coil the virtual spring, developing extension torque internally, which was released by
a clutch set to unlock at the onset of late swing hip extension (~90% gait cycle).

timeseries graphs).

7= _k(ﬁhip - 90) (1)

During STATE 1, torque assistance was applied independently
to each leg for both hip flexion (pos.) and extension (neg.). As a
key feature of the semi-active concept, we also implemented a
zero-impedance (ZI) output period, a control strategy where no
torque or resistance applied to the user (STATE 2 — dark gray
in Fig. 1(b)). STATE 2 was implemented during swing phase

starting when the hip angle reached fp and ending when the hip

angle reversed direction at peak hip flexion (Fig. 1(b), bottom
timeseries graphs). Without STATE 2, ZI output to the user, a
fully passive device would resist user hip flexion, loading the

spring while it applies extension torque, potentially impeding
natural motion of the leg during swing [42]. Conceptually at the
onset of STATE 2, the virtual Clutch 1 disengaged the spring
from the user and Clutch 2 engaged the spring to the motor. this
prevented extension torque transmission to the user via Clutch
1 and isolated motor-spring interaction through Clutch 2 The
virtual motor then internally winded the exo spring (Fig. 1(b), top
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Fig. 2. Multi-session protocol to find optimal impedance parameters across speeds. The experimental protocol was split into 5 sessions. Session
1 (left) explored 5 spring parameter combinations and zero-impedance (ZI) for 10 minutes each, allowing the user to acclimate to walking with hip
exo assistance at the first parameter sweep speed. Sessions 2—4 (middle) tested x30 parameter sets spanning the full range of k- 8, impedance
control space while recording users’ metabolic rate and electromyography. A metabolic cost to exo parameter surface was created for each walking
speed and the parameter set that minimized metabolic cost was used as the optimal for that speed (user-dependent). During Session 5 (right),
users walked at all three speeds with zero-impedance and the user-dependent optimal condition for that speed to validate results.

schematic). Finally, at the time of maximum hip flexion in late
swing, coiled spring energy would be released to the user (State
2 —> State 1), by disengaging Clutch 2 and engaging Clutch
1, driving a pre-stance swing leg retraction to help propel the
user via hip exo extension torque (Fig. 1(b), bottom timeseries
graphs). A ramping function was implemented at extension
torque onset to ensure high torques were not applied in a rapid
manner, which was uncomfortable to some pilot participants.
Exo stiffness (k) (Nm/rad) modulates the total torque range,
increasing both flexion and extension peak torques with higher
stiffnesses (Fig. 1(b), red). Exo equilibrium angle (o) modulates
the ratio between flexion and extension peak torques by shifting
the torque along the vertical axis (Fig. 1(b), blue). To account for
changes in range of motion with assistance, equilibrium angle
was denoted as a percentage of a 5-step average peak-to-peak
(P2P) range of motion, with peak flexion as 100% and peak
extension as 0%. As equilibrium angle increased, the user ex-
perienced higher peak flexion torque, a lower peak extension
torque, and flexion assistance starting earlier and ending later in
the gait cycle.

We determined the ranges for stiffness and equilibrium angles
based on pilot study data and peak torque. During pilot studies,
we found parameter sets with higher than 60% equilibrium
angle generated metabolic penalties compared to 60% and lower
values. Having the range of equilibrium angles, we then tuned
stiffness ranges to elicit peak torques from 5 Nm minimum
to approximately 50 Nm maximum. The maximum limit was
chosen based on [43] as their metabolically optimal hip only
peak torque spline assistance was around 0.6—0.7 Nm/kg and
the average weight of our pilot participants was around 70 kg.
The inform increments between equilibrium angle and stiffness
values were chosen to approximate 5 Nm, the minimum change

in torque seen to elicit metabolic cost differences around 4% or
above.

