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Abstract: The addition of biochars and nanoparticles with adsorbed Azotobacter vinelandii and 23 

Bacillus megaterium alleviated damage from Fusarium infection in both tomato (Solanum 24 

lycopersicum) and watermelon (Citrullus lanatus) plants. Tomato and watermelon plants were 25 

grown in greenhouse for 28 and 30 days (respectively) and were treated with either nanoparticles 26 

(chitosan-coated mesoporous silica or nanoclay) or varying biochars (biochar produced by 27 

pyrolysis, gasification and pyrogasification). Treatments with nanoparticles and biochars were 28 

applied in two variants - with or without adsorbed plant-growth promoting bacteria (PGPR). 29 

Chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased chlorophyll 30 

content in infected tomato and watermelon plants (1.12 times and 1.63 times, respectively) to a 31 

greater extent than nanoclay with adsorbed bacteria (1.10 times and 1.38 times, respectively). 32 

However, the impact on other endpoints (viability of plant cells, phosphorus and nitrogen content, 33 

as well antioxidative status) was species-specific. In all cases, plants treated with adsorbed bacteria 34 

responded better than plants without bacteria. For example, the content of antioxidative 35 

compounds in diseased watermelon plants increased nearly 46% upon addition of Aries biochar 36 

and by approximately 52% upon addition of Aries biochar with adsorbed bacteria. The overall 37 

effect on disease suppression was due to combination of the antifungal effects of both 38 

nanoparticles (and biochars) and plant-growth promoting bacteria. These findings suggest that 39 

nanoparticles or biochars with adsorbed PGPR could be viewed as a novel and sustainable solution 40 

for management of Fusarium wilt.  41 

Keywords: nanoclay; mesoporous silica; biochar; PGPR; Fusarium 42 

 43 

1. Introduction 44 

The economic and environmental impact of plant diseases caused by different formae speciales of 45 

Fusarium oxysporum is significant (Okungbowa and Shittu, 2012; Epstein et al., 2022; Figueiredo 46 
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Silva et al., 2023). Globally, each year Fusarium wilt decreases production of rice (Oryza sativa) 47 

by 25% – 41%, wheat (Triticum durum) by 10% – 28%, and soybean (Glycine max) by 11% – 48 

32%, etc. (Figueiredo Silva et al., 2023). Due to sensitivity of bananas (Musa sp.) to Fusarium 49 

oxysporum f.sp. cubense Tropical race 4, 111 billion US dollars were “lost” in 2016 (Figueiredo 50 

Silva et al., 2023). Crop species subject to Fusarium attack include most major food crops, such 51 

as wheat, soybean, yam (Dioscorea sp.), oats (Avena sativa), etc. (Adisa et al., 2018; Cai et al., 52 

2020; Dongzhen et al., 2020; Havrlentová et al., 2021; Yang et al., 2022).Although fungicides can 53 

effectively manage select fungal plant pathogens (Mondani et al., 2021), efficacy against Fusarium 54 

diseases is highly limited (due to their relatively low efficacy as demethylation inhibitors and 55 

quinone outside inhibitors), and negative impacts on the environment are significant (González-56 

Domínguez et al., 2021; Lin et al., 2019; Mahmood et al., 2016). Notably, leaf extracts of medicinal 57 

plants (such as Azadirachta indica, Punica granatum, and Pinus wallachiana) have shown 58 

antifungal activity, both when applied in the seedling phase and when added directly to the soil 59 

(Abo-Elyousr et al., 2022; Ain et al., 2022). Thus, more environment-friendly solutions to manage 60 

F. oxysporum infection have been investigated, such as the application of nanoparticles, biochar, 61 

and specific microorganisms as soil additives (Buchman et al., 2019; Egamberdieva et al., 2020; 62 

Jaiswal et al., 2020; Saleh et al., 2021; Chen et al., 2023). 63 

Indeed, different metallic and metallic oxide nanoparticles (such as Ag, Cu, Ni, Mn, CeO2, CuO 64 

nanoparticles), as well as nanocomposites (such as nanoscale hydroxyapatite) and silica 65 

nanoparticles, have all been used successfully to suppress or delay damage from F. oxysporum 66 

infection of tomato and watermelon (Ahmed et al., 2016; Adisa et al., 2018; Buchman et al., 2019; 67 

Kang et al., 2021; Ahmad et al., 2022; Shah et al., 2022; Noman et al., 2023). Although reduction 68 

of disease strongly depends on the type of plant examined, the average disease reduction was in 69 

Jo
urn

al 
Pre-

pro
of



the range of 53 -84.5% (Ahmed et al., 2016; Adisa et al., 2018; Buchman et al., 2019; Shah et al., 70 

2022). Chitosan, often used as biocompatible nanoparticle coating material, also exhibits direct 71 

antifungal activity (Carmona et al., 2021; Wahyuni et al., 2021) and induces the activation of plant 72 

defense pathways (Katiyar et al., 2015). Carmona et al. (2021) reported that chitosan-treated plants 73 

showed higher expression of the PR1a gene that codes for a protein associated with the 74 

accumulation of the important defense biomolecule, salicylic acid. The mechanisms by which 75 

nanoparticles suppress F. oxysporum infection are unclear, but are typically dependent on 76 

nanoparticle type and properties. For example, Adisa et al. (2018) correlated the antifungal activity 77 

of CeO2 nanoparticles with their ability to counteract the negative effect of free radical species 78 

produced by F. oxysporum f. sp. lycopersici. Ahmad et al. (2022) and Lopez-Lima et al. (2021) 79 

also credited the antifungal activity of nanoscale Ag and CuO to their antioxidative properties. 80 

Conversely, Ma et al. (2021) suggested that antifungal effects exhibited by nanoscale 81 

hydroxyapatite was due to the interplay between antioxidant and phytohormone pathways. Similar 82 

results were obtained by Noman et al. (2022) who found that F. oxysporum f. sp. Niveum infection 83 

was suppressed in watermelon treated with manganese nanoparticles by enhancing the activation 84 

of salicylic acid signaling. Alternatively, for SiO2 NPs, Kang et al. (2021) reported a nanoscale-85 

specific process involving the enhanced barrier deposition of silicic acid that promoted physical 86 

barrier protection in the plant cell walls against infection.  87 

The effectiveness of biochar addition on the suppression of Fusarium wilt depends on several 88 

material characteristics, including feedstock type, pyrolysis conditions, water-holding capacity, 89 

adsorption ability, nutrient content, pH, and electric conductivity (Graber et al., 2014; Iacomino et 90 

al., 2022). For example, the high nutrient content and adsorption ability of wood-derived biochar 91 

can lead to changes in the root exudate composition of tomato and watermelon, which in turn could 92 
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lead to increased microbiological diversity in the soil through “recruitment” of plant-beneficial 93 

bacterial species such as Pseudomonas (Akhter et al., 2015; Cao et al., 2017; Jin et al., 2022). 94 

Moreover, Jaiswal et al. (2022) found that the addition of biochar produced from plant waste to 95 

tomato suppresses Fusarium infection by upregulating genes coding for proteins participating in 96 

pathways involved in plant defense and phytohormone synthesis (e.g. synthesis pathways for 97 

cytokinins, auxin, jasmonic acid, brassinosteroids, and phenylpropanoids) and the downregulating 98 

of genes involved in salicylic acid synthesis. 99 

To further enhance performance of nanoparticles and biochar, they could be combined with plant 100 

growth promoting rhizobacteria (PGPR). Such combinations might activate multiple defense 101 

pathways, hense providing higher protection. PGPR have previously been used in agriculture and 102 

are known to be positively associated with plant-growth and promote plant defense against 103 

different bacterial and fungal pathogens. For example, Aydi-Ben-Abdallah et al. (2020) found that 104 

bacterial isolates naturally associated with Solanum sodomaeum and Solanum bonariense plants 105 

suppressed Fusarium wilt in tomato. This antifungal activity could be due to changes in the 106 

concentration of plant hormones such as salicylic acid and jasmonic acid (Syed Nabi et al., 2021); 107 

activation of antioxidative defense pathways (e.g. higher activity of enzymes like peroxidases, 108 

polyphenoloxidases, glucanases, chitinases, lipoxygenases, etc.) (Maciel Ferraz et al., 2014), or 109 

the direct production of antifungal compounds (Bhosale et al., 2013). For example, Azotobacter 110 

vinelandii is a bacterium with the ability to convert atmospheric nitrogen (N2) into ammonia (NH3) 111 

that can be used as a nitrogen source for plants (Plunkett et al., 2020). Additionally, Azotobacter 112 

vinelandii was found to synthesize antifungal compounds such as sucrose tetraamine 113 

polyphosphates that have activity under laboratory conditions and in pot experiments (Bhosale et 114 

al., 2013). Bacillus megaterium is a soil bacterium with the capacity to convert insoluble forms of 115 
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phosphorus into phosphorus-containing compounds that can be used by plants (Kang et al., 2014). 116 

