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Abstract—Objective: Semi-active exoskeletons combin- 
ing lightweight, low powered actuators and passive-elastic 
elements are a promising approach to portable robotic as- 
sistance during locomotion. Here, we introduce a novel 
semi-active hip exoskeleton concept and evaluate human 
walking performance across a range of parameters using 
a tethered robotic testbed. Methods: We emulated semi- 
active hip exoskeleton (exo) assistance by applying a vir- 
tual torsional spring with a fixed rotational stiffness and 
an equilibrium angle established in terminal swing phase 
(i.e., via pre-tension into stance). We performed a 2-D 
sweep of spring stiffness x equilibrium position param- 
eters (30 combinations) across walking speed (1.0, 1.3, 
and 1.6 m/s) and measured metabolic rate to identify de- 
vice parameters for optimal metabolic benefit. Results: At 
each speed, optimal exoskeleton spring settings provided a 

∼10% metabolic benefit compared to zero-impedance (ZI). 
Higher walking speeds required higher exoskeleton stiff- 
ness and lower equilibrium angle for maximal metabolic 
benefit. Optimal parameters tuned to each individual (user- 
dependent) provided significantly larger metabolic benefit 
than the average-best settings (user-independent) at all 
speeds except the fastest (p = 0.021, p = 0.001, and p = 
0.098 at 1.0, 1.3, and 1.6 m/s, respectively). We found signif- 
icant correlation between changes in user’s muscle activity 
and changes in metabolic rate due to exoskeleton assis- 
tance, especially for muscles crossing the hip joint. Conclu- 
sion: A semi-active hip exoskeleton with spring-parameters 
personalized to each user could provide metabolic benefit 
across functional walking speeds. Minimizing muscle ac- 
tivity local to the exoskeleton is a promising approach for 
tuning assistance on-line on a user-dependent basis. 
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I. INTRODUCTION 

XOSKELETONS have been increasingly successful at 

providing enhanced walking performance by reducing the 

metabolic rate of the user [1]. Exoskeletons (exos) showing the 

largest metabolic benefits typically use control systems opti- 

mized to generate assistive torques at a target joint (e.g., ankle 

or hip) with timing and magnitude set specifically for a fixed gait 

(e.g., walk or run) and locomotor demand (e.g., speed or grade) 

on a treadmill [2]–[7]. These studies have provided a valuable 

foundation upon which the field is poised to expand. Indeed, 

a grand challenge remains to develop exos that can provide 

assistance outside the laboratory across the full functional range 

of locomotion modes (i.e., gaits, speeds, grades, stairs, unstruc- 

tured terrain, etc.) used in everyday life. Toward this end, more 

research is needed to uncover strategies that are versatile enough 

to provide useful assistance across a broad range of locomotion 

behaviors in a form-factor that is streamlined and easy to use 

and maintain. Our goal here was to build on recent studies that 

have started to examine how exo assistance should change with 

gait [6], across speed [8], and according to the target joint for 

assistance [9]. Comprehensively examining users’ physiological 

response to single-joint exo assistance strategies across walking 

speed is an important first step. 

Taking clues from basic neuromechanics and energetics stud- 

ies that address the joint-level mechanisms humans use to adapt 

locomotion behavior in response to changing demands could 

help guide versatile exoskeleton assistance strategies [10], [11]. 

For example, above self-selected walking speeds (>∼1.3 m/s), 

there are stereotypical changes in lower-limb joint mechanics 

that accompany higher metabolic rate and metabolic cost of 

transport [10], [12]. As walking speed increases, both positive 

and negative mechanical work done on the center of mass 

increase in proportion to net metabolic rate [13]. To effectively 

handle the increased demand for mechanical work, humans 

increase muscle power output at all lower-limb joints, with hip 

(>40%) outpacing ankle (<40%) at the fastest speeds [10], 

[12], [14]. Observing which joints inject positive work into the 

gait cycle could provide guidance regarding where to place exo 

motors and when to activate them. Joint-level biomechanics 
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can also be characterized by the relationship between the net 

muscle-tendon moment and the joint angle during steady-state 

movement, the quasi-stiffness. In fact, the quasi-stiffness of the 

lower-limb joints is modulated with speed. Throughout stance 

phase, quasi-stiffness increases with speed at all joints with 

the exception of the knee during weight acceptance [15]–[17]. 

The quasi-stiffness could provide guidance regarding stiffness 

and engagement timing of exo springs to provide unpowered 

elastic torque assistance. More studies are needed to understand 

whether and how exo assistance strategies should change in ac- 

cordance with changing mechanical properties of the lower-limb 

joints across walking speed. 

Given the goal to provide metabolic benefit across walking 

speeds, the hip joint emerges as a desirable target for exo 

assistance. Indeed, as previously mentioned, the hip muscle- 

tendons are major positive power generators during walking 

and become increasingly important at the fastest speeds [14]. 

It is also worth noting that the hip emerges as an even clearer 

power source uphill [11] and during accelerations [18], [19]. 

Further, simulation studies have predicted hip musculature may 

consume more energy during walking than muscles at the ankle 

[20]. This could be in part, due to morphological differences in 

ankle vs. hip muscle-tendons that make efficiency of positive 

work lower at the hip [21]. Focusing exo assistance on the least 

efficient lower-limb joint could yield more ‘bang-for-buck’ in 

terms of metabolic energy savings of the user. In addition to the 

physiological basis for focusing on the hip, it is also important 

to consider that the metabolic penalty due to added load of 

an exo placed at the hip would be small compared to other 

joints. Carrying added mass close to the body center or mass 

is relatively cheap compared to carrying it distally on the legs 

[22]. 