B. Study Protocol

We recruited 10 healthy young adults to participate in the
study (7M/3F; 67.76 = 10.62 kg, 172.2 = 9.4 cm). This study
protocol was approved by the Georgia Institute of Technology
Institutional Review Board (Protocol #: H18067 starting on June
14th, 2018) and all participants supplied voluntary consent to
participate. For each participant, we implemented a 5-session
protocol with three distinct purposes: (1) habituate the user to
the device and measurement equipment, (2) create a metabolic
cost to exoskeleton parameter landscape for a sweep of many (4-
o) combinations across a functional range of walking speeds
(1.3-1.6 m/s), and (3) independently validate user metabolic
performance with optimal exo settings across speeds (Fig. 2).

1) Habituation: Session 1 involved user habituation to the
device, the controller, and metabolic measurement system (ex-
plained in next section). Habituation, at least 25-30 mins, is
necessary for the user to acclimate to wearing the exo and to
develop efficient walking patterns utilizing assistance [44], [45].
To accommodate for the variety of assistance profiles the user
would experience during the sweep sessions, we extended the
habituation session to 60 minutes. Walking speed was chosen
as the first of the randomized walking speeds (to be used as
the sweep order in Sessions 2-4). Users first walked at a zero-
impedance (ZI) condition (no assistance/resistance applied for
the entire gait cycle), then at 5 randomized exo spring parameter
sets ([50, 25], [50, 45], [75, 35], [100, 25], & [100, 45] with
[stiffness &, in Nm/rad, equilibrium angle 6o in % P2P range of
motion]) for 10 minutes each (Fig. 2, left).
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2) Exo Spring Parameter Sweeps Per Speed: To measure
how metabolically optimal exo control parameters changed
across walking speeds, we swept all combinations of 5 stiffness
values (k = 30, 52.5, 75, 97.5, & 120 Nm/rad) and 6 equilibrium
angles (o = 10, 20, 30, 40, 50, & 60%) at each of three walking
speeds (1.0, 1.3, and 1.6 m/s) in randomized order (Fig. 2, mid-
dle). Each parameter set and initial ZI condition was applied for 2
minutes while we measured metabolic rate and lower-limb mus-
cle electromyography (EMQ). To determine the metabolically
optimal exo spring parameter set for each speed, a metabolic
cost - exo parameter landscape was created using a 2nd order fit
across stiffness, &, and a 3rd order fit across equilibrium angle,
o, a multidimensional application of [46]. Pilot testing revealed
that this was the lowest order fit on each parameter that provided
reasonably low error without overfitting. We then analytically
solved for the k-fp parameter combination that minimized the
metabolic rate in the landscape and used this optimal set for val-
idation. We pilot tested real-time or “body/human-in-the-loop”
protocols using online optimization algorithms for this study
[47], [48] but did not choose them as they would not consistently
sample cost across the entire parameter space or provide optimal
parameters within a lower number of samples for this lower
multidimensional problem. If there were 3 or more parameters,
we believe an online optimization algorithm would provide a
more rapid optimal solution than our proposed method.

We note, for most participants, the optimal (k-6p) set was in
between sweep values and thus was not experienced by the user
before the validation session.

3) Validation: The final session (Session 5) was used to
compare the metabolically optimal exo parameter set for each
speed for each individual (user-dependent) to ZI at that speed
(Fig. 2, right). Testing by speed was done in the same randomized
order as the sweeps, completing all conditions at that speed then
moving to the next. Each condition lasted 5 minutes while we
measured metabolic rate and lower-limb muscle electromyog-
raphy (EMG).

C. Metabolic Cost

Metabolic cost was measured via indirect calorimetry. Breath-
by-breath oxygen consumption and carbon dioxide production
were measured and used to calculate body mass specific gross
metabolic rate (W/kg) using the Brockway Equation [49]. For
the exo parameter sweep sessions (Session 2-4), steady-state
metabolic rate was estimated as the asymptote of a first order fit
to 2 minutes of data [50]. For the validation session (Session 5),
steady-state was calculated as the average metabolic rate from
the last minute of each 5-minute bout. We conducted a metabolic
cost comparison between user-dependent and user-independent
impedance parameters, which we detail in Section II-E. We
note, due to an equipment malfunction, the zero-impedance
(Z1) trial for one participant during the 1.6 m/s validation
session was only 3.5 minutes long due, so the average of the
last 30s of the trial was used for the steady state metabolic
rate. Study wide, we computed the percentage difference in
metabolic rate using the ZI condition from that same session as
baseline.