Also, Bacillus megaterium BM344-1 excretes hexadecanoic acid methyl ester and tetracosane as 117 

part of its volatilome (Saleh et al., 2021); both compounds were shown to have antifungal activity 118 

towards Fusarium verticillioides (Saleh et al., 2021). Furthermore, the high porosity of biochar 119 

can provide a protective effect of bacteria located in the material pore structure. Indeed, when 120 

adsorbed to biochar, endophytic bacteria such as Bacillus subtilis and Pseudomonas putida exhibit 121 

a stronger effect on disease reduction than either isolate themselves or biochar on its own 122 

(Egamberdieva et al., 2020; Chen et al., 2023). Therefore, functionalizing nanoparticles by adding 123 

PGPR may significantly increase their potential as pesticides. 124 

Given the known complexity of interactions between hosts, pathogens, rhizosphere microbes 125 

(PGPR), and nanoparticles, we designed studies to compare the effect of two types of nanoparticles 126 

(chitosan-coated mesoporous silica and nanoclay) with adsorbed PGPR and three types of biochars 127 

(produced by pyrolysis, pyrogasification, or gasification) with adsorbed PGPR on suppression of 128 

Fusarium wilt in tomato and watermelon. The consortium adsorbed on nanoparticles and biochar 129 

consisted of Azotobacter vinelandii and Bacillus megaterium. This work aims to aid in 130 

understanding the combined effect of PGPR adsorbed on nanoparticles and biochar, as well as to 131 

elucidate mechanisms behind the suppression of Fusarium wilt in plants treated with PGPR 132 

adsorbed on nanoparticles and biochar. Application of these treatments has the potential to provide 133 

more sustainable and environment-friendly solutions to plant pathogen management. 134 

 135 

2. Materials and Methods 136 

2.1. Chemicals 137 
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2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid 138 

(ABTS), nanoclay (hydrophilic bentonite), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 139 

acid (Trolox), L-ascorbic acid, tetraethylorthosilicate (TEOS), cetyltrimethylammonium bromide 140 

(CTAB), and chlorotrimethylsilane were purchased from Sigma-Aldrich (St. Louis, MO, USA). 141 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Dulbecco's Modified 142 

Eagle's Limiting Medium were purchased from Fisher Scientific (Waltham, MA, USA). 2-143 

[methoxy-(polyethyleneoxy)9−12 propyl]-trimethoxysilane was purchased from Gelest 144 

(Morrisville, PA, USA). Pikovskaya medium was purchased from HiMedia Laboratories (West 145 

Chester, PA, USA), while nutrient agar was purchased from Fisher Scientific (Waltham, MA, 146 

USA). Chitosan was purchased from Spectrum (New Brunswick, NJ, United States). Azotobacter 147 

vinelandii (strain designation: DSM 2289; ATCC 478; VKM B-1617) and Bacillus megaterium 148 

(strain designation: DSM 32; VKM B-512) were purchased from ATCC (Manassas, VA, USA) 149 

and kept at -80°C prior to analysis. Aries Green biochar was purchased from Aries Clean 150 

Technologies LLC (Franklin, TN, USA). Naked biochar was purchased from American Biochar 151 

Company (Niles, MI, USA). The remainder of the chemicals were purchased from Merck 152 

Millipore (Burlington, MA, United States). 153 

2.2. Synthesis and characterization of chitosan-coated mesoporous silica nanoparticles (MSN) and 154 

nanoclay (NC) 155 

Synthesis of chitosan-coated mesoporous silica was performed according to Buchman et al. 156 

(2019), with lower ultracentrifugation speed (21,500 x g). The size of nanoparticles was 157 

determined by transmission electron microscopy (TEM, HT7800 TEM, Hitachi, Japan). The pore 158 

volume and surface area of MSN and NC were determined by nitrogen physisorption (Autosorb 159 

IQ, Quantachrome Instruments, Boynton Beach, FL, USA).  The hydrodynamic diameter and ζ 160 
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potential of the nanoparticles were determined by a Zetasizer (Nano-ZS90, Malvern Pananalytical, 161 

Malvern, UK). Prior to measurements, samples were sonicated 30 min at ambient temperature. 162 

The concentration of nanoparticles in samples for analyses was 0.5 mg/mL. To exclude the 163 

presence of impurities in the nanoclay, elemental analysis using energy dispersive X-ray 164 

spectroscopy (EDX) was done. For EDX analysis, nanoclay particles were dispersed in 95% 165 

ethanol and mounted in a carbon-coated Ni grid. The analysis was performed with an EDX detector 166 

(80T, Oxford Instruments) attached to a Hitachi 7800 transmission electron microscope. 167 

2.3. Characterization of biochars, soil substrate and fertilizer 168 

Aries green biochar (AB) was derived from wood waste via downdraft gasification at the 169 

temperatures averaging 450-600°C. Naked biochar (NB) was derived from recycled wood through 170 

complete pyrolysis at the temperatures ranging from 550 to 900°C. A third biochar sample (named 171 

“Italian biochar” – IB) was produced from wood pellets in a prototype pyrogasification system 172 

<50 kW at the temperatures between 500 and 700°C (biochar is named A4 in Marmiroli et al., 173 

2018). The pH and electrical conductivity (EC) measurements of the biochars was conducted 174 

according to Dume (2015). In short, pH and electrical conductivity were measured in distilled 175 

water at 1:10 biochar to water ratio (m/V) after shaking for 30 min. Samples were left to “settle” 176 

10 min prior to measurements. 177 

The cation exchange capacity (CEC) was determined as described by Batista et al. (2018).  Briefly, 178 

2 g of sample was mixed with 100 mL of 0.5 mol/L HCl. The flask was closed and shaken at 150 179 

rpm for 30 min at room temperature. Excess acidic aqueous solution was removed by vacuum and 180 

the material was washed twice with 50 mL of deionized water containing a few drops of 1% (m/v) 181 

AgNO3. Afterwards, the sample was transferred to new Erlenmeyer flask and 100 mL of 0.35 182 

mol/L (CH3COO)2Ba was added and stirred for 15 min (room temperature). The material was 183 
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filtered and washed 3 times with 100 mL of water. The pellet was discarded, and the filtrate was 184 

titrated against 0.1 mol/L NaOH solution with phenolphthalein as indicator. The CEC was 185 

calculated using following equation: 186 

𝐶𝐸𝐶 =
𝑉(𝑚𝑙) × 0.1

𝑚𝑜𝑙
𝑙

(𝑁𝑎𝑂𝐻) × 100

2𝑔
 187 

 188 

The surface area and pore volume of the biochars were determined via nitrogen physisorption 189 

(Autosorb IQ, Quantachrome Instruments, Boynton Beach, FL, USA). Hydrodynamic diameter 190 

and ζ potential of biochars were determined by Zetasizer (Nano-ZS90, Malvern Pananalytical, 191 

Malvern, UK). Prior to measurements samples were sonicated 30 min at room temperature. 192 

Concentration of biochar in the samples was the same as for nanoparticles (0.5 mg/mL). 193 

Elemental analysis of biochars was determined by inductively coupled plasma optical emission 194 

spectrophotometry (ICP-OES) (iCAP 6000 series, Thermo Fisher Scientific, Waltham, MA, 195 

USA). Prior to ICP-OES analysis, 0.1 g of homogenized sample was digested with 3 mL of 68% 196 

nitric acid for 45 min at 115°C (DigiPrep MS, SCP Science, Champlain, NY, USA). The sample 197 

was diluted to 15 mL with distilled water and was allowed “settle” overnight. 198 

The content of nitrogen (N) was determined on a nitrogen analyzer (FP628, LECO, St. Joseph, 199 

MI, USA). Briefly, 0.1 g of sample was measured and closed in aluminum foil (provided with the 200 

instrument). The analytical program settings included cellulose standard, EDTA standard and an 201 

