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Abstract—Autonomous lower-limb exoskeletons must 
modulate assistance based on locomotion mode (e.g., 
ramp or stair ascent) to adapt to the corresponding 
changes in human biological joint dynamics. However, cur- 
rent mode classification strategies for exoskeletons often 
require user-specific tuning, have a slow update rate, and 
rely on additional sensors outside of the exoskeleton sen- 
sor suite. In this study, we introduce a deep convolutional 
neural network-based locomotion mode classifier for hip 
exoskeleton applications using an open-source gait biome- 
chanics dataset with various wearable sensors. Our ap- 
proach removed the limitations of previous systems as it 
is 1) subject-independent (i.e., no user-specific data), 2) ca- 
pable of continuously classifying for smooth and seamless 
mode transitions, and 3) only utilizes minimal wearable sen- 
sors native to a conventional hip exoskeleton. We optimized 
our model, based on several important factors contribut- 
ing to overall performance, such as transition label timing, 
model architecture, and sensor placement, which provides 
a holistic understanding of mode classifier design. Our 
optimized DL model showed a 3.13% classification error 
(steady-state: 0.80 ± 0.38% and transitional: 6.49 ± 1.42%), 
outperforming other machine learning-based benchmarks 
commonly practiced in the field (p<0.05). Furthermore, our 
multi-modal analysis indicated that our model can main- 
tain high performance in different settings such as unseen 
slopes on stairs or ramps. Thus, our study presents a novel 
locomotion mode framework, capable of advancing robotic 
exoskeleton applications toward assisting community am- 
bulation. 
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I. INTRODUCTION 

HE field of robotic exoskeletons has grown to a great extent 

and has shown the potential to improve people’s quality of 

life through enhanced human mobility [1], [2]. Exoskeletons 

augment the user with external assistance and improve the 

user’s gait functions, such as reducing the energetic demand [3], 

[4] and increasing preferred walking speed [5]. In particular, 

hip exoskeletons show great promise due to the hip joint’s 

contributions to a wide range of locomotor tasks [6]. During 

community ambulation, humans change their hip dynamics with 

changes in locomotion mode (e.g., level-ground, ramp ascent, 

etc.) [7]–[9]. To account for these changes in biological joint 

torque demand, previous research studies have optimized torque 

assistance profiles for specific locomotion modes to improve 

human ambulation [10]–[12]; however, this drives the need for 

a system able to detect the user’s locomotion mode to trigger 

a change in exoskeleton assistance. Currently, commercially 

available systems use inconvenient or unintuitive methods to 

detect the user’s locomotion mode online (e.g., clicking a manual 

button on a hand-held controller) [13], [14]. Instead, detecting 

this environmental information for these exoskeletons should be 

natural, automatic, and seamless. Thus, to provide effective and 

continuous assistance during various locomotion mode changes 

(e.g., ambulating over an outdoor terrain), an accurate under- 

standing of the user’s locomotion mode is important. 

Several autonomous classification strategies have been intro- 

duced to detect the user’s locomotion modes using different 

wearable robotic platforms [15]–[32]. Most of these studies have 

originated from robotic prosthesis applications [15]–[24], but 

recent studies have started to expand their approach to exoskele- 

tons [27]–[32]. Often these methods leverage machine learning 

(ML) techniques, utilizing different types of sensors from both 

the user and the device. For robotic hip exoskeletons, Long 

et al. proposed an online SVM-based model to identify different 

locomotion modes in real-time for exoskeletons [27]. However, 

the study was limited as it required additional distal sensors 

in the user’s shoes, which may not be feasible for a hip ex- 

oskeleton. Additionally, the model had up to 30% of gait phase 
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identification delays during level-ground to descent mode transi- 

tions, which can lead to suboptimal exoskeleton assistance. Kim 

et al. presented a kinematic-based mode classifier using two- 

layer decision trees for exoskeletons [26]. However, this classi- 

fier only updated locomotion mode during the mid-stance of the 

gait cycle, which can also delay the overall prediction during a 

mode transition period. Wang et al. developed an LSTM-based 

neural network model to recognize five locomotion modes, 

including sit/stand, level-ground, and stair ambulations [28]. 

However, the study was limited as the model was not trained to 

classify ramp setting, which is one of the key locomotion modes. 