D. Electromyography

Muscle activity was measured via surface electromyography
(EMGQG) for eight muscles: tibialis anterior (TA), medial gas-
trocnemius (MG), soleus (SOL), vastus medialis (VM), rectus
femoris (RF), biceps femoris (BF), gluteus maximus (GMa), and
gluteus medius (GMe). EMG sensors (Delsys, Inc.) were placed
over each muscle on the left leg according to standard methods
[51].

Raw EMG signals were processed through a bandpass But-
terworth filter with cutoff frequencies of 20 and 400 Hz before
being rectified. Each rectified signal was normalized by dividing
by the peak magnitude of the corresponding signal (same speed,
same muscle) from the zero-impedance (ZI) trial. Using ground
reaction force (GRF) measurements, the EMG signals were then
clipped to only include full strides in the analyses.

Next, each processed signal was integrated with respect to
time; and the magnitude of the time-integral was divided by the
total time of the processed signal to get the average normalized
muscle activity for that trial. Then, to calculate the change
in muscle activity due to each exo control parameter set, we
subtracted the average muscle activity from the corresponding
ZI trial in that session. For one participant walking in the
1.3 m/s condition, data from the ZI trial had an excessively low
signal-to-noise ratio, so no analysis was done with the participant
for that speed.

E. User-Dependent vs. User- Independent Comparisons

Both user-dependent and user-independent approaches were
used to report optimal exo parameter sets and the associated
changes in metabolic cost across walking speeds (e.g., see
Fig. 3). User-dependent measures (both optimal exo parameter
sets (k-0p) and the estimated change in metabolic cost (A % from
zero-impedance (ZI)) were defined using the global minimum
of the fit to each individual user’s metabolic cost landscape
from the sweep grid points (Supp. Fig. 1) and then averaged
across participants. This approach accounts for each individual
user’s unique relationship between exo assistance parameters
and metabolic cost while decreasing biasing effects from noisy
metabolic measurements and estimations. User-independent
measures were defined using a single across-participant average
metabolic cost landscape in exo parameter space (k-0p). Thus,
the user-independent metabolic cost minimum (A % from ZI)
and the exo parameters that generated it (k-6g) were single values
without any variance. As such, the user-independent approach
assumes a ‘generic’ average user, and effectively smooths differ-
ences between participants, keeping only the major trends across
participants intact.

F. Statistical Analyses

We set out to examine whether the metabolically optimal hip
exo parameters could reduce gross metabolic rate compared to
zero-impedance (ZI) at each walking speed (Hypothesis 1); and
whether the optimal exo parameters were different for different
speeds (Hypothesis 2). Hypothesis 1 was tested using three
separate within-speed, one-factor repeated measures ANOVA
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analyses (factor: exo condition: ZI, user-ind., user-dep., vali-
dation) (Fig. 3(a)) with pairwise post hoc comparisons using
a Bonferroni correction. Hypothesis 2 was tested using a sin-
gle, two-way ANOVA across speed and exo condition (factors:
speed: 1.0, 1.3, 1.6 m/s; exo condition: user-ind., user-dep.)
(Fig. 3(b), ().

A post-hoc linear regression analysis was performed to exam-
ine the relationship between changes in users’ muscle activity
and metabolic cost due to exo assistance (i.e., A’s from ZI). The
muscles used in the final linear regression were selected by first
conducting regressions for each muscle, one-by-one, in a step-
wise fashion. At each step, the muscle that yielded the highest
increase in the adjusted r-squared of the overall fit was added to
the regression (akin to sequential forward selection), yielding an
ordering that produced the highest combined adjusted r-squared
fit. This process was repeated until all eight recorded muscles
were used in the regression (Fig. 6, top). The combination of
four muscles with the highest total adjusted r-squared fit was
used for further analysis. We constrained the linear regression
to have positive coefficients for each muscle; however, the value
of the bias term was unconstrained. The participant-average fit
equation, r-square, and p-value were computed using the fitted
change in muscle activity vs. change in metabolic cost data at
each walking speed (Fig. 6, bottom).