Association of American Feed Control Officials (AAFCO) standard (also provided with the 202 

instrument) that were used as negative and positive controls, respectively. 203 

As a soil substrate Promix BX (Premier Hort Tech, Quakertown, PA, USA) was used. The pH was 204 

determined according to Environmental Protection Agency (EPA) method 9045D. Briefly, a 1:1 205 

(m/v) of substrate: distilled water was mixed for 5 min on magnetic stirrer and “left” to settle for 206 

Jo
urn

al 
Pre-

pro
of



1h. The content of phosphorus (P) in the substrate was determined by ICP-OES (iCAP 6000 series, 207 

Thermo Fisher Scientific, Waltham, MA, USA). Prior to ICP-OES analysis, samples were 208 

prepared following the same procedure as for biochar. The content of N was determined with a 209 

nitrogen analyzer (FP628, LECO, St. Joseph, MI, USA). Miracle-Gro all-purpose fertilizer 210 

(Marysville, OH, USA) was used in the experiment. The content of P and N in the substrate was 211 

determined using the same procedure as for soil substrate and biochar. 212 

2.4. Adsorption of bacteria on nanoparticles and biochars, assessment of loading efficiency and 213 

sample characterization 214 

The adsorption of nanoparticles to the bacteria was done by according to Deng et al. (2008), with 215 

some modification. In short, bacteria were first grown on nutrient agar (Fisher Scientific, Waltham, 216 

MA, USA) at 28°C for 48h. Then, 2 mL of mixture containing 1 mL of 2 x108 CFU/mL of A. 217 

vinelandii and 1 mL 2 x108 CFU/mL B. megaterium was added in flasks containing 50 ml of 218 

autoclaved distilled water and 0.1 g nanoparticles (chitosan-coated mesoporous silica or nanoclay). 219 

The mixture was shaken for 6h at 6,000 rpm at ambient temperature, centrifuged at 16000 x g for 220 

10 min and the recovered pellet was air-dried under a fume hood. The number of loaded bacteria 221 

was determined according to Deng et al. (2018), with some modifications. One mL of supernatant 222 

from the previous step was grown at nutrient agar (28°C, 48h), and the CFU/mL was determined. 223 

The number of loaded bacteria was calculated by difference between initial CFU and CFU after 224 

adsorption. The loading of bacteria was verified using scanning electron microscopy (SEM, 225 

TM3030 Plus, Hitachi High-Tech Group, Japan). Sample preparation for SEM analysis included 226 

the following steps: the sample holder was cleaned with alcohol, dried and carbon tape was placed 227 

in the middle of the holder. A small amount of powdered, homogenized sample was removed with 228 

sterilized spatula, placed on carbon tape, pressed lightly with sterilized tweezers (blunt end) and 229 
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excess was taped off on filter paper. SEM images were taken at D6.1x180 in back scattered 230 

electron (BSE) mode and under energy dispersive x-ray spectroscopy (EDX) observational 231 

conditions.  232 

For the adsorption of bacteria on biochar, the preparation of biochar was according to Husna et al. 233 

(2019). Briefly, 30 g of biochar was ground and sieved to 1 mm and then autoclaved for 1h at 234 

121°C. The loading of bacteria was verified using SEM. Inoculation of bacteria on biochar was 235 

also done as described by Husna et al. (2019). In short, 2 mL of bacterial mixture (1 mL 2 x108 236 

CFU/mL of A. vinelandii and 1 mL 2 x108 CFU/ml of B. megaterium) and 11 mL of 237 

distilled/autoclaved water were mixed and applied onto the biochar using a sterile syringe. Unlike 238 

with nanoparticles, adsorption of bacteria to biochar is assumed to be 100 %.  The biochar was 239 

with bacteria was sealed in a sterile bag and left at room temperature for 24h. Sample preparation 240 

and working parameters were the same as described for the nanoparticles. 241 

2.5. Preparation of inoculum  242 

F. oxysporum f. sp. lycopersici Race 2 and F. oxysporum f. sp. niveum were used for tomato and 243 

watermelon infection, respectively. Monosporic cultures were stored at 4°C. The inoculum was 244 

grown on sterile Japanese millet and ground in a mill using as described by Elmer et al. (2018). 245 

2.6. Plant growth experimental design: 246 

Tomato (Solanum lycopersicum, cultivar Bonny Best; Totally Tomatoes, Randolph, WI, USA) 247 

was grown in a first study and watermelon (Citrullus lanatus, cultivar Sweet Baby (Harris Seed 248 

Co., Rochester, NY, USA) was used in a second experiment. Promix BX (Premier Hort Tech, 249 

Quakertown, PA, USA) soil substrate contains, according to manufacturer, 75-85% Sphagnum 250 

peat moss, perlite, vermiculite, limestone and wetting agent. Promix’s pH was 5.66 ± 0.21; 251 
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phosphorus (P) content- 562.32 ± 92.96 mg/kg and nitogen (N)- content-  0.23 ± 0.02 mg/kg (Table 252 

S4; Pavlicevic et al., 2022). 253 

Plants were grown from seeds in potting mix for three weeks before being transplanted into pots 254 

with 250 mL of soil substrate with the various amendments. Subsequently, plants grown in non-255 

infested potting soil (controls) and potting soil infested with the fungal pathogens were grown in 256 

a greenhouse in plastic pots 10 cm in diameter filled with 250 mL of potting soil. Growing 257 

conditions were as follows: temperature- 25°C; light/dark period: 16h light/8h dark; relative 258 

humidity during germination phase: 66%; relative humidity during growing phase: 62%. The 259 

concentration of nanoparticles in soil was 250 mg/L, while the concentration of biochars in soil 260 

was 100 mg/L. In both experiments, plants were infested with 0.75 g/L of millet inoculum. Mixing 261 

of either nanoparticles or biochars and millet inoculum with soil was done in 2 L sterile bags. For 262 

samples marked as B+F, 2 mL of bacterial mixture (1 mL 2 x108 CFU/mL of A. vinelandii and 1 263 

mL 2 x108 CFU/mL of B. megaterium) was added directly into the soil, placed in a sterile bag, 264 

infected with 0.75 g/L millet inoculum and mixed thoroughly by shaking. In total, there were 13 265 

treatments (Table 1). The arrangement of plants was randomized, and each treatment contained 8 266 

replicates.  267 

Irrigation of plants was done every other day with 100 ml water per plant. Half the recommended 268 

dose of Miracle-Gro (1.88 g/kg) was applied once per week (10 mL per plant). Measurements of 269 

P and N content, soil pH, physiological parameters, as well as microbial analyses were performed 270 

at 0, 7, 14 and 28 days after transplanting (DAT) in tomato, and 0, 10, 20, 30 DAT in watermelon. 271 

2.7. Extraction and characterization of total bacteria, nitrogen-fixing bacteria and phosphorus-272 

solubilizing bacteria 273 
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The extraction of bacteria from the soil was performed as described by Fox et al. (2014) with some 274 

modifications. Briefly, 3 g of soil was mixed with 20 mL of sterile NaCl [0.85% (w/v)] solution 275 

for 30 min at 75 rpm at 4°C. The suspensions were then left for 1h to allow for a better separation 276 

of supernatant and soil particles. Three aliquots (0.5 mL each) were then taken: one was used for 277 

determination of nitrogen-fixing bacteria; one was used for the determination of phosphorus-278 

solubilizing bacteria and one for estimating the total number of bacteria present in the soil. These 279 

aliquots were serially diluted (by 10 fold) in 0.85% saline, and colony forming units (CFU)/mL 280 

were determined by a plate counting method. Dilution was 106, and 3 plates were counted for each 281 

treatment. Bacteria were grown at 28°C for 48h. Total bacteria were grown on nutrient agar (Fisher 282 

Scientific, Waltham, MA, USA), nitrogen-fixing bacteria were grown on nitrogen-free media 283 

(NFM) (prepared according to Dobereiner et al. (1995) with 15 g of agar added per 1 L to obtain 284 

solid media) and phosphorus-solubilizing bacteria were grown on Pikovskaya agar (HiMedia 285 

Laboratories, West Chester, PA, USA). 286 

2.8. Determination of P and N content in plant leaves 287 

Samples were dried at 105°C overnight and then ground in a coffee mill. For determination of N 288 

content, 0.1 g of dried, homogenized sample was analyzed by a N analyzer (FP628, LECO, St. 289 