Zhong et al. utilized a combination of a shank-mounted inertial 

measurement unit (IMU) and a camera to detect different envi- 

ronmental contexts [33]. Similarly, Laschowski et al. presented a 

vision-based environmental mode recognition system including 

level-ground and stair locomotion using a deep neural network 

achieving a 5% overall classification error [30]. However, similar 

to other studies, it required external sensors and only classified 

a limited set of locomotion modes. 

While these studies have provided foundational information 

toward developing a mode classifier for robotic hip exoskele- 

tons, several limitations are halting the field to move forward. 

First, there is a lack of understanding in developing a con- 

tinuous mode classifier (e.g., prediction of mode based on a 

sliding window of sensor input at a fast frame rate). Discrete 

classification (often done to yield high classification accuracy) 

inherently delays the mode prediction time (typically by half a 

gait cycle), inducing a lag in the assistance profile, which can 

lead to suboptimal human-exoskeleton performance (especially 

during mode transitions). Second, there is inadequate informa- 

tion about developing a user-independent classification strategy. 

User-dependent models require cumbersome manual tuning on 

a user-specific basis which may not be feasible for real-world 

applications. Finally, there is a lack of exploration in applying the 

state-of-the-art deep learning (DL) algorithms for locomotion 

mode classification. The majority of these studies have only 

exploited a certain algorithm (often tailored to the researcher’s 

preference) that fits specifically to its targeted application. This 

can potentially induce a bias in evaluating the algorithm’s overall 

effectiveness. Thus, a more in-depth analysis of DL algorithms in 

multi-perspective evaluation, that resembles real-world settings, 

is vital to help researchers develop a classifier that is translatable 

to exoskeletons available on the market. 

Our central hypothesis was that a DL-based model would have 

a lower classification error than the models using conventional 

ML learning techniques when developing a subject-independent 

and continuous mode classifier. The underlying rationale for im- 

proved performance was that the deep neural network leverages 

an end-to-end approach. The model architecture includes a fea- 

ture engineering stage during the training process, enabling the 

model to further extract relevant representation for mode clas- 

sification, which is inherently limited by conventional manual 

feature extraction. Moreover, these models can take advantage 

of a large dataset during the training process to generalize across 

different subjects. We designed a deep convolutional neural net- 

work (CNN) utilizing a dataset from human gait biomechanics 

with wearable mechanical sensors (sensors providing kinematic 

information) while mimicking different locomotion settings [9]. 

The key contribution of this study is that it provides a holistic 

design guideline to develop a DL-based classifier that can detect 

the user’s locomotion mode for robotic hip exoskeleton appli- 

cations. A fundamental limitation in the current literature is that 

studies are often specifically tuned based on the study design, 

and key information such as type of algorithm, optimal sensor 

suite, model architecture, and data processing techniques and 

their effect on classification error were not explored formally. 

This greatly limits the capability of understanding the feasibility 

of deploying a classifier to an exoskeleton system in the real- 

world. Furthermore, our study is novel as we mainly focused 

on developing a framework for the hip joint where designing 

a classifier using only proximal sensors is a challenging task. 

Using our multi-perspective analysis that is translatable to other 

hip exoskeleton platforms, future exoskeleton designers can 

efficiently plan and develop systems that can robustly classify 

the user’s locomotion mode for a fully autonomous system in a 

more realistic setting, such as outdoor locomotion. 

 
II. DATA PREPARATION 

A. Human Subject Locomotion Dataset 

Our study utilized a publicly available open-source dataset 

collected by our group [9]. The study was approved by the 

Georgia Institute of Technology Institutional Review Board and 

informed written consent was obtained for all subjects. Twenty 

able-bodied participants (11 males/9 females) with the age of 

21.2 ± 3.1 years, the height of 1.70 ± 0.08 m, and the body 

mass of 67.64 ± 11.56 kg were asked to walk on an in-lab 
height-adjustable terrain park (Fig. 1(a)). The terrain park con- 

sisted of 5 different locomotion settings, including level-ground 
(LG), ramp ascent (RA), ramp descent (RD), stair ascent (SA), 
and stair descent (SD). The terrain park setting was adjusted and 

set to four different ramp inclines of 7.8◦, 9.2◦, 11◦, and 12.4◦ 

and four different stair heights of 10.2 cm, 12.7 cm, 15.2 cm, 

and 17.8 cm (covering the ADA accessibility standards). 