[1l. RESULTS
A. Metabolic Cost

Gross metabolic rate was significantly reduced with optimal
semi-active hip exoskeleton impedance control settings (k-6o)
for all walking speeds during sweep sessions, but not in the
validation session (Fig. 3). During parameter sweep sessions,

when compared to the zero-impedance (ZI) condition, user-
dependent optimal parameters reduced gross metabolic rate from

ZI by (mean =+ standard deviation): —9.1 = 5.7% (p < 0.001)

at 1.0 m/s, —12.2 = 5.2% (p <0.001) at 1.3 m/s, and —9.7 +
3.7% (p < 0.001) at 1.6 m/s. (Fig. 3(a) (black), Supp. Fig. 1)
User-independent analysis indicated smaller but still significant
metabolic reductions from ZI at all but the fastest walking speed:

—6.5+4.7% (p=0.021)at 1.0 m/s, —9.8 + 1.3% (p = 0.001)
at 1.3 m/s, and —5.4 £ 5.5% (p = 0.098) at 1.6 m/s (Fig. 3(a)

(dark gray), Fig. 5, right column).

Direct comparison of optimal hip exoskeleton impedance
parameters indicated larger reductions in metabolic rate for the
user-dependent versus user-independent settings for the fastest
but not the slower speeds: p = 0.054 at 1.0 m/s, p = 0.115 at
1.3 m/s, and p = 0.027 at 1.6 m/s (Fig. 3(a), black versus dark
grey).

During the validation test sessions (i.e., a re-test of each user’s
speed-dependent best exoskeleton parameters from sweeps (see
Supp. Fig. 1)), we found no significant reduction in gross
metabolic rate from ZI at any walking speed: —2.1 = 4.2% (p
=1.00)at 1.0 m/s, —4.0 = 6.7% (p = 0.65) at 1.3 m/s, and 4.5
+5.7% (p = 0.24) at 1.6 m/s.

B. Metabolically Optimal Exoskeleton Impedance
Control Parameters

The hip exoskeleton impedance control parameters (k-6o)
that minimized metabolic rate were highly variable across
participants and showed no significant differences across
walking speed (Fig. 3(b) & (c); Fig. 5, right column; Supp.
Fig. 1).
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Fig. 4. Muscle activity time-series for the hip exoskeleton impedance parameters (k — 6o) with the lowest (best) metabolic cost and zero impedance
(no assistance or resistance applied to the user). Representative gait cycle (0% heel strike, 60% end stance, to 100% end swing) averaged muscle
activity taken from surface electromyography records for Participant 9 during the 1.3 m/s exo parameter sweep session. Black curves are from the
zero-impedance condition and red curves are from the condition with exo parameters that were metabolically optimal (k = 120 Nm/rad and 6o= 13%
P2P). Muscle activity was recorded from 8 lower limb muscles (ordered from distal-to-proximal, anterior-to-posterior): tibialis anterior (TA), medial
gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), gluteus maximus (GMa), and gluteus medius
(GMe). The optimal assistance strategy showed reduced hip and knee extensor (e.g., GMa, BF, and VM) activity in early stance and reduced hip
flexor activity in early swing (e.g., RF) as well as reduced plantarflexor activity at push-off (e.g., SOL and MG).

Optimal stiffness (k) ranged between 40—80 Nm/rad (User-
dependent (mean + standard deviation): 44.60 + 23.01 Nm/rad
at 1.0 m/s; 61.75 + 36.45 Nm/rad at 1.3 m/s and 73.20 = 35.45
Nm/rad at 1.6 m/s) and increased with walking speed, albeit
insignificantly (ANOVA: p = 0.101) (Fig. 3(b), black; Fig. 5,
right column). Optimal equilibrium angle (o) was relatively
constant around 20% of the peak-to-peak hip angle range of
motion (User-dependent: 22.4 = 13.9 at 1.0 m/s; 20.4 = 7.6 at
1.3m/sand 18.1 £+ 9.43 at 1.6 m/s) and tended to decrease (i.e.,
became more extension biased) with increasing walking speed
(ANOVA:p=0.707) (Fig. 3(c), black; Fig. 5, right column).

