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Subject-Independent Continuous Locomotion
Mode Classification for Robotic Hip
Exoskeleton Applications

Inseung Kang
Jonathan Camargo

Abstract—Autonomous lower-limb exoskeletons must
modulate assistance based on locomotion mode (e.g.,
ramp or stair ascent) to adapt to the corresponding
changes in human biological joint dynamics. However, cur-
rent mode classification strategies for exoskeletons often
require user-specific tuning, have a slow update rate, and
rely on additional sensors outside of the exoskeleton sen-
sor suite. In this study, we introduce a deep convolutional
neural network-based locomotion mode classifier for hip
exoskeleton applications using an open-source gait biome-
chanics dataset with various wearable sensors. Our ap-
proach removed the limitations of previous systems as it
is 1) subject-independent (i.e., no user-specific data), 2) ca-
pable of continuously classifying for smooth and seamless
mode transitions, and 3) only utilizes minimal wearable sen-
sors native to a conventional hip exoskeleton. We optimized
our model, based on several important factors contribut-
ing to overall performance, such as transition label timing,
model architecture, and sensor placement, which provides
a holistic understanding of mode classifier design. Our
optimized DL model showed a 3.13% classification error
(steady-state: 0.80 + 0.38% and transitional: 6.49 + 1.42%),
outperforming other machine learning-based benchmarks
commonly practiced in the field (p<0.05). Furthermore, our
multi-modal analysis indicated that our model can main-
tain high performance in different settings such as unseen
slopes on stairs or ramps. Thus, our study presents a novel
locomotion mode framework, capable of advancing robotic
exoskeleton applications toward assisting community am-
bulation.
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|. INTRODUCTION

HE field of robotic exoskeletons has grown to a great extent
T and has shown the potential to improve people’s quality of
life through enhanced human mobility [1], [2]. Exoskeletons
augment the user with external assistance and improve the
user’s gait functions, such as reducing the energetic demand [3],
[4] and increasing preferred walking speed [5]. In particular,
hip exoskeletons show great promise due to the hip joint’s
contributions to a wide range of locomotor tasks [6]. During
community ambulation, humans change their hip dynamics with
changes in locomotion mode (e.g., level-ground, ramp ascent,
etc.) [7]-[9]. To account for these changes in biological joint
torque demand, previous research studies have optimized torque
assistance profiles for specific locomotion modes to improve
human ambulation [10]-[12]; however, this drives the need for
a system able to detect the user’s locomotion mode to trigger
a change in exoskeleton assistance. Currently, commercially
available systems use inconvenient or unintuitive methods to
detect the user’s locomotion mode online (e.g., clicking a manual
button on a hand-held controller) [13], [14]. Instead, detecting
this environmental information for these exoskeletons should be
natural, automatic, and seamless. Thus, to provide effective and
continuous assistance during various locomotion mode changes
(e.g., ambulating over an outdoor terrain), an accurate under-
standing of the user’s locomotion mode is important.

Several autonomous classification strategies have been intro-
duced to detect the user’s locomotion modes using different
wearable robotic platforms [15]-[32]. Most of these studies have
originated from robotic prosthesis applications [15]—[24], but
recent studies have started to expand their approach to exoskele-
tons [27]-[32]. Often these methods leverage machine learning
(ML) techniques, utilizing different types of sensors from both
the user and the device. For robotic hip exoskeletons, Long
et al. proposed an online SVM-based model to identify different
locomotion modes in real-time for exoskeletons [27]. However,
the study was limited as it required additional distal sensors
in the user’s shoes, which may not be feasible for a hip ex-
oskeleton. Additionally, the model had up to 30% of gait phase
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identification delays during level-ground to descent mode transi-
tions, which can lead to suboptimal exoskeleton assistance. Kim
et al. presented a kinematic-based mode classifier using two-
layer decision trees for exoskeletons [26]. However, this classi-
fier only updated locomotion mode during the mid-stance of the
gait cycle, which can also delay the overall prediction during a
mode transition period. Wang et al. developed an LSTM-based
neural network model to recognize five locomotion modes,
including sit/stand, level-ground, and stair ambulations [28].
However, the study was limited as the model was not trained to
classify ramp setting, which is one of the key locomotion modes.
Zhong et al. utilized a combination of a shank-mounted inertial
measurement unit (IMU) and a camera to detect different envi-
ronmental contexts [33]. Similarly, Laschowski ef al. presented a
vision-based environmental mode recognition system including
level-ground and stair locomotion using a deep neural network
achieving a 5% overall classification error [30]. However, similar
to other studies, it required external sensors and only classified
a limited set of locomotion modes.

