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Abstract: The addition of biochars and nanoparticles with adsorbed Azotobacter vinelandii and
Bacillus megaterium alleviated damage from Fusarium infection in both tomato (Solanum
lycopersicum) and watermelon (Citrullus lanatus) plants. Tomato and watermelon plants were
grown in greenhouse for 28 and 30 days (respectively) and were treated with either nanoparticles
(chitosan-coated mesoporous silica or nanoclay) or varying biochars (biochar produced by
pyrolysis, gasification and pyrogasification). Treatments with nanoparticles and biochars were
applied in two variants - with or without adsorbed plant-growth promoting bacteria (PGPR).
Chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased chlorophyll
content in infected tomato and watermelon plants (1.12 times and 1.63 times, respectively) to a
greater extent than nanoclay with adsorbed bacteria (1.10 times and 1.38 times, respectively).
However, the impact on other endpoints (viability of plant cells, phosphorus and nitrogen content,
as well antioxidative status) was species-specific. In all cases, plants treated with adsorbed bacteria
responded better than plants without bacteria. For example, the content of antioxidative
compounds in diseased watermelon plants increased nearly 46% upon addition of Aries biochar
and by approximately 52% upon addition of Aries biochar with adsorbed bacteria. The overall
effect on disease suppression was due to combination of the antifungal effects of both
nanoparticles (and biochars) and plant-growth promoting bacteria. These findings suggest that
nanoparticles or biochars with adsorbed PGPR could be viewed as a novel and sustainable solution
for management of Fusarium wilt.

Keywords: nanoclay; mesoporous silica; biochar; PGPR; Fusarium

1. Introduction
The economic and environmental impact of plant diseases caused by different formae speciales of

Fusarium oxysporum is significant (Okungbowa and Shittu, 2012; Epstein et al., 2022; Figueiredo
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Silva et al., 2023). Globally, each year Fusarium wilt decreases production of rice (Oryza sativa)
by 25% — 41%, wheat (Triticum durum) by 10% — 28%, and soybean (Glycine max) by 11% —
32%, etc. (Figueiredo Silva et al., 2023). Due to sensitivity of bananas (Musa sp.) to Fusarium
oxysporum f.sp. cubense Tropical race 4, 111 billion US dollars were “lost” in 2016 (Figueiredo
Silva et al., 2023). Crop species subject to Fusarium attack include most major food crops, such
as wheat, soybean, yam (Dioscorea sp.), oats (Avena sativa), etc. (Adisa et al., 2018; Cai et al.,
2020; Dongzhen et al., 2020; Havrlentova et al., 2021; Yang et al., 2022).Although fungicides can
effectively manage select fungal plant pathogens (Mondani et al., 2021), efficacy against Fusarium
diseases is highly limited (due to their relatively low efficacy as demethylation inhibitors and
quinone outside inhibitors), and negative impacts on the environment are significant (Gonzalez-
Dominguez et al., 2021; Lin et al., 2019; Mahmood et al., 2016). Notably, leaf extracts of medicinal
plants (such as Azadirachta indica, Punica granatum, and Pinus wallachiana) have shown
antifungal activity, both when applied in the seedling phase and when added directly to the soil
(Abo-Elyousr et al., 2022; Ain et al., 2022). Thus, more environment-friendly solutions to manage
F. oxysporum infection have been investigated, such as the application of nanoparticles, biochar,
and specific microorganisms as soil additives (Buchman et al., 2019; Egamberdieva et al., 2020;
Jaiswal et al., 2020; Saleh et al., 2021; Chen et al., 2023).

Indeed, different metallic and metallic oxide nanoparticles (such as Ag, Cu, Ni, Mn, CeO2, CuO
nanoparticles), as well as nanocomposites (such as nanoscale hydroxyapatite) and silica
nanoparticles, have all been used successfully to suppress or delay damage from F. oxysporum
infection of tomato and watermelon (Ahmed et al., 2016; Adisa et al., 2018; Buchman et al., 2019;
Kang et al., 2021; Ahmad et al., 2022; Shah et al., 2022; Noman et al., 2023). Although reduction

of disease strongly depends on the type of plant examined, the average disease reduction was in
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the range of 53 -84.5% (Ahmed et al., 2016; Adisa et al., 2018; Buchman et al., 2019; Shah et al.,
2022). Chitosan, often used as biocompatible nanoparticle coating material, also exhibits direct
antifungal activity (Carmona et al., 2021; Wahyuni et al., 2021) and induces the activation of plant
defense pathways (Katiyar et al., 2015). Carmona et al. (2021) reported that chitosan-treated plants
showed higher expression of the PRla gene that codes for a protein associated with the
accumulation of the important defense biomolecule, salicylic acid. The mechanisms by which
nanoparticles suppress F. oxysporum infection are unclear, but are typically dependent on
nanoparticle type and properties. For example, Adisa et al. (2018) correlated the antifungal activity
of CeO2 nanoparticles with their ability to counteract the negative effect of free radical species
produced by F. oxysporum f. sp. lycopersici. Ahmad et al. (2022) and Lopez-Lima et al. (2021)
also credited the antifungal activity of nanoscale Ag and CuO to their antioxidative properties.
Conversely, Ma et al. (2021) suggested that antifungal effects exhibited by nanoscale
hydroxyapatite was due to the interplay between antioxidant and phytohormone pathways. Similar
results were obtained by Noman et al. (2022) who found that F. oxysporum f. sp. Niveum infection
was suppressed in watermelon treated with manganese nanoparticles by enhancing the activation
of salicylic acid signaling. Alternatively, for SiO2 NPs, Kang et al. (2021) reported a nanoscale-
specific process involving the enhanced barrier deposition of silicic acid that promoted physical
barrier protection in the plant cell walls against infection.

The effectiveness of biochar addition on the suppression of Fusarium wilt depends on several
material characteristics, including feedstock type, pyrolysis conditions, water-holding capacity,
adsorption ability, nutrient content, pH, and electric conductivity (Graber et al., 2014; lacomino et
al., 2022). For example, the high nutrient content and adsorption ability of wood-derived biochar

can lead to changes in the root exudate composition of tomato and watermelon, which in turn could
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lead to increased microbiological diversity in the soil through “recruitment” of plant-beneficial
bacterial species such as Pseudomonas (Akhter et al., 2015; Cao et al., 2017; Jin et al., 2022).
Moreover, Jaiswal et al. (2022) found that the addition of biochar produced from plant waste to
tomato suppresses Fusarium infection by upregulating genes coding for proteins participating in
pathways involved in plant defense and phytohormone synthesis (e.g. synthesis pathways for
cytokinins, auxin, jasmonic acid, brassinosteroids, and phenylpropanoids) and the downregulating
of genes involved in salicylic acid synthesis.

To further enhance performance of nanoparticles and biochar, they could be combined with plant
growth promoting rhizobacteria (PGPR). Such combinations might activate multiple defense
pathways, hense providing higher protection. PGPR have previously been used in agriculture and
are known to be positively associated with plant-growth and promote plant defense against
different bacterial and fungal pathogens. For example, Aydi-Ben-Abdallah et al. (2020) found that
bacterial isolates naturally associated with Solanum sodomaeum and Solanum bonariense plants
suppressed Fusarium wilt in tomato. This antifungal activity could be due to changes in the
concentration of plant hormones such as salicylic acid and jasmonic acid (Syed Nabi et al., 2021);
activation of antioxidative defense pathways (e.g. higher activity of enzymes like peroxidases,
polyphenoloxidases, glucanases, chitinases, lipoxygenases, etc.) (Maciel Ferraz et al., 2014), or
the direct production of antifungal compounds (Bhosale et al., 2013). For example, Azotobacter
vinelandii is a bacterium with the ability to convert atmospheric nitrogen (N2) into ammonia (NH3)
that can be used as a nitrogen source for plants (Plunkett et al., 2020). Additionally, Azotobacter
vinelandii was found to synthesize antifungal compounds such as sucrose tetraamine
polyphosphates that have activity under laboratory conditions and in pot experiments (Bhosale et

al., 2013). Bacillus megaterium is a soil bacterium with the capacity to convert insoluble forms of
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phosphorus into phosphorus-containing compounds that can be used by plants (Kang et al., 2014).
Also, Bacillus megaterium BM344-1 excretes hexadecanoic acid methyl ester and tetracosane as
part of its volatilome (Saleh et al., 2021); both compounds were shown to have antifungal activity
towards Fusarium verticillioides (Saleh et al., 2021). Furthermore, the high porosity of biochar
can provide a protective effect of bacteria located in the material pore structure. Indeed, when
adsorbed to biochar, endophytic bacteria such as Bacillus subtilis and Pseudomonas putida exhibit
a stronger effect on disease reduction than either isolate themselves or biochar on its own
(Egamberdieva et al., 2020; Chen et al., 2023). Therefore, functionalizing nanoparticles by adding
PGPR may significantly increase their potential as pesticides.