For all locomotion modes, subjects were instructed to walk at 

their self-selected walking speed. For LG, subjects were asked 

to walk over a straight path 6 times, where accel/deceleration 

phases were excluded to only use the steady-state walking 

conditions. For a given ramp incline, subjects were instructed 

to complete a set of 3 trials starting with their right leg and a set 

of 3 trials starting with their left leg for a total of 24 RA trials 

and 24 RD trials. For all ramp and stair conditions (for both the 

ascent and descent mode), subjects ambulated with the following 

locomotion mode order: LG, mode transition, ramp/stair mode, 

mode transition, and LG. Similar to the ramp trials, subjects 

ambulated over a 6-step staircase completing a set of 3 trials for 

each starting leg at a given stair height for a total of 24 SA trials 

and 24 SD trials. A total of 102 trials were conducted per subject 

across 5 locomotion modes. 

 
B. Simulated Sensor Data Generation 

Simulated IMUs from the motion capture data were created 

to simulate different locations on the thigh for nine poten- 

tial placements of wearable sensors (Fig. 1(c)). To generate 

simulated sensor data, we utilized the motion capture marker 
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Fig. 1.  Human subject experiment setup for sensor data collection. 
(a) In-lab height-adjustable terrain park was utilized to simulate differ- 
ent ramp and stair settings. (b) Simulated wearable sensors (encoder 
and IMUs) were located on the subject’s body to represent the user’s 
kinematic information. (c) Using the motion capture marker clusters, 
simulated IMU data were generated at nine different locations on the 
user’s thigh segment. 

 
 

clusters (3 makers per limb segment) that were placed on the 

user’s body during the data collection. Using the scaled OpenSim 

model, gyroscopic data was computed as the rotational velocity 

of each relevant segment (i.e., pelvis, left thigh, and right thigh) 

resulting from the model’s joint kinematics during each trial. 

The accelerometer data was computed as the linear acceleration 

at the specified IMU locations on each of these segments for 

each trial. For both trunk and thigh IMUs, the sensor orientation 

was specified such that the x, y, and z axes referred to the 

axis in vertical, lateral, and longitudinal directions, respectively. 

Using this method, we have replicated other sensor data (hip 

joint encoder and trunk IMU) because we wanted to ensure 

that the sensor noise was consistent across different wearable 

sensors and mitigate any potential confounding factors that 

impose inconsistency in the overall model performance. Our 

final dataset includes 3 wearable sensors: a 2-DOF hip joint 

encoder (sagittal and frontal) and a 6-axis trunk and thigh IMUs. 

 
C. Data Processing 

Unilateral mechanical sensor information from the experi- 

ment and additional thigh IMU data from the simulation were 

used to process the data. The user’s gait phase was calculated 

using linear interpolation between heel strikes from 0% to 100% 

gait cycle, and heel strike was determined from the motion 

capture data as the point of zero linear velocity of the heel marker. 

For ramp and stair ambulations which include transition modes, 

the mode transition point was characterized as the user’s initial 

heel contact with the following mode. Steady-state walking 

conditions at the beginning and end of each ramp and stair trial 

were segmented out for the data to only contain the transition gait 

cycles and desired mode’s gait cycles. Since the instrumented 

leg was right-side for all subjects, each ramp trial included 4 

gait cycles when starting with the left leg and 5 gait cycles when 

starting with the right leg with each transition gait cycle before 

and after the desired mode. Similar to the ramp, each stair trial 

contained 3 to 4 gait cycles depending on the type of starting leg 

and included two transition gait cycles (transition onto and off 

the desired mode). As a result, each processed data contained 

sagittal and frontal encoder data, 6-axis trunk and thigh IMU 

data, gait phase data, and mode labels during the time range of 

interest. After all the data were processed, we have standardized 

each channel data by normalizing each signal to a zero mean and 

unit variance where each subject’s mean and standard deviation 

values were obtained from the entire trial dataset. 

 
III. MODEL IMPLEMENTATION AND OPTIMIZATION 

A. Benchmark Locomotion Mode Classifiers 

To evaluate our DL approach, we also implemented multiple 

benchmark mode classifiers found in the literature [22], [25], 

[27], [31], [34]–[38]: 1) linear discriminant analysis (LDA), a 

standard practice for mode classification that finds a linear com- 

bination of features that separates different classes [39], 2) the 

support vector machine (SVM), a hyperplane that maximizes the 

margin between classes in high dimensional feature space [40], 

3) the multilayer perceptron (MLP), a fully connected feedfor- 

ward artificial neural network with activation functions [41], 

and 4) extreme gradient boosting (XGB), a decision tree-based 

ensemble algorithm with gradient boosting [42] (Fig. 2(a)). To 

ensure a fair comparison between our approach and the bench- 

mark methods, the hyperparameters of each approach were 

optimized using a grid search (See Supplemental Document). 