The significant amount of variability between participants
for both optimal stiffness (k) (Fig. 3(b), Supp. Fig. 1) and
equilibrium angle (6p) (Fig. 3(c), Supp. Fig. 1) was reflected
in differences between user-dependent and user-independent
optimal values, especially for stiffness (k) at low walking speeds
(Fig. 3. black vs. dark grey bars).

C. Muscle Activity

Muscle activity was reduced for a subset of muscles, local
to the assisted joint, by metabolically optimal semi-active hip

exoskeleton impedance control settings (k-fp) for all walking
speeds (Figs. 5, 6, bottom). Representative time-series data show
that reductions in muscle activity were driven by the hip and
knee extensors (GMa, BF, and VM, respectively) early in the
gait cycle, the hip flexors in early swing (RF) and the ankle
plantarflexors (MG, SOL) at push-off. (Fig. 4).

Stepwise, iterative regression analysis revealed that only the
four most significant muscles were necessary to characterize the
relationship between changes in metabolic cost and changes in
muscle activity, as the adjusted r-squared value did not mean-
ingfully increase when more than four muscles were included
in the model (Fig. 6, top).

The muscles that most influenced predicted changes in
metabolic rate from changes in muscle activity due to hip ex-
oskeleton assistance depended on walking speed. Iterative linear
regression indicated: GMa, BF, VM, GMe at 1.0 m/s; BF, VM,
RF, and GMe at 1.3 m/s; and BF, GMa, VM, and SOL at 1.6 m/s
(Fig. 6, top). BF and VM were present at all speeds; GMa and
GMe present at 2 speeds each.

Participant average fits of the 4 ‘best’-muscle linear regression
models indicated a significant relationship (p <0.0001) between
changes in muscle activity and changes in gross metabolic rate
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due to hip exoskeleton impedance control when compared to
zero-impedance (ZI) for all walking speeds (Fig. 6, bottom).
Correlations were strong at all speeds with r-squared values of
0.65, 0.88 and 0.70 at 1.0, 1.3 and 1.6 m/s, respectively.

D. Data Archive

The study data set can be found at: https://sites.gatech.edu/
hpl/archival-data-from-publications/.

[V. DISCUSSION

We used a lab-based emulator to evaluate a semi-active
hip exoskeleton concept (i.e., motor, spring, clutch system)
(Fig. 1) and measured the physiological response of human
users to examine whether: (i) optimal impedance settings (spring
stiffness, & and equilibrium angle, 6p) could reduce metabolic
cost across a range of walking speeds (1.0-1.6 m/s), and (ii)
whether impedance settings (k, p) for metabolically optimal
performance depended on walking speed (Fig. 3).

First, we hypothesized that walking with a hip exoskeleton
using metabolically optimal impedance settings (%, 6po) would
provide metabolic benefit compared to zero-impedance (ZI)
mode at each speed. Indeed, the user-dependent parameter set
with the lowest metabolic cost provided significant benefit that
ranged from 9-12% depending on walking speed (Fig. 3(a),
Supp. Fig. 1). Second, we hypothesized that the metabolically
optimal impedance parameters (k, 6p) would change across
walking speed, mirroring physiological increases in hip joint
quasi-stiffness and peak extension moment with speed [15].
Trends in our data supported this idea, as the optimal stiffness
(k) increased from ~40 N-m/rad to ~80 N-m/rad (Fig. 3(b))
and the optimal equilibrium angle 6o decreased from >20% to
<20% of the P2P hip angle (i.e., larger extensor torque bias)
(Fig. 3(c)) as speed increased from 1.0 to 1.6 m/s.