Joseph, MI, USA). To determine P content, 0.1 g of homogenized sample was digested with 3 mL 290 

of 68 % nitric acid for 45 min at 115°C (DigiPrep MS, SCP Science, Champlain, NY, USA). The 291 

sample was then diluted to 15 mL with distilled water and let to “settle” overnight. P content was 292 

then determined by ICP-OES (iCAP 6000 series, Thermo Fisher Scientific, Waltham, MA, USA). 293 

2.9. Physiological analyses 294 

Measurement of chlorophyll content was done spectrophotometrically as described by Li et al. 295 

(2018). Briefly, 0.1 g of fresh, homogenized sample was extracted with 50 mL of 95% ethanol 296 
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(120 rpm, 1h, room temperature). The pellet was discarded, and supernatant was analyzed at 649 297 

and 665 nm. The content of chlorophylls was calculated according to following formulas: 298 

𝐶ℎ𝑙 𝑎 (
𝑚𝑔

𝑚𝑙
) =

(12.7 × 𝐴665) − (2.69 × 𝐴649)

1000
 299 

 300 

𝐶ℎ𝑙 𝑏 (
𝑚𝑔

𝑚𝑙
) =

(22.9 × 𝐴649) − (2.69 × 𝐴665)

1000
 301 

 302 

𝐶ℎ𝑙 𝑡𝑜𝑡𝑎𝑙 = 𝐶ℎ𝑙 𝑎 + 𝐶ℎ𝑙 𝑏 303 

Where Chl a is chlorophyll a, Chl b is chlorophyll b, A649 and A665 are absorbances measured at 304 

649 and 665 nm, respectively, and Chl total is total chlorophyll content. 305 

The formation of radical oxygen species was monitored by the 2,2-diphenyl-1-picrylhydrazyl 306 

(DPPH) assay according to Sancez-Moreno et al. (1998). Briefly, the extraction procedure for both 307 

tests was the same: samples were air-dried for 48h under the hood and then 0.125 g of dried, 308 

homogenized sample was extracted with 6.86 mL of 70 % EtOH (120 rpm, 2h, room temperature).  309 

Then 0.1 mL of sample was mixed with 1.9 mL of fresh DPPH solution (0.025g/L DPPH in 310 

methanol), incubated for 30 min in the dark and absorbance was measured at 515 nm. As a 311 

standard, Trolox was used at 500 μmol/L, 200 μmol/L, 100 μmol/L, 50 μmol/L, 25 μmol/L and 10 312 

μmol/L. Trolox equivalents (TE) were determined from standard curves. 313 

Plant cell viability was assessed by the MTT assay as described by Shoemaker et al. (2004). 314 

Briefly, samples were air-dried for 48h under a hood, and 0.375 g of dry, homogenized sample 315 

was extracted with 6.25 mL of distilled water at 100°C for 45 min. After the solution had cooled, 316 

0.5 mL of sample was pipetted to a new vial. The extract was then diluted with distilled water in 317 

ratio 1:20. The MTT assay was performed by adding 400 μL of sample extract, 400 μL of 1 mM 318 

Jo
urn

al 
Pre-

pro
of



ascorbic acid (in water), and 400 μL of Dulbecco’s modified Eagle’s medium and 120 μL MTT (3 319 

mg/ml in phosphate buffered saline), followed by incubation for 60 min at 37°C. Absorbance was 320 

measured at 595 nm. 321 

2.10. Statistical analysis 322 

All analyses were done in triplicate. A one-way analysis of variance (ANOVA) with repetition 323 

was used to assess difference between samples at different time points. Differences between means 324 

were determined by Tukey test at p=0.05. Testing was done in SPSS software version 24 (IBM, 325 

Armonk, NY, USA). To test possible interactions between factors, a two-way ANOVA with 326 

repetition was also done in XLSTAT 2016 software (Addinsoft, NY, USA). 327 

 328 

3. Results and Discussion: 329 

3.1. Characterization of nanoparticles, biochar, soil substrate, fertilizer and samples with adsorbed 330 

bacteria 331 

All results regarding the characterization of nanoparticles, soil substrate, fertilizer, and samples 332 

with the adsorbed bacteria, as well as their corresponding TEM and SEM images, are described in 333 

Pavlicevic et al. (2022). Summarized here are the main findings of the material characterization. 334 

Chitosan-coated mesoprous silica nanoparticles and nanoclay showed differences in all examined 335 

characteristics. Chitosan-coated mesoporous silica nanoparticles (MSN) were round and with a 336 

diameter of 39 ± 8 nm. Nanoclay (NC) was much larger (91 ± 7 nm) and irregular in shape. MSN 337 

also had a higher surface area (87.35 m2/g) compared to NC (25.32 m2/g) and was characterized 338 

by a positive ζ potential (+ 27.33 ± 0.59 mV), while the ζ potential of NC was negative (−39.35 ± 339 

0.55 mV). These differences could be explained by the porous structure of silica nanoparticles and 340 

the presence of chitosan (Pavlicevic et al., 2022). 341 
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Different biochar samples showed significant differences in structure, pH, EC, CEC, ratio of 342 

phosphorus to nitrogen (P/N ratio) (Tables S1 and S2; Pavlicevic et al., 2022), ζ potential, 343 

structure, and surface area. The “Italian” biochar (IB) had higher pH (10.62 ± 0.03) and electric 344 

conductivity (898 ± 4.2 μS/cm) compared to the Aries Green biochar (AB) (pH = 9.29 ± 0.06; EC 345 

= 459 ± 2.1 μS/cm) and the Naked biochar (NB) (pH = 9.51 ± 0.08; EC =767 ± 3.4 μS/cm) (Table 346 

S1). Additionally, the CEC of IB was the highest (39.1 ± 2.8 cmol/kg), but similar to that of AB 347 

(34.7 ± 2.9 cmol/kg). AB also had the lowest P/N ratio (0.05 mg/mg), while IB had the highest 348 

(3.74) (Table S2). Furthermore, ζ potential of IB was less negative (−23.6 mV) when compared to 349 

AB (−26.4 mV) and NB (−27.6 mV), due to the higher content of Ca and Na in IB. However, the 350 

surface area of IB was significantly lower (13.11 m2/g) than those of AB (59.54 m2/g) and NB 351 

(42.73 m2/g). Structures of biochars were also different (Pavlicevic et al., 2022): IB had more 352 

regular structure compared to AB, while the structure of NB was similar to a honeycomb with 353 

highly macroporous surface (Figure S1). Given that all biochars were produced from same 354 

feedstock material, these differences reflect the different conditions (most of all, temperature) 355 

under which biochars were produced.  356 

The ratio of individual bacteria species adsorbed to biochars and nanoparticles adsorbed to bacteria 357 

was relatively similar between materials and close to a 1:1 ratio (Pavlicevic et al., 2022). However, 358 

the distribution of the bacteria on biochar showed some differences: bacteria were located farther 359 

from the surface and were more uniformly distributed in AB and NB, whereas in the IB they were 360 

more clustered and closer to the surface of biochar (Figure S2; Pavlicevic et al., 2022).  361 

3.2. Chlorophyll content 362 

As evident from Figure 1, treated plants had higher chlorophyll content compared to control plants 363 

infected with Fusarium. However, in both tomato (Fig. 1A) and watermelon experiments (Fig. 364 
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1B), the biggest increase was observed in plants treated with biochar and nanoparticles co-365 

delivered with bacteria. For example, in the tomato experiment (Fig. 1A), the addition of chitosan-366 

coated mesoporous silica nanoparticles adsorbed onto bacteria (MSN + B + F) increased 367 

chlorophyll content in infected plants 1.62 times compared to chitosan-coated mesoporous silica 368 

nanoparticles added alone (MSN + F) (1.11 times). Such differences were likely due to the 369 

combined effect of nanoparticles (or biochars) and the documented antifungal effect of 370 

Azotobacter vinelandii and Bacillus megaterium (Bhosale et al., 2013; Saleh et al., 2021). 371 

However, watermelon showed overall greater responsiveness to treatment compared to tomato 372 

(Fig. 1B), although this could also be due to the fact that infection in watermelon was less severe. 373 

Similar to tomato, the greatest influence on chlorophyll content in the infected watermelon plants 374 

was exhibited by chitosan-coated mesoporous silica nanoparticles with bacteria (MSN+B+F). 375 