Given the known complexity of interactions between hosts, pathogens, rhizosphere microbes
(PGPR), and nanoparticles, we designed studies to compare the effect of two types of nanoparticles
(chitosan-coated mesoporous silica and nanoclay) with adsorbed PGPR and three types of biochars
(produced by pyrolysis, pyrogasification, or gasification) with adsorbed PGPR on suppression of
Fusarium wilt in tomato and watermelon. The consortium adsorbed on nanoparticles and biochar
consisted of Azotobacter vinelandii and Bacillus megaterium. This work aims to aid in
understanding the combined effect of PGPR adsorbed on nanoparticles and biochar, as well as to
elucidate mechanisms behind the suppression of Fusarium wilt in plants treated with PGPR
adsorbed on nanoparticles and biochar. Application of these treatments has the potential to provide

more sustainable and environment-friendly solutions to plant pathogen management.

2. Materials and Methods

2.1. Chemicals
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2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid
(ABTS), nanoclay (hydrophilic bentonite), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
acid (Trolox), L-ascorbic acid, tetraethylorthosilicate (TEOS), cetyltrimethylammonium bromide
(CTAB), and chlorotrimethylsilane were purchased from Sigma-Aldrich (St. Louis, MO, USA).
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Dulbecco's Modified
Eagle's Limiting Medium were purchased from Fisher Scientific (Waltham, MA, USA). 2-
[methoxy-(polyethyleneoxy)s-12  propyl]-trimethoxysilane was purchased from Gelest
(Morrisville, PA, USA). Pikovskaya medium was purchased from HiMedia Laboratories (West
Chester, PA, USA), while nutrient agar was purchased from Fisher Scientific (Waltham, MA,
USA). Chitosan was purchased from Spectrum (New Brunswick, NJ, United States). Azotobacter
vinelandii (strain designation: DSM 2289; ATCC 478; VKM B-1617) and Bacillus megaterium
(strain designation: DSM 32; VKM B-512) were purchased from ATCC (Manassas, VA, USA)
and kept at -80°C prior to analysis. Aries Green biochar was purchased from Aries Clean
Technologies LLC (Franklin, TN, USA). Naked biochar was purchased from American Biochar
Company (Niles, MI, USA). The remainder of the chemicals were purchased from Merck
Millipore (Burlington, MA, United States).

2.2. Synthesis and characterization of chitosan-coated mesoporous silica nanoparticles (MSN) and

nanoclay (NC)

Synthesis of chitosan-coated mesoporous silica was performed according to Buchman et al.
(2019), with lower ultracentrifugation speed (21,500 x g). The size of nanoparticles was
determined by transmission electron microscopy (TEM, HT7800 TEM, Hitachi, Japan). The pore
volume and surface area of MSN and NC were determined by nitrogen physisorption (Autosorb

1Q, Quantachrome Instruments, Boynton Beach, FL, USA). The hydrodynamic diameter and
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potential of the nanoparticles were determined by a Zetasizer (Nano-ZS90, Malvern Pananalytical,
Malvern, UK). Prior to measurements, samples were sonicated 30 min at ambient temperature.
The concentration of nanoparticles in samples for analyses was 0.5 mg/mL. To exclude the
presence of impurities in the nanoclay, elemental analysis using energy dispersive X-ray
spectroscopy (EDX) was done. For EDX analysis, nanoclay particles were dispersed in 95%
ethanol and mounted in a carbon-coated Ni grid. The analysis was performed with an EDX detector
(80T, Oxford Instruments) attached to a Hitachi 7800 transmission electron microscope.

2.3. Characterization of biochars, soil substrate and fertilizer

Aries green biochar (AB) was derived from wood waste via downdraft gasification at the
temperatures averaging 450-600°C. Naked biochar (NB) was derived from recycled wood through
complete pyrolysis at the temperatures ranging from 550 to 900°C. A third biochar sample (named
“Italian biochar” — IB) was produced from wood pellets in a prototype pyrogasification system
<50 kW at the temperatures between 500 and 700°C (biochar is named A4 in Marmiroli et al.,
2018). The pH and electrical conductivity (EC) measurements of the biochars was conducted
according to Dume (2015). In short, pH and electrical conductivity were measured in distilled
water at 1:10 biochar to water ratio (m/V) after shaking for 30 min. Samples were left to “settle”
10 min prior to measurements.

The cation exchange capacity (CEC) was determined as described by Batista et al. (2018). Briefly,
2 g of sample was mixed with 100 mL of 0.5 mol/L HCI. The flask was closed and shaken at 150
rpm for 30 min at room temperature. Excess acidic aqueous solution was removed by vacuum and
the material was washed twice with 50 mL of deionized water containing a few drops of 1% (m/v)
AgNOs. Afterwards, the sample was transferred to new Erlenmeyer flask and 100 mL of 0.35

mol/L (CH3COO):Ba was added and stirred for 15 min (room temperature). The material was
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filtered and washed 3 times with 100 mL of water. The pellet was discarded, and the filtrate was
titrated against 0.1 mol/L NaOH solution with phenolphthalein as indicator. The CEC was
calculated using following equation:

V(ml) x 0.1mT0l(Na0H) % 100

EC =
CEC 29

The surface area and pore volume of the biochars were determined via nitrogen physisorption
(Autosorb 1Q, Quantachrome Instruments, Boynton Beach, FL, USA). Hydrodynamic diameter
and ( potential of biochars were determined by Zetasizer (Nano-ZS90, Malvern Pananalytical,
Malvern, UK). Prior to measurements samples were sonicated 30 min at room temperature.
Concentration of biochar in the samples was the same as for nanoparticles (0.5 mg/mL).
Elemental analysis of biochars was determined by inductively coupled plasma optical emission
spectrophotometry (ICP-OES) (iCAP 6000 series, Thermo Fisher Scientific, Waltham, MA,
USA). Prior to ICP-OES analysis, 0.1 g of homogenized sample was digested with 3 mL of 68%
nitric acid for 45 min at 115°C (DigiPrep MS, SCP Science, Champlain, NY, USA). The sample
was diluted to 15 mL with distilled water and was allowed “settle” overnight.

The content of nitrogen (N) was determined on a nitrogen analyzer (FP628, LECO, St. Joseph,
MI, USA). Briefly, 0.1 g of sample was measured and closed in aluminum foil (provided with the
instrument). The analytical program settings included cellulose standard, EDTA standard and an
Association of American Feed Control Officials (AAFCO) standard (also provided with the
instrument) that were used as negative and positive controls, respectively.