Despite the inability to generate positive mechanical power, 

passive devices have successfully enhanced walking perfor- 

mance at the hip, with modest metabolic benefits around 3% 

[23]–[25]. Success is mainly due to the lightweight nature of 

passive exos and tuning the elastic properties of the system (i.e., 

stiffness and equilibrium point) to generate useful assistance 

torque patterns that help the hip flex the leg into swing. A down- 

side of the passive approach is that static mechanical properties 

of springs and dampers are static and may not be appropriate 

for all locomotion modes. To increase passive assistance adapt- 

ability, electromechanical clutches have been implemented in 

knee exoskeletons to modulate passive element properties and 

engagement but did not allow positive power generation. [26], 

[27]. Powered devices are bulky, require an energy source and 

may be harder to maintain, but can modulate torque assistance 

patterns on-line. In addition, powered exo assistance at the hip 

shows clear (and much larger) benefit, especially when timed to 

deliver torque during the early stance extension phase of walking 

[4], [28]–[30]. 

Hybrid designs that combine elements of both passive and 

active systems could allow adaptive torque assistance with lower 

actuator mass. For example, semi-active systems containing both 

motors and elastic elements could inject mechanical power in 

one gait phase and provide torque to support bodyweight in 

another, switching modes through a clutch-able transmission. 

Or perhaps low-power output motors could be used to merely 

switch the mechanical properties of elastic elements rather than 

directly drive motion of the user. We contend that semi-active 

solutions could enable high performance of active systems with 

simplicity of passive systems. 

A semi-active approach that combines passive and active 

elements has been applied to wearable devices, but mostly 

in prostheses. In one type of semi-active system, the passive 

components provide the assistance to the user while the active 

components are used to alter the mechanical properties or state of 

the passive components. Indeed, semi-active foot-ankle prosthe- 

ses can modulate stiffness step by step to emulate physiological 

torques across modes like speeds, inclines, and stairs [31]–[34]. 

To our knowledge, semi-active lower-limb exo applications have 

not yet been realized, although there are creative actuator designs 

[35]–[38] and exciting theoretical concepts for how they might 

function [11], [39]. To explore these concepts, impedance con- 

trol (torque based on virtual passive mechanical elements) can 

be implemented to mimic passive and semi-active devices to 

maximize performance, as seen with an ankle-foot prosthesis 

emulator [40]. Nevertheless, research addressing if/how the 

optimal passive properties (i.e., torque profile) of semi-active 

exo systems should change across modes and/or where active 

elements can best contribute is missing. Before spending time 

and effort building semi-active systems, lab-based emulator 

systems could be a useful tool to explore the utility and lay 

groundwork for semi-active exoskeletons. 

Here, we employ a tethered exo emulator to apply hip torque 

to human users and examine whether the metabolic benefit of 

a virtual hip spring (i.e., a simple impedance) depends on its 

passive mechanical properties across walking speed. In short, 

we examined changes in users’ metabolic rate across a wide 

range of stiffness and equilibrium angle of a virtual hip torsion 

spring [30 sets = 5 stiffness values (k) by 6 equilibrium angles 

(θ0) at each of three walking speeds (1.0, 1.3, and 1.6 m/s). We 

hypothesized that: (i) optimal ‘semi-active’ assistance would 

provide a metabolic benefit at each speed; but (ii) the optimal 

assistance parameters would mirror changes in physiological 

moment-angle behavior (i.e., quasi-stiffness [15]) with increas- 

ing speed. That is, with increasing walking speed we expected an 

increase in optimal hip exo spring stiffness (k) and a decrease in 

optimal hip exo spring equilibrium angle (θ0) (i.e., biased closer 

to peak hip extension). 

 
II. METHODS 

A. Impedance Controller 

To evaluate human locomotion performance with a semi- 

active hip exoskeleton (exo), we emulated the function of motor- 

spring-clutch system using a tethered, cable-driven bilateral hip 

exoskeleton [41] (Human Motion Technologies, Pittsburgh, PA) 

while participants walked on an instrumented split-belt treadmill 

(Bertec, Inc.) (Fig. 1(a)) with assistive torque generated by 

a simple impedance controller (i.e., virtual torsional spring) 

(Fig. 1(b), top schematic). During assistance to the user (STATE 

1, light gray), virtual Clutch 1 engaged the spring to the user 

and exo torques emulated a passive spring as a function of hip 

angle, θhip, according to a preset passive spring stiffness, k, and 

equilibrium angle, θ according to (1) below (Fig. 1(b), bottom 
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Fig. 1. Emulator-based evaluation of semi-active hip exoskeleton concept. (a) We used a tethered, cable-driven hip exoskeleton to apply both 
extension and flexion assistance torque for each leg. Four offboard motors pulled on Bowden cables to apply flexion and extension to each leg. 
(b) The applied torque profile was based on the concept of a semi-active device comprised of a motor, spring, and transmission with a two-state 
clutch mechanism. In State 1 (light gray), exoskeleton (exo) torque is transferred to the user according to a simple impedance (i.e., a virtual torsional 
spring) with a pre-set equilibrium angle (θ0) and stiffness (k) (1). In this state, exo stiffness, k, modulated the magnitude of both flexion and extension 
torque assistance. Equilibrium angle, θ0, was calculated as a percentage of a 5-step average peak-to-peak (P2P) hip angle with peak extension = 
0% and peak flexion = 100%. θ0 modulated the timing of flexion torque onset/offset (smaller θ0 = later flexion torque onset), as well as the relative 
magnitude of extension vs flexion torque (smaller θ0 = larger extension torque bias at ground contact). In State 2 (dark gray), zero-impedance (ZI; 
no torque assisting or resisting the user) mode was engaged, starting when the hip angle flexed passed θ0 (∼70% gait cycle) and ending with peak 
hip flexion. Simultaneously, a motor loading action was used to coil the virtual spring, developing extension torque internally, which was released by 
a clutch set to unlock at the onset of late swing hip extension (∼90% gait cycle). 

