
Special Issue Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 37(3-4) 442–461
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231179662
journals.sagepub.com/home/hpc

INDIANA—In-Network Distributed
Infrastructure for Advanced Network
Applications

Sabra Ossen, Jeremy Musser, Luke Dalessandro and Martin Swany

Abstract
Data volumes are exploding as sensors proliferate and become more capable. Edge computing is envisioned as a path to
distribute processing and reduce latency. Many models of Edge computing consider small devices running conventional
software. Our model includes a more lightweight execution engine for network microservices and a network scheduling
framework to configure network processing elements to process streams and direct the appropriate traffic to them. In this
article, we describe INDIANA, a complete framework for in-network microservices. We will describe how the two
components-the INDIANA network Processing Element (InPE) and the Flange Network Operating System (NOS)-work
together to achieve effective in-network processing to improve performance in edge to cloud environments. Our
processing elements provide lightweight compute units optimized for efficient stream processing. These elements are
customizable and vary in sophistication and resource consumption. The Flange NOS provides first-class flow based
reasoning to drive function placement, network configuration, and load balancing that can respond dynamically to network
conditions. We describe design considerations and discuss our approach and implementations. We evaluate the per-
formance of stream processing and examine the performance of several exemplar applications on networks of increasing
scale and complexity.

Keywords
In-network computing, RISC-V soft core, programmable network, network orchestration, domain specific language

Introduction

As the volume and velocity of data increase at the edge, it is
driving the need for high-performance data processing at
microsecond speeds. Data analytics applications are moving
away from monolithic architectures and toward a micro-
services architecture, due to the flexibility and elasticity
provided by this model (Bucchiarone et al., 2018; Ortiz
et al., 2022). Other types of applications demand low-
latency processing for responsiveness. Both of these
trends are motivating a far more distributed computational
architecture, with a continuum of computing resources from
the Cloud to the Edge (Asch et al., 2018). Our goal in the
realization of this computing continuum is in providing in-
network processing elements that allow the maximum ar-
ticulation of processing element distribution for most ef-
ficient placement.

Virtualization is the most common method of sharing
physical hardware resources for deploying microservices.
Today, it is important to create a platform to share the same
physical resources to deploy and service multiple incoming

data streams so that interactive real-time applications can meet
tight latency requirements. Currently, abstractions to deploy
microservices include several hypervisor and container-
specific solutions. However, multiple layers of virtualized
physical resources, operating system kernels, and network
packet processing immensely limit the infrastructure’s ability
to attain sub-millisecond latencies for critical services (Cooke
and Fahmy (2020); Jha et al., 2021). Recent research has
focused on networking infrastructure components that are
underutilized despite being highly available in today’s data
centers (Choi et al., 2020; Ibanez et al., 2021). Specifically,
programmable networking components such as programmable

Department of Intelligent Systems Engineering, Luddy School of
Informatics, Computing, and Engineering, Indiana University,
Bloomington, IN, USA

Corresponding author:
Martin Swany, Luddy School of Informatics, Computing, and Engineering,
Indiana University, Bloomington 47404, IN, USA.
Email: swany@iu.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231179662
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-2264-8516
https://orcid.org/0000-0002-2781-2127
https://orcid.org/0000-0002-4803-8003
https://orcid.org/0000-0001-8028-1161
mailto:swany@iu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231179662&domain=pdf&date_stamp=2023-06-26

Smart NICs and high-speed switching ASICs, processors and
FPGAs are recent additions to the data processing ecosystem
as strategies to introduce new packet processing protocols and
management with ease. In addition to packet processing, these
programmable components are now considered an attractive
alternative to running specific network services for use cases
such as consensus, packet classification, and deploying mi-
croservices (Choi et al., 2020; Dang et al., 2020; Ibanez et al.,
2021; Kohler et al., 2018). With significant data processing
capabilities, these components can lay the ground for
achieving latency requirements for interactive applications.

Building a framework for deploying microservices
within the networking domain comes with challenges, in-
cluding a limited set of resources, sharing resources to
facilitate existing networking functionality, and limited
infrastructure access. Consequently, most application de-
signers are unaware of how to utilize this high-speed in-
frastructure and benefit from low-latency application
execution, limiting performance improvements to only
those experts capable of designing custom solutions (Gupta
et al., 2018; Jepsen et al., 2018; Kohler et al., 2018; Xiong
and Zilberman, 2019; Zheng and Zilberman, 2021). The
microservice framework also needs to support 1) service
isolation, 2) elasticity, 3) stream and service scheduling, and
4) dynamic service deployment. Throughout this paper, we
discuss considerations in achieving the characteristics
above while discussing our proposed solutions. In addition,
we also discuss the limitations of employing a low-level
framework for deploying microservices.

At the lowest level, deploying microservices requires
identifying kernels essential to core functionality and cre-
ating task graphs for different applications. Examples of
applications include high-performance computing, the In-
ternet of Things (IoT), and graph processing applications.
Common characteristics of these streaming applications
include data streaming toward computations, inherently
being network-intensive, and having stringent latency re-
quirements. Further, we discuss how we dynamically build
task graphs and manage streams based on network prop-
erties once these applications are live. In this paper, we
present the In-Network Distributed Infrastructure for Ad-
vanced Network Applications (INDIANA) for deploying
microservices with demanding latency requirements.

The INDIANA framework requires two core compo-
nents, (1) a stream operator deployment architecture built
using RISC-V soft cores, and (2) a flow-oriented network
operating system built around a declarative language for
expressing network behavior through broad policies. In the
implementation provided herein, we leverage components
from our prior work, NetFaaS (Ossen et al., 2022) and
Flange (Musser et al., 2019), expanding on each and in-
tegrating them into a single unified whole. NetFaaS pro-
vides the NIC-CPU infrastructure to deploy network
functions. These functions run on RISC-V soft cores, which

form the baremetal platform. Flange coordinates the nec-
essary stream forwarding and dynamic function placement
once the streaming applications are operational. Flange
provides essential autoscaling and scheduling features re-
quired by NetFaaS by programming SDN-capable switches
with network rules, primarily to provide undisrupted ser-
vices to data streams (modeled as flows). We further discuss
our design and implementation in detail in the upcoming
sections and present benchmarking results.