These findings may corroborate the hypothesis of Kang et al. (2021), who suggested that the 376 

mesoporous silica nanoparticles stimulate the formation of an enhanced protective layer in the 377 

roots that diminishes the impact of infection. This hypothesis could also explain why the MSN 378 

treatment was more efficient compared to the NC treatment. The addition of MSN increased 379 

chlorophyll content in infected tomato plants 1.12 times and infected watermelon plants 1.63 380 

times; NC increased the content of chlorophyll in infected tomato plants 1.10 times and in infected 381 

watermelon plants 1.38 times. However, it is also possible that the effect of mesoporous silica 382 

nanoparticles was enhanced by the addition of chitosan and its known antifungal effect (Carmona 383 

et al., 2021). Additionally, larger effect of both MSN and NC on watermelon compared to tomato 384 

could be due to the fact that watermelon belong to Cucurbitaceae family and thus needs more Si 385 

compared to tomato. Similar to the nanoparticles, the addition of the bacterial consortium to 386 

biochar had a positive effect on chlorophyll content, but to a lesser extent (Fig. 1). In agreement 387 

Jo
urn

al 
Pre-

pro
of



with our previous results, the response of watermelon and tomato to biochar addition was species-388 

specific. For example, the presence of “Italian” biochar with infected watermelon (IB+F) increased 389 

the chlorophyll content 1.08 times, while the addition of “Italian” biochar with adsorbed bacteria 390 

(IB+B+F) increased chlorophyll content 1.22 times (Fig. 1B). The most efficient biochar with 391 

tomato was Aries biochar (Fig. 1A). Specifically, the addition of Aries biochar to infected tomato 392 

(AB+F) increased chlorophyll content 1.23 times compared to 1.35 times with Aries biochar with 393 

adsorbed bacteria was added (AB+B+F) (Fig. 1A). The prominent effect of AB on disease 394 

suppression is likely a consequence of production temperature. AB was produced by gasification 395 

that is characterized by lower temperatures compared to pyrolysis and pyrogasification; Iacomino 396 

et al. (2022) found that biochars produced in mid-temperature range (350-600°C) showed a more 397 

prominent effect on disease suppression compared to those produced at low or high temperatures. 398 

The same findings could be used to explain why the effect of IB was more effective than NB, since 399 

IB was produced by pyrogasification, e.g. under lower temperatures than NB (which was the 400 

product of pyrolysis).  401 

3.3. Nitrogen content in leaves 402 

The results of N content in the leaves of tomato and watermelon plants are given in Table 2. Greater 403 

N content in diseased plants (F) compared to healthy control plants (C) was evident; these findings 404 

align with Domínguez et al. (2016), Bi et al. (2022), and Orr et al. (2022). Higher N content in 405 

infected plants can be the result of the upregulation of genes involved in N metabolism (Orr et al., 406 

2022). While Domínguez et al. (2016), Bi et al. (2022) and Orr et al. (2022) all reported a positive 407 

correlation between disease severity and N content, Hoffland et al. (2000) found that a connection 408 

between disease severity and N content was strongly dependent on the type of pathogen. Our 409 

results also suggest that the host plant species can also determine the response to a particular 410 
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treatment. Although N content in infected tomato and watermelon plants at the end of experiments 411 

was similar (51.4±2.9 mg/g and 50.7±4.8 mg/g, respectively), the same treatments had different 412 

effects in the two species. For example, NC-treated infected plants (NC+F) had lower N content 413 

compared to MSN treated plants (MSN+F) in tomato, but the situation was reversed in watermelon 414 

(Table 2). However, when the same samples had bacteria adsorbed, the response was reversed (e.g. 415 

MSN+B+F had lower N content in tomato and higher in watermelon when compared to NC+B+F). 416 

These findings may be explained by the fact that although disease could increase N content and in 417 

turn change the composition of the microbial community (Bi et al., 2022), changes in rhizobia 418 

composition caused by the introduction of the consortium were more impactful.  419 

The impact of individual biochars and biochars with adsorbed bacteria on disease suppression in 420 

tomato and watermelon was also different (Table 2). In tomato, the lowest N content was detected 421 

in AB+F (34.0±2.9 mg/g) and AB+B+F (47.6±3.6 mg/g). Although watermelon AB+F treatment 422 

had the lowest N content with the biochars, the greatest content was the NB biochar with adsorbed 423 

bacteria (sample NB+B+F) (Table 2). The possible reason for the higher efficacy of AB compared 424 

to IB and NB could be the greater N content in AB (7.5 ± 0.6 mg/g) compared to IB (5.8 ± 0.2 425 

mg/g) and NB (3.9 ± 0.4 mg/g) (Pavlicevic et al., 2022). Biochars with a higher nutrient content 426 

have been shown to be more prone to “recruit” beneficial fungi and bacteria that could alleviate 427 

infection symptoms (Akhter et al., 2015; Cao et al., 2017; Jin et al., 2022).  As noted above, NB 428 

was produced by pyrolysis and has a highly porous structure (Pavlicevic et al., 2022). These 429 

characteristics are known to be important for wood-derived biochars to ensure longer “life” of 430 

adsorbed bacteria and therefore, promotes more beneficial changes in rhizobia activity (Akhter et 431 

al., 2016; Chen et al., 2023).  432 

3.4.Phosphorus content in leaves 433 
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At the final harvest, the phosphorus content in the leaves of Fusarium infected plants was 3.33-434 

times (tomato) and 3.65-times (watermelon) higher compared to non-infected (control) plants 435 

(Table 3). These results are in accordance with Ma et al. (2021) who reported an increase in P 436 

content of approximately 2.5-times in diseased plants compared to healthy tomato plants. Higher 437 

P content in diseased plants could be explained by Fusarium-induced up-regulation of genes such 438 

as the betaine lipid synthase 1 (BTA1), which yields phosphorus-free membrane lipids that enable 439 

the infection to spread inside the cells (Zhang et al., 2016). Given that production of membrane 440 

void of phosphorus-containing lipid is required for “successful” infection (Zhang et al., 2016), less 441 

phosphorus is “spent” in synthetic pathways and thus, final content of phosphorus is higher in 442 

diseased plants compared to healthy ones. Hagerty et al. (2021) reported that P content was not 443 

correlated with the severity of disease in wheat, whereas El-Shennawy et al. (2010) found that an 444 

increase in P content reduced the incidence of Fusarium infection in chickpea (Cicer arietinum), 445 

lupine (Lupinus sp.), and lentil (Lens culinaris). However, Jastrzębska et al. (2020) reported that 446 

not only the content but also the source of phosphorus was important; specifically, fertilizers 447 

prepared from organic residues and/or activated with bacteria showed a more pronounced 448 

antifungal effect compared to the commercial products. In tomato, the greatest difference in P 449 

content between treated and diseased plants was observed for B+F and IB+B+F (Table 3). In 450 

watermelon, the highest P content was detected in the AB+B+F treatment. These results suggest 451 

that the incorporation of PGPR led to the changes in the microbial community that modified the 452 

response of plants to Fusarium infection; these findings align with that of Syed Nabi et al. (2021), 453 

Delgado-Ramírez et al. (2021), and Zhou et al. (2022).  454 

3.5. Plant cell viability 455 

Jo
urn

al 
Pre-

pro
of



Metabolically active cells have intact membranes and contain a variety of compounds that are 456 

intermediates of Krebs cycles (such as malate, glutamate, succinate, etc.) that can reduce MTT to 457 

formazan (Liu et al., 1997). In both tomato and watermelon, all treatments (except in tomato with 458 

nanoclay) increased viability (Figure 2 and Figure 3). This is in agreement with Alvarez-Carvajal 459 

et al. (2020) who reported that chitosan-coated silver nanoparticles increased viability in tomato 460 

and Chouhan et al. (2022) who found that a nickel chitosan nanoconjugate had a positive effect on 461 

the viability in Fusarium-infected wheat. However, the difference in the response of tomato and 462 

watermelon was again evident. In tomato, MSN-containing treatments had more impact on 463 

viability (an increase of 1.37-fold for MSN+F and 1.43-fold for MSN+B+F) than did NC-464 

containing treatments (Fig. 2A). This is also evident from Figure 3; in the nanoparticle only 465 

treatments, MSN treatment had a greater impact on disease suppression than did NC (Fig. 3B and 466 

3C). In watermelon, the situation was reversed: in NC-treated plants, viability was increased 1.54 467 

times (for NC+F samples) and 1.92 times (for NC+B+F). For MSN-treated plants, the increase 468 

was more modest; 1.45 times for MSN+F samples and 1.70 times for MSN+B+F (Fig. 2B). 469 