As a soil substrate Promix BX (Premier Hort Tech, Quakertown, PA, USA) was used. The pH was
determined according to Environmental Protection Agency (EPA) method 9045D. Briefly, a 1:1

(m/v) of substrate: distilled water was mixed for 5 min on magnetic stirrer and “left” to settle for
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1h. The content of phosphorus (P) in the substrate was determined by ICP-OES (iCAP 6000 series,
Thermo Fisher Scientific, Waltham, MA, USA). Prior to ICP-OES analysis, samples were
prepared following the same procedure as for biochar. The content of N was determined with a
nitrogen analyzer (FP628, LECO, St. Joseph, MI, USA). Miracle-Gro all-purpose fertilizer
(Marysville, OH, USA) was used in the experiment. The content of P and N in the substrate was
determined using the same procedure as for soil substrate and biochar.

2.4. Adsorption of bacteria on nanoparticles and biochars, assessment of loading efficiency and

sample characterization

The adsorption of nanoparticles to the bacteria was done by according to Deng et al. (2008), with
some modification. In short, bacteria were first grown on nutrient agar (Fisher Scientific, Waltham,
MA, USA) at 28°C for 48h. Then, 2 mL of mixture containing 1 mL of 2 x10® CFU/mL of 4.
vinelandii and 1 mL 2 x10® CFU/mL B. megaterium was added in flasks containing 50 ml of
autoclaved distilled water and 0.1 g nanoparticles (chitosan-coated mesoporous silica or nanoclay).
The mixture was shaken for 6h at 6,000 rpm at ambient temperature, centrifuged at 16000 x g for
10 min and the recovered pellet was air-dried under a fume hood. The number of loaded bacteria
was determined according to Deng et al. (2018), with some modifications. One mL of supernatant
from the previous step was grown at nutrient agar (28°C, 48h), and the CFU/mL was determined.
The number of loaded bacteria was calculated by difference between initial CFU and CFU after
adsorption. The loading of bacteria was verified using scanning electron microscopy (SEM,
TM3030 Plus, Hitachi High-Tech Group, Japan). Sample preparation for SEM analysis included
the following steps: the sample holder was cleaned with alcohol, dried and carbon tape was placed
in the middle of the holder. A small amount of powdered, homogenized sample was removed with

sterilized spatula, placed on carbon tape, pressed lightly with sterilized tweezers (blunt end) and
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excess was taped off on filter paper. SEM images were taken at D6.1x180 in back scattered
electron (BSE) mode and under energy dispersive x-ray spectroscopy (EDX) observational
conditions.

For the adsorption of bacteria on biochar, the preparation of biochar was according to Husna et al.
(2019). Briefly, 30 g of biochar was ground and sieved to 1 mm and then autoclaved for 1h at
121°C. The loading of bacteria was verified using SEM. Inoculation of bacteria on biochar was
also done as described by Husna et al. (2019). In short, 2 mL of bacterial mixture (1 mL 2 x108
CFU/mL of A. vinelandii and 1 mL 2 x10% CFU/ml of B. megaterium) and 11 mL of
distilled/autoclaved water were mixed and applied onto the biochar using a sterile syringe. Unlike
with nanoparticles, adsorption of bacteria to biochar is assumed to be 100 %. The biochar was
with bacteria was sealed in a sterile bag and left at room temperature for 24h. Sample preparation
and working parameters were the same as described for the nanoparticles.

2.5. Preparation of inoculum

F. oxysporum f. sp. lycopersici Race 2 and F. oxysporum f. sp. niveum were used for tomato and
watermelon infection, respectively. Monosporic cultures were stored at 4°C. The inoculum was
grown on sterile Japanese millet and ground in a mill using as described by Elmer et al. (2018).

2.6. Plant growth experimental design:

Tomato (Solanum lycopersicum, cultivar Bonny Best; Totally Tomatoes, Randolph, WI, USA)
was grown in a first study and watermelon (Citrullus lanatus, cultivar Sweet Baby (Harris Seed
Co., Rochester, NY, USA) was used in a second experiment. Promix BX (Premier Hort Tech,
Quakertown, PA, USA) soil substrate contains, according to manufacturer, 75-85% Sphagnum

peat moss, perlite, vermiculite, limestone and wetting agent. Promix’s pH was 5.66 + 0.21;
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phosphorus (P) content- 562.32 +92.96 mg/kg and nitogen (N)- content- 0.23 +0.02 mg/kg (Table
S4; Pavlicevic et al., 2022).

Plants were grown from seeds in potting mix for three weeks before being transplanted into pots
with 250 mL of soil substrate with the various amendments. Subsequently, plants grown in non-
infested potting soil (controls) and potting soil infested with the fungal pathogens were grown in
a greenhouse in plastic pots 10 cm in diameter filled with 250 mL of potting soil. Growing
conditions were as follows: temperature- 25°C; light/dark period: 16h light/8h dark; relative
humidity during germination phase: 66%; relative humidity during growing phase: 62%. The
concentration of nanoparticles in soil was 250 mg/L, while the concentration of biochars in soil
was 100 mg/L. In both experiments, plants were infested with 0.75 g/L of millet inoculum. Mixing
of either nanoparticles or biochars and millet inoculum with soil was done in 2 L sterile bags. For
samples marked as B+F, 2 mL of bacterial mixture (1 mL 2 x10® CFU/mL of A4. vinelandii and 1
mL 2 x10® CFU/mL of B. megaterium) was added directly into the soil, placed in a sterile bag,
infected with 0.75 g/L millet inoculum and mixed thoroughly by shaking. In total, there were 13
treatments (Table 1). The arrangement of plants was randomized, and each treatment contained 8
replicates.

Irrigation of plants was done every other day with 100 ml water per plant. Half the recommended
dose of Miracle-Gro (1.88 g/kg) was applied once per week (10 mL per plant). Measurements of
P and N content, soil pH, physiological parameters, as well as microbial analyses were performed
at 0, 7, 14 and 28 days after transplanting (DAT) in tomato, and 0, 10, 20, 30 DAT in watermelon.

2.7. Extraction and characterization of total bacteria, nitrogen-fixing bacteria and phosphorus-

solubilizing bacteria
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The extraction of bacteria from the soil was performed as described by Fox et al. (2014) with some
modifications. Briefly, 3 g of soil was mixed with 20 mL of sterile NaCl [0.85% (w/v)] solution
for 30 min at 75 rpm at 4°C. The suspensions were then left for 1h to allow for a better separation
of supernatant and soil particles. Three aliquots (0.5 mL each) were then taken: one was used for
determination of nitrogen-fixing bacteria; one was used for the determination of phosphorus-
solubilizing bacteria and one for estimating the total number of bacteria present in the soil. These
aliquots were serially diluted (by 10 fold) in 0.85% saline, and colony forming units (CFU)/mL
were determined by a plate counting method. Dilution was 10°, and 3 plates were counted for each
treatment. Bacteria were grown at 28°C for 48h. Total bacteria were grown on nutrient agar (Fisher
Scientific, Waltham, MA, USA), nitrogen-fixing bacteria were grown on nitrogen-free media
(NFM) (prepared according to Dobereiner et al. (1995) with 15 g of agar added per 1 L to obtain
solid media) and phosphorus-solubilizing bacteria were grown on Pikovskaya agar (HiMedia
Laboratories, West Chester, PA, USA).

2.8. Determination of P and N content in plant leaves

Samples were dried at 105°C overnight and then ground in a coffee mill. For determination of N
content, 0.1 g of dried, homogenized sample was analyzed by a N analyzer (FP628, LECO, St.
Joseph, MI, USA). To determine P content, 0.1 g of homogenized sample was digested with 3 mL
of 68 % nitric acid for 45 min at 115°C (DigiPrep MS, SCP Science, Champlain, NY, USA). The
sample was then diluted to 15 mL with distilled water and let to “settle” overnight. P content was
then determined by ICP-OES (iCAP 6000 series, Thermo Fisher Scientific, Waltham, MA, USA).

2.9. Physiological analyses

Measurement of chlorophyll content was done spectrophotometrically as described by Li et al.