In Sections 2 and 3, we discuss our approach to building
a baremetal, network-based framework with two core de-
sign elements, the network platform created using RISC-V
soft cores and the flow-based scheduler implemented with
network policies. Section 4 presents our evaluation of the
work, while we discuss limitations and future work in
Section 5. We provide related work in Section 6. Lastly, we
conclude our work in Section 7.

High-Level Design

INDIANA is a framework for deploying microservices in
programmable networking devices. We utilize both pro-
grammable data and control planes to achieve a fully
network-compatible architecture for deploying low-latency
services. We focus on interactive applications with de-
manding low-latency requirements in the IoT domain. In-
creasingly, applications in this domain require fast analytics
to provide a better user experience or perform mission-
critical operations for smart infrastructure. We form ap-
plications in this space utilizing streaming workloads,
where a continuous stream of sensor data comes in, and the
workload performs fast computations. Our framework
supports building applications using a task graph (§2.1.2),
where we deconstruct an application into a group of de-
coupled services. Each workload characteristic includes (1)
being long-running or short-term, (2) event-triggered, and
(3) only focusing on a single key functionality. Our Network
Operating System (NOS), Flange, provides data flow
scheduling across network entities. The schedule is built
from fully customizable, user defined, policy programs. In
addition to first-class load balancing through intelligent
routing, Flange detects changes in network behavior and
generates suggested microservice rebalancing plans for
INDIANA that react to the new network conditions.

Figure 1 presents the high-level view of INDIANA. Each
incoming data stream traverses through a programmable
switching fabric towards programmable compute clusters
that can be placed anywhere in the edge-cloud spectrum.
The programmable switching fabric consists of Software
Defined Networking (SDN)-capable switches programmed
through Flange. The three key elements, (1) INDIANA
Compute Cluster (ICC), (2) Flange, and (3) Service Registry,
create the infrastructure to consume incoming stream data and
schedule services based on stream flow variations. In a

Ossen et al. 443

programmable networking device, Flange is synonymous
with the control plane, and the ICC is synonymous with the
data plane. Flange orchestrates the interactions between
data source and compute-performing general routing and
load balancing-which we have depicted as the central
component between these two elements. Each INDIANA
Processing Element (InPE) hosts a set of user-defined
operators (InOps) that correspond to high-level streams,
are optimized to perform microsecond computations and
interact with the networking infrastructure with minimal
overhead. Each InPE has ingress and egress networking
paths, which it associates via Memory Mapped I/O
(MMIO) registers.

We divide each flow into three ordered stages, (1) Setup,
(2) Execute, and (3) Adaptation. INDIANA’s design
components each participate in these stages at various times,
as indicated by the circled letters in Figure 1.

During the Setup stage,

1. We initialize the ICC with different InPE configura-
tions. We distinguish each processing element by cores
of different pipeline depths, instruction issue order,
cache sizes, DRAM sizes, and network configurations.

2. On each InPE, we instantiate the desired set of InOps
which are associated with their corresponding ser-
vice identifiers.

3. We register the (InOp, service identifier) pair in the
Service Registry.

4. Flange consumes the tuple information from the
Service Registry, compiles and builds routing rules,
and programs the network switches as necessary for
basic initial forwarding.

During the Execute stage,

1. Sensors stream data to the ICC through the network.
2. Packets are forwarded to the correct programmable

node by matching the service identifier in the packet.
3. The ToR switch identifies and forwards data stream

packets to the correct InPE based on the service
identifier. We discuss how we utilize the service
identifier to identify the correct InPE in section 2.1.1.

4. The RISC-V core consumes incoming data and
completes InOp execution.

5. The switch redirects the final result to the correct
destination.

During the Adaptation stage, Flange,

1. Monitors the incoming stream flow.
2. Maps the placement of incoming streams to tiles by

labeling (flow, InOp) pairs, organizing pairs by rank,
and selecting processing elements with the least
utilization in a given tier.

3. Programs the switch with new configurations. The
switch now redirects streams to updated cores that
can manage the load.

In subsequent sections, we discuss the abstraction and
theory behind our key design components, ICC (§2.1 and
§2.2) and Flange (§2.3 and §2.4).

Programmable Hardware Abstraction

Figure 1 presents the high-level design of our INDIANA
framework. Here, we discuss the abstraction of how the
programmable network hardware provides compute nodes
in the ICC and how INDIANA provides virtualization.

Figure 1. INDIANA with its programmable compute cluster and Flange component. The left-hand-side of the diagram signifies multiple
sensor data sources while the right-hand-side demonstrates core components internal to the cluster.

444 The International Journal of High Performance Computing Applications 37(3-4)

Hardware level abstraction. Below we describe the virtual-
ized hardware component and how we virtualize it to
provide microservices. In Figure 1, each programmable
node holds several InPEs, each consisting of RISC-V soft
cores. We deploy InOps on low-level hardware threads
associated with a core. We assume a one-to-one mapping
between an InPE and a hardware thread in our initial im-
plementation. Once we deploy an InOp on a core using
INDIANA, we register the (InOp, service identifier) pair in
the Service Registry. We use the relationship at Equation (1)
to uniquely identify services deployed for each application
by application id (appid). Given application and InOp
identifiers (oid), F1 produces a unique numerical value to
use as a service identifier for corresponding data sources. F1
is a function external to the underlying system, and the
relationship between both sides of the Equation does not
change as the externally exposed service identifier (sid) is
consistent, even though the internal physical InOp place-
ment changes.

sid ¼ F1ðappid, oidÞ (1)

Internally, we have two types of core identifiers. The
physical core identifier (pcid) uniquely identifies each
hardware thread (tid), as shown by Equation (2), and is
constant for a given cluster deployment. The virtual core
identifier (vcid) identifies where INDIANA deploys a
specific InOp, as shown by Equation (3). Here, we dis-
tinguish between the two different core identifiers, as we can
expose more executable units than what is realistically
available by context-switching between idle and active
threads. However, for this initial implementation, we as-
sume that physical and virtual core identifiers are the same.

pcid ¼ F2ðnodeid, coreid, tidÞ (2)

vcid ¼ F3ðappid, oidÞ (3)

Flange uses the virtual core identifier to build rules for
the SDN-capable switch. For an incoming packet, the
mapping created by Flange, such as service identifier!
switch port X, identifies the correct programmable node to
route the packet. During the Adaptation stage, once Flange
determines that the virtual core for a specific core should
change, it updates the service identifier mapping above and
wraps the previously decoded data packet with an Ethernet
frame with the updated MAC address, and redirects to the
correct physical core.