However, in both species the most effective biochar-containing sample was AB+B+F (Fig. 3D), 470 

increasing viability in diseased tomato and watermelon by 1.51 and 2.43 times, respectively. This 471 

is in accordance with the chlorophyll content results and could be explained by the joint effect of 472 

lower temperature during gasification (Iacomino et al., 2022) and the presence of plant-growth 473 

promoting rhizobacteria (Egamberdieva et al., 2020). Additionally, all treatments in which bacteria 474 

were present (including treatments where bacteria were added directly into the soil) increased 475 

viability compared to corresponding treatments without bacteria (Fig. 2, Fig. 3). This provides 476 

additional evidence of the pivotal role of rhizobacteria in plant’s defense.  477 

3.6.Antioxidant properties 478 
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As evident in Figure 4, all treatments increased the content of antioxidant compounds in diseased 479 

tomato and watermelon. These findings agree with Buchman et al. (2019) and Ma et al. (2021), 480 

who found that nanoparticle treatment increased the expression of stress-related genes and the 481 

activity of antioxidative enzymes in watermelon and tomato, respectively. Such an increase in 482 

antioxidative compounds is a defense against oxidative stress induced by Fusarium infection 483 

(Mandal et al., 2008). However, similar to chlorophyll content and viability results above, diseased 484 

tomato and watermelon responded differently to equivalent treatments. For example, MSN 485 

increased the content of antioxidant compounds in tomato by 4.27% (Fig. 4A), while the increase 486 

in watermelon was 33.78% (Fig. 4B).  Conversely, nanoclay was less efficient in watermelon 487 

compared to MSN (antioxidant compound content was 29.16% higher than in Fusarium control) 488 

(Fig. 4B), but the antioxidant capacity in tomato increased 170% following the NC treatment 489 

(Fig.4A). Both nanoclay and chitosan-coated mesoporous silica nanoparticles contain silicon (Si), 490 

and Si has been shown to alleviate damage of Fusarium infection by activating antioxidant 491 

response (Huang et al., 2011). The most effective biochar in both watermelon and tomato was NB, 492 

likely due to its high porosity. With exception of NB+B+F in tomato, all treatments with adsorbed 493 

bacteria had a more pronounced effect on antioxidant capacity compared to corresponding 494 

bacteria-free treatments. For example, the content of antioxidant compounds in the diseased 495 

tomato increased by 208% after AB addition, whereas the increase with AB+B was 367%. Also, 496 

the addition of bacteria directly into the soil of infected plants increased the content of antioxidant 497 

compounds in tomato and watermelon by 19.84 and 27.77%, respectively.  This aligns 498 

Zibanezhadian et al. (2020) who found that addition of Bacillus thuringiensis to Fusarium-infected 499 

tomato plants increased the expression of superoxide dismutase, catalase, and glutathione S-500 

transferase genes.  501 
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3.7.Soil pH and microbiological analysis 502 

As evident from Table 4 (procedure described in supplementary material), no statistically 503 

significant differences were found in soil pH between diseased and treated plants of either species 504 

at harvest. Such results may be a function of the buffering capacity of biochar (Shi et al., 2017), 505 

although additional work is needed to confirm that hypothesis. 506 

As evident from Figure 5, the total extractable bacteria content in the soil of infected controls of 507 

both species was lower than the healthy control. This decrease in total extractable bacteria may 508 

imply competitiveness between Fusarium and rhizobacteria species (Zhang et al., 2022; Jaiwal et 509 

al., 2022). However, the number of nitrogen-fixing bacteria in infected control plants in both 510 

species was greater than healthy controls (Figure 6); this increase could be a consequence of 511 

Fusarium-mediated “requirement” of beneficial entophytic bacteria (Yuan et al., 2022). The same 512 

explanation could also apply to the increased content of phosphorus-solubilizing bacteria in 513 

Fusarium-infected tomato compared to healthy controls (Figure 7A). However, this was not true 514 

for watermelon, which exhibited reduced content of P-solubilizing bacteria in the soil of infected 515 

plants compared to healthy controls (Figure 7B). Furthermore, the effects of equivalent treatments 516 

in tomato and watermelon were widely different. For example, the largest increase of total bacteria 517 

content in tomato was with NC+B and IB+B (Fig. 5A); in watermelon, MSN and the direct 518 

addition of bacteria to the soil had the greatest impact (Fig. 5B). The addition of chitosan-coated 519 

mesoporous silica nanoparticles also led to the greatest content of N-fixing bacteria in the soil of 520 

diseased tomato (Fig. 6A), whereas for watermelon, IB yielded the greatest content of N-fixing 521 

bacteria (Fig. 6B). IB+B treatment showed the biggest impact on the content on P-solubilizing 522 

bacteria in tomato (Fig. 7A), while NC gave the largest increase in content of P-solubilizing 523 

bacteria in the soil of infected watermelon. As Merino et al. (2018), Buchman et al. (2019) and 524 
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Aseel et al. (2022) showed both NC and MSN were shown to exhibit antimicrobial effects through 525 

the upregulation of genes involved in plant defense and the activation of antioxidative enzymes. 526 

Further experiments are needed to characterize changes in rhizobia composition in tomato and 527 

watermelon as a function of disease and treatment and to elucidate the underlying mechanisms 528 

driving species-specific responses.  529 

4. Conclusion 530 

Azotobacter vinelandii and Bacillus megaterium adsorbed on chitosan-coated mesoporous silica 531 

nanoparticles, nanoclay, and biochars alleviated the damage from Fusarium wilt in both tomato 532 

and watermelon. Although different treatments impacted disease progression in watermelon and 533 

tomato to a different extent, all treatments increased the content of chlorophyll and antioxidative 534 

compounds. The content of total-, nitrogen-fixing- and phosphorus-solubilizing bacteria varied 535 

both as a consequence of treatments and plant species, which likely is a consequence of different 536 

rhizobial composition in tomato and watermelon. Treatment with adsorbed bacteria showed a 537 

greater positive effect on all measured endpoints, which implies an additive impact of the microbial 538 

consortium and nanoparticles (or biochar) on disease suppression. These findings increase our 539 

understanding of the potential additive positive effects of novel nanoscale-based formulations of 540 

biopesticides as a sustainable disease management strategy.  541 
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 823 

Figure Captions 824 

Figure 1: Total chlorophylls content. A- tomato; B- watermelon. Abbreviations: C – control 825 

plants; F- Fusarium infected plants; B+ F – Fusarium infected plants with bacteria added to the 826 

soil; MSN +F – Fusarium infected plants treated with chitosan-coated mesoporous silica 827 

nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; IB + F – Fusarium 828 

infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated with Aries 829 

Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN + B + F– 830 

Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with 831 

adsorbed bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed 832 

bacteria; IB +B + F– Fusarium infected plants treated with “Italian” biochar with adsorbed 833 

bacteria; AB +B +F – Fusarium infected plants treated with Aries Green biochar with adsorbed 834 

bacteria; NB +B +F – Fusarium infected plants treated with Naked biochar with adsorbed bacteria. 835 
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Different letters for the same time point means that differences between samples were statistically 836 

significant (determined by Tukey test at p < 0.05) 837 

Figure 2: Viability. A- tomato; B- watermelon. Abbreviations: C – control plants; F- Fusarium 838 

infected plants; B+ F – Fusarium infected plants with bacteria added to the soil; MSN +F – 839 

Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles; NC + F – 840 

Fusarium infected plants treated with nanoclay; IB + F – Fusarium infected plants treated with 841 

“Italian” biochar; AB+ F – Fusarium infected plants treated with Aries Green biochar; NB + F –  842 

Fusarium infected plants treated with Naked biochar; MSN + B + F– Fusarium infected plants 843 

treated with chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria; NC + B +F 844 

– Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + F– Fusarium 845 

infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F – Fusarium 846 

infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F – Fusarium 847 

infected plants treated with Naked biochar with adsorbed bacteria. Different letters for the same 848 

time point means that differences between samples were statistically significant (determined by 849 

Tukey test at p < 0.05) 850 

Figure 3: Representation of different treatments. A-left: Fusarium infected control plant (F); right: 851 

Fusarium infected plant treated with bacteria added directly into soil (B+F); B- right: Fusarium 852 

infected plant treated with chitosan-coated mesoporous silica nanoparticles (MSN+F); left: 853 

Fusarium infected plant treated with chitosan-coated mesoporous silica with adsorbed bacteria 854 

(MSN+F+B); C- right: Fusarium infected plant treated with nanoclay with adsorbed bacteria 855 