 
B. Deep Convolutional Neural Network-Based Classifier 

DL techniques have several advantages over the conventional 

ML algorithms [43]. Mainly, deep and complex architectures in 

the neural network can have a rich feature representation that 

is not feasible in the traditional hand-engineered feature extrac- 

tion. Additionally, deep architecture is beneficial for learning 

complex, intersubject representations that may not be possible 

under standard ML architectures. For CNN, we have explored 

different hyperparameters optimization routines. The baseline 

architecture of our CNN model was adopted from our previous 

study that utilized a CNN-based model for a robotic exoskeleton 

for gait phase estimation [44]. For CNN, a model optimization 

process was performed where the input window size was swept 

across a range from 300 ms to 1000 ms with a 100 ms increment. 

The CNN model was trained with the same number of epochs and 

stopping criteria as the MLP. For hyperparameters, the number 

of convolution layers (1 to 10), kernel size (50 ms, 100 ms, 

and 150 ms), activation function (tanh, ReLU, and sigmoid), 

and the dense layer’s optimizer (SGD, Adam, and RMSprop) 

were searched. Our finalized CNN model had 5 convolutional 

layers with an input window size of 500 ms and a kernel size 
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Fig. 2. (a) Conventional machine learning model pipeline for locomotion mode classification. During ambulation (level-ground, ramp as- 
cent/descent, and stair ascent/descent), the user’s kinematic information is logged from wearable sensors (joint encoder and IMUs). Five 
time-domain features are extracted from each sensor channel with a defined window size. Final feature sets are utilized as input to relevant 
machine learning models to classify the user’s current locomotion mode. (b) Subject-independent continuous locomotion mode classification using 
a deep convolutional neural network. Information from time-series data from different wearable sensors is captured continuously with a defined 
input window. Five convolutional layers with a fully connected dense layer extract relevant features and map the raw sensor data to five locomotion 
modes. 

 

of 50 ms (Fig. 2(b)). Each convolutional block consisted of a 

convolutional layer, batch normalization layer, a 20% dropout, 

and an activation layer (final activation being ReLU). Following 

the convolutional block, a flatten layer and a fully connected 

dense layer (1 hidden layer with an Adam optimizer). For the 

hidden layer at the end, the number of hidden nodes was half of 

the output size from the last convolutional layer (28 nodes). 

 
IV. MODEL PERFORMANCE COMPARISON 

During the validation phase, we wanted to evaluate our model 

in four scenarios that represent the model’s capacity for real-time 

implementation: 1) model’s definition of mode transitions, 2) 

model’s generalizability to novel environments, 3) exoskeleton’s 

sensor placement, and 4) model’s response to sensor signal dis- 

connection. We focused on analyzing these cases because they 

are practical considerations for implementing a mode classifier 

in real-time, but often are never discussed or evaluated in prior 

studies in the literature. With our fully optimized hyperparame- 

ters, we have trained our subject-independent locomotion mode 

classifier for all five algorithms. LDA and SVM were trained 

using a Scikit-learn library, MLP and CNN were trained using 

Keras with a TensorFlow backend, and XGB was trained using 

the XGBoost library all based on Python 3.8. 

 
A. Effect of Locomotion Mode Transition Label 

A transitional gait cycle is a single gait cycle (with heel contact 

denoted as 0%) that includes a transition period between two 

different locomotion modes. Typically, since the intent recogni- 

tion system focuses on the prediction of mode changes, ground 

truth labeling of two modes within this gait cycle is defined 

sometime during the swing phase of the gait cycle prior to heel 

contact on the new surface. This labeling process is critical 

because, depending on how the mode transition label is defined 

(e.g., transition happening in early swing vs late swing), the 

overall classification error can change substantially. Ideally, the 

transition label is set as early as possible (i.e., close to toe-off) 

without sacrificing the overall model performance. For our initial 

model optimization sweeps, we have fixed the transition label 

to occur during mid-swing (80% of the gait cycle) to ensure our 

model comparison procedure is consistent. 

An important analysis in our study was to evaluate the effect 

of shifting the mode transition label on the overall classifier’s 

performance. To achieve this, we have systematically swept the 

entire gait cycle during the locomotion mode transition. We have 

defined the transition stride to perform this sweep as the previous 

mode’s toe-off (0%) to the next mode’s toe-off (100%) with a 

10% phase increment. We have further investigated the model’s 

classification error by separating it into steady-state (error within 

a single steady locomotion mode) and transitional error. 