Task graphs. Many distributed stream processing engines
follow the dataflow model, as shown in Figure 2, to pass
messages between services and build larger applications to
process incoming data streams. The dataflow model allows

the breakdown and decoupling of monolith applications into
more fine-grained services, which also improves the scal-
ability of streaming applications (Apache (2023a,b); Fu
et al., 2019; Henning and Hasselbring, 2021). The di-
rected acyclic graph of tasks, indicates how data traverses
between operators. In INDIANA, each InOp runs on an
InPE, and we achieve task parallelism by deploying the task
graph on multiple InPEs. Decoupled InOps deployed on
multiple InPEs allow for upgrades needed for individual
operators without affecting surrounding operators.

Sensor data generated from the edge requires analytics to
extract useful information. RIoTBench (Shukla et al., 2017)
is a real-time IoT benchmark that defines various data
processing applications built from smaller tasks to process
the edge data. Example micro-tasks in RIoTBench imple-
ment functions such as filtering, parsing, averaging,
counting, training machine-learning models and making
predictions on incoming sensor data. We focus on im-
plementing required data analytics compute kernels and
building task graphs for IoT applications.

Figure 3 represents the internals of an InPE with three
key elements: networking pipeline containing ingress and
egress paths, RISC-V soft core for executing baremetal C
code, and instruction and data caches storing instructions
and data. An Instruction Set Architecture such as RISC-V
has smaller fixed-width instructions, therefore, consumes
minimal hardware resources to decode and execute

Figure 2. Task graph representation for multiple operators
forming a streaming application and associated task parallelism.

Figure 3. INDIANA with its processing element representation
and pairings of multiple processing elements of different
variations for data parallelism.

Ossen et al. 445

instructions (Kanter, 2016), increasing the quantity of
compute units.

Data traversal within an InPE is similar to a core’s
traditional data traversal path. Incoming data from a net-
work switch arrives at NIC registers, which are then visible
to the CPU through the memory-mapped address space or
placed in the cache/DRAM hierarchy. We model data tra-
versal across several InPEs using Flange for flow direction.
Flange generates switch rules based on service identifiers
corresponding to InPE-InPE movement, and each InPE
outputs data stream packets intended for the subsequent
service through a service identifier. In addition, we indicate
that by logically grouping multiple InPEs via a shared
memory region, we can support operators that benefit from
data parallelism.

Serverless Architecture

Section 2.1 discusses the relationship between program-
mable network hardware, virtualization, and task graphs. In
this section, we discuss how the complete INDIANA design
offers a serverless architecture on top of the programmable
network hardware.

In-network FaaS Architecture. Traditional virtualization
methods for deploying applications, creating isolated
environments for different applications, and providing
adaptive scheduling for dynamic incoming streams de-
pend on two main approaches. Either the applications run
on Virtual Machines (VMs) or containers. VMs have
isolated guest operating systems, each of which runs on
host operating systems. A hypervisor is responsible for
creating the virtualization infrastructure associated with
VMs. Containers are a lightweight alternative for de-
ploying applications compared to VMs, which utilize
host operating system services to create the virtualization
infrastructure. These virtualization methods also provide
ease of application development to the developer, as any
application can run on top of the VMs and containers (Jha
et al., 2021). Inherent to these virtualization methodol-
ogies lies largely unavoidable overheads associated with
providing virtualization and processing network packets
on a software network stack. Specifically, spawning new
VMs or containers requires a heavy setup phase. In
contrast, there is faster hardware that can process in-
coming network packets at nanosecond speeds and re-
quires a light setup phase. Recent research named In-
network computing focuses on utilizing programmable
network hardware to also support computations for
network-heavy applications (Tokusashi et al., 2019).
However, programming these hardware devices is not
immediately apparent.

Figure 4 shows how our idea for in-network based
virtualization looks compared to VM and container-based

virtualizations. For a serverless architecture, InOps are
equivalent to serverless functions connected internally via
service identifiers. We model services in INDIANA as
functions with a single objective, and with new RISC-V
instructions backed by faster hardware accelerators to
achieve high performance. In contrast to hypervisors and
container engines, our proposed system has lower latency
for NIC-CPU data traversal due to the absence of a
software network stack. Stream processing in high data-
rate environments benefits from long-running services,
but can be short-term based on resource availability in our
system.

In the previous section, we discussed the internals of an
InPE, and here we represent the logical idea of each InPE
supporting MMIO-based sys calls and functions. The
component in an in-network Function as a Service (FaaS)
architecture that supports virtualization is the INDIANA
Engine, which acts as the tool that connects both the low-
level programmable hardware and high-level functions,
which we discuss in the next section.

INDIANA engine. Serverless functions have unique char-
acteristics such as dynamic scaling, easy deployment, and
reduced latency. To support these characteristics on
programmable network hardware, such as FPGA or
ASIC-based Smart NICs, we introduce the INDIANA
Engine, as shown in Figure 5. We have several compo-
nents, such as Thread Scheduler, Stream Scheduler, and
Service Registry, on top of which we provide adaptation
and virtualization. As stated in the earlier design sections,
we heavily depend on the Service Registry to connect the
programmable compute cluster and SDN-capable switch
(§3.5). Flange schedules incoming streams and forwards
them to the correct core acting as the Stream Scheduler in
both Execute and Adaptation stages. Flange also provides
updated function placement during the Adaptation stage,
given a use case where a core cannot manage an incoming
data stream. Meanwhile, the Thread Scheduler decides
which threads run on a core. However, for our initial
implementation, we assume a 1-1 relationship between
cores and threads.

Figure 4. In-network FaaS platform architecture.