While these studies have provided foundational information
toward developing a mode classifier for robotic hip exoskele-
tons, several limitations are halting the field to move forward.
First, there is a lack of understanding in developing a con-
tinuous mode classifier (e.g., prediction of mode based on a
sliding window of sensor input at a fast frame rate). Discrete
classification (often done to yield high classification accuracy)
inherently delays the mode prediction time (typically by half a
gait cycle), inducing a lag in the assistance profile, which can
lead to suboptimal human-exoskeleton performance (especially
during mode transitions). Second, there is inadequate informa-
tion about developing a user-independent classification strategy.
User-dependent models require cumbersome manual tuning on
a user-specific basis which may not be feasible for real-world
applications. Finally, there is a lack of exploration in applying the
state-of-the-art deep learning (DL) algorithms for locomotion
mode classification. The majority of these studies have only
exploited a certain algorithm (often tailored to the researcher’s
preference) that fits specifically to its targeted application. This
can potentially induce a bias in evaluating the algorithm’s overall
effectiveness. Thus, a more in-depth analysis of DL algorithms in
multi-perspective evaluation, that resembles real-world settings,
is vital to help researchers develop a classifier that is translatable
to exoskeletons available on the market.

Our central hypothesis was that a DL-based model would have
a lower classification error than the models using conventional
ML learning techniques when developing a subject-independent
and continuous mode classifier. The underlying rationale for im-
proved performance was that the deep neural network leverages
an end-to-end approach. The model architecture includes a fea-
ture engineering stage during the training process, enabling the
model to further extract relevant representation for mode clas-
sification, which is inherently limited by conventional manual
feature extraction. Moreover, these models can take advantage
of a large dataset during the training process to generalize across
different subjects. We designed a deep convolutional neural net-
work (CNN) utilizing a dataset from human gait biomechanics
with wearable mechanical sensors (sensors providing kinematic
information) while mimicking different locomotion settings [9].

The key contribution of this study is that it provides a holistic
design guideline to develop a DL-based classifier that can detect
the user’s locomotion mode for robotic hip exoskeleton appli-
cations. A fundamental limitation in the current literature is that
studies are often specifically tuned based on the study design,
and key information such as type of algorithm, optimal sensor
suite, model architecture, and data processing techniques and
their effect on classification error were not explored formally.
This greatly limits the capability of understanding the feasibility
of deploying a classifier to an exoskeleton system in the real-
world. Furthermore, our study is novel as we mainly focused
on developing a framework for the hip joint where designing
a classifier using only proximal sensors is a challenging task.
Using our multi-perspective analysis that is translatable to other
hip exoskeleton platforms, future exoskeleton designers can
efficiently plan and develop systems that can robustly classify
the user’s locomotion mode for a fully autonomous system in a
more realistic setting, such as outdoor locomotion.

[I. DATA PREPARATION
A. Human Subject Locomotion Dataset

Our study utilized a publicly available open-source dataset
collected by our group [9]. The study was approved by the
Georgia Institute of Technology Institutional Review Board and
informed written consent was obtained for all subjects. Twenty
able-bodied participants (11 males/9 females) with the age of
21.2 + 3.1 years, the height of 1.70 = 0.08 m, and the body
mass of 67.64 + 11.56 kg were asked to walk on an in-lab
height-adjustable terrain park (Fig. 1(a)). The terrain park con-
sisted of 5 different locomotion settings, including level-ground
(LG), ramp ascent (RA), ramp descent (RD), stair ascent (SA),
and stair descent (SD). The terrain park setting was adjusted and
set to four different ramp inclines of 7.8°, 9.2, 11°, and 12.4°
and four different stair heights of 10.2 cm, 12.7 cm, 15.2 cm,
and 17.8 cm (covering the ADA accessibility standards).