(2018). Briefly, 0.1 g of fresh, homogenized sample was extracted with 50 mL of 95% ethanol
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(120 rpm, 1h, room temperature). The pellet was discarded, and supernatant was analyzed at 649

and 665 nm. The content of chlorophylls was calculated according to following formulas:

mg) _ (12.7 x A665) — (2.69 x A649)

Chia (24
@ <ml 1000

Chlb (%)

(229 x A649) — (2.69 x A665)
- 1000

Chl total = Chla+ Chlb

Where Chl a is chlorophyll a, Chl b is chlorophyll b, A9 and Aess are absorbances measured at
649 and 665 nm, respectively, and Chl total is total chlorophyll content.

The formation of radical oxygen species was monitored by the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay according to Sancez-Moreno et al. (1998). Briefly, the extraction procedure for both
tests was the same: samples were air-dried for 48h under the hood and then 0.125 g of dried,
homogenized sample was extracted with 6.86 mL of 70 % EtOH (120 rpm, 2h, room temperature).
Then 0.1 mL of sample was mixed with 1.9 mL of fresh DPPH solution (0.025g/L. DPPH in
methanol), incubated for 30 min in the dark and absorbance was measured at 515 nm. As a
standard, Trolox was used at 500 pmol/L, 200 umol/L, 100 umol/L, 50 umol/L, 25 umol/L and 10
umol/L. Trolox equivalents (TE) were determined from standard curves.

Plant cell viability was assessed by the MTT assay as described by Shoemaker et al. (2004).
Briefly, samples were air-dried for 48h under a hood, and 0.375 g of dry, homogenized sample
was extracted with 6.25 mL of distilled water at 100°C for 45 min. After the solution had cooled,
0.5 mL of sample was pipetted to a new vial. The extract was then diluted with distilled water in

ratio 1:20. The MTT assay was performed by adding 400 pL of sample extract, 400 pL of 1 mM
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ascorbic acid (in water), and 400 pL of Dulbecco’s modified Eagle’s medium and 120 pL MTT (3
mg/ml in phosphate buffered saline), followed by incubation for 60 min at 37°C. Absorbance was
measured at 595 nm.

2.10. Statistical analysis

All analyses were done in triplicate. A one-way analysis of variance (ANOVA) with repetition
was used to assess difference between samples at different time points. Differences between means
were determined by Tukey test at p=0.05. Testing was done in SPSS software version 24 (IBM,
Armonk, NY, USA). To test possible interactions between factors, a two-way ANOVA with

repetition was also done in XLSTAT 2016 software (Addinsoft, NY, USA).

3. Results and Discussion:

3.1. Characterization of nanoparticles, biochar, soil substrate, fertilizer and samples with adsorbed

bacteria
All results regarding the characterization of nanoparticles, soil substrate, fertilizer, and samples
with the adsorbed bacteria, as well as their corresponding TEM and SEM images, are described in
Pavlicevic et al. (2022). Summarized here are the main findings of the material characterization.
Chitosan-coated mesoprous silica nanoparticles and nanoclay showed differences in all examined
characteristics. Chitosan-coated mesoporous silica nanoparticles (MSN) were round and with a
diameter of 39 + 8 nm. Nanoclay (NC) was much larger (91 = 7 nm) and irregular in shape. MSN
also had a higher surface area (87.35 m*/g) compared to NC (25.32 m?/g) and was characterized
by a positive { potential (+27.33 + 0.59 mV), while the { potential of NC was negative (—39.35 +
0.55 mV). These differences could be explained by the porous structure of silica nanoparticles and

the presence of chitosan (Pavlicevic et al., 2022).
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Different biochar samples showed significant differences in structure, pH, EC, CEC, ratio of
phosphorus to nitrogen (P/N ratio) (Tables S1 and S2; Pavlicevic et al., 2022), { potential,
structure, and surface area. The “Italian” biochar (IB) had higher pH (10.62 + 0.03) and electric
conductivity (898 + 4.2 uS/cm) compared to the Aries Green biochar (AB) (pH =9.29 + 0.06; EC
=459 + 2.1 uS/cm) and the Naked biochar (NB) (pH =9.51 £ 0.08; EC =767 £+ 3.4 uS/cm) (Table
S1). Additionally, the CEC of IB was the highest (39.1 £+ 2.8 cmol/kg), but similar to that of AB
(34.7 = 2.9 cmol/kg). AB also had the lowest P/N ratio (0.05 mg/mg), while IB had the highest
(3.74) (Table S2). Furthermore, C potential of IB was less negative (—23.6 mV) when compared to
AB (—26.4 mV) and NB (—27.6 mV), due to the higher content of Ca and Na in IB. However, the
surface area of IB was significantly lower (13.11 m?/g) than those of AB (59.54 m?/g) and NB
(42.73 m?/g). Structures of biochars were also different (Pavlicevic et al., 2022): IB had more
regular structure compared to AB, while the structure of NB was similar to a honeycomb with
highly macroporous surface (Figure S1). Given that all biochars were produced from same
feedstock material, these differences reflect the different conditions (most of all, temperature)
under which biochars were produced.

The ratio of individual bacteria species adsorbed to biochars and nanoparticles adsorbed to bacteria
was relatively similar between materials and close to a 1:1 ratio (Pavlicevic et al., 2022). However,
the distribution of the bacteria on biochar showed some differences: bacteria were located farther
from the surface and were more uniformly distributed in AB and NB, whereas in the IB they were
more clustered and closer to the surface of biochar (Figure S2; Pavlicevic et al., 2022).

3.2. Chlorophyll content

As evident from Figure 1, treated plants had higher chlorophyll content compared to control plants

infected with Fusarium. However, in both tomato (Fig. 1A) and watermelon experiments (Fig.
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1B), the biggest increase was observed in plants treated with biochar and nanoparticles co-
delivered with bacteria. For example, in the tomato experiment (Fig. 1A), the addition of chitosan-
coated mesoporous silica nanoparticles adsorbed onto bacteria (MSN + B + F) increased
chlorophyll content in infected plants 1.62 times compared to chitosan-coated mesoporous silica
nanoparticles added alone (MSN + F) (1.11 times). Such differences were likely due to the
combined effect of nanoparticles (or biochars) and the documented antifungal effect of
Azotobacter vinelandii and Bacillus megaterium (Bhosale et al., 2013; Saleh et al., 2021).
However, watermelon showed overall greater responsiveness to treatment compared to tomato
(Fig. 1B), although this could also be due to the fact that infection in watermelon was less severe.
Similar to tomato, the greatest influence on chlorophyll content in the infected watermelon plants
was exhibited by chitosan-coated mesoporous silica nanoparticles with bacteria (MSN+B+F).
These findings may corroborate the hypothesis of Kang et al. (2021), who suggested that the
mesoporous silica nanoparticles stimulate the formation of an enhanced protective layer in the
roots that diminishes the impact of infection. This hypothesis could also explain why the MSN
treatment was more efficient compared to the NC treatment. The addition of MSN increased
chlorophyll content in infected tomato plants 1.12 times and infected watermelon plants 1.63
times; NC increased the content of chlorophyll in infected tomato plants 1.10 times and in infected
watermelon plants 1.38 times. However, it is also possible that the effect of mesoporous silica
nanoparticles was enhanced by the addition of chitosan and its known antifungal effect (Carmona
et al., 2021). Additionally, larger effect of both MSN and NC on watermelon compared to tomato
could be due to the fact that watermelon belong to Cucurbitaceae family and thus needs more Si
compared to tomato. Similar to the nanoparticles, the addition of the bacterial consortium to

biochar had a positive effect on chlorophyll content, but to a lesser extent (Fig. 1). In agreement
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with our previous results, the response of watermelon and tomato to biochar addition was species-
specific. For example, the presence of “Italian” biochar with infected watermelon (IB+F) increased
the chlorophyll content 1.08 times, while the addition of “Italian” biochar with adsorbed bacteria
(IB+B+F) increased chlorophyll content 1.22 times (Fig. 1B). The most efficient biochar with
tomato was Aries biochar (Fig. 1A). Specifically, the addition of Aries biochar to infected tomato
(AB+F) increased chlorophyll content 1.23 times compared to 1.35 times with Aries biochar with
adsorbed bacteria was added (AB+B+F) (Fig. 1A). The prominent effect of AB on disease
suppression is likely a consequence of production temperature. AB was produced by gasification
that is characterized by lower temperatures compared to pyrolysis and pyrogasification; lacomino
et al. (2022) found that biochars produced in mid-temperature range (350-600°C) showed a more
prominent effect on disease suppression compared to those produced at low or high temperatures.
The same findings could be used to explain why the effect of IB was more effective than NB, since
IB was produced by pyrogasification, e.g. under lower temperatures than NB (which was the
product of pyrolysis).