446 The International Journal of High Performance Computing Applications 37(3-4)

In the sub-sections below, we describe important con-
cepts related to Flange.

Generalized Flow Placement

Having established a mechanism for injecting InOps onto an
INDIANA compute node, we now have the groundwork
laid for a more generalized interface for operating on net-
work flows. For the purpose of this examination, a network
flow is any set F of packets with consistent identifying
features that distinguish it from packets not in F.

This is a much broader definition of a network flow than
you will see in much of the network orchestration literature.
In brief, by broadening the definition of a flow, we allow our
analysis of network behavior to be sufficiently flexible to
support unconventional network topologies. We will ad-
dress the larger ramifications and justifications for this
definition in more detail in Section 3.

Our goal with INDIANA is to provide a general purpose
solution for operation placement within an arbitrary net-
work topology. Generalized operation placement requires
three discrete components: programmable hardware, a
best-effort algorithm to solve for resource allocations, and
a mechanism for defining and controlling the placement
algorithm to suite the demands of a given problem domain.
The first we have already discussed in Section 2; a method
for installing arbitrary InOps onto a variety of network
hardware. Each of these compute nodes is capable of
further specialization into InPE slices so as to improve
flow level parallelism. Expanding the scope outward, even
a perfectly optimal placement within a single computation
node is still non-optimal if there exist nodes with higher
spacial affinity to the packets in the network flows being
serviced.

We take a network wide approach to placement by
treating all compute nodes as a single pool of resources
which are labeled by their affinity to each flow. This allows
us to solve the intra-node and inter-node placement of
functions in the same pass.

Consider a virtual compute node representing the totality
of the available compute resource on the network sliced into
N InPEs with a capacity

CðnÞ→ fsmall, med, largeg (4)

for InPE n 2 N. In Equation (4), we use a simple taxonomy
of small, med, and large rather than a general capacity
function for simplicity.

We further specify the set of flows F as

F ¼ f f j packet p2 f ⋀ predðpÞg (5)

where pred is a predicate that returns true on an arbitrary but
stable set of packets. Let us define another predicate
Pð f , n, iÞ that returns true if the i th operation on f can be
performed by n.

There is a cost function ψ (f) for the unit cost of placing
an operation onto an InPE. We would like to identify a
mapping

Mð f Þ→ fni j ni 2N ⋀Pð f , n, iÞg (6)

that labels flows in a way that satisfy the following
constraints

Fn ¼ f f 2F j n2Mð f Þg

minimize

 Xf

Fn
ψð f Þ

!

Subject to

CðnÞ ≥
Xf

Fn
ψð f Þ

(7)

This formulation shares similarities to both the bin
packing and number partitioning problems (Martello and
Toth, 1990). However, it differs in a few key ways. Our
goal is to maximize the available parallelism in the
system; conventional bin packing approaches will min-
imize the number of bins while maximizing the allocation
per bin.

Multiway number partitioning shares more in common
with the above, but differs again in one key way: our use
of elastic bin sizes allows us to upgrade a bin to a larger
size for greater capacity at the expense of parallel
execution.

We developed an algorithm that instead maximizes the
number of bins within a constrained space, collapsing bins
into larger bins on an as needed basis.

The constraints in Equation (7) are also insufficient to
describe a real world multi-commodity function place-
ment problem. For this, we need to further specify the
function color of a flow. Since flows may have multiple
functions applied in sequence, we define color as a
mapping

Að f , nÞ→ a2A (8)

where A is the ordered set of all functions applied to a flow.
We also introduce a further constraint

Figure 5. INDIANA engine.

Ossen et al. 447

" n 2 N :" f 1, f 22Fn :Aðf 1, nÞ ¼ Aðf 2, nÞ (9)

Considered as a whole, Equations 7 and 9 define the al-
gorithm we use to perform function placement in INDIANA.

Each flow is labeled by a set of desired operations and
each node is labeled based on its candidacy for acting as a
solution for each flow. A solution is generated all at once for
all flows by aggregating all compute nodes into a single
virtual node and solving for the minimal load per InPE.

Defining discrete applications

Having defined our placement constraints, we need a
mechanism for specifying the parameters of a discrete in-
stance onto which our algorithm should be applied. For this
purpose, we have implemented the Flange NOS.

The Flange NOS is broadly composed of three com-
ponents: A frontend compiler that consumes human-
writable high level, flow-oriented declarations and pro-
duces Flange Assertion Graphs, a backend resolver that
takes serialized Flange Assertion Graphs and apply them to
a specific network topology, and a runtime service for re-
validating existing programs as needed as the network
topology changes. The relationship between these three
components and the underlying network topology is shown
in Figure 6.

Implementation

INDIANA processsing element

We envision the use of programmable network devices in
order to realize a fully integrated network architecture for
deploying low-latency microservices. Different pro-
grammable networking devices are built using a variety
of types of hardware including Application Specific In-
tegrated Circuits (ASIC)s, Network Processors, and Field
Programmable Gate Arrays (FPGA)s. ASICs provide fast

packet processing but have fixed functionality and can be
hard to program. Network Processors are more flexible
and may be easier to program, however, the high
throughputs required for network-heavy applications
require heavily optimized application designs. FPGAs
provide a middle ground, outperforming Network Pro-
cessors without sacrificing too much programmability. In
this work, we realize our design using RISC-V soft cores
(dynamically instantiated, general-purpose RISC-V
processors) on FPGA-based Smart NICs in order to
achieve flexibility, performance, and determinism when
executing applications.

This work builds on top of prior work discussed below,
specifically for the INDIANA in-network processing ele-
ments, or InPEs. The initial version of an InPE was found in
InLocus (Brasilino et al., 2018), where we presented an in-
situ stream-oriented architecture designed around Vivado’s
High Level Synthesis capabilities (HLS) in which C-like
code is compiled directly to low-level, FPGA register-
transfer logic (Xilinx, 2021). HLS hardware modules
provide orders of magnitude gains in performance over
NodeJS or linux-based C reference solutions, while at the
same time benefiting programmability as application de-
velopers implement high level code to interact with hard-
ware components written in Verilog. However, HLS limits
our ability to implement a dynamic and adaptive function
deployment architecture because the FPGA must be dy-
namically reconfigured, which requires extensive hardware
knowledge and is time-consuming.