Optimal hip exoskeleton impedance parameters (&, 6p) fol-
lowed observed trends in biological moments and quasi-stiffness
observed in humans walking at faster and faster speeds. Phys-
iological hip moments increase in both extension and flexion
with increasing walking speed [10], [52]. This increase in peak-
to-peak moment is accompanied by an increase in the flexion
quasi-stiffness of the joint, or the ratio change in hip joint
moment to change in hip joint angle during early swing [7].
Our metabolically optimal hip exo stiffness (k) also increased
with speed, causing higher peak flexion and extension hip exo
assistance torques. Similar trends have been reported for passive
elastic ankle exoskeletons, where the metabolically optimal
stiffness also follows physiological changes in ankle joint quasi-
stiffness with increasing walking speed [9], [20]. More broadly,
these results suggest that semi-active exoskeletons design that
rely on spring-like elements might be nominally set to match
trends in the physiological quasi-stiffness of the target joint
across locomotion modes (e.g., surface incline, or roughness).
Conversely, human-in-the-loop optimizations of powered (not
semi-active) exoskeletons to maximize metabolic cost savings
while walking has shown that non-physiological torque profiles
are optimal for each lower-limb joint [5], [9], [45], [53]. Perhaps
semi-active devices, with both powered and passive elements,

should take inspiration from both physiological and optimized
torque/impedance information to provide the most benefit to
users.

Notably, speed dependent shifts in optimal hip exoskeleton
impedance parameters (for &£ or fp) did not reach statistical
significance. This was mostly because of high variability in
optimal impedance settings between participants (Fig. 3(b), (c);
Supp. Fig. 1), and highlights the potential importance of focusing
on tuning exo control parameters to each individual user to
maximize performance (i.e., user-dependent controller settings).
Indeed, differences between hip exo impedance parameter (£,
o) - metabolic cost landscapes derived using a user-dependent
(i.e., per-each individual, or customized) (Supp. Fig. 1) versus a
user-independent (i.e., averaged across-individuals or general-
ized) (Fig. 5) analysis approach points to the potential benefit of
tuning assistance to each unique user (i.e., personalized control).
For example, for the metabolically optimal stiffness (k), the
user-dependent values increased steadily with walking speed
while the user-independent values only appeared to increase at
1.6 m/s (Fig. 3(b)). This suggests that the effect of increased
stiffness (k), (i.e., higher hip exo torque for both flexion and
extension) did not yield a large generalized metabolic benefit
for most users across speed, but instead, a subset of users
benefited greatly from increased stiffness (k), when moving
from 1.0 to 1.3 m/s (Supp. Fig. 1, Participants 4, 7, 8, 9).
Thus, using a semi-active device hip exo with stiffness tuned for
the average user (i.e., user-independent) at intermediate speed
would leave some users with a glaring lack of metabolic ben-
efit. Indeed, user-dependent assistance tended to provide more
metabolic benefit than user-independent stiffness at every walk-
ing speed (Fig. 3(a)). Other studies comparing user-dependent
(customized) vs. user-independent (generalized) torque profiles
with powered ankle exoskeletons also show increased benefits
from a user-dependent approach - both for increasing pre-
ferred walking speed [54] and reducing metabolic cost [5], [45]
compared to a user-independent ‘one-size-fits all” approach.
Taken together, these data suggest that perhaps commercial
exoskeletons could apply a generalized ‘best’ assistance profile
for ‘out-of-the-box use’ but that control settings should then be
customized per user to provide highest possible benefit.

Muscles ultimately consume the metabolic energy that moves
us, and exoskeletons reduce metabolic cost principally by re-
ducing muscle force and activation [55]-[57]. Our data strongly
support this idea, as changes in activity of the lower-limb mus-
cles had strong correlation with changes in metabolic cost due to
torque assistance from our semi-active hip exoskeleton concept
(Figs. 5, 6). The strength of the fits from our linear regression
analyses at all walking speeds (Fig. 6, bottom) supports the valid-
ity of using a multi-channel surface electromyography (EMG)
approach to model metabolic cost of exoskeleton users rather
than direct measurements via indirect calorimetry [58], [59].
Using changes in EMG as a proxy for changes in metabolic
cost could allow for faster on-line tuning of exoskeletons control
parameters than what is offered by traditional human-in-the loop
approaches.