For all locomotion modes, subjects were instructed to walk at
their self-selected walking speed. For LG, subjects were asked
to walk over a straight path 6 times, where accel/deceleration
phases were excluded to only use the steady-state walking
conditions. For a given ramp incline, subjects were instructed
to complete a set of 3 trials starting with their right leg and a set
of 3 trials starting with their left leg for a total of 24 RA trials
and 24 RD trials. For all ramp and stair conditions (for both the
ascent and descent mode), subjects ambulated with the following
locomotion mode order: LG, mode transition, ramp/stair mode,
mode transition, and LG. Similar to the ramp trials, subjects
ambulated over a 6-step staircase completing a set of 3 trials for
each starting leg at a given stair height for a total of 24 SA trials
and 24 SD trials. A total of 102 trials were conducted per subject
across 5 locomotion modes.

B. Simulated Sensor Data Generation

Simulated IMUs from the motion capture data were created
to simulate different locations on the thigh for nine poten-
tial placements of wearable sensors (Fig. 1(c)). To generate
simulated sensor data, we utilized the motion capture marker
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Fig. 1. Human subject experiment setup for sensor data collection.
(a) In-lab height-adjustable terrain park was utilized to simulate differ-
ent ramp and stair settings. (b) Simulated wearable sensors (encoder
and IMUs) were located on the subject’'s body to represent the user’s
kinematic information. (c) Using the motion capture marker clusters,
simulated IMU data were generated at nine different locations on the
user’s thigh segment.

clusters (3 makers per limb segment) that were placed on the
user’s body during the data collection. Using the scaled OpenSim
model, gyroscopic data was computed as the rotational velocity
of each relevant segment (i.e., pelvis, left thigh, and right thigh)
resulting from the model’s joint kinematics during each trial.
The accelerometer data was computed as the linear acceleration
at the specified IMU locations on each of these segments for
each trial. For both trunk and thigh IMUs, the sensor orientation
was specified such that the x, y, and z axes referred to the
axis in vertical, lateral, and longitudinal directions, respectively.
Using this method, we have replicated other sensor data (hip
joint encoder and trunk IMU) because we wanted to ensure
that the sensor noise was consistent across different wearable
sensors and mitigate any potential confounding factors that
impose inconsistency in the overall model performance. Our
final dataset includes 3 wearable sensors: a 2-DOF hip joint
encoder (sagittal and frontal) and a 6-axis trunk and thigh IMUs.

C. Data Processing

Unilateral mechanical sensor information from the experi-
ment and additional thigh IMU data from the simulation were
used to process the data. The user’s gait phase was calculated
using linear interpolation between heel strikes from 0% to 100%
gait cycle, and heel strike was determined from the motion
capture data as the point of zero linear velocity of the heel marker.
For ramp and stair ambulations which include transition modes,
the mode transition point was characterized as the user’s initial
heel contact with the following mode. Steady-state walking

conditions at the beginning and end of each ramp and stair trial
were segmented out for the data to only contain the transition gait
cycles and desired mode’s gait cycles. Since the instrumented
leg was right-side for all subjects, each ramp trial included 4
gait cycles when starting with the left leg and 5 gait cycles when
starting with the right leg with each transition gait cycle before
and after the desired mode. Similar to the ramp, each stair trial
contained 3 to 4 gait cycles depending on the type of starting leg
and included two transition gait cycles (transition onto and off
the desired mode). As a result, each processed data contained
sagittal and frontal encoder data, 6-axis trunk and thigh IMU
data, gait phase data, and mode labels during the time range of
interest. After all the data were processed, we have standardized
each channel data by normalizing each signal to a zero mean and
unit variance where each subject’s mean and standard deviation
values were obtained from the entire trial dataset.

I1l. MODEL IMPLEMENTATION AND OPTIMIZATION
A. Benchmark Locomotion Mode Classifiers

To evaluate our DL approach, we also implemented multiple
benchmark mode classifiers found in the literature [22], [25],
[27], [31], [34]-[38]: 1) linear discriminant analysis (LDA), a
standard practice for mode classification that finds a linear com-
bination of features that separates different classes [39], 2) the
support vector machine (SVM), a hyperplane that maximizes the
margin between classes in high dimensional feature space [40],
3) the multilayer perceptron (MLP), a fully connected feedfor-
ward artificial neural network with activation functions [41],
and 4) extreme gradient boosting (XGB), a decision tree-based
ensemble algorithm with gradient boosting [42] (Fig. 2(a)). To
ensure a fair comparison between our approach and the bench-
mark methods, the hyperparameters of each approach were
optimized using a grid search (See Supplemental Document).