3.3. Nitrogen content in leaves

The results of N content in the leaves of tomato and watermelon plants are given in Table 2. Greater
N content in diseased plants (F) compared to healthy control plants (C) was evident; these findings
align with Dominguez et al. (2016), Bi et al. (2022), and Orr et al. (2022). Higher N content in
infected plants can be the result of the upregulation of genes involved in N metabolism (Orr et al.,
2022). While Dominguez et al. (2016), Bi et al. (2022) and Orr et al. (2022) all reported a positive
correlation between disease severity and N content, Hoffland et al. (2000) found that a connection
between disease severity and N content was strongly dependent on the type of pathogen. Our

results also suggest that the host plant species can also determine the response to a particular
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treatment. Although N content in infected tomato and watermelon plants at the end of experiments
was similar (51.442.9 mg/g and 50.7+4.8 mg/g, respectively), the same treatments had different
effects in the two species. For example, NC-treated infected plants (NC+F) had lower N content
compared to MSN treated plants (MSN+F) in tomato, but the situation was reversed in watermelon
(Table 2). However, when the same samples had bacteria adsorbed, the response was reversed (e.g.
MSN-+B+F had lower N content in tomato and higher in watermelon when compared to NC+B+F).
These findings may be explained by the fact that although disease could increase N content and in
turn change the composition of the microbial community (Bi et al., 2022), changes in rhizobia
composition caused by the introduction of the consortium were more impactful.

The impact of individual biochars and biochars with adsorbed bacteria on disease suppression in
tomato and watermelon was also different (Table 2). In tomato, the lowest N content was detected
in AB+F (34.0+2.9 mg/g) and AB+B+F (47.6+£3.6 mg/g). Although watermelon AB+F treatment
had the lowest N content with the biochars, the greatest content was the NB biochar with adsorbed
bacteria (sample NB+B-+F) (Table 2). The possible reason for the higher efficacy of AB compared
to IB and NB could be the greater N content in AB (7.5 + 0.6 mg/g) compared to IB (5.8 = 0.2
mg/g) and NB (3.9 = 0.4 mg/g) (Pavlicevic et al., 2022). Biochars with a higher nutrient content
have been shown to be more prone to “recruit” beneficial fungi and bacteria that could alleviate
infection symptoms (Akhter et al., 2015; Cao et al., 2017; Jin et al., 2022). As noted above, NB
was produced by pyrolysis and has a highly porous structure (Pavlicevic et al., 2022). These
characteristics are known to be important for wood-derived biochars to ensure longer “life” of
adsorbed bacteria and therefore, promotes more beneficial changes in rhizobia activity (Akhter et
al., 2016; Chen et al., 2023).

3.4.Phosphorus content in leaves
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At the final harvest, the phosphorus content in the leaves of Fusarium infected plants was 3.33-
times (tomato) and 3.65-times (watermelon) higher compared to non-infected (control) plants
(Table 3). These results are in accordance with Ma et al. (2021) who reported an increase in P
content of approximately 2.5-times in diseased plants compared to healthy tomato plants. Higher
P content in diseased plants could be explained by Fusarium-induced up-regulation of genes such
as the betaine lipid synthase 1 (BTA1), which yields phosphorus-free membrane lipids that enable
the infection to spread inside the cells (Zhang et al., 2016). Given that production of membrane
void of phosphorus-containing lipid is required for “successful” infection (Zhang et al., 2016), less
phosphorus is “spent” in synthetic pathways and thus, final content of phosphorus is higher in
diseased plants compared to healthy ones. Hagerty et al. (2021) reported that P content was not
correlated with the severity of disease in wheat, whereas El-Shennawy et al. (2010) found that an
increase in P content reduced the incidence of Fusarium infection in chickpea (Cicer arietinum),
lupine (Lupinus sp.), and lentil (Lens culinaris). However, Jastrzgbska et al. (2020) reported that
not only the content but also the source of phosphorus was important; specifically, fertilizers
prepared from organic residues and/or activated with bacteria showed a more pronounced
antifungal effect compared to the commercial products. In tomato, the greatest difference in P
content between treated and diseased plants was observed for B+F and IB+B+F (Table 3). In
watermelon, the highest P content was detected in the AB+B+F treatment. These results suggest
that the incorporation of PGPR led to the changes in the microbial community that modified the
response of plants to Fusarium infection; these findings align with that of Syed Nabi et al. (2021),
Delgado-Ramirez et al. (2021), and Zhou et al. (2022).

3.5. Plant cell viability
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Metabolically active cells have intact membranes and contain a variety of compounds that are
intermediates of Krebs cycles (such as malate, glutamate, succinate, etc.) that can reduce MTT to
formazan (Liu et al., 1997). In both tomato and watermelon, all treatments (except in tomato with
nanoclay) increased viability (Figure 2 and Figure 3). This is in agreement with Alvarez-Carvajal
et al. (2020) who reported that chitosan-coated silver nanoparticles increased viability in tomato
and Chouhan et al. (2022) who found that a nickel chitosan nanoconjugate had a positive effect on
the viability in Fusarium-infected wheat. However, the difference in the response of tomato and
watermelon was again evident. In tomato, MSN-containing treatments had more impact on
viability (an increase of 1.37-fold for MSN+F and 1.43-fold for MSN+B+F) than did NC-
containing treatments (Fig. 2A). This is also evident from Figure 3; in the nanoparticle only
treatments, MSN treatment had a greater impact on disease suppression than did NC (Fig. 3B and
3C). In watermelon, the situation was reversed: in NC-treated plants, viability was increased 1.54
times (for NC+F samples) and 1.92 times (for NC+B+F). For MSN-treated plants, the increase
was more modest; 1.45 times for MSN+F samples and 1.70 times for MSN+B+F (Fig. 2B).
However, in both species the most effective biochar-containing sample was AB+B+F (Fig. 3D),
increasing viability in diseased tomato and watermelon by 1.51 and 2.43 times, respectively. This
is in accordance with the chlorophyll content results and could be explained by the joint effect of
lower temperature during gasification (Iacomino et al., 2022) and the presence of plant-growth
promoting rhizobacteria (Egamberdieva et al., 2020). Additionally, all treatments in which bacteria
were present (including treatments where bacteria were added directly into the soil) increased
viability compared to corresponding treatments without bacteria (Fig. 2, Fig. 3). This provides
additional evidence of the pivotal role of rhizobacteria in plant’s defense.