 

 
timeseries graphs). 

 

 
τ = −k (θ 

 
 
 

 
hip 

 
 

− θ ) (1) 

 

angle reversed direction at peak hip flexion (Fig. 1(b), bottom 

timeseries graphs). Without STATE 2, ZI output to the user, a 

fully passive device would resist user hip flexion, loading the 

During STATE 1, torque assistance was applied independently 

to each leg for both hip flexion (pos.) and extension (neg.). As a 

key feature of the semi-active concept, we also implemented a 

zero-impedance (ZI) output period, a control strategy where no 

torque or resistance applied to the user (STATE 2 – dark gray 

in Fig. 1(b)). STATE 2 was implemented during swing phase 

starting when the hip angle reached θ and ending when the hip 

spring while it applies extension torque, potentially impeding 

natural motion of the leg during swing [42]. Conceptually at the 

onset of STATE 2, the virtual Clutch 1 disengaged the spring 

from the user and Clutch 2 engaged the spring to the motor. this 

prevented extension torque transmission to the user via Clutch 

1 and isolated motor-spring interaction through Clutch 2 The 

virtual motor then internally winded the exo spring (Fig. 1(b), top 
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Fig. 2.  Multi-session protocol to find optimal impedance parameters across speeds. The experimental protocol was split into 5 sessions. Session 
1 (left) explored 5 spring parameter combinations and zero-impedance (ZI) for 10 minutes each, allowing the user to acclimate to walking with hip 

exo assistance at the first parameter sweep speed. Sessions 2–4 (middle) tested x30 parameter sets spanning the full range of k- θ0 impedance 
control space while recording users’ metabolic rate and electromyography. A metabolic cost to exo parameter surface was created for each walking 
speed and the parameter set that minimized metabolic cost was used as the optimal for that speed (user-dependent). During Session 5 (right), 
users walked at all three speeds with zero-impedance and the user-dependent optimal condition for that speed to validate results. 

 
 

schematic). Finally, at the time of maximum hip flexion in late 

swing, coiled spring energy would be released to the user (State 

2 –> State 1), by disengaging Clutch 2 and engaging Clutch 

1, driving a pre-stance swing leg retraction to help propel the 

user via hip exo extension torque (Fig. 1(b), bottom timeseries 

graphs). A ramping function was implemented at extension 

torque onset to ensure high torques were not applied in a rapid 

manner, which was uncomfortable to some pilot participants. 

Exo stiffness (k) (Nm/rad) modulates the total torque range, 

increasing both flexion and extension peak torques with higher 

stiffnesses (Fig. 1(b), red). Exo equilibrium angle (θ0) modulates 

the ratio between flexion and extension peak torques by shifting 

the torque along the vertical axis (Fig. 1(b), blue). To account for 

changes in range of motion with assistance, equilibrium angle 

was denoted as a percentage of a 5-step average peak-to-peak 

(P2P) range of motion, with peak flexion as 100% and peak 

extension as 0%. As equilibrium angle increased, the user ex- 

perienced higher peak flexion torque, a lower peak extension 

torque, and flexion assistance starting earlier and ending later in 

the gait cycle. 
We determined the ranges for stiffness and equilibrium angles 

based on pilot study data and peak torque. During pilot studies, 

we found parameter sets with higher than 60% equilibrium 

angle generated metabolic penalties compared to 60% and lower 

values. Having the range of equilibrium angles, we then tuned 

stiffness ranges to elicit peak torques from 5 Nm minimum 

to approximately 50 Nm maximum. The maximum limit was 

chosen based on [43] as their metabolically optimal hip only 

peak torque spline assistance was around 0.6–0.7 Nm/kg and 

the average weight of our pilot participants was around 70 kg. 

The inform increments between equilibrium angle and stiffness 

values were chosen to approximate 5 Nm, the minimum change 

in torque seen to elicit metabolic cost differences around 4% or 

above. 

 

B. Study Protocol 

We recruited 10 healthy young adults to participate in the 

study (7M/3F; 67.76 ± 10.62 kg, 172.2 ± 9.4 cm). This study 

protocol was approved by the Georgia Institute of Technology 
Institutional Review Board (Protocol #: H18067 starting on June 
14th, 2018) and all participants supplied voluntary consent to 

participate. For each participant, we implemented a 5-session 

protocol with three distinct purposes: (1) habituate the user to 

the device and measurement equipment, (2) create a metabolic 

cost to exoskeleton parameter landscape for a sweep of many (k- 

θ0) combinations across a functional range of walking speeds 

(1.3–1.6 m/s), and (3) independently validate user metabolic 

performance with optimal exo settings across speeds (Fig. 2). 

1) Habituation: Session 1 involved user habituation to the 

device, the controller, and metabolic measurement system (ex- 

plained in next section). Habituation, at least 25–30 mins, is 

necessary for the user to acclimate to wearing the exo and to 

develop efficient walking patterns utilizing assistance [44], [45]. 