The second generation InPE was developed as part of
NetFaaS, where we investigated how we can achieve
performance similar to Verilog hardware modules but with
more flexibility and programmability (Ossen et al., 2022).
NetFaaS introduced RISC-V soft-core based stream pro-
cessing services relating to our work, used an Ethernet
MAC Address-based service identification scheme, and
introduced a new dual-ported memory implemented in
hardware. The memory used full and empty signals

Figure 6. Depicts the flow of information within the Flange NOS.

448 The International Journal of High Performance Computing Applications 37(3-4)

(identified based on data availability) to control the hand-
shake between the core and memory, reducing memory
access latency. HLS module hardware resource consump-
tion increases with increased functional complexity, while
RISC-V soft cores have fixed hardware complexity and are
a suitable alternative that provides general-purpose com-
putation with better utilization.

In this work, we extend the notion of an InPE to en-
capsulate any compute architecture that can be deployed
into our network, with a focus on heterogeneity and dy-
namic adaptive customization. This third generation InPE
model forms the basic unit of in-network computation and is
the target on which InOps are bound (Section 3.2). While
we use the term InPE to characterize a class of objects, our
evaluation of the full-stack INDIANA framework requires
concrete cores and performance metrics. Our evaluation in
Section 4.1 will characterize the performance of the un-
modified BOOM (Asanovic et al., 2015) RISC-V im-
plementation deployed within the FireSim tiled network
framework (Karandikar et al., 2018), which can be viewed
as simulating a potential real-world heterogeneous network
target.

INDIANA operator placement

Given a set of statically provisioned InPEs as described
above, we need a mechanism for mapping INDIANA op-
erators (InOp)s to InPEs. This mapping should be as close to
the theoretical optimal mapping for flow allocation as
possible to minimize packet loss due to congestion or node
over-subscription.

We implement a greedy approach to this InOp
placement problem, which shares much in common with
the bin packing problem. Our solution roughly follows a
Worst Fit approach to bin packing. While Worst Fit
matches the approximate optimality guarantee of the
more efficient Next Fit, our use case includes the addi-
tional constraint of minimizing the work per node. While
this results in a larger overall time complexity by a factor
ofOðlogjN jÞ, the unit cost of placing a single flow onto an
InPE is dominated by the available compute on a node.
This means that by using Worst Fit we reduce the
probability of flow migration due to new sources being
added to the system at run time.

A similar result can be achieved through Best Fit,
however, the conditions of the underlying network are in
flux-spikes of flow congestion must be accounted for. Best
Fit provides similar time complexity and resilience to flow
migration, compared to Worst Fit while maintaining a
stronger approximate optimality guarantee but is brittle to
intra-flow fluctuation.

Our algorithm begins by modeling each node as a set of
unlabeled tiles categorized into cost tiers read from the
Service Registry (Figure 1). Tiles ultimately map to

discrete InPEs, but we will use an abstraction here to
distinguish the internally mutable tiles from the discrete
deployed InPEs. Each tile is annotated with a capacity,
cap, and cost, ψ. The cap of a tile is considered to be the
maximum capacity of a tile of size Cminus the resident set
of flows R on the tile while ψ is the cost function for the
tile to exist on the node and Ψ is the upgrade cost to a
higher capacity tier.

The basis of our algorithm is the iterative tile collapse
procedure; any set of tiles S may be replaced by another tile
d provided ψ(S) ≥ Ψ(d) and cap(S) < cap(d). This provides
us with a framework for elevating tiles up the hierarchy if
more capacity is needed. We will call this the collapse
procedure. Formally, collapse is a function that takes the
set of tiles T and a tier c.

We maintain the upgrade cost of a tier, Ψ, distinct from
the individual tile cost ψ because while these functions are
the same in the common case, keeping them distinct allows
clients to disable the upgrading behavior in the algorithm by
marking the tier cost as ∞ if the hardware does not support
flexible core sizes.

When there is no tile on a node that satisfies the cap
requirement for a flow, we perform a collapse operation
starting at size class c = small. If the total ψ(T) for all T in the
size class is less than Ψ(c + 1), we instead increase the class
by one size. This repeats until a resulting collapsed tile t’s
cost ψ(t) is sufficient to contain the flow or the size class
exceeds the defined size categories, in which case the
placement terminates in a failure and evicts the node from
the candidate placement list.

To solve the multi-flow version of the problem, we
extend our definition to create two tensors: the NxF node
tensor N and the AxF function tensor F . We perform the
placement algorithm described above on F½f �½0� for each f
in F at nodeN ½f �½0�. On placement success, the function is
removed from F½f �. On placement failure, the node is
removed from N ½f �. The placement is considered com-
plete whenF ¼ ϵ. Alternatively, ifN ½f � ¼ ϵ, the proposed
solution is rejected and the NOS must generate an
alternative.

Network flow scheduler

At its core, the Flange NOS acts as a flow-oriented graph
solver. By taking in the current state of a network as a graph
and comparing it to a desired state in the form of a Flange
Assertion Graph we can generate a list of differences. The
myriad of components and functions in Flange that we
describe in the following section all act in service of this
core tenet.

The Flange resolver is responsible for the process of
resolving the Flange Assertion Graph into a discrete set
of topology changes. The assertion graph is a list of
proposed flows, each of which contains a list of facts

Ossen et al. 449

associated with a candidate flow. We address the par-
ticulars of the assertion graph representation in detail
when we examine the Flange compiler. The first phase of
the resolution process is to take the assertion graph and
identifying all possible flows described by the graph. This
first phase is called the Flow-Expand pass. It only performs
expansion on each candidate flow into a discrete, realized
flow based on the current state of the topology at runtime.

To explore the practical intent behind the Flow-Expand
pass, consider Program 1 in the Flange DSL (Section 3.7).