Changes in activity of the muscles spanning the hip joint
(e.g., GMa, GMe, BF, RF) were shown to be most significant
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Fig. 5. User-independent changes in muscle activity and metabolic
cost across hip exoskeleton impedance parameter space (k-6,): Across-
participant averaged (i.e., user-independent) multidimensional polyno-
mial fits to sampled percentage change (red = increase; blue = de-
crease from the zero-impedance (ZI) condition) for each exoskeleton
impedance parameter setting (a 5x6 stiffness (k) vs. equilibrium angle
(6o) grid space) at each walking speed (1.0 m/s (top row), 1.3 m/s,
1.6 m/s (bottom row)). Columns represent different outcome measures.
(Left) Total muscle activity from the muscle with the best linear re-
gression fit to metabolic cost (Best Muscle), (Middle) Linear regression
fit using the 4 muscles with the best combined fit to metabolic cost
(Linear Regression), and (Right) metabolic cost. The muscles selected
per speed for the Best Muscle and Linear Regression fits can be found
in Fig. 5 top row. The method of selecting muscles for the linear re-
gressions is discussed in Section II-E. In general, a semi-active hip
impedance controller with low stiffness and equilibrium angle working
at an intermediate walking speed had the most benefit. Study-wide,
changes in muscle activity corresponded well with changes in metabolic
rate.

in predicting changes in metabolic cost (Fig. 5, top); perhaps
not surprising given the primary action of the exo is about the
hip. Indeed, many other studies have shown that when robotic
exoskeletons target the knee or ankle joint, the muscles that are
more closely associated with those joints tend to respond most
and drive changes in users’ metabolic cost [8], [60], [61]. How-
ever, it is interesting to note that hip assistance also helped reduce
activity in the knee extensors (VM) during early stance and the
plantarflexors (SOL, MQG) in late stance (Fig. 4), re-emphasizing
results from previous studies showing that exos at the hip [62]
and ankle [63] can have non-local effects on muscle effort.
Metabolic benefit shown for optimal semi-active hip ex-
oskeleton parameters (k, 6p) of the metabolic cost landscape
across parameters from the comprehensive sweep sessions did

not transfer to the validation session for any walking speed
(Fig. 3(a)). We believe the lack of translation was due to the
limited time given for re-habituation to optimal exoskeleton
assistance from the sweep sessions at each walking speed.
Habituation to exoskeleton assistance can occur in as little as
20 minutes [8], [44], [64], [65] but on average probably takes
much longer, especially for metabolic rate to reach a new-steady
state [45]. Much less is known about how habituation persists
across multiple use-sessions separated by a significant time
(i.e., retention form one session to another) and/or how long is
needed to re-habituate. Our results provide some evidence that
re-habituation may be crucial. One could posit that our results
from the sweep session were biased by measurement noise inher-
ent when using indirect calorimetry to measure metabolic rate
and further exacerbated by 2-minute estimations of steady-state
cost, rather than effects of the exoskeleton control parameters
themselves. To avoid this problem, we fit a multi-polynomial
surface to the change in metabolic rate versus zero-impedance
(Z1) across the grid of exoskeleton impedance parameters (%,
o), and then selected the optimal parameters based on the
estimated metabolic minimum of the fit. Thus, the optimal set
(k, 6o), was influenced by all data points in the measurement
set that generated fitted surface, decreasing bias from outliers
and/or measurement noise (assumed to be normally-distributed).
Further, the difference in metabolic rate from ZI for our op-
timal parameter sets is much larger than the noise associated
with measures of metabolic rate from indirect calorimetry [50],
[66]. Strong correlations between changes in metabolic cost
and changes in muscle activity (R? = 0.52-0.78) provide some
physiological evidence that our measured changes were due to
the exoskeleton and not measurement noise or bias.