To accommodate for the variety of assistance profiles the user 

would experience during the sweep sessions, we extended the 

habituation session to 60 minutes. Walking speed was chosen 

as the first of the randomized walking speeds (to be used as 

the sweep order in Sessions 2-4). Users first walked at a zero- 

impedance (ZI) condition (no assistance/resistance applied for 

the entire gait cycle), then at 5 randomized exo spring parameter 

sets ([50, 25], [50, 45], [75, 35], [100, 25], & [100, 45] with 

[stiffness k, in Nm/rad, equilibrium angle θ0 in % P2P range of 

motion]) for 10 minutes each (Fig. 2, left). 
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2) Exo Spring Parameter Sweeps Per Speed: To measure 

how metabolically optimal exo control parameters changed 

across walking speeds, we swept all combinations of 5 stiffness 

values (k = 30, 52.5, 75, 97.5, & 120 Nm/rad) and 6 equilibrium 

angles (θ0 = 10, 20, 30, 40, 50, & 60%) at each of three walking 

speeds (1.0, 1.3, and 1.6 m/s) in randomized order (Fig. 2, mid- 

dle). Each parameter set and initial ZI condition was applied for 2 

minutes while we measured metabolic rate and lower-limb mus- 

cle electromyography (EMG). To determine the metabolically 

optimal exo spring parameter set for each speed, a metabolic 

cost - exo parameter landscape was created using a 2nd order fit 

across stiffness, k, and a 3rd order fit across equilibrium angle, 

θ0, a multidimensional application of [46]. Pilot testing revealed 

that this was the lowest order fit on each parameter that provided 

reasonably low error without overfitting. We then analytically 

solved for the k-θ0 parameter combination that minimized the 

metabolic rate in the landscape and used this optimal set for val- 

idation. We pilot tested real-time or “body/human-in-the-loop” 

protocols using online optimization algorithms for this study 

[47], [48] but did not choose them as they would not consistently 

sample cost across the entire parameter space or provide optimal 

parameters within a lower number of samples for this lower 

multidimensional problem. If there were 3 or more parameters, 

we believe an online optimization algorithm would provide a 

more rapid optimal solution than our proposed method. 

We note, for most participants, the optimal (k-θ0) set was in 

between sweep values and thus was not experienced by the user 

before the validation session. 

3) Validation: The final session (Session 5) was used to 

compare the metabolically optimal exo parameter set for each 

speed for each individual (user-dependent) to ZI at that speed 

(Fig. 2, right). Testing by speed was done in the same randomized 

order as the sweeps, completing all conditions at that speed then 

moving to the next. Each condition lasted 5 minutes while we 

measured metabolic rate and lower-limb muscle electromyog- 

raphy (EMG). 

 
C. Metabolic Cost 

Metabolic cost was measured via indirect calorimetry. Breath- 

by-breath oxygen consumption and carbon dioxide production 

were measured and used to calculate body mass specific gross 

metabolic rate (W/kg) using the Brockway Equation [49]. For 

the exo parameter sweep sessions (Session 2-4), steady-state 

metabolic rate was estimated as the asymptote of a first order fit 

to 2 minutes of data [50]. For the validation session (Session 5), 

steady-state was calculated as the average metabolic rate from 

the last minute of each 5-minute bout. We conducted a metabolic 

cost comparison between user-dependent and user-independent 

impedance parameters, which we detail in Section II-E. We 

note, due to an equipment malfunction, the zero-impedance 

(ZI) trial for one participant during the 1.6 m/s validation 

session was only 3.5 minutes long due, so the average of the 

last 30s of the trial was used for the steady state metabolic 

rate. Study wide, we computed the percentage difference in 

metabolic rate using the ZI condition from that same session as 

baseline. 

D. Electromyography 

Muscle activity was measured via surface electromyography 

(EMG) for eight muscles: tibialis anterior (TA), medial gas- 

trocnemius (MG), soleus (SOL), vastus medialis (VM), rectus 

femoris (RF), biceps femoris (BF), gluteus maximus (GMa), and 

gluteus medius (GMe). EMG sensors (Delsys, Inc.) were placed 

over each muscle on the left leg according to standard methods 

[51]. 

Raw EMG signals were processed through a bandpass But- 

terworth filter with cutoff frequencies of 20 and 400 Hz before 

being rectified. Each rectified signal was normalized by dividing 

by the peak magnitude of the corresponding signal (same speed, 

same muscle) from the zero-impedance (ZI) trial. Using ground 

reaction force (GRF) measurements, the EMG signals were then 

clipped to only include full strides in the analyses. 

Next, each processed signal was integrated with respect to 

time; and the magnitude of the time-integral was divided by the 

total time of the processed signal to get the average normalized 

muscle activity for that trial. Then, to calculate the change 

in muscle activity due to each exo control parameter set, we 

subtracted the average muscle activity from the corresponding 

ZI trial in that session. For one participant walking in the 

1.3 m/s condition, data from the ZI trial had an excessively low 

signal-to-noise ratio, so no analysis was done with the participant 

for that speed. 

 
E.  User-Dependent vs. User- Independent Comparisons 

Both user-dependent and user-independent approaches were 

used to report optimal exo parameter sets and the associated 

changes in metabolic cost across walking speeds (e.g., see 

Fig. 3). User-dependent measures (both optimal exo parameter 

sets (k-θ0) and the estimated change in metabolic cost (Δ % from 

zero-impedance (ZI)) were defined using the global minimum 

of the fit to each individual user’s metabolic cost landscape 

from the sweep grid points (Supp. Fig. 1) and then averaged 

across participants. This approach accounts for each individual 

user’s unique relationship between exo assistance parameters 

and metabolic cost while decreasing biasing effects from noisy 

metabolic measurements and estimations. User-independent 

measures were defined using a single across-participant average 

metabolic cost landscape in exo parameter space (k-θ0). Thus, 

the user-independent metabolic cost minimum (Δ % from ZI) 

and the exo parameters that generated it (k-θ0) were single values 

without any variance. As such, the user-independent approach 
assumes a ‘generic’ average user, and effectively smooths differ- 
ences between participants, keeping only the major trends across 
participants intact. 