 
B. Generalization to Different Terrain Settings 

Generalizability of the model’s performance across other 

terrain conditions such as different slope inclines is a critical 

factor in designing a robust mode classifier. We have evaluated 

our model’s performance on the data with a withheld terrain 

condition that was not included in the training dataset. During 

this analysis, we have validated the model’s classification error 

with leave-one-terrain-setting cross-validation for both ramps 

and stairs across all subjects. 

 

C. Effect of Thigh IMU Sensor Location 

A physical location of a thigh IMU on a robotic exoskeleton 

varies heavily depending on the developer’s design principles. 
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TABLE I 

CONTINUOUS LOCOMOTION MODE CLASSIFICATION RESULTS 

 

* represents a statistical difference between the CNN and MLP, XGB, and SVM, 

respectively (p < 0.05). † represents a statistical difference between the LDA and other 

models (p < 0.05). All results are represented as mean ± 1 standard deviation across 

all subjects. 

 

 

As the effect of an IMU location on mode classification is un- 

known, we have explored this by evaluating our classifier’s per- 

formance using different thigh IMU placements. As noted above, 

we have simulated the thigh IMU sensor data at nine possible lo- 

cations (proximal/original/distal and anterior/lateral/posterior) 

on the subject’s leg. We have validated the model’s steady-state 

and transitional error using this simulated thigh IMU data along 

with original trunk IMU and encoder data. 

 
D. Effect of Sensor Signal Drop 

Sensor or channel signal drop is a common phenomenon 

that can happen in a real-time system potentially due to the 

controller’s data communication failure. We have simulated this 

scenario to evaluate our model’s robustness in maintaining the 

overall classification performance even with a certain sensor 

channel being disconnected. To simulate a sensor signal drop 

scenario, we changed the column (which represents a single 

channel in the sensor) value to 0. This analysis can also be 

representative of a feature importance analysis as the resulting 

performance can relate to which channel drop will cause a 

greater impact on the overall model accuracy. 

 
E. Statistical Analysis 

To test our model performance in different conditions, we 

conducted a two-way repeated measures analysis of variance 

(ANOVA) (α set to 0.05). After ANOVA, we conducted a 

post hoc analysis with a Bonferroni correction for multivariate 

analysis to compute the statistical difference across the 5 models 

(MATLAB R2020b, MathWorks, USA). 

 
V. RESULTS 

A. Optimized Locomotion Mode Classifier Performance 

As shown in Table I, the optimized model had an overall 
classification error across all subjects of 4.20 ± 0.61%, 9.96 ± 

2.32%, 9.69 ± 2.01%, 9.92 ± 2.20%, and 18.93 ± 3.75% for 

the CNN, MLP, XGB, SVM, and LDA, respectively. 

 
B. Locomotion Mode Transition Label 

The best performing transition label was 30%, 50%, 30%, 

30%, and 60% of the gait cycle for the CNN, MLP, XGB, SVM, 

and LDA which corresponded to an overall classification error 

 

 
 

Fig. 3. Effect of locomotion mode transition label. Each model’s clas- 
sification error is presented for both the (left) steady-state and (right) 
transitional gait cycle where the gait cycle is represented from 0% 
(toe-off in the previous mode) to 100% (toe-off in the next mode). 
The error bars represent ± 1 standard deviation and asterisks indicate 

statistical differences (p < 0.05). Only statistical comparisons between 
the optimized transition point and baseline condition are shown. 

 
 

 
Fig. 4. Leave-one-terrain-setting evaluation for different (left) slope 
inclines and (right) stair heights. Results are presented with the overall 
classification errors. The error bars represent ± 1 standard deviation 

and the asterisks indicate statistical differences (p < 0.05). Statistical 
comparisons across different settings are not shown. Only statistical 
comparisons between settings within each model are shown. 

 

 

across subjects for each algorithm of 3.13 ± 0.67%, 7.38 ± 

2.10%, 9.04 ± 2.06%, 9.09 ± 1.99%, and 12.73 ± 3.27%, 
respectively (Fig. 3). For the CNN, the overall classification 

error was reduced by 24.95 ± 13.57% when the transition label 

was optimized compared to the baseline (p < 0.05), with similar 

relative error reductions across the other algorithms. 