3.6.Antioxidant properties
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As evident in Figure 4, all treatments increased the content of antioxidant compounds in diseased
tomato and watermelon. These findings agree with Buchman et al. (2019) and Ma et al. (2021),
who found that nanoparticle treatment increased the expression of stress-related genes and the
activity of antioxidative enzymes in watermelon and tomato, respectively. Such an increase in
antioxidative compounds is a defense against oxidative stress induced by Fusarium infection
(Mandal et al., 2008). However, similar to chlorophyll content and viability results above, diseased
tomato and watermelon responded differently to equivalent treatments. For example, MSN
increased the content of antioxidant compounds in tomato by 4.27% (Fig. 4A), while the increase
in watermelon was 33.78% (Fig. 4B). Conversely, nanoclay was less efficient in watermelon
compared to MSN (antioxidant compound content was 29.16% higher than in Fusarium control)
(Fig. 4B), but the antioxidant capacity in tomato increased 170% following the NC treatment
(Fig.4A). Both nanoclay and chitosan-coated mesoporous silica nanoparticles contain silicon (Si),
and Si has been shown to alleviate damage of Fusarium infection by activating antioxidant
response (Huang et al., 2011). The most effective biochar in both watermelon and tomato was NB,
likely due to its high porosity. With exception of NB+B+F in tomato, all treatments with adsorbed
bacteria had a more pronounced effect on antioxidant capacity compared to corresponding
bacteria-free treatments. For example, the content of antioxidant compounds in the diseased
tomato increased by 208% after AB addition, whereas the increase with AB+B was 367%. Also,
the addition of bacteria directly into the soil of infected plants increased the content of antioxidant
compounds in tomato and watermelon by 19.84 and 27.77%, respectively. This aligns
Zibanezhadian et al. (2020) who found that addition of Bacillus thuringiensis to Fusarium-infected
tomato plants increased the expression of superoxide dismutase, catalase, and glutathione S-

transferase genes.
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3.7.Soil pH and microbiological analysis

As evident from Table 4 (procedure described in supplementary material), no statistically
significant differences were found in soil pH between diseased and treated plants of either species
at harvest. Such results may be a function of the buffering capacity of biochar (Shi et al., 2017),
although additional work is needed to confirm that hypothesis.

As evident from Figure 5, the total extractable bacteria content in the soil of infected controls of
both species was lower than the healthy control. This decrease in total extractable bacteria may
imply competitiveness between Fusarium and rhizobacteria species (Zhang et al., 2022; Jaiwal et
al., 2022). However, the number of nitrogen-fixing bacteria in infected control plants in both
species was greater than healthy controls (Figure 6); this increase could be a consequence of
Fusarium-mediated “requirement” of beneficial entophytic bacteria (Yuan et al., 2022). The same
explanation could also apply to the increased content of phosphorus-solubilizing bacteria in
Fusarium-infected tomato compared to healthy controls (Figure 7A). However, this was not true
for watermelon, which exhibited reduced content of P-solubilizing bacteria in the soil of infected
plants compared to healthy controls (Figure 7B). Furthermore, the effects of equivalent treatments
in tomato and watermelon were widely different. For example, the largest increase of total bacteria
content in tomato was with NC+B and IB+B (Fig. 5A); in watermelon, MSN and the direct
addition of bacteria to the soil had the greatest impact (Fig. 5B). The addition of chitosan-coated
mesoporous silica nanoparticles also led to the greatest content of N-fixing bacteria in the soil of
diseased tomato (Fig. 6A), whereas for watermelon, IB yielded the greatest content of N-fixing
bacteria (Fig. 6B). IB+B treatment showed the biggest impact on the content on P-solubilizing
bacteria in tomato (Fig. 7A), while NC gave the largest increase in content of P-solubilizing

bacteria in the soil of infected watermelon. As Merino et al. (2018), Buchman et al. (2019) and
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Aseel et al. (2022) showed both NC and MSN were shown to exhibit antimicrobial effects through
the upregulation of genes involved in plant defense and the activation of antioxidative enzymes.
Further experiments are needed to characterize changes in rhizobia composition in tomato and
watermelon as a function of disease and treatment and to elucidate the underlying mechanisms
driving species-specific responses.
4. Conclusion
Azotobacter vinelandii and Bacillus megaterium adsorbed on chitosan-coated mesoporous silica
nanoparticles, nanoclay, and biochars alleviated the damage from Fusarium wilt in both tomato
and watermelon. Although different treatments impacted disease progression in watermelon and
tomato to a different extent, all treatments increased the content of chlorophyll and antioxidative
compounds. The content of total-, nitrogen-fixing- and phosphorus-solubilizing bacteria varied
both as a consequence of treatments and plant species, which likely is a consequence of different
rhizobial composition in tomato and watermelon. Treatment with adsorbed bacteria showed a
greater positive effect on all measured endpoints, which implies an additive impact of the microbial
consortium and nanoparticles (or biochar) on disease suppression. These findings increase our
understanding of the potential additive positive effects of novel nanoscale-based formulations of
biopesticides as a sustainable disease management strategy.
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Figure S1: Representative scanning electron microscopy (SEM) images of biochars. A- “Italian”

biochar; B- Aries Green biochar; C-Naked biochar.

Figure S2: Representative scanning electron microscopy (SEM) images of nanoparticles and
biochars with adsorbed bacteria. A-mesoporous silica + bacteria; B- nanoclay + bacteria; C-

“Italian” biochar + bacteria; D- Aries Green biochar + bacteria; E-Naked biochar + bacteria.

Table S1: pH, conductivity and cation exchange capacity (CEC) of biochars.
Table S2: Content of phosphorus (P) and nitrogen (N) in biochars. References:
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Figure Captions
Figure 1: Total chlorophylls content. A- tomato; B- watermelon. Abbreviations: C — control
plants; F- Fusarium infected plants; B+ F — Fusarium infected plants with bacteria added to the
soil; MSN +F — Fusarium infected plants treated with chitosan-coated mesoporous silica
nanoparticles; NC + F — Fusarium infected plants treated with nanoclay; IB + F — Fusarium
infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated with Aries
Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN + B + F—
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with
adsorbed bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed
bacteria; IB +B + F— Fusarium infected plants treated with “Italian” biochar with adsorbed
bacteria; AB +B +F — Fusarium infected plants treated with Aries Green biochar with adsorbed

bacteria; NB +B +F — Fusarium infected plants treated with Naked biochar with adsorbed bacteria.
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Different letters for the same time point means that differences between samples were statistically
significant (determined by Tukey test at p < 0.05)

Figure 2: Viability. A- tomato; B- watermelon. Abbreviations: C — control plants; F- Fusarium
infected plants; B+ F — Fusarium infected plants with bacteria added to the soil; MSN +F —
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles; NC + F —
Fusarium infected plants treated with nanoclay; IB + F — Fusarium infected plants treated with
“Italian” biochar; AB+ F — Fusarium infected plants treated with Aries Green biochar; NB + F —
Fusarium infected plants treated with Naked biochar; MSN + B + F— Fusarium infected plants
treated with chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria; NC + B +F
— Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + F— Fusarium
infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F — Fusarium
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F — Fusarium
infected plants treated with Naked biochar with adsorbed bacteria. Different letters for the same
time point means that differences between samples were statistically significant (determined by
Tukey test at p < 0.05)

Figure 3: Representation of different treatments. A-left: Fusarium infected control plant (F); right:
Fusarium infected plant treated with bacteria added directly into soil (B+F); B- right: Fusarium
infected plant treated with chitosan-coated mesoporous silica nanoparticles (MSN+F); left:
Fusarium infected plant treated with chitosan-coated mesoporous silica with adsorbed bacteria
(MSN+F+B); C- right: Fusarium infected plant treated with nanoclay with adsorbed bacteria
(NC+F+B); left: Fusarium infected plant treated with nanoclay (NC+F); D- right: Fusarium
infected plant treated with “Italian” biochar (IB+F); left: Fusarium infected plant treated with

“Italian” biochar with adsorbed bacteria (IB+F+B); E- right: Fusarium infected plant treated with
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Aries biochar with adsorbed bacteria (AB+F+B); left: Fusarium infected plant treated with Aries
biochar (AB+F); F- right: Fusarium infected plant treated with Naked biochar (NB+F); left:
Fusarium infected plant treated with Naked biochar with adsorbed bacteria (NB+F+B); G-left:
control, healthy plant (C); right- Fusarium infected control plant (F).