 
F. Statistical Analyses 

We set out to examine whether the metabolically optimal hip 

exo parameters could reduce gross metabolic rate compared to 

zero-impedance (ZI) at each walking speed (Hypothesis 1); and 

whether the optimal exo parameters were different for different 

speeds (Hypothesis 2). Hypothesis 1 was tested using three 

separate within-speed, one-factor repeated measures ANOVA 
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Fig. 3. Metabolic benefit and optimal hip exoskeleton impedance parameters (k − θ0) across walking speed. (a) Optimal metabolic benefit (Δ% 

change from zero-impedance (ZI)) for each walking speed. User-dependent values (black) are mean ± SD taken from the fit to each individual 
participant’s metabolic cost landscape (see Supp. Fig. 1). User-independent value (dark gray) is taken from the grid point that yielded the minimum 
Δ metabolic rate from ZI for the metabolic cost surface fitted to the across-participant average data (hence no SD). Validation values (light gray) 
are from a follow-up test session using each participant’s user-dependent minimum metabolic cost parameter set (k- θ0) at each speed. (b) Optimal 

exo stiffness, k, (Nm/rad) and C. equilibrium angle, θ0, (%P2P) for each walking speed (m/s). User-dependent (black) and user-independent (dark 
gray) follow same convention as A. Statistically significant differences per speed from ZI are indicated by “#” and difference between conditions per 
speed are indicated by “∗”. 

 

analyses (factor: exo condition: ZI, user-ind., user-dep., vali- 

dation) (Fig. 3(a)) with pairwise post hoc comparisons using 

a Bonferroni correction. Hypothesis 2 was tested using a sin- 

gle, two-way ANOVA across speed and exo condition (factors: 

speed: 1.0, 1.3, 1.6 m/s; exo condition: user-ind., user-dep.) 

(Fig. 3(b), (c)). 

A post-hoc linear regression analysis was performed to exam- 

ine the relationship between changes in users’ muscle activity 

and metabolic cost due to exo assistance (i.e., Δ’s from ZI). The 

muscles used in the final linear regression were selected by first 

conducting regressions for each muscle, one-by-one, in a step- 

wise fashion. At each step, the muscle that yielded the highest 

increase in the adjusted r-squared of the overall fit was added to 

the regression (akin to sequential forward selection), yielding an 

ordering that produced the highest combined adjusted r-squared 

fit. This process was repeated until all eight recorded muscles 

were used in the regression (Fig. 6, top). The combination of 

four muscles with the highest total adjusted r-squared fit was 

used for further analysis. We constrained the linear regression 

to have positive coefficients for each muscle; however, the value 

of the bias term was unconstrained. The participant-average fit 

equation, r-square, and p-value were computed using the fitted 

change in muscle activity vs. change in metabolic cost data at 

each walking speed (Fig. 6, bottom). 

 
III. RESULTS 

A. Metabolic Cost 

Gross metabolic rate was significantly reduced with optimal 

semi-active hip exoskeleton impedance control settings (k-θ0) 

for all walking speeds during sweep sessions, but not in the 
validation session (Fig. 3). During parameter sweep sessions, 

when compared to the zero-impedance (ZI) condition, user- 

dependent optimal parameters reduced gross metabolic rate from 

ZI by (mean ± standard deviation): −9.1 ± 5.7% (p < 0.001) 

at 1.0 m/s, −12.2 ± 5.2% (p < 0.001) at 1.3 m/s, and −9.7 ± 

3.7% (p < 0.001) at 1.6 m/s. (Fig. 3(a) (black), Supp. Fig. 1) 

User-independent analysis indicated smaller but still significant 

metabolic reductions from ZI at all but the fastest walking speed: 

−6.5 ± 4.7% (p = 0.021) at 1.0 m/s, −9.8 ± 1.3% (p = 0.001) 

at 1.3 m/s, and −5.4 ± 5.5% (p = 0.098) at 1.6 m/s (Fig. 3(a) 

(dark gray), Fig. 5, right column). 

Direct comparison of optimal hip exoskeleton impedance 

parameters indicated larger reductions in metabolic rate for the 

user-dependent versus user-independent settings for the fastest 

but not the slower speeds: p = 0.054 at 1.0 m/s, p = 0.115 at 

1.3 m/s, and p = 0.027 at 1.6 m/s (Fig. 3(a), black versus dark 

grey). 

During the validation test sessions (i.e., a re-test of each user’s 
speed-dependent best exoskeleton parameters from sweeps (see 

Supp. Fig. 1)), we found no significant reduction in gross 

metabolic rate from ZI at any walking speed: −2.1 ± 4.2% (p 

= 1.00) at 1.0 m/s, −4.0 ± 6.7% (p = 0.65) at 1.3 m/s, and 4.5 

± 5.7% (p = 0.24) at 1.6 m/s. 

 

 
B. Metabolically Optimal Exoskeleton Impedance 

Control Parameters 

The hip exoskeleton impedance control parameters (k-θ0) 

that minimized metabolic rate were highly variable across 

participants and showed no significant differences across 

walking speed (Fig. 3(b) & (c); Fig. 5, right column; Supp. 

Fig. 1). 
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Fig. 4. Muscle activity time-series for the hip exoskeleton impedance parameters (k − θ0) with the lowest (best) metabolic cost and zero impedance 

(no assistance or resistance applied to the user). Representative gait cycle (0% heel strike, 60% end stance, to 100% end swing) averaged muscle 
activity taken from surface electromyography records for Participant 9 during the 1.3 m/s exo parameter sweep session. Black curves are from the 

zero-impedance condition and red curves are from the condition with exo parameters that were metabolically optimal (k = 120 Nm/rad and θ0= 13% 
P2P). Muscle activity was recorded from 8 lower limb muscles (ordered from distal-to-proximal, anterior-to-posterior): tibialis anterior (TA), medial 
gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), gluteus maximus (GMa), and gluteus medius 
(GMe). The optimal assistance strategy showed reduced hip and knee extensor (e.g., GMa, BF, and VM) activity in early stance and reduced hip 
flexor activity in early swing (e.g., RF) as well as reduced plantarflexor activity at push-off (e.g., SOL and MG). 