 
C. Model Generalization 

For the leave-one-incline-out setting, compared to the slope 
incline inside the range (9.2◦ and 11.0◦), 7.8◦ hold-out condition 

increased the overall classification error by 10.80 ± 4.23% 

and 7.38 ± 6.79% for the CNN and XGB, respectively (p < 
0.05) (Fig. 4). However, no statistical differences were observed 
when compared to the 12◦ hold-out condition. For the leave- 

one-height-out setting, no statistical differences were observed 

for the CNN across all 4 hold-out conditions. For the 10.2 cm 
hold-out condition, the LDA increased the overall classification 

error by 7.91 ± 7.08% compared to other hold-out conditions, 
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Fig. 5. Locomotion mode classifier’s performance with different thigh 
IMU locations (P: Proximal, O: Original, D: Distal & A: Anterior, L: 
Lateral, P: Posterior). The error bars represent ± 1 standard deviation. 

The statistical comparisons across different models are not presented. 

 

 
Fig. 6. Effect of different sensor signal drop on the classifier’s per- 
formance. (Left) Each channel represents a scenario where the cor- 
responding sensor signal was dropped during evaluation. (Right) Five 
common channels significantly influenced the classifier’s performance 
compared to the model with no channel drop. The error bars represent 
± 1 standard deviation and asterisks indicate statistical differences 

compared to the model with no channel drop (p < 0.05). The black 
asterisks indicate a channel where all five models showed significant 
differences. Statistical comparisons across models are not presented. 

 

 

while the XGB only increased the classification error by 6.85 ± 
6.58% compared to the 15.2 cm hold-out condition (p < 0.05). 

 
D. Thigh IMU Location 

For all algorithms, there were no significant differences ob- 

served across different thigh IMU locations (Fig. 5). 

 
E. Sensor Signal Drop 

Across 14 different available sensor channels, 5 channels 

(sagittal hip position, x-axis trunk, and thigh acceleration, z-axis 

thigh acceleration, and y-axis thigh gyroscope) significantly 

increased the overall classification error when dropped, across 

all algorithms (p < 0.05) (Fig. 6). Additionally, the CNN in- 

creased the overall classification error when either the z-axis 

trunk acceleration or gyroscope channel was dropped (p < 0.05). 

On average, when a single channel was dropped (for the ones that 

exhibited significant changes), the overall classification error 

was increased by 19.45 ± 11.69%, 25.65 ± 16.27%, 13.17 ± 

6.20%, 19.30 ± 7.18%, and 17.93 ± 12.75% for the CNN, MLP, 

XGB, SVM, and LDA, respectively (p < 0.05). 

 

VI. DISCUSSION 

Our study introduced a novel approach for classifying the 

subject’s locomotion mode using a deep CNN. While several 

previous literature studies have explored different classification 

methods [22], [27], [31], [37], [38], our proposed framework 

is unique as our model did not require subject-specific train- 

ing/tuning, classified mode continuously through the gait cycle, 

and only utilized proximal sensor information relating to robotic 

hip exoskeleton applications. The final CNN architecture had a 

model complexity of approximately 1.49 megaFLOPs (floating- 

point operations). While the CNN required a greater amount of 

processing time to maintain the same frame rate compared to 

other algorithms (LDA: 2.7 kiloFLOPs, SVM: 55.3 kiloFLOPs, 

XGB: 25.7 kiloFLOPs, and MLP: 7.6 kiloFLOPs), deployment 

to a real-time system is feasible as these FLOPs would be 

converted to less than 1 ms on a conventional microprocessor 

used in a wearable robotics system (e.g., Nvidia Jetson Nano). 

Furthermore, with advanced parallel processing techniques, us- 

ing GPUs on these microprocessors allows for high-performance 

DL inference (e.g., the CNN can be optimized to a more efficient 

inference structure called TensorRT). 

In general, the CNN outperformed the four benchmark meth- 

ods in both the steady-state and transitional periods (p < 0.05). 

Among the benchmarks, the optimized MLP, XGB, and SVM 

exhibited a similar classification performance, where all three 

models outperformed the LDA (p < 0.05), indicating that this 

subject-independent and continuous classification problem is 

not well-resolved by linear methods, unlike discrete dependent 

classification in which LDA has performed well [34]. This 

similarity in the overall performance is potentially due to the 

limitation of the manual feature engineering that the three mod- 

els share. 