B. Deep Convolutional Neural Network-Based Classifier

DL techniques have several advantages over the conventional
ML algorithms [43]. Mainly, deep and complex architectures in
the neural network can have a rich feature representation that
is not feasible in the traditional hand-engineered feature extrac-
tion. Additionally, deep architecture is beneficial for learning
complex, intersubject representations that may not be possible
under standard ML architectures. For CNN, we have explored
different hyperparameters optimization routines. The baseline
architecture of our CNN model was adopted from our previous
study that utilized a CNN-based model for a robotic exoskeleton
for gait phase estimation [44]. For CNN, a model optimization
process was performed where the input window size was swept
across a range from 300 ms to 1000 ms with a 100 ms increment.
The CNN model was trained with the same number of epochs and
stopping criteria as the MLP. For hyperparameters, the number
of convolution layers (1 to 10), kernel size (50 ms, 100 ms,
and 150 ms), activation function (tanh, ReLU, and sigmoid),
and the dense layer’s optimizer (SGD, Adam, and RMSprop)
were searched. Our finalized CNN model had 5 convolutional
layers with an input window size of 500 ms and a kernel size
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Fig. 2. (a) Conventional machine learning model pipeline for locomotion mode classification. During ambulation (level-ground, ramp as-
cent/descent, and stair ascent/descent), the user’s kinematic information is logged from wearable sensors (joint encoder and IMUs). Five
time-domain features are extracted from each sensor channel with a defined window size. Final feature sets are utilized as input to relevant
machine learning models to classify the user’s current locomotion mode. (b) Subject-independent continuous locomotion mode classification using
a deep convolutional neural network. Information from time-series data from different wearable sensors is captured continuously with a defined
input window. Five convolutional layers with a fully connected dense layer extract relevant features and map the raw sensor data to five locomotion

modes.

of 50 ms (Fig. 2(b)). Each convolutional block consisted of a
convolutional layer, batch normalization layer, a 20% dropout,
and an activation layer (final activation being ReLU). Following
the convolutional block, a flatten layer and a fully connected
dense layer (1 hidden layer with an Adam optimizer). For the
hidden layer at the end, the number of hidden nodes was half of
the output size from the last convolutional layer (28 nodes).

I\VV. MODEL PERFORMANCE COMPARISON

During the validation phase, we wanted to evaluate our model
in four scenarios that represent the model’s capacity for real-time
implementation: 1) model’s definition of mode transitions, 2)
model’s generalizability to novel environments, 3) exoskeleton’s
sensor placement, and 4) model’s response to sensor signal dis-
connection. We focused on analyzing these cases because they
are practical considerations for implementing a mode classifier
in real-time, but often are never discussed or evaluated in prior
studies in the literature. With our fully optimized hyperparame-
ters, we have trained our subject-independent locomotion mode
classifier for all five algorithms. LDA and SVM were trained
using a Scikit-learn library, MLP and CNN were trained using
Keras with a TensorFlow backend, and XGB was trained using
the XGBoost library all based on Python 3.8.

A. Effect of Locomotion Mode Transition Label

A transitional gait cycle is a single gait cycle (with heel contact
denoted as 0%) that includes a transition period between two
different locomotion modes. Typically, since the intent recogni-
tion system focuses on the prediction of mode changes, ground
truth labeling of two modes within this gait cycle is defined
sometime during the swing phase of the gait cycle prior to heel
contact on the new surface. This labeling process is critical

because, depending on how the mode transition label is defined
(e.g., transition happening in early swing vs late swing), the
overall classification error can change substantially. Ideally, the
transition label is set as early as possible (i.e., close to toe-off)
without sacrificing the overall model performance. For our initial
model optimization sweeps, we have fixed the transition label
to occur during mid-swing (80% of the gait cycle) to ensure our
model comparison procedure is consistent.