(NC+F+B); left: Fusarium infected plant treated with nanoclay (NC+F); D- right: Fusarium 856 

infected plant treated with “Italian” biochar (IB+F); left: Fusarium infected plant treated with 857 

“Italian” biochar with adsorbed bacteria (IB+F+B); E- right: Fusarium infected plant treated with 858 
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Aries biochar with adsorbed bacteria (AB+F+B); left: Fusarium infected plant treated with Aries 859 

biochar (AB+F); F- right: Fusarium infected plant treated with Naked biochar (NB+F); left: 860 

Fusarium infected plant treated with Naked biochar with adsorbed bacteria (NB+F+B); G-left: 861 

control, healthy plant (C); right- Fusarium infected control plant (F).  862 

Figure 4: Content of antioxidants determined by DPPH test. A- tomato; B- watermelon. 863 

Abbreviations: C – control plants; F- Fusarium infected plants; B+ F – Fusarium infected plants 864 

with bacteria added to the soil; MSN +F – Fusarium infected plants treated with chitosan-coated 865 

mesoporous silica nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; IB + F 866 

– Fusarium infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated 867 

with Aries Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN 868 

+ B + F– Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles 869 

with adsorbed bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed 870 

bacteria; IB +B + F– Fusarium infected plants treated with “Italian” biochar with adsorbed 871 

bacteria; AB +B +F – Fusarium infected plants treated with Aries Green biochar with adsorbed 872 

bacteria; NB +B +F – Fusarium infected plants treated with Naked biochar with adsorbed bacteria. 873 

Different letters for the same time point means that differences between samples were statistically 874 

significant (determined by Tukey test at p < 0.05) 875 

Figure 5: Content of total bacteria. A- tomato; B- watermelon. Abbreviations: C – control plants; 876 

F- Fusarium infected plants; B+ F – Fusarium infected plants with bacteria added to the soil; MSN 877 

+F – Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles; NC + 878 

F – Fusarium infected plants treated with nanoclay; IB + F – Fusarium infected plants treated with 879 

“Italian” biochar; AB+ F – Fusarium infected plants treated with Aries Green biochar; NB + F –  880 

Fusarium infected plants treated with Naked biochar; MSN + B + F– Fusarium infected plants 881 
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treated with chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria; NC + B +F 882 

– Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + F– Fusarium 883 

infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F – Fusarium 884 

infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F – Fusarium 885 

infected plants treated with Naked biochar with adsorbed bacteria. Different letters for the same 886 

time point means that differences between samples were statistically significant (determined by 887 

Tukey test at p < 0.05) 888 

Figure 6: Content of N-fixing bacteria. A- tomato; B- watermelon. Abbreviations: C – control 889 

plants; F- Fusarium infected plants; B+ F – Fusarium infected plants with bacteria added to the 890 

soil; MSN +F – Fusarium infected plants treated with chitosan-coated mesoporous silica 891 

nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; IB + F – Fusarium 892 

infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated with Aries 893 

Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN + B + F– 894 

Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with 895 

adsorbed bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed 896 

bacteria; IB +B + F– Fusarium infected plants treated with “Italian” biochar with adsorbed 897 

bacteria; AB +B +F – Fusarium infected plants treated with Aries Green biochar with adsorbed 898 

bacteria; NB +B +F – Fusarium infected plants treated with Naked biochar with adsorbed bacteria. 899 

Different letters for the same time point means that differences between samples were statistically 900 

significant (determined by Tukey test at p < 0.05) 901 

Figure 7: Content of P-solubilizing bacteria. A- tomato; B- watermelon. Abbreviations: C – 902 

control plants; F- Fusarium infected plants; B+ F – Fusarium infected plants with bacteria added 903 

to the soil; MSN +F – Fusarium infected plants treated with chitosan-coated mesoporous silica 904 
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nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; IB + F – Fusarium 905 

infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated with Aries 906 

Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN + B + F– 907 

Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with 908 

adsorbed bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed 909 

bacteria; IB +B + F– Fusarium infected plants treated with “Italian” biochar with adsorbed 910 

bacteria; AB +B +F – Fusarium infected plants treated with Aries Green biochar with adsorbed 911 

bacteria; NB +B +F – Fusarium infected plants treated with Naked biochar with adsorbed bacteria. 912 

Different letters for the same time point means that differences between samples were statistically 913 

significant (determined by Tukey test at p < 0.05) 914 

 915 

Jo
urn

al 
Pre-

pro
of



Tables 

Table 1. Treatments used in experiments 

 control (C) 
 Plants infected with Fusarium (F) 
 Plants infected with Fusarium with added bacteria (B + F) 

chitosan-coated mesoporous silica 
(MSN) 

infected plants treated with 
chitosan-coated mesoporous silica 

(MSN+F) 

infected plants treated with chitosan- 
coated mesoporous silica with 
loaded bacteria (MSN+B+F) 

Nanoclay  (NC) infected plants treated with 
nanoclay (NC+F) 

infected plants treated with nanoclay 
with loaded bacteria (NC+B+F) 

“Italian” biochar (IB) infected plants treated with 
“Italian” biochar (IB+F) 

infected plants treated with “Italian” 
biochar with loaded bacteria 

(IB+B+F) 
Aries biochar (AB) infected plants treated Aries green 

biochar (AB+F) 
infected plants treated with Aries 

Green biochar with loaded bacteria 
(AB+B+F) 

Naked biochar (NB) infected plants treated with Naked 
biochar (NB+F) 

infected plants treated with Naked 
biochar with loaded bacteria 

(NB+B+F) 
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Table 2: Nitrogen content in Fusarium-infected plants in tomato and watermelon experiments⁎ 

 
 
 
   samples 

N content (mg/g) 

Tomato experiment Watermelon experiment 

0 days 7 days 14 days 28 days 0 days 10 days 20 days 30 days 

C 57.1±1.2a 54.8±2.0a,b 41.4±2.8a 23.1±2.2a 29.9±3.1a 25.4±1.4a 18.5±1.3a 17.7±1.5a 

F 57.1±1.2a 42.2±3.9c

  
35.2±3.3a 51.4±2.9b,c 29.9±3.1a  41.3±4.0b 44.8±1.5b 50.7±4.8b 

B + F 57.1±1.2a 47.3± 1.9a,b,d

  
39.4±2.8a 49.5±3.0b,c,d 29.9±3.1a 47.2±4.9b

  
47.7±5.4b,c 51.0±5.3b 

MSN + F 57.1±1.2a 42.5±3.0c

  
35.4±2.2a 61.6±3.4e 29.9±3.1a 45.5±1.5b 34.6±2.9d 22.7±2.2a,c 

NC + F 57.1±1.2a 49.1±3.1a,b,d

  
36.9±4.0a 41.7±3.3f,g 29.9±3.1a 41.9±1.2b 54.6±2.9c 33.8±3.5d 

IB + F 57.1±1.2a 42.4±3.6c 36.3±3.3a 56.9±3.8b,c,h 29.9±3.1a 36.9±4.7a,b 44.9±1.7b 44.8±3.6e 

AB + F 57.1±1.2a 46.2±2.5a,c,d 33.2±3.8a 34.0±2.9i 29.9±3.1a 46.4±5.1b 35.6±1.8d 47.1±2.9b,f 

NB + F 57.1±1.2a 49.6±4.4a,c,d

  
34.1±3.9a 44.5±4.0f,g, j 29.9±3.1a 47.9±4.8b 47.4±2.4b,c 50.8±3.1b 

MSN + B +F 57.1±1.2a 45.2±1.5c,d

  
34.2±3.5a 40.7±3.8f 29.9±3.1a 35.1±4.3a,b 50.3±1.3b,c 52.0±4.7b,g 

NC + B + F 57.1±1.2a 58.0±4.7b

  
36.5±1.9a 52.5±4.1c 29.9±3.1a 43.0±5.1b 46.9±1.4b 38.4±2.4d,h 

IB + B + F 57.1±1.2a 51.3±5.0a,b,d

  
35.7±3.9a 52.9±4.4c 29.9±3.1a 41.3±2.2b 44.5±1.8b 47.4±4.0b,f 

AB + B +F 57.1±1.2a 48.1±2.8a,c,d

  
35.8±2.2a 47.6±3.6k 29.9±3.1a 44.2±2.4b 43.6±1.2b 48.3±3.6b,f 

NB + B + F 57.1±1.2a 53.5±1.6a,b,d

  
33.9±3.3a 48.1±2.9b,k 29.9±3.1a 37.8±4.5a,b 47.4±2.3b,c 45.2±2.9e 

* Different letters at the same column means that differences between samples were statistically significant 
(determined by Tukey test). Abbreviations: C – control plants; F- Fusarium infected plants; B + F – 
Fusarium infected plants with bacteria added to the soil; MSN +F – Fusarium infected plants treated with 
chitosan-coated mesoporous silica nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; 
IB + F – Fusarium infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated 
with Aries Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN + B + F– 
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with adsorbed 
bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + 
F– Fusarium infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F – Fusarium 
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F – Fusarium infected 
plants treated with Naked biochar with adsorbed bacteria. 
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Table 3: Phosphorus content in Fusarium-infected plants in tomato and watermelon experiments⁎ 