Listing 1: sample program

exists node m, flow f :
forall node n :

n.type == ”foo” and f == n �> m

This program is semantically congruent to a gather
operation from all nodes of type “foo” to a single other
node. At compile time this program does not define a
number of flows to be generated nor the identity of the
node n or m. At run time, the above program would apply
the Flow-Expand pass to resolve the forall into a list of
all nodes that satisfy the constraints and yield a discrete
flow for each as described by the scoped constraints. At
this stage, flows are discretized, but have not been re-
alized into full paths. We can now start to narrow the
solution space until the flows converge on a set of fully
satisfying paths.

When resolving flows, changes are described as either
interfering or non-interfering changes. For instance, ter-
minating a flow at a node is a non-interfering change. In
theory, terminating many flows at a single endpoint may
have knock-on effects. However, for all practical pur-
poses, we assume terminating a flow does not affect other
flows in the network. In contrast, mapping a function onto
an InPE node is an interfering change; for a node of any
capacity, there is a certain number of processed flows, at
which point the node’s performance begins to degrade,
and packets drop.

For this reason, we cannot solve flows independently.
The placement of function λnmay preclude the placement of
λm. Instead all flows undergo a sequence of transforms in
tandem, starting with the Flow-Path resolution pass de-
scribed above.

We consider the result of the Flow-Path pass to be a set of
candidate flows S. In practice, S is a list of infinite gen-
erators, each of which yields a candidate iterative weighted
shortest path. This empowers each pass to reject a candidate
solution on a flow by flow basis, or reject an entire solution
set. If a path is rejected, the solution is recalculated based on
the next most optimal flow path.

This set of iterative candidate solutions lends itself
naturally to a modular approach to the Flange NOS. The
backend is made up of a series of modifier passes. Each

modifier is made up of a validator and a resolver. A
modifier’s validator is run on candidate paths before res-
olution is attempted. In doing so, we can preemptively reject
paths that are trivially identified as non-satisfying. For in-
stance, if a flow expression included a fact asserting the
existence of a function λ, any path matching the top level
conditions of the flow that does not contain a programmable
InPE node can be rejected before any costly placement
calculations are performed. A modifier’s resolver consumes
a validated path and performs a difference operation be-
tween the current state of the candidate path and the col-
lection of facts. Each modifier defines for itself how to
resolve any given fact. Continuing the example above, the
InPE resolver would identify an InPE node along the
candidate path to place the λ function (Section 3.2). If no
such function already exists, the pass emits a delta including
the following flange assembly instruction: install
λ <node-type> <node-id>.

In contrast, the Routing modifier identifies and injects
forwarding instructions into the delta based on the type of
each node in the path. During this pass, each forwarding
instruction is considered independently and is assumed to be
a full-field match.

The aggregation of such instructions across modifiers
represents an unordered change list generated by the Flange
NOS. Network agents such as the INDIANA Service
Registry and SDN controllers consume these changes and
modify their internal state as requested to reflect the in-
cluded instructions.

This naive approach is sufficient for many use cases.
However, while the resulting solutions will satisfy the
prepositions asserted on the network, it is clear that certain
flange assembly instructions will result in poor perfor-
mance if left in an unordered, non-processed state. Up to
this stage, flows are processed simultaneously in order to
allow modifiers to identify invalid solutions due to inter-
flow interference. The resulting instructions are still
generated on a flow by flow basis. As a final pass, we
perform the trivial transform on the result from a flow-
oriented domain to a node-oriented domain. Then each
node’s instructions are aggregated by category and for-
warding rules are consolidated into a longest prefix match
form where applicable.

Thus far we have described the behavior of the Flange
NOS as an independent service. Now we will examine the
practicalities of the NOS dependencies, the Flange Asser-
tion Graph and the UNIS network model (El-Hassany et al.,
2013) which together form the inputs for the Flange NOS as
seen in Figure 7.

Flange assertion graph

The Flange Assertion Graph (FlAG) is an entity fact tree. A
Flange entity Emay be any virtual node or flow. Each entity

450 The International Journal of High Performance Computing Applications 37(3-4)

of discourse is included in the FlAG along with a list of
predicates or facts which must validate successfully in a
candidate solution for the entity to be considered a satis-
fying solution. Furthermore, in a General FlAG each entity
may contain any number of dependent FlAGs. Entities with
children at layer n are only satisfied if at least one child at
layer n + 1 is satisfied. Let’s consider the Flange program P
in program 2.

Listing 2: INDIANA sample program

exists node e :
e.type == ”sink” and
forall flow f :

exists node s :
f == s �> e and

((s.type == ”A” and foo(f)) or
(s.type == ”B” and bar(f)) or

(s.type == ”C” and baz(f)))

Program 2 is an archetypal, if simple, INDIANA
program written in the Flange DSL (Section 3.7). It
describes a scenario wherein a network contains a set of
nodes such that at least one node is of the sink type and
that given a collection of flows between node types A, B,
and C and the sink node, the flows are mapped from A,
B, and C to the functions foo, bar, and baz, re-
spectively. The corresponding FlAG to such a program
appears in Figure 8.

As a first-order logical language, in practice the general
Flange Assertion Graph is a predicate logic tree. As a
consequence, we can apply any logical permutations on the
tree that is permissible within a first-order logical system.
While there are certain advantages to this tree-like formu-
lation of a flange program, it does not lend itself well to the
flow-oriented approach of the NOS backend. We need to
convert the FlAG into a flat, flow-oriented decision space.
Fortunately, this operation is well established: we simply
remove the existential quantifiers and replace them with
functions that map to corresponding results and flatten the
tree, this transforms the tree into a Skolemized disjunctive
normal form as seen in Figure 9. Each disjunctive stanza can
now be treated as an independent network assertion by the
Flange NOS.

Flange network model

We use an active network model stored in a NoSQL da-
tabase using the Unified Network Information Service
schema. This model may be populated through in-network
probes, SDN controllers and manual administrator con-
figuration. The UNIS schema defines nodes, links, and
ports as the primary entities.

Figure 7. Flange identifies optimal function placement for the
network topology (light blue) then inserts forwarding rules to
create the circuit as needed (maroon) in Figure 6. Changes to the
network are fed back into the model.

Figure 8. The Flange Assertion Graph for the sample INDIANA
program.