 

Optimal stiffness (k) ranged between 40–80 Nm/rad (User- 
dependent (mean ± standard deviation): 44.60 ± 23.01 Nm/rad 

at 1.0 m/s; 61.75 ± 36.45 Nm/rad at 1.3 m/s and 73.20 ± 35.45 

Nm/rad at 1.6 m/s) and increased with walking speed, albeit 

insignificantly (ANOVA: p = 0.101) (Fig. 3(b), black; Fig. 5, 

right column). Optimal equilibrium angle (θ0) was relatively 

constant around 20% of the peak-to-peak hip angle range of 

motion (User-dependent: 22.4 ± 13.9 at 1.0 m/s; 20.4 ± 7.6 at 

1.3 m/s and 18.1 ± 9.43 at 1.6 m/s) and tended to decrease (i.e., 
became more extension biased) with increasing walking speed 

(ANOVA: p = 0.707) (Fig. 3(c), black; Fig. 5, right column). 

The significant amount of variability between participants 

for both optimal stiffness (k) (Fig. 3(b), Supp. Fig. 1) and 

equilibrium angle (θ0) (Fig. 3(c), Supp. Fig. 1) was reflected 

in differences between user-dependent and user-independent 

optimal values, especially for stiffness (k) at low walking speeds 

(Fig. 3. black vs. dark grey bars). 

 

C. Muscle Activity 

Muscle activity was reduced for a subset of muscles, local 

to the assisted joint, by metabolically optimal semi-active hip 

exoskeleton impedance control settings (k-θ0) for all walking 

speeds (Figs. 5, 6, bottom). Representative time-series data show 

that reductions in muscle activity were driven by the hip and 

knee extensors (GMa, BF, and VM, respectively) early in the 

gait cycle, the hip flexors in early swing (RF) and the ankle 

plantarflexors (MG, SOL) at push-off. (Fig. 4). 

Stepwise, iterative regression analysis revealed that only the 

four most significant muscles were necessary to characterize the 

relationship between changes in metabolic cost and changes in 

muscle activity, as the adjusted r-squared value did not mean- 

ingfully increase when more than four muscles were included 

in the model (Fig. 6, top). 

The muscles that most influenced predicted changes in 

metabolic rate from changes in muscle activity due to hip ex- 

oskeleton assistance depended on walking speed. Iterative linear 

regression indicated: GMa, BF, VM, GMe at 1.0 m/s; BF, VM, 

RF, and GMe at 1.3 m/s; and BF, GMa, VM, and SOL at 1.6 m/s 

(Fig. 6, top). BF and VM were present at all speeds; GMa and 

GMe present at 2 speeds each. 

Participant average fits of the 4 ‘best’-muscle linear regression 

models indicated a significant relationship (p < 0.0001) between 

changes in muscle activity and changes in gross metabolic rate 
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due to hip exoskeleton impedance control when compared to 

zero-impedance (ZI) for all walking speeds (Fig. 6, bottom). 

Correlations were strong at all speeds with r-squared values of 

0.65, 0.88 and 0.70 at 1.0, 1.3 and 1.6 m/s, respectively. 

 
D. Data Archive 

The study data set can be found at: https://sites.gatech.edu/ 

hpl/archival-data-from-publications/. 

 
IV. DISCUSSION 

We used a lab-based emulator to evaluate a semi-active 
hip exoskeleton concept (i.e., motor, spring, clutch system) 
(Fig. 1) and measured the physiological response of human 
users to examine whether: (i) optimal impedance settings (spring 

stiffness, k and equilibrium angle, θ0) could reduce metabolic 

cost across a range of walking speeds (1.0–1.6 m/s), and (ii) 

whether impedance settings (k, θ0) for metabolically optimal 

performance depended on walking speed (Fig. 3). 

First, we hypothesized that walking with a hip exoskeleton 

using metabolically optimal impedance settings (k, θ0) would 

provide metabolic benefit compared to zero-impedance (ZI) 

mode at each speed. Indeed, the user-dependent parameter set 

with the lowest metabolic cost provided significant benefit that 

ranged from 9-12% depending on walking speed (Fig. 3(a), 

Supp. Fig. 1). Second, we hypothesized that the metabolically 

optimal impedance parameters (k, θ0) would change across 

walking speed, mirroring physiological increases in hip joint 

quasi-stiffness and peak extension moment with speed [15]. 

Trends in our data supported this idea, as the optimal stiffness 

(k) increased from ∼40 N-m/rad to ∼80 N-m/rad (Fig. 3(b)) 

and the optimal equilibrium angle θ0 decreased from >20% to 

<20% of the P2P hip angle (i.e., larger extensor torque bias) 

(Fig. 3(c)) as speed increased from 1.0 to 1.6 m/s. 

Optimal hip exoskeleton impedance parameters (k, θ0) fol- 

lowed observed trends in biological moments and quasi-stiffness 

observed in humans walking at faster and faster speeds. Phys- 

iological hip moments increase in both extension and flexion 

with increasing walking speed [10], [52]. This increase in peak- 

to-peak moment is accompanied by an increase in the flexion 

quasi-stiffness of the joint, or the ratio change in hip joint 

moment to change in hip joint angle during early swing [7]. 

Our metabolically optimal hip exo stiffness (k) also increased 

with speed, causing higher peak flexion and extension hip exo 

assistance torques. Similar trends have been reported for passive 

elastic ankle exoskeletons, where the metabolically optimal 

stiffness also follows physiological changes in ankle joint quasi- 

stiffness with increasing walking speed [9], [20]. More broadly, 

these results suggest that semi-active exoskeletons design that 

rely on spring-like elements might be nominally set to match 

trends in the physiological quasi-stiffness of the target joint 

across locomotion modes (e.g., surface incline, or roughness). 