An important analysis in our study was to evaluate the effect
of shifting the mode transition label on the overall classifier’s
performance. To achieve this, we have systematically swept the
entire gait cycle during the locomotion mode transition. We have
defined the transition stride to perform this sweep as the previous
mode’s toe-off (0%) to the next mode’s toe-off (100%) with a
10% phase increment. We have further investigated the model’s
classification error by separating it into steady-state (error within
a single steady locomotion mode) and transitional error.

B. Generalization to Different Terrain Settings

Generalizability of the model’s performance across other
terrain conditions such as different slope inclines is a critical
factor in designing a robust mode classifier. We have evaluated
our model’s performance on the data with a withheld terrain
condition that was not included in the training dataset. During
this analysis, we have validated the model’s classification error
with leave-one-terrain-setting cross-validation for both ramps
and stairs across all subjects.

C. Effect of Thigh IMU Sensor Location

A physical location of a thigh IMU on a robotic exoskeleton
varies heavily depending on the developer’s design principles.
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TABLE |
CONTINUOUS LOCOMOTION MODE CLASSIFICATION RESULTS

Our
Approach MLIPP XGB SVM LDA
(CNN)

Stead-State 1.16+= 0.58+ 5.99+ 6,48+ 10.69+
Error (%) 0.47 %% 3.09%7 2.60% 1 3.54%1 6.00%
Transitional 838+ 1428+ 1423+ 14.15&£ 3143+
Error (%) 1.61 %% 3.03%T  2.76%T  2.40%7 4.49%

“ represents a statistical difference between the CNN and MLP, XGB, and SVM,
respectively (p < 0.05). T represents a statistical difference between the LDA and other

models (p < 0.05). All results are represented as mean =+ 1 standard deviation across
all subjects.

As the effect of an IMU location on mode classification is un-
known, we have explored this by evaluating our classifier’s per-
formance using different thigh IMU placements. As noted above,
we have simulated the thigh IMU sensor data at nine possible lo-
cations (proximal/original/distal and anterior/lateral/posterior)
on the subject’s leg. We have validated the model’s steady-state
and transitional error using this simulated thigh IMU data along
with original trunk IMU and encoder data.

D. Effect of Sensor Signal Drop

Sensor or channel signal drop is a common phenomenon
that can happen in a real-time system potentially due to the
controller’s data communication failure. We have simulated this
scenario to evaluate our model’s robustness in maintaining the
overall classification performance even with a certain sensor
channel being disconnected. To simulate a sensor signal drop
scenario, we changed the column (which represents a single
channel in the sensor) value to 0. This analysis can also be
representative of a feature importance analysis as the resulting
performance can relate to which channel drop will cause a
greater impact on the overall model accuracy.

E. Statistical Analysis

To test our model performance in different conditions, we
conducted a two-way repeated measures analysis of variance
(ANOVA) (@ set to 0.05). After ANOVA, we conducted a
post hoc analysis with a Bonferroni correction for multivariate
analysis to compute the statistical difference across the 5 models
(MATLAB R2020b, MathWorks, USA).

V. RESULTS
A. Optimized Locomotion Mode Classifier Performance

As shown in Table I, the optimized model had an overall
classification error across all subjects 0of 4.20 = 0.61%, 9.96 +

2.32%, 9.69 = 2.01%, 9.92 + 2.20%, and 18.93 + 3.75% for
the CNN, MLP, XGB, SVM, and LDA, respectively.

B. Locomotion Mode Transition Label

The best performing transition label was 30%, 50%, 30%,
30%, and 60% of the gait cycle for the CNN, MLP, XGB, SVM,
and LDA which corresponded to an overall classification error
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Fig. 3. Effect of locomotion mode transition label. Each model’s clas-
sification error is presented for both the (left) steady-state and (right)
transitional gait cycle where the gait cycle is represented from 0%
(toe-off in the previous mode) to 100% (toe-off in the next mode).
The error bars represent = 1 standard deviation and asterisks indicate

statistical differences (p < 0.05). Only statistical comparisons between
the optimized transition point and baseline condition are shown.
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Fig. 4. Leave-one-terrain-setting evaluation for different (left) slope
inclines and (right) stair heights. Results are presented with the overall
classification errors. The error bars represent + 1 standard deviation

and the asterisks indicate statistical differences (p < 0.05). Statistical
comparisons across different settings are not shown. Only statistical
comparisons between settings within each model are shown.

across subjects for each algorithm of 3.13 £ 0.67%, 7.38 =+
2.10%, 9.04 = 2.06%, 9.09 £ 1.99%, and 12.73 + 3.27%,
respectively (Fig. 3). For the CNN, the overall classification
error was reduced by 24.95 = 13.57% when the transition label
was optimized compared to the baseline (p < 0.05), with similar
relative error reductions across the other algorithms.