Figure 9. The Flange Assertion Graph for the sample INDIANA
program converted to DNF form.

Ossen et al. 451

For use in the Flange NOS, we need to be able to model
complex network interactions for any useful application.
UNIS facilitates multi-layer networks through virtual
nodes and links layered hierarchically through ports. A
node entity may represent a host, switch, or network
depending on associated ports. Node capacities and ca-
pabilities are included as entity annotations. The Service
Registry described in Section 2 is also implemented as
annotations in the network model. This keeps the network
model as the ground truth record of network state and
allows us to map Flange assertions to model fields
through a form of duck typing. Any nodal assertion in a
Flange program is considered to be valid if and only if the
associated annotation exists on the node in the model and
the value of the annotation satisfies the comparison
operation.

The dual of the node/network relationship is the link/
flow relationship, which behaves in the same way. UNIS
link entities may either represent a link or a flow. Links are
distinguished from flows by their mutability. Links repre-
sent existing features of the network. They may have an-
notations, but these annotations are only used as the basis
for invalidating assertions. In contrast, flows are considered
mutable and are identified by the layer of their endpoint
ports. Conceptually, the network graph can be viewed as a
hypergraph with flows as directed hyperedges. In our ex-
periments, however, we do not expand our model to support
this feature; point-to-point flows are sufficient to model our
testing scenarios.

We refer to this model as the active network model
because it can be augmented with live measurements. Any
edge E contains an arbitrary set of measurements. These
measurements are identified by a metadata record that
uniquely defines an event type and subject entity.

These measurements are used by the Flange NOS in both
implicit and explicit ways. Implicitly, any backend modifier
may reference a measurement in order to validate or resolve
candidate paths. Of particular note to INDIANA is the InPE
modifier, which uses measurements on existing flows to
better schedule function placement. In the placement al-
gorithm described in Section 3.2, we refer to a cost function
C. In our implementation, we use the active packet-per-
second measurement on established flows multiplied by an
estimated function cost defined at compile time for each
requested function.

The specifics of how per-flow packet-per-second mea-
surements are generated will depend on the deployment
environment but could easily be generated in flight by SDN
meters or defined at the source as part of the data generation.
Flange itself is agnostic toward the source of the mea-
surement data and assumes the model is a best-effort re-
flection of the current state of the network. In the absence of
a packet-per-second measurement, the behavior is modifier
dependent. In the case of InPE, it will fall back to the

average rate of existing flows and failing that, use a default
estimate defined at compile time.

Alternatively, measurements can be invoked explicitly in
a Flange program by calling the measurement as a function
on a flow within the program. In Program 3, a single flow
between nodes A and B is selected that is sending more than
100 packets/s; a function summarize is then applied on
that flow.

Listing 3: INDIANA sample program with measurements

exists node e, node s, flow f :
e.name == ”B” and s.name == ”A” and
f == s �> e and
f.packetspersecond() > 100 and

summarize(f)

During compilation, measurement requests yield a de-
ferred event record. At run time, this event record yields the
current state of the measurement. The collection of all event
records generated for a given program is considered the
program’s event domain.

Passive versus active flow scheduling

The Flange NOS can generate the solution for a program on
demand which is then passed to in-network agents that work as
actuators on the network, reporting the new state back to the
networkmodel. This is the passive executionmodel of Flange as
described thus far. Changes to the network are only applied at
the request of the administrator on the execution of a new policy.

This mode of scheduling is insufficient to perform as a
production NOS. Conditions in the network change. At the
macro level, new data sources may be added, extra links may be
connected, and new Programmable Node modules may be
installed. At the micro level, data source flow rate may fluctuate
or other services may contest the resources used by a program.

In order to address the inherent mutability of the net-
work, we introduce a manager service called the Flange
daemon. The Flange daemon primarily acts as a network
program scheduler. When compiled, a FlAG is registered
with the daemon; newly registered FlAGs are immediately
flagged as invalidated. In conventional OS terms, this
queues the process as pending.

The Flange daemon runs pending programs against the
network state as it appears at execution time. This execution
generates two products as described in Section 3.3: a delta
list and an event domain. The delta list is immediately
deployed to the network where rules are inserted as needed.
The event domain is fed back into the Flange daemon as a
collection of potentially invalidating conditions. Each
condition is registered to the FlAG that generated them.

When a change in the network model is detected, the new
state is compared to the event domain of each registered

452 The International Journal of High Performance Computing Applications 37(3-4)

FlAG. If an event fails a validate, the FlAG is marked as
invalid and placed in the queue for re-evaluation.

By using this approach, we have traded optimality for
performance. Only invalidating changes in the network
prompt a re-evaluation of a program. As such, some
changes that may result in a more optimal solution will be
ignored, since they do not invalidate the current running
solution.

In practice, this is preferable, since re-configuring the
network involves a substantial cost in terms of network
disruption and flow instability until the new solution is fully
installed. We can mitigate potential network disruption by
using transaction-based transitions, but this incurs a further
performance penalty during rule placement. Instead, we
minimize network disruption by only modifying the current
network state when a program is invalidated. Furthermore,
potentially costly re-evaluation is only executed in the case
where a member of the event domain is changed.

We can optimize our active resolutions further by tagging
event domains with specific DNF stanzas/flow pairs within the
FlAG. Since stanzas only interfere if they contain overlapping
paths, an event that invalidates a subset of the FlAG only
requires a re-evaluation of the invalidated stanzas. This partial
re-evaluation is limited to solutions that do not invalidate non-
triggered stanzas. In the case of a partial re-evaluation failure,
the entire FlAG will be triggered as pending.

This process allows the Flange daemon to maintain the
state defined in a set of programs in the face of network
topology changes and performance fluctuations.

Flow policy language

The Flange language was designed to codify network
flows into a concise, declarative form. Conceptual net-
work models exist in a spectrum of abstractness from
physical to logical. A fully physical network model has
the advantage of completely defining the behavior of the
modeled network, but suffers from its own complexity.
Inferring meaningful information from a physical net-
work model is difficult. The behavior of a given node or
link in the model is defined by the hardware specification,
adjacent entities, levels of encapsulation, etc. Writing a
policy to modify the model state is still more complicated.
The user needs a full understanding—not only of the
individual systems in the network—but the interactions
between systems. For this reason, Flange attempts to
divest the developer entirely of the physical topology,
allowing them to express their intent purely in terms of
the logical flow of content. Flange programs take the form
of first-order logical expressions over the domain of
logical nodes and flows.