Conversely, human-in-the-loop optimizations of powered (not 

semi-active) exoskeletons to maximize metabolic cost savings 

while walking has shown that non-physiological torque profiles 

are optimal for each lower-limb joint [5], [9], [45], [53]. Perhaps 

semi-active devices, with both powered and passive elements, 

should take inspiration from both physiological and optimized 

torque/impedance information to provide the most benefit to 

users. 

Notably, speed dependent shifts in optimal hip exoskeleton 

impedance parameters (for k or θ0) did not reach statistical 

significance. This was mostly because of high variability in 

optimal impedance settings between participants (Fig. 3(b), (c); 
Supp. Fig. 1), and highlights the potential importance of focusing 

on tuning exo control parameters to each individual user to 

maximize performance (i.e., user-dependent controller settings). 

Indeed, differences between hip exo impedance parameter (k, 

θ0) - metabolic cost landscapes derived using a user-dependent 

(i.e., per-each individual, or customized) (Supp. Fig. 1) versus a 

user-independent (i.e., averaged across-individuals or general- 

ized) (Fig. 5) analysis approach points to the potential benefit of 

tuning assistance to each unique user (i.e., personalized control). 

For example, for the metabolically optimal stiffness (k), the 

user-dependent values increased steadily with walking speed 

while the user-independent values only appeared to increase at 

1.6 m/s (Fig. 3(b)). This suggests that the effect of increased 

stiffness (k), (i.e., higher hip exo torque for both flexion and 

extension) did not yield a large generalized metabolic benefit 

for most users across speed, but instead, a subset of users 

benefited greatly from increased stiffness (k), when moving 

from 1.0 to 1.3 m/s (Supp. Fig. 1, Participants 4, 7, 8, 9). 

Thus, using a semi-active device hip exo with stiffness tuned for 

the average user (i.e., user-independent) at intermediate speed 

would leave some users with a glaring lack of metabolic ben- 

efit. Indeed, user-dependent assistance tended to provide more 

metabolic benefit than user-independent stiffness at every walk- 

ing speed (Fig. 3(a)). Other studies comparing user-dependent 

(customized) vs. user-independent (generalized) torque profiles 

with powered ankle exoskeletons also show increased benefits 

from a user-dependent approach - both for increasing pre- 

ferred walking speed [54] and reducing metabolic cost [5], [45] 

compared to a user-independent ‘one-size-fits all’ approach. 

Taken together, these data suggest that perhaps commercial 

exoskeletons could apply a generalized ‘best’ assistance profile 

for ‘out-of-the-box use’ but that control settings should then be 

customized per user to provide highest possible benefit. 

Muscles ultimately consume the metabolic energy that moves 

us, and exoskeletons reduce metabolic cost principally by re- 

ducing muscle force and activation [55]–[57]. Our data strongly 

support this idea, as changes in activity of the lower-limb mus- 

cles had strong correlation with changes in metabolic cost due to 

torque assistance from our semi-active hip exoskeleton concept 

(Figs. 5, 6). The strength of the fits from our linear regression 

analyses at all walking speeds (Fig. 6, bottom) supports the valid- 

ity of using a multi-channel surface electromyography (EMG) 

approach to model metabolic cost of exoskeleton users rather 

than direct measurements via indirect calorimetry [58], [59]. 

Using changes in EMG as a proxy for changes in metabolic 

cost could allow for faster on-line tuning of exoskeletons control 

parameters than what is offered by traditional human-in-the loop 

approaches. 

Changes in activity of the muscles spanning the hip joint 

(e.g., GMa, GMe, BF, RF) were shown to be most significant 

https://sites.gatech.edu/hpl/archival-data-from-publications/
https://sites.gatech.edu/hpl/archival-data-from-publications/
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Fig. 5. User-independent changes in muscle activity and metabolic 

cost across hip exoskeleton impedance parameter space (k-θ0): Across- 
participant averaged (i.e., user-independent) multidimensional polyno- 
mial fits to sampled percentage change (red = increase; blue = de- 
crease from the zero-impedance (ZI) condition) for each exoskeleton 
impedance parameter setting (a 5x6 stiffness (k) vs. equilibrium angle 

(θ0) grid space) at each walking speed (1.0 m/s (top row), 1.3 m/s, 
1.6 m/s (bottom row)). Columns represent different outcome measures. 
(Left) Total muscle activity from the muscle with the best linear re- 
gression fit to metabolic cost (Best Muscle), (Middle) Linear regression 
fit using the 4 muscles with the best combined fit to metabolic cost 
(Linear Regression), and (Right) metabolic cost. The muscles selected 
per speed for the Best Muscle and Linear Regression fits can be found 
in Fig. 5 top row. The method of selecting muscles for the linear re- 
gressions is discussed in Section II-E. In general, a semi-active hip 
impedance controller with low stiffness and equilibrium angle working 
at an intermediate walking speed had the most benefit. Study-wide, 
changes in muscle activity corresponded well with changes in metabolic 
rate. 

 
 

 
in predicting changes in metabolic cost (Fig. 5, top); perhaps 

not surprising given the primary action of the exo is about the 

hip. Indeed, many other studies have shown that when robotic 

exoskeletons target the knee or ankle joint, the muscles that are 

more closely associated with those joints tend to respond most 

and drive changes in users’ metabolic cost [8], [60], [61]. How- 

ever, it is interesting to note that hip assistance also helped reduce 

activity in the knee extensors (VM) during early stance and the 

plantarflexors (SOL, MG) in late stance (Fig. 4), re-emphasizing 

results from previous studies showing that exos at the hip [62] 

and ankle [63] can have non-local effects on muscle effort. 

Metabolic benefit shown for optimal semi-active hip ex- 

oskeleton parameters (k, θ0) of the metabolic cost landscape 

across parameters from the comprehensive sweep sessions did 

not transfer to the validation session for any walking speed 

(Fig. 3(a)). We believe the lack of translation was due to the 

limited time given for re-habituation to optimal exoskeleton 

assistance from the sweep sessions at each walking speed. 