C. Model Generalization

For the leave-one-incline-out setting, compared to the slope
incline inside the range (9.2° and 11.0°), 7.8° hold-out condition
increased the overall classification error by 10.80 + 4.23%
and 7.38 += 6.79% for the CNN and XGB, respectively (p <
0.05) (Fig. 4). However, no statistical differences were observed
when compared to the 12° hold-out condition. For the leave-
one-height-out setting, no statistical differences were observed
for the CNN across all 4 hold-out conditions. For the 10.2 cm
hold-out condition, the LDA increased the overall classification
error by 7.91 = 7.08% compared to other hold-out conditions,
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asterisks indicate a channel where all five models showed significant
differences. Statistical comparisons across models are not presented.

while the XGB only increased the classification error by 6.85 +
6.58% compared to the 15.2 cm hold-out condition (p < 0.05).

D. Thigh IMU Location

For all algorithms, there were no significant differences ob-
served across different thigh IMU locations (Fig. 5).

E. Sensor Signal Drop

Across 14 different available sensor channels, 5 channels
(sagittal hip position, x-axis trunk, and thigh acceleration, z-axis
thigh acceleration, and y-axis thigh gyroscope) significantly
increased the overall classification error when dropped, across
all algorithms (p < 0.05) (Fig. 6). Additionally, the CNN in-
creased the overall classification error when either the z-axis
trunk acceleration or gyroscope channel was dropped (p < 0.05).
On average, when a single channel was dropped (for the ones that
exhibited significant changes), the overall classification error
was increased by 19.45 + 11.69%, 25.65 = 16.27%, 13.17 =

6.20%, 19.30 = 7.18%, and 17.93 = 12.75% for the CNN, MLP,
XGB, SVM, and LDA, respectively (p < 0.05).

VI. DISCUSSION

Our study introduced a novel approach for classifying the
subject’s locomotion mode using a deep CNN. While several
previous literature studies have explored different classification
methods [22], [27], [31], [37], [38], our proposed framework
is unique as our model did not require subject-specific train-
ing/tuning, classified mode continuously through the gait cycle,
and only utilized proximal sensor information relating to robotic
hip exoskeleton applications. The final CNN architecture had a
model complexity of approximately 1.49 megaFLOPs (floating-
point operations). While the CNN required a greater amount of
processing time to maintain the same frame rate compared to
other algorithms (LDA: 2.7 kiloFLOPs, SVM: 55.3 kiloFLOPs,
XGB: 25.7 kiloFLOPs, and MLP: 7.6 kiloFLOPs), deployment
to a real-time system is feasible as these FLOPs would be
converted to less than 1 ms on a conventional microprocessor
used in a wearable robotics system (e.g., Nvidia Jetson Nano).
Furthermore, with advanced parallel processing techniques, us-
ing GPUs on these microprocessors allows for high-performance
DL inference (e.g., the CNN can be optimized to a more efficient
inference structure called TensorRT).

In general, the CNN outperformed the four benchmark meth-
ods in both the steady-state and transitional periods (p < 0.05).
Among the benchmarks, the optimized MLP, XGB, and SVM
exhibited a similar classification performance, where all three
models outperformed the LDA (p < 0.05), indicating that this
subject-independent and continuous classification problem is
not well-resolved by linear methods, unlike discrete dependent
classification in which LDA has performed well [34]. This
similarity in the overall performance is potentially due to the
limitation of the manual feature engineering that the three mod-
els share.