 
 
 
   samples 

P content (mg/g) 

Tomato experiment Watermelon experiment 

0 days 7 days 14 days 28 days 0 days 10 days 20 days 30 days 

C 9.3±0.5a 7.2±1.0a 7.0±1.3b 3.0±0.4a 4.3±0.8a 4.7±0.6a 1.9±0.3a 1.7±0.2a 

F 9.3±0.5a 6.1±0.4b

  
6.8±1.0b 10.0±0.3b,c 4.3±0.8a 3.2±0.4b 5.9±0.1b 6.2±0.2b 

B + F 9.3±0.5a 4.0±0.2c,d 
 

8.0±0.4b 12.7±0.1d 4.3±0.8a 5.1±0.6e 5.4±0.8c 6.1±0.1b 

MSN + F 9.3±0.5a 3.5±0.3d 7.6±0.2b 11.7±0.1e 4.3±0.8a 4.2±0.4a,d 3.8±0.6d 5.3±0.1d 

NC + F 9.3±0.5a 2.6±0.5d 8.0±0.7b 11.0±0.2f 4.3±0.8a 4.6±0.5a,e 6.3±0.2b,e 5.2±0.7d,e 

IB + F 9.3±0.5a 3.1±0.5d 6.4±0.5b,c 10.1±0.2b,c 4.3±0.8a 3.8±0.5c,d 5.3±0.1c 5.3±0.8e 

AB + F 9.3±0.5a 3.3±0.6d 7.4±0.3b 10.2±0.3c 4.3±0.8a 6.2±0.8f 5.8±0.8b 4.1±0.6f 

NB + F 9.3±0.5a 3.6±0.7c,d

  
7.0±0.6b 9.8±0.3b 4.3±0.8a 6.3±0.7f 7.0±1.0f 5.0±0.8g 

MSN + B +F 9.3±0.5a 5.9±0.6b,c 6.4±1.0b,c 10.0±0.1b,c 4.3±0.8a 3.7±0.4c,d 4.6±0.6g 6.2±0.9b,h 

NC + B + F 9.3±0.5a 3.2±0.5d

  
5.2±0.9a,c 11.7±0.2e 4.3±0.8a 4.7±0.4a,e 4.8±0.1g,h 5.8±0.8i 

IB + B + F 9.3±0.5a 2.0±0.3e 4.9±0.4a 11.9±0.1e 4.3±0.8a 3.6±0.6c 5.2±0.2c,i 6.3±0.9h 

AB + B +F 9.3±0.5a 2.5±0.5e,d 5.8±0.3c 9.8±0.2b 4.3±0.8a 3.4±0.5b,c 6.0±0.7b 6.7±1j 

NB + B + F 9.3±0.5a 2.4±0.4e 6.7±0.7b 11.0±0.3f 4.3±0.8a 3.5±0.4b,c 4.9±0.1g,h 6.2±0.8b,c 

* Different letters at the same column means that differences between samples were statistically significant 
(determined by Tukey test). Abbreviations: C – control plants; F- Fusarium infected plants; B + F – 
Fusarium infected plants with bacteria added to the soil; MSN +F – Fusarium infected plants treated with 
chitosan-coated mesoporous silica nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; 
IB + F – Fusarium infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated 
with Aries Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN + B + F– 
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with adsorbed 
bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + 
F– Fusarium infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F – Fusarium 
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F – Fusarium infected 
plants treated with Naked biochar with adsorbed bacteria. 
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Table 4: Soil pH in Fusarium-infected plants in tomato and watermelon experiments⁎ 

 
 
 
   samples 

pH 

Tomato experiment Watermelon experiment 

0 days 7 days 14 days 28 days 0 days 10 days 20 days 30 days 

C 5.66±0.08a 5.82±0.04a 6.05±0.08a 6.16±0.12a 5.66±0.08a 6.18±0.10a 6.28±0.12a,b 6.36±0.13a 

F 5.66±0.08a 5.96±0.10a 6.19±0.10a,b 5.98±0.11a  5.66±0.08a 6.56±0.10b 6.24±0.13a,b 6.42±0.03a 
 

B + F 5.66±0.08a 5.93±0.02a 6.26±0.11a,b 5.86±0.11a 5.66±0.08a 6.94±0.11c 6.44±0.12a,b 6.41±0.11a 

MSN + F 5.66±0.08a 6.02±0.10a 6.14±0.08a,b 6.01±0.12a 5.66±0.08a 6.67±0.12b 6.39±0.13a,b 6.62±0.05b 

NC + F 5.66±0.08a 6.00±0.11a 6.33±0.13b 6.04±0.07a 5.66±0.08a 6.82±0.07c 6.43±0.10a 6.30±0.11a 

IB + F 5.66±0.08a 5.94±0.03a 6.18±0.09a,b 6.05±0.12a 5.66±0.08a 6.93±0.14c 6.22±0.03a,b 6.36±0.12a 

AB + F 5.66±0.08a 5.95±0.02a 6.14±0.04a,b 6.09±0.08a 5.66±0.08a 6.54±0.13b 6.38±0.10a,b 6.35±0.13a 

NB + F 5.66±0.08a 6.01±0.04a 6.08±0.09a,b 6.03±0.12a 5.66±0.08a 6.39±0.12a,b 6.02±0.11b 6.27±0.11a 

MSN + B +F 5.66±0.08a 6.00±0.11a 6.18±0.06ab 5.99±0.09a 5.66±0.08a 6.34±0.10a,b 6.15±0.07a,b 6.24±0.10a 

NC + B + F 5.66±0.08a 5.80±0.10a 6.22±0.12a,b 6.01±0.04a 5.66±0.08a 6.38±0.11a,b 6.28±0.08a,b 6.28±0.07a 

IB + B + F 5.66±0.08a 6.10±0.06a 6.16±0.06a,b 5.97±0.09a 5.66±0.08a 6.57±0.13b 6.23±0.05a,b 6.25±0.13a 

AB + B +F 5.66±0.08a 5.97±0.09a 6.17±0.02a,b 6.08±0.07a 5.66±0.08a 6.66±0.12b 6.22±0.13a,b 6.19±0.09a 

NB + B + F 5.66±0.08a 6.05±0.09a 6.14±0.11a,b 6.16±0.11a 5.66±0.08a 6.68±0.13b 6.26±0.12a,b 6.24±0.12a 

* Different letters at the same column means that differences between samples were statistically significant 
(determined by Tukey test). Abbreviations: C – control plants; F- Fusarium infected plants; B + F – 
Fusarium infected plants with bacteria added to the soil; MSN +F – Fusarium infected plants treated with 
chitosan-coated mesoporous silica nanoparticles; NC + F – Fusarium infected plants treated with nanoclay; 
IB + F – Fusarium infected plants treated with “Italian” biochar; AB+ F – Fusarium infected plants treated 
with Aries Green biochar; NB + F –  Fusarium infected plants treated with Naked biochar; MSN + B + F– 
Fusarium infected plants treated with chitosan-coated mesoporous silica nanoparticles with adsorbed 
bacteria; NC + B +F – Fusarium infected plants treated with nanoclay with adsorbed bacteria; IB +B + 
F– Fusarium infected plants treated with “Italian” biochar with adsorbed bacteria; AB +B +F – Fusarium 
infected plants treated with Aries Green biochar with adsorbed bacteria; NB +B +F – Fusarium infected 
plants treated with Naked biochar with adsorbed bacteria. 
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Highlights 

 

• Fusarium infection causes loss of billions of dollars annually 
• Plant growth promoting bacteria enhance properties of nanoparticles and biochar 
• Application of these systems augments chlorophyll, nitrogen and phosphorus content 
• Under such treatments antioxidative properties and viability of infected plants increase 
• Field test will confirm efficacy of these systems as pesticides 
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