Figure 4: Content of antioxidants determined by DPPH test. A- tomato; B- watermelon.
Abbreviations: C — control plants; F- Fusarium infected plants; B+ F — Fusarium infected plants
with bacteria added to the soil; MSN +F — Fusarium infected plants treated with chitosan-coated
mesoporous silica nanoparticles; NC + F — Fusarium infected plants treated with nanoclay; IB + F
— Fusarium infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated
with Aries Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN
+ B + F— Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles
with adsorbed bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed
bacteria; IB +B + F— Fusarium infected plants treated with “Italian” biochar with adsorbed
bacteria; AB +B +F — Fusarium infected plants treated with Aries Green biochar with adsorbed
bacteria; NB +B +F — Fusarium infected plants treated with Naked biochar with adsorbed bacteria.
Different letters for the same time point means that differences between samples were statistically
significant (determined by Tukey test at p < 0.05)

Figure 5: Content of total bacteria. A- tomato; B- watermelon. Abbreviations: C — control plants;
F- Fusarium infected plants; B+ F — Fusarium infected plants with bacteria added to the soil; MSN
+F — Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles; NC +
F — Fusarium infected plants treated with nanoclay; IB + F — Fusarium infected plants treated with
“Italian” biochar; AB+ F — Fusarium infected plants treated with Aries Green biochar; NB + F —

Fusarium infected plants treated with Naked biochar; MSN + B + F— Fusarium infected plants
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treated with chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria; NC + B +F
— Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + F— Fusarium
infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F — Fusarium
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F — Fusarium
infected plants treated with Naked biochar with adsorbed bacteria. Different letters for the same
time point means that differences between samples were statistically significant (determined by
Tukey test at p < 0.05)

Figure 6: Content of N-fixing bacteria. A- tomato; B- watermelon. Abbreviations: C — control
plants; F- Fusarium infected plants; B+ F — Fusarium infected plants with bacteria added to the
soil; MSN +F — Fusarium infected plants treated with chitosan-coated mesoporous silica
nanoparticles; NC + F — Fusarium infected plants treated with nanoclay; IB + F — Fusarium
infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated with Aries
Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN + B + F—
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with
adsorbed bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed
bacteria; IB +B + F— Fusarium infected plants treated with “Italian” biochar with adsorbed
bacteria; AB +B +F — Fusarium infected plants treated with Aries Green biochar with adsorbed
bacteria; NB +B +F — Fusarium infected plants treated with Naked biochar with adsorbed bacteria.
Different letters for the same time point means that differences between samples were statistically
significant (determined by Tukey test at p < 0.05)

Figure 7: Content of P-solubilizing bacteria. A- tomato; B- watermelon. Abbreviations: C —
control plants; F- Fusarium infected plants; B+ F — Fusarium infected plants with bacteria added

to the soil; MSN +F — Fusarium infected plants treated with chitosan-coated mesoporous silica
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nanoparticles; NC + F — Fusarium infected plants treated with nanoclay; IB + F — Fusarium
infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated with Aries
Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN + B + F—
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with
adsorbed bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed
bacteria; IB +B + F— Fusarium infected plants treated with “Italian” biochar with adsorbed
bacteria; AB +B +F — Fusarium infected plants treated with Aries Green biochar with adsorbed
bacteria; NB +B +F — Fusarium infected plants treated with Naked biochar with adsorbed bacteria.
Different letters for the same time point means that differences between samples were statistically

significant (determined by Tukey test at p < 0.05)



Tables

Table 1. Treatments used in experiments

control (C)
Plants infected with Fusarium (F)
Plants infected with Fusarium with added bacteria (B + F)
chitosan-coated mesoporous silica infected plants treated with infected plants treated with chitosan-
(MSN) chitosan-coated mesoporous silica coated mesoporous silica with
(MSN+F) loaded bacteria (MSN-+B-+F)
Nanoclay (NC) infected plants treated with infected plants treated with nanoclay
nanoclay (NC+F) with loaded bacteria (NC+B+F)
“Italian” biochar (IB) infected plants treated with infected plants treated with “Italian”
“Italian” biochar (IB+F) biochar with loaded bacteria
(IB+B+F)
Aries biochar (AB) infected plants treated Aries green infected plants treated with Aries
biochar (AB+F) Green biochar with loaded bacteria
(AB+B+F)
Naked biochar (NB) infected plants treated with Naked infected plants treated with Naked
biochar (NB+F) biochar with loaded bacteria
(NB+B+F)




Table 2: Nitrogen content in Fusarium-infected plants in tomato and watermelon experiments*

N content (mg/g)
Tomato experiment Watermelon experiment

samples 0 days 7 days 14 days 28 days 0 days 10 days 20 days 30 days
C 57.1£1.2° | 54.842.0*° | 41.4+2.8% | 23.142.2* | 29.9+3.1* | 25.4+1.4* | 18.5+1.3% | 17.7+1.5°

F 57.1£1.2% | 42.2+3.9¢ 35.2+3.3% | 51.4+2.9%¢ |29.9+3.1% | 41.3+4.0° | 44.8+1.5° | 50.7+4.8°
B+F 57.1£1.2% | 473+ 1.9%%¢ | 3944287 | 49.5+3.0%%¢ | 29.9+3.12 | 47.2£4.9° | 47.7+5.4>¢ | 51,0+5.3°
MSN+F | 57.1£1.2% | 42.5+3.0° 35.4+2.2% | 61.6+3.4° 29.9+3.1% | 45.5£1.5° | 34.6+2.99 | 22.7+2.2%¢
NC+F 57.1£1.2% | 49.1+3.12%¢ | 36.9+4.0* | 41.7+3.3%¢ | 29.9+3.1* | 41.9+1.2° | 54.6+2.9° | 33.8+3.5¢
IB+F 57.1£1.2% | 42.4+3.6° 36.3+3.3% | 56.9+3.8%h | 29.9+3.12 | 36.9£4.7%" | 44.9+1.7° | 44.8+3.6°
AB+F | 57.1£1.2% | 46.2+2.5%%¢ | 33.2+3.8% | 34.0+2.9' 29.9£3.1° | 46.4+5.1° | 35.6£1.8¢ | 47.1£2.9>f
NB +F 57.1£1.2% | 49.6+4.4%9 | 34.1+3.9% | 44.5+4.0°27 | 29.9+3.12 | 47.9+4.8> | 47.4+2.4>¢ | 50.8+3.1°
MSN + B +F | 57.1£1.2% | 45.2+1.5%¢ | 34.2+3.5% | 40.7+3.8" | 29.9+3.1* | 35.1+4.3*> | 50.3+1.3%° | 52.0+4.7°2
NC+B+F |57.1£1.2% | 58.0£4.7° | 36.5£1.9* | 52.5+4.1° | 29.9+3.1% | 43.0£5.1° | 46.9+1.4> | 38.442.4%h
IB+B+F |57.1£1.2% | 51.3£5.0*¢ | 357+3.9% | 52.9+4.4° | 29.9+3.1° | 41.3+2.2" | 44.5+1.8" | 47.4+4.0>f
AB+B+F | 57.1£1.2% | 48.1£2.8%%¢ | 35842.2% | 47.6+3.65 | 29.9+3.1% | 44.2£2.4° | 43.6£1.2° | 48.3+3.6>f
NB+B+F |57.1£1.2% | 53.5£1.6*>¢ | 33.9+3.32 | 48.1+2.9%% | 29.9+3.1% | 37.844.5%" | 47.422.3%° | 45242.9°

* Different letters at the same column means that differences between samples were statistically significant
(determined by Tukey test). Abbreviations: C — control plants; F- Fusarium infected plants; B + F —
Fusarium infected plants with bacteria added to the soil; MSN +F — Fusarium infected plants treated with
chitosan-coated mesoporous silica nanoparticles; NC + F — Fusarium infected plants treated with nanoclay;
IB + F — Fusarium infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated
with Aries Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN + B + F—
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with adsorbed
bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B +
F— Fusarium infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F — Fusarium
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F — Fusarium infected

plants treated with Naked biochar with adsorbed bacteria.