Our CNN showed better performance in multiple criteria 

when compared to the current state-of-the-art models in the 

literature [21], [45], [46]. Hu et al. developed an LDA-based 

classifier using different wearable sensors with a 1.43% overall 

classification error [46]. However, the study was limited as the 

model was mode and phase-specific (multiple classifiers being 

trained) and discretely classified within the gait cycle (only on 

toe-off and heel contact). In contrast, our CNN is a single and 

unified model that can continuously classify the user’s mode. Liu 

et al. used an SVM-based classifier for robotic knee exoskeleton 

control [32]. Using only two IMUs, the model showed a 3% 

overall classification error. However, the study was limited as 

the model was user-dependent and did not include ramp modes, 

which tends to have the highest error rates [47]. On the other 

hand, our CNN is able to generalize to a novel user for all 

locomotion modes with similar classification performance. Lee 

et al. designed a CNN-based classifier similar to our design with 

a 1.1% overall classification error [45]. However, the study was 

limited as the system was subject-dependent (the independent 

model had 7.7%) and required a full lower-limb sensor suite 

(e.g., encoder, IMU, and myoelectric signals), which was not 
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the case for our CNN as we focused on developing a subject- 

independent classifier for hip exoskeleton applications. In the 

perspective of using minimal wearable sensors, Laschowski et 

al. developed a deep CNN using a body-worn camera, achieving 

a 5% classification error [30]. The extent of this study showcased 

a greater number of locomotion modes (up to 12 classes) but 

was limited in the overall performance for a feasible real-time 

implementation [48]. These comparable results in the literature 

illustrate that, at least for hip exoskeleton applications, our 

proposed approach sets a new benchmark that is applicable for 

real-time implementation using sensor suites that are viable (i.e., 

only using sensors that are native to a typical hip exoskeleton 

device). 

While previous studies have not validated the classifier’s 

performance to unseen terrain conditions [45], [46], evaluating 

the model’s generalizability is important as this would resemble 

the model’s robustness in the real-world scenario. As expected, 

the CNN outperformed all benchmarks by maintaining a low 

classification error in the leave-one-terrain-setting validation 

for both the ramps and stairs (p < 0.05). The CNN showed a 

greater classification error for the lowest ramp incline compared 

to the inclines in the interpolation region (p < 0.05). This 

phenomenon is due to the hip kinematics between the lowest 

incline RA and LG showing a closer overall pattern (similarly, 

the highest incline RA exhibits a more similar pattern as the 

lowest incline SA) [9]. Likewise, similar trends can be found in 

descent modes (e.g., the lowest incline RD resembling the LG). 

These similarities in the data shape resulted in a misclassification 

where a high incline RA and RD were predicted as SA and SD 

at a higher rate, while a low incline RA and RD were predicted 

as LG at a higher rate. However, a similar classification error 

increase in the extrapolation region was not shown in the leave- 

one-height-out validation on stairs. This is due to the SA and SD 

kinematic patterns being distinctively different compared to the 

other modes. 

The effect of ground truth labeling during the mode transitions 

is often a feature that has not been systematically studied in 

past literature. Our results indicate that the model can further 

improve the classification performance by optimally choosing 

the timing point to shift the transition label during the transition 

stride. Moreover, it was shown that the shift of transition labels 

had an effect on changing the steady-state classification perfor- 

mance. This is because this ‘shift’ in transition (towards either 

direction) forces the model to understand the current mode as 

the next/previous mode even though there’s no resemblance in 

the kinematic patterns (e.g., delayed transition shift forces the 

model to label the next mode into LG even though data shape 

is different). For our CNN, just shifting the transition label by 

10% of the gait cycle (mode transition occurring at late swing or 

90% of the gait cycle) vastly improved the overall performance 

to 3.13% classification error (0.80 ± 0.38% steady-state error 

and a 6.49 ± 1.42% transitional error) compared to the baseline 

error of 4.2% (p < 0.05). 

The effect of a thigh IMU location on classification accuracy 

for placement in a wearable device was a novel analysis of this 

study. However, we did not see any statistical differences in the 

classification error when using a sensor in a certain location. 

We suspect that the minor discrepancies in the classification 

performance across various locations are possibly due to the 

sensitivity difference in the signal range. For example, during 

the swing phase, a distally attached IMU would read a greater 

linear acceleration in the sagittal plane to the wider displacement 

of the limb segment compared to the proximally attached IMU 

and vice-versa during the stance phase. However, this effect was 

simply not strong enough to influence the model significantly, 

and our results indicate that placement location on the thigh is 

relatively inconsequential in designing devices. 