Our CNN showed better performance in multiple criteria
when compared to the current state-of-the-art models in the
literature [21], [45], [46]. Hu et al. developed an LDA-based
classifier using different wearable sensors with a 1.43% overall
classification error [46]. However, the study was limited as the
model was mode and phase-specific (multiple classifiers being
trained) and discretely classified within the gait cycle (only on
toe-off and heel contact). In contrast, our CNN is a single and
unified model that can continuously classify the user’s mode. Liu
et al. used an SVM-based classifier for robotic knee exoskeleton
control [32]. Using only two IMUs, the model showed a 3%
overall classification error. However, the study was limited as
the model was user-dependent and did not include ramp modes,
which tends to have the highest error rates [47]. On the other
hand, our CNN is able to generalize to a novel user for all
locomotion modes with similar classification performance. Lee
et al. designed a CNN-based classifier similar to our design with
a 1.1% overall classification error [45]. However, the study was
limited as the system was subject-dependent (the independent
model had 7.7%) and required a full lower-limb sensor suite
(e.g., encoder, IMU, and myoelectric signals), which was not
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the case for our CNN as we focused on developing a subject-
independent classifier for hip exoskeleton applications. In the
perspective of using minimal wearable sensors, Laschowski ez
al. developed a deep CNN using a body-worn camera, achieving
a 5% classification error [30]. The extent of this study showcased
a greater number of locomotion modes (up to 12 classes) but
was limited in the overall performance for a feasible real-time
implementation [48]. These comparable results in the literature
illustrate that, at least for hip exoskeleton applications, our
proposed approach sets a new benchmark that is applicable for
real-time implementation using sensor suites that are viable (i.e.,
only using sensors that are native to a typical hip exoskeleton
device).

While previous studies have not validated the classifier’s
performance to unseen terrain conditions [45], [46], evaluating
the model’s generalizability is important as this would resemble
the model’s robustness in the real-world scenario. As expected,
the CNN outperformed all benchmarks by maintaining a low
classification error in the leave-one-terrain-setting validation
for both the ramps and stairs (p < 0.05). The CNN showed a
greater classification error for the lowest ramp incline compared
to the inclines in the interpolation region (p < 0.05). This
phenomenon is due to the hip kinematics between the lowest
incline RA and LG showing a closer overall pattern (similarly,
the highest incline RA exhibits a more similar pattern as the
lowest incline SA) [9]. Likewise, similar trends can be found in
descent modes (e.g., the lowest incline RD resembling the LG).
These similarities in the data shape resulted in a misclassification
where a high incline RA and RD were predicted as SA and SD
at a higher rate, while a low incline RA and RD were predicted
as LG at a higher rate. However, a similar classification error
increase in the extrapolation region was not shown in the leave-
one-height-out validation on stairs. This is due to the SA and SD
kinematic patterns being distinctively different compared to the
other modes.

The effect of ground truth labeling during the mode transitions
is often a feature that has not been systematically studied in
past literature. Our results indicate that the model can further
improve the classification performance by optimally choosing
the timing point to shift the transition label during the transition
stride. Moreover, it was shown that the shift of transition labels
had an effect on changing the steady-state classification perfor-
mance. This is because this ‘shift’ in transition (towards either
direction) forces the model to understand the current mode as
the next/previous mode even though there’s no resemblance in
the kinematic patterns (e.g., delayed transition shift forces the
model to label the next mode into LG even though data shape
is different). For our CNN, just shifting the transition label by
10% of the gait cycle (mode transition occurring at late swing or
90% of the gait cycle) vastly improved the overall performance
to 3.13% classification error (0.80 = 0.38% steady-state error
and a 6.49 + 1.42% transitional error) compared to the baseline
error of 4.2% (p < 0.05).

The effect of a thigh IMU location on classification accuracy
for placement in a wearable device was a novel analysis of this
study. However, we did not see any statistical differences in the
classification error when using a sensor in a certain location.

We suspect that the minor discrepancies in the classification
performance across various locations are possibly due to the
sensitivity difference in the signal range. For example, during
the swing phase, a distally attached IMU would read a greater
linear acceleration in the sagittal plane to the wider displacement
of the limb segment compared to the proximally attached IMU
and vice-versa during the stance phase. However, this effect was
simply not strong enough to influence the model significantly,
and our results indicate that placement location on the thigh is
relatively inconsequential in designing devices.