Table 3: Phosphorus content in Fusarium-infected plants in tomato and watermelon experiments*

P content (mg/g)
Tomato experiment Watermelon experiment
samples 0 days 7 days 14 days 28 days 0 days 10 days | 20 days 30 days
C 9.3+0.5% | 7.2+1.0* | 7.0£1.3° |3.0£0.4* |4.3+£0.8* |4.7+0.6° | 1.9£0.3* | 1.7+0.2°
F 9.3+0.5* | 6.1£0.4° | 6.8+1.0° | 10.0£0.3°¢| 4.3+0.8* |3.2+0.4° | 5.9+0.1° |6.2+0.2°
B+F 9.3+0.5* | 4.0£0.2%¢ | 8.0£0.4° | 12.7+0.19 | 4.3+0.8* | 5.1£0.6° | 5.4+0.8° | 6.1+0.1°
MSN+F | 9.3+0.5* |3.5+0.39 | 7.6£0.2b | 11.7+0.1° | 4.3£0.8* | 4.2£0.4%¢ | 3.8+0.6¢ | 5.3+0.1¢
NC +F 9.3+0.5* | 2.6+0.59 |8.0£0.7° | 11.0+£0.2" |4.3£0.8° |4.6+0.5%° | 6.3+0.2>° | 5.2+0.7%¢
IB+F 9.3+0.5* | 3.1£0.59 | 6.4£0.5>¢ | 10.120.2>° | 4.3£0.8° | 3.8+0.5%¢ | 5.3+0.1° | 5.3+0.8°
AB+F 9.3+0.5* | 3.3+0.6% | 7.4£0.3° | 10.2+0.3° |[4.3£0.8* | 6.2+0.8" |5.8+0.8" |4.1£0.6"
NB + F 9.3+0.5* | 3.6£0.7%¢ | 7.0£0.6° | 9.8+0.3° |4.3+0.8* | 6.3+0.7" | 7.0+1.0° | 5.0+0.82
MSN +B+F | 9.3£0.5% | 5.9+0.6>¢ | 6.4+1.0>¢ | 10.0+£0.1>° | 4.3+£0.8* | 3.7£0.4%¢ | 4.6£0.6¢ | 6.2+0.9°"
NC+B+F |9.3+05% |3.2+0.5¢ |5.240.9*¢ | 11.7£0.2° | 4.3+£0.8* | 4.7£0.4%° | 4.8+0.18" | 5.8+0.8'
IB+B+F |[9.3+0.5 | 2.0+0.3° |4.9+0.4* | 11.9+0.1° |4.3£0.8° |3.6+£0.6° |5.2£0.2% | 6.3+0.9"
AB+B+F |[9.340.5* | 2.5+0.5%¢ | 5.840.3° | 9.8£0.2° [4.3£0.8* |3.4+0.5°¢ | 6.0+0.7° | 6.7+l
NB+B+F |[9.3+0.5* |2.4+0.4° |6.7+0.7° | 11.0£0.37 | 4.3+0.8° | 3.5£0.4°¢ | 4.9£0.1%" | 6.2+0.8°¢

* Different letters at the same column means that differences between samples were statistically significant
(determined by Tukey test). Abbreviations: C — control plants; F- Fusarium infected plants; B + F —
Fusarium infected plants with bacteria added to the soil; MSN +F — Fusarium infected plants treated with
chitosan-coated mesoporous silica nanoparticles; NC + F — Fusarium infected plants treated with nanoclay;
IB + F — Fusarium infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated
with Aries Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN + B + F—
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with adsorbed
bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B +
F— Fusarium infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F — Fusarium
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F — Fusarium infected
plants treated with Naked biochar with adsorbed bacteria.



Table 4: Soil pH in Fusarium-infected plants in tomato and watermelon experiments*

pH
Tomato experiment Watermelon experiment

samples 0 days 7 days 14 days 28 days 0 days 10 days 20 days 30 days
C 5.66+£0.08" | 5.82+0.04* | 6.05+0.08* 6.16+£0.12% | 5.66+0.08* | 6.18+0.10° 6.28+0.12*" | 6.36+0.13"

F 5.66+0.08% | 5.96+0.10* | 6.19+£0.10*" | 5.98+0.11% | 5.66+0.08" | 6.56+0.10° | 6.24+0.13*" | 6.42+0.03*
B+F 5.66+0.08" | 5.93+0.02% | 6.26+0.11** | 5.86+0.11* | 5.66+0.08" | 6.94+0.11° 6.44+0.12*" | 6.41+0.11°
MSN + F 5.66+0.08% | 6.02+0.10" | 6.14+0.08*" | 6.01£0.12% | 5.66+0.08" | 6.67+0.12° | 6.39+0.13* | 6.62+0.05°
NC+F 5.66+0.08% | 6.00+0.11* | 6.33+0.13° 6.04+0.07% | 5.66+0.08* | 6.82+0.07¢ 6.43+0.10* 6.30+0.11°%
IB+F 5.66+0.08% | 5.94+0.03% | 6.18+0.09*" | 6.05+0.12% | 5.66+0.08" | 6.93+0.14¢ 6.22+0.03*" | 6.36+0.12°
AB+F 5.66+0.08" | 5.95+0.02% | 6.14+0.04** | 6.09+0.08" | 5.66+0.08" | 6.54+0.13" 6.38+0.10*" | 6.35+0.13"
NB + F 5.66+0.08% | 6.01£0.04" | 6.08+0.09*" | 6.03+0.12% | 5.66+0.08" | 6.39+£0.12*" | 6.02+0.11° | 6.27+0.11°
MSN + B +F | 5.66£0.08" | 6.00£0.11* | 6.18+0.06®™ | 5.99+0.09* | 5.66+0.08" | 6.34+0.10*" | 6.15+0.07*" | 6.24+0.10°
NC+B+F |5.66+0.08" | 5.80£0.10° | 6.22+0.12*" | 6.01£0.04* | 5.66+0.08" | 6.38+0.11** | 6.28+0.08"" | 6.28+0.07°
IB+B+F 5.66+0.08" | 6.10+0.06" | 6.16£0.06*" | 5.97+0.09* | 5.66+0.08" | 6.57+0.13" 6.23+0.05** | 6.25+0.13"
AB+B+F | 5.66£0.08" | 5.97+0.09" | 6.17£0.02*° | 6.08+0.07* | 5.66+0.08" | 6.66+0.12° | 6.22+0.13** | 6.19+0.09"
NB+B+F |5.66+0.08 | 6.05£0.09* | 6.14+0.11*" | 6.16+0.11% | 5.66+0.08" | 6.68+0.13° 6.26+0.12*" | 6.24+0.12°

* Different letters at the same column means that differences between samples were statistically significant
(determined by Tukey test). Abbreviations: C — control plants; F- Fusarium infected plants; B + F —
Fusarium infected plants with bacteria added to the soil; MSN +F — Fusarium infected plants treated with
chitosan-coated mesoporous silica nanoparticles; NC + F — Fusarium infected plants treated with nanoclay;
IB + F — Fusarium infected plants treated with “Italian” biochar; AB+ F — Fusarium infected plants treated
with Aries Green biochar; NB + F — Fusarium infected plants treated with Naked biochar; MSN + B + F—
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with adsorbed
bacteria; NC + B +F — Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B +
F— Fusarium infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F — Fusarium
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F — Fusarium infected
plants treated with Naked biochar with adsorbed bacteria.
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Highlights

Fusarium infection causes loss of billions of dollars annually

Plant growth promoting bacteria enhance properties of nanoparticles and biochar
Application of these systems augments chlorophyll, nitrogen and phosphorus content
Under such treatments antioxidative properties and viability of infected plants increase
Field test will confirm efficacy of these systems as pesticides
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