Habituation to exoskeleton assistance can occur in as little as 

20 minutes [8], [44], [64], [65] but on average probably takes 

much longer, especially for metabolic rate to reach a new-steady 

state [45]. Much less is known about how habituation persists 

across multiple use-sessions separated by a significant time 

(i.e., retention form one session to another) and/or how long is 

needed to re-habituate. Our results provide some evidence that 

re-habituation may be crucial. One could posit that our results 

from the sweep session were biased by measurement noise inher- 

ent when using indirect calorimetry to measure metabolic rate 

and further exacerbated by 2-minute estimations of steady-state 

cost, rather than effects of the exoskeleton control parameters 

themselves. To avoid this problem, we fit a multi-polynomial 

surface to the change in metabolic rate versus zero-impedance 

(ZI) across the grid of exoskeleton impedance parameters (k, 

θ0), and then selected the optimal parameters based on the 

estimated metabolic minimum of the fit. Thus, the optimal set 

(k, θ0), was influenced by all data points in the measurement 

set that generated fitted surface, decreasing bias from outliers 

and/or measurement noise (assumed to be normally-distributed). 

Further, the difference in metabolic rate from ZI for our op- 

timal parameter sets is much larger than the noise associated 

with measures of metabolic rate from indirect calorimetry [50], 

[66]. Strong correlations between changes in metabolic cost 

and changes in muscle activity (R2 = 0.52-0.78) provide some 

physiological evidence that our measured changes were due to 

the exoskeleton and not measurement noise or bias. 
Our study was not without some limitations. First, our hip 

exoskeleton end effector hardware was designed to handle over 

200 Nm of torque applied at the hip [41]. Considering this, the 

added mass of the exoskeleton was much larger than what would 

be expected for a portable, autonomous semi-active version 

of the device. To accommodate for this difference, we com- 

pared gross metabolic rate in active impedance trials to that 

of wearing the exoskeleton in zero-impedance (ZI) mode, but 

we note that the bulk of the emulator may have affected the 

measured metabolically optimal assistance parameters (k, θ0) 

themselves. Second, our emulator did not perfectly reproduce 

the semi-active device due to safety adjustments made to the 

onset of extension torque and imperfect torque tracking. As 

mentioned in Section II-A, we implemented a ramp function 

to decrease the speed of extension torque onset from ZI mode 

as some pilot users found this uncomfortable. The consequence 
of this ramp was decreased peak extension torques. Root-mean- 

squared-error of torque tracking across conditions was ∼3 Nm, 

which equated to <15% of peak-to-peak torque. We believed 
this was reasonable to conduct the study as torques generally 

followed the desired passive spring torque, but we acknowledge 

this does not perfectly emulate the proposed semi-active de- 

vice. Last, this study was conducted on a treadmill rather than 

overground, which could have limited user adaptation via free 

adjustments in walking speed. Exoskeleton assistance has been 

shown to alter preferred walking speed along with changes in 
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Fig. 6. Association between changes in users’ lower-limb muscle activity and metabolic cost across hip exoskeleton impedance parameter space 
(k-θ0): (Top) Participant average r-squared and adjusted r-squared values produced in an iterative regression process, relating changes in gait 
cycle averaged muscle activity (%) and changes in gross metabolic rate (%) compared to the zero-impedance (ZI) condition. On the x-axis, the 
muscles included in the model are cumulative from left to right, so that each muscle’s plotted r-squared point corresponds with a model that also 
includes all muscles in the preceding columns. Data are separated by walking speed (1.0 m/s, 1.3 m/s, 1.6 m/s form left to right). (Bottom) Linear 
regression fits using the four most significant muscles (i.e., four ‘best’ fits) per participant (colored lines) and the averaged across participants (black 
lines) for walking at 1.0 m/s, 1.3 m/s, and 1.6 m/s (left to right). Grey boxes highlight the areas in which there was a reduction in metabolic rate with 
respect to the corresponding zero-impedance (ZI) trial. Study-wide, changes in muscle activity corresponded well with changes in metabolic rate 
and participants who derived metabolic benefit had reduced muscle activity, especially at faster walking speeds. 

 

metabolic cost [24], [54]. Thus, it is possible that metabolic 

benefits could be higher for walking speeds outside the range we 

tested. future studies could explore optimizing the global cost 

of transport (i.e., energy consumption per distance travelled), 

where both metabolic rate and preferred walking speed can 

equally contribute. This scenario might better represent user 

behavior outside of the lab, as humans tend to select their 

preferred walking speed to minimize cost of transport [67] in 

real-time [68], [69]. In our future work, rather than using an in 

the lab emulator to perform brute force exoskeleton controller 

parameter sweeps during treadmill walking at fixed speed, we 

plan to conduct optimizations using autonomous devices outside 

the lab under real-world conditions that better represent an 

average user’s daily activities. 

 

V. CONCLUSION 

A tethered hip exoskeleton emulating semi-active hardware, 
via spring-like impedance control, can reduce metabolic cost 

by up to ∼10% compared to zero-impedance (ZI) across func- 

tional walking speeds (1.3–1.6 m/s). Stiffer springs, with an 
equilibrium angle set to provide higher magnitude hip extension 

assistance throughout more of the gait cycle, tended to per- 

form better at faster walking speeds. Tuning impedance control 

parameters to each individual user and longer training periods 

are likely to further improve performance. Local muscle activity 

(e.g., glutes, hamstrings) could be an important physiological 

input as a proxy for metabolic demand for online optimization 

of controller parameters to continuously minimize metabolic 

cost during unstructured, ‘real-world’ locomotion. This paves 

the way and provides crucial guidance for developing energy 

efficient, portable semi-active assistance strategies at the hip 

across walking speed. 
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