During real-time inference, sensor signal drop can easily 

occur, likely due to communication or sensor failure. This can 

potentially be detrimental to the overall exoskeleton controller 

if the mode classifier is not robust to accommodate such abrupt 

changes in the input data structure. Generally, CNN maintained 

the overall performance even with channel data being dropped. 

However, 5 channels significantly increased the CNN’s overall 

classification error when dropped (p < 0.05). This is because 

these channels represent the limb kinematics in the sagittal plane 

(largest variations in the data distribution), which makes it easier 

for the ML models to learn. One interesting aspect is that the 

CNN had 2 channels (z-axis trunk acceleration and gyroscope) 

in addition to the 5 channels that significantly impacted the 

overall performance when dropped (p < 0.05). While the trunk 

motion shows a minimal change in the overall movement during 

locomotion, the CNN was able to capture these differences to 

effectively leverage them. This is possible as our CNN has deep 

convolution layers that can extract additional features that a 

conventional method cannot. Another important finding is the 

XGB’s robustness in this sensor signal drop. Among the 5 mod- 

els, the XGB has the least amount of performance degradation on 

average when any given channel was dropped. This is due to the 

advantage of the XGB algorithm as it utilizes an ensemble tree 

boosting method, which typically tends to handle missing data 

well, as the penalization of the single-channel input is relatively 

minor in the perspective of a single subtree branch. 

Similar to a sensor signal drop scenario, another common 

event that can induce performance degradation is inherent noise 

in mechanical sensors. While the main purpose of utilizing 

synthetic sensor data was to simulate different sensor locations, 

these artificial signals may not include relevant sensor noise 

that would be captured in a real-world scenario. To ensure our 

model’s robustness to sensor noise, we’ve extended our sensor 

data analysis and evaluated our model performance on a dataset 

with a poor signal-to-noise ratio (SNR). We’ve synthetically 

induced a white Gaussian noise to our sensor channels with an 

SNR ranging from 0 ∼ 30 dB. For the CNN, the performance 

started to degrade with an SNR below 8 dB (overall classification 

error greater than 5%). Considering that a conventional IMU 
used in an exoskeleton (e.g., MPU-9250) has an SNR ranging 

from 30 ∼ 50 dB (which can vary depending on the sensor’s 

clock frequency and sensitivity), our CNN was able to maintain 
its robustness to sensor signal noise. 

There are several limitations to our study. The first is that our 

study only optimized and validated the model performance in an 

offline scenario. While the offline study allowed for a broader, 

in-depth analysis of our model, an online validation (including 
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real-time inference) is needed to fully evaluate the model perfor- 

mance on a hip exoskeleton in the real-world. Another limitation 

is that our study utilized an open-source dataset where the subject 

did not wear an exoskeleton. This limits understanding of the 

model’s generalizability when assistance is provided since the 

user’s kinematics can change depending on the assistance level. 

Also, a literature study showed a possible interaction effect due 

to misclassification (incorrect assistance to the user), potentially 

inducing a shift in the kinematic data causing additional misclas- 

sification, which was not accounted for in this study. However, 

our study is still valuable as it provides the upper bound for 

the locomotion mode classification and provides a meaningful 

guideline to researchers in initially developing a mode classifier. 

Moreover, the fact that our approach is subject-independent has a 

great value as it is the most applicable solution that can positively 

impact the exoskeletons currently available in the market as the 

model can be used as a stock controller without a need for 

any subject-specific fine-tuning. Future work from this study 

should focus on an online validation including data collected 

from a hip exoskeleton and evaluate the model performance 

with active exoskeleton control in real-time (including inference 

time). Additionally, as our study only utilized data from healthy 

young individuals (relatively small data distribution), the effect 

of model performance when translating our approach to other 

clinical populations, such as stroke survivors who exhibit differ- 

ent gait dynamics during locomotion, should be explored. 

 
VII. CONCLUSION 

We demonstrated a subject-independent and continuous loco- 

motion mode classification strategy for a robotic hip exoskeleton 

application. Our framework established a new benchmark in the 

field with an overall accuracy of 3.13% and showcased robust- 

ness in multiple conditions that resembled real-world scenarios. 

Furthermore, our model only utilizes a sensor suite native to a 

conventional hip exoskeleton and can show a great performance 

to a novel user, indicating a direction for translatability of our 

technology to the exoskeletons available in the market. Future 

work from this study will focus on the implementation and online 

validation of our approach using a robotic hip exoskeleton. 
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