During real-time inference, sensor signal drop can easily
occur, likely due to communication or sensor failure. This can
potentially be detrimental to the overall exoskeleton controller
if the mode classifier is not robust to accommodate such abrupt
changes in the input data structure. Generally, CNN maintained
the overall performance even with channel data being dropped.
However, 5 channels significantly increased the CNN’s overall
classification error when dropped (p < 0.05). This is because
these channels represent the limb kinematics in the sagittal plane
(largest variations in the data distribution), which makes it easier
for the ML models to learn. One interesting aspect is that the
CNN had 2 channels (z-axis trunk acceleration and gyroscope)
in addition to the 5 channels that significantly impacted the
overall performance when dropped (p < 0.05). While the trunk
motion shows a minimal change in the overall movement during
locomotion, the CNN was able to capture these differences to
effectively leverage them. This is possible as our CNN has deep
convolution layers that can extract additional features that a
conventional method cannot. Another important finding is the
XGB’s robustness in this sensor signal drop. Among the 5 mod-
els, the XGB has the least amount of performance degradation on
average when any given channel was dropped. This is due to the
advantage of the XGB algorithm as it utilizes an ensemble tree
boosting method, which typically tends to handle missing data
well, as the penalization of the single-channel input is relatively
minor in the perspective of a single subtree branch.

Similar to a sensor signal drop scenario, another common
event that can induce performance degradation is inherent noise
in mechanical sensors. While the main purpose of utilizing
synthetic sensor data was to simulate different sensor locations,
these artificial signals may not include relevant sensor noise
that would be captured in a real-world scenario. To ensure our
model’s robustness to sensor noise, we’ve extended our sensor
data analysis and evaluated our model performance on a dataset
with a poor signal-to-noise ratio (SNR). We’ve synthetically
induced a white Gaussian noise to our sensor channels with an
SNR ranging from 0 ~ 30 dB. For the CNN, the performance
started to degrade with an SNR below 8 dB (overall classification
error greater than 5%). Considering that a conventional IMU
used in an exoskeleton (e.g., MPU-9250) has an SNR ranging
from 30 ~ 50 dB (which can vary depending on the sensor’s
clock frequency and sensitivity), our CNN was able to maintain
its robustness to sensor signal noise.

There are several limitations to our study. The first is that our
study only optimized and validated the model performance in an
offline scenario. While the offline study allowed for a broader,
in-depth analysis of our model, an online validation (including
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real-time inference) is needed to fully evaluate the model perfor-
mance on a hip exoskeleton in the real-world. Another limitation
is that our study utilized an open-source dataset where the subject
did not wear an exoskeleton. This limits understanding of the
model’s generalizability when assistance is provided since the
user’s kinematics can change depending on the assistance level.
Also, a literature study showed a possible interaction effect due
to misclassification (incorrect assistance to the user), potentially
inducing a shift in the kinematic data causing additional misclas-
sification, which was not accounted for in this study. However,
our study is still valuable as it provides the upper bound for
the locomotion mode classification and provides a meaningful
guideline to researchers in initially developing a mode classifier.
Moreover, the fact that our approach is subject-independent has a
great value as it is the most applicable solution that can positively
impact the exoskeletons currently available in the market as the
model can be used as a stock controller without a need for
any subject-specific fine-tuning. Future work from this study
should focus on an online validation including data collected
from a hip exoskeleton and evaluate the model performance
with active exoskeleton control in real-time (including inference
time). Additionally, as our study only utilized data from healthy
young individuals (relatively small data distribution), the effect
of model performance when translating our approach to other
clinical populations, such as stroke survivors who exhibit differ-
ent gait dynamics during locomotion, should be explored.

VII. CONCLUSION

We demonstrated a subject-independent and continuous loco-
motion mode classification strategy for a robotic hip exoskeleton
application. Our framework established a new benchmark in the
field with an overall accuracy of 3.13% and showcased robust-
ness in multiple conditions that resembled real-world scenarios.
Furthermore, our model only utilizes a sensor suite native to a
conventional hip exoskeleton and can show a great performance
to a novel user, indicating a direction for translatability of our
technology to the exoskeletons available in the market. Future
work from this study will focus on the implementation and online
validation of our approach using a robotic hip exoskeleton.
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