Our study was not without some limitations. First, our hip
exoskeleton end effector hardware was designed to handle over
200 Nm of torque applied at the hip [41]. Considering this, the
added mass of the exoskeleton was much larger than what would
be expected for a portable, autonomous semi-active version
of the device. To accommodate for this difference, we com-
pared gross metabolic rate in active impedance trials to that
of wearing the exoskeleton in zero-impedance (ZI) mode, but
we note that the bulk of the emulator may have affected the
measured metabolically optimal assistance parameters (&, o)
themselves. Second, our emulator did not perfectly reproduce
the semi-active device due to safety adjustments made to the
onset of extension torque and imperfect torque tracking. As
mentioned in Section II-A, we implemented a ramp function
to decrease the speed of extension torque onset from ZI mode
as some pilot users found this uncomfortable. The consequence
of this ramp was decreased peak extension torques. Root-mean-
squared-error of torque tracking across conditions was ~3 Nm,
which equated to <15% of peak-to-peak torque. We believed
this was reasonable to conduct the study as torques generally
followed the desired passive spring torque, but we acknowledge
this does not perfectly emulate the proposed semi-active de-
vice. Last, this study was conducted on a treadmill rather than
overground, which could have limited user adaptation via free
adjustments in walking speed. Exoskeleton assistance has been
shown to alter preferred walking speed along with changes in
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Fig. 6. Association between changes in users’ lower-limb muscle activity and metabolic cost across hip exoskeleton impedance parameter space
(k-B9): (Top) Participant average r-squared and adjusted r-squared values produced in an iterative regression process, relating changes in gait
cycle averaged muscle activity (%) and changes in gross metabolic rate (%) compared to the zero-impedance (ZI) condition. On the x-axis, the
muscles included in the model are cumulative from left to right, so that each muscle’s plotted r-squared point corresponds with a model that also
includes all muscles in the preceding columns. Data are separated by walking speed (1.0 m/s, 1.3 m/s, 1.6 m/s form left to right). (Bottom) Linear
regression fits using the four most significant muscles (i.e., four ‘best’ fits) per participant (colored lines) and the averaged across participants (black
lines) for walking at 1.0 m/s, 1.3 m/s, and 1.6 m/s (left to right). Grey boxes highlight the areas in which there was a reduction in metabolic rate with
respect to the corresponding zero-impedance (ZI) trial. Study-wide, changes in muscle activity corresponded well with changes in metabolic rate
and participants who derived metabolic benefit had reduced muscle activity, especially at faster walking speeds.

metabolic cost [24], [54]. Thus, it is possible that metabolic
benefits could be higher for walking speeds outside the range we
tested. future studies could explore optimizing the global cost
of transport (i.e., energy consumption per distance travelled),
where both metabolic rate and preferred walking speed can
equally contribute. This scenario might better represent user
behavior outside of the lab, as humans tend to select their
preferred walking speed to minimize cost of transport [67] in
real-time [68], [69]. In our future work, rather than using an in
the lab emulator to perform brute force exoskeleton controller
parameter sweeps during treadmill walking at fixed speed, we
plan to conduct optimizations using autonomous devices outside
the lab under real-world conditions that better represent an
average user’s daily activities.

V. CONCLUSION

A tethered hip exoskeleton emulating semi-active hardware,
via spring-like impedance control, can reduce metabolic cost
by up to ~10% compared to zero-impedance (ZI) across func-
tional walking speeds (1.3—1.6 m/s). Stiffer springs, with an
equilibrium angle set to provide higher magnitude hip extension
assistance throughout more of the gait cycle, tended to per-
form better at faster walking speeds. Tuning impedance control

parameters to each individual user and longer training periods
are likely to further improve performance. Local muscle activity
(e.g., glutes, hamstrings) could be an important physiological
input as a proxy for metabolic demand for online optimization
of controller parameters to continuously minimize metabolic
cost during unstructured, ‘real-world’ locomotion. This paves
the way and provides crucial guidance for developing energy
efficient, portable semi-active assistance strategies at the hip
across walking speed.
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