Modern SDN projects such as Firmament (Gog et al.,
2016; Merlin Soulé et al., 2014) inspired many of the

features in Flange and our approach of modeling net-
works at a higher, more abstract level. It could be said that
SDN itself is a continual effort to lift the domain of
discourse from physical to logical abstractions. However,
existing approaches use node or packet level abstractions
when defining behavior. In contrast, Flange is a flow-
oriented language. In Flange, non-flow types, such as
nodes, exist only to express specificity when validating
flows. Flange combines this high-level abstraction with
explorations into declarative network specifications such
as (Anderson et al., 2014; Chen et al., 2010; Foster et al.,
2011; Hinrichs et al., 2009; Monsanto et al., 2012).
Programmers express the behavior of flows by defining the
matching parameters that shape the flow. For example, in
Program 3, we define a flowf. The specifics of the flow source
and destination are left to the compiler, provided that the final
source and destination are among the nodes that match the
facts associated with those endpoints.

The break down of the Flange language structure is defined
in the syntax diagram in Table 1. The core notation of Flange is
the flow operator, which is denoted by !. In its most
primitive form, the flow operator takes two assertions and
concatenates them as a directed forwarding path. For example,
given a node A and a node B, A!B yields the shortest valid
path between A and B. The shortest path is only considered
valid given that all facts associated with the flow are satisfied.
In the event that a path fails in validation, the search continues
where it left off and returns the next shortest path.

This formulation of a path is quite powerful; for many
applications, simply being able to express point-to-point paths
is enough to achieve useful and robust behaviors. In the
INDIANA context, we wish to take this approach a step
further. As a functional concatenation operator, the flow op-
erator can be chained, Flangewill optimize for the outer pair on
paths that pass through all vertices requested. This looks like
sum(A!B). The expression can be read as the flow from A
to B passing through the function sum. This example assumes
a stream of numeric data is being generated by A. Function
predicates can be chained indefinitely as needed.

Flange uses link virtualization to treat flow predicates as a
single edge between two vertices. When the flow is fully
resolved, each hopwithin the virtual edge is annotated with the
necessary forwarding changes to realize the described virtual
edge. By reducing all flows to a single edge, all flow problems
can be generalized into a single overlay topology before finally
resolving down the physical topology in the resolver.

Quantifying assertions

In order to fully specify the relationship between network
entities we use the forall and exists quantifiers. When
viewed as a formal first order logical language, Flange
inherits the predicate logic solution here; node and flow
types are bound using the existential and universal

Ossen et al. 453

quantifier. Validating facts are processed over the variables
thus quantified. Recall that facts map to predicate expres-
sions in the FlAG consumed by the Flange NOS. There is a
more practical application for quantifiers in Flange; how-
ever, it is necessary to have a mechanism for distinguishing
how a flow should choose constituent elements. Quantifiers
help us to distinguish between a generative operation and a
filtering operation. The universal quantifier queries a col-
lection of entities that currently satisfies the descendant facts
referencing the quantified variable.

In contrast, the existential quantifier can be generative; if
a satisfying entity already exists, the NOS will attempt to
satisfy the FlAG by iterating over the list of entities that
match to predicates for the variable with short circuiting-
search will terminate prematurely on a solution. Unlike the
universal quantifier, if no satisfying solution is found with
the existing entities, Flange will attempt to generate a
satisfying entity.

When the Flange NOS receives a request for an exis-
tential flow and no existing flow satisfies the descendant
predicates, it instead generates a flow de-novo provided
some entity exists that satisfies the start and end points for
the proposed flow. The flow generation happens as part of
the Flow-Path resolution pass provided at least one physical
path exists onto which the flow can be injected. Subsequent
passes do not need to consider if the flow under

consideration has been generated or is an existing flow to be
modified. As such, the modifiers can treat all flows as
existing flows to be modified, greatly simplifying the
system logic.

In the case of an existential node, our current im-
plementation terminates and informs the user that the
program is unsatisfiable. Nodal generation is theoretically
possible, provided an agent like KVM, Puppet (Benson
et al., 2019), or Ansible (Ansible, 2017) capable of gen-
erating system configuration for hardware or VMs. This is
beyond the scope of this examination of the INDIANA
architecture, however.

Recall that we use a disjunctive normal form for ex-
pressions fed into the Flange NOS. Disjunctive normal form
does not include quantifiers, so we perform Skolemization
on the FlAG. This process converts all references to vari-
ables to either discrete instances or closures that take the
current scope as arguments depending on the type of
quantifier used to generate the variable. Universal entities
are converted to discrete variables while existential entities
are converted into Skolem functions.

Beyond conforming to the formalities of first-order logic,
Skolemizing the FlAG provides us with a practical ab-
straction when interpreting the expression in the NOS. Each
reified candidate flow contains a symbol table with asso-
ciated universal variables. This maps well to our model

Table 1. Flange syntax diagram.

454 The International Journal of High Performance Computing Applications 37(3-4)

where each flow is considered a distinct unit satisfied
concurrently. Skolem functions are implemented as a
generator with memoization across the entire environment.
Each Skolem function returns the same result for each
closure environment while allowing the Flange NOS to
iterate across candidate matching entities.

By compiling the Flange program from a human-
writable format to a Skolemized disjunctive normal form,
we can interpret the resulting sequence of clauses as discrete
flow requests. Each flow request can then be passed through
a sequence of modifiers applied to a network instance to
generate a final proposed set of instructions to actuate on the
provided network.

Evaluation

In this paper, we perform two sets of experiments. The first
is to build a profile for RISC-V cores against various
message rates. Different core settings and function com-
plexities affect the time an InPE takes to process data and
how well each InPE can handle the load. Next, Flange
executes experiments constructing network switch rules and
monitoring the network for data streams. Once an InPE
reaches a threshold (computed using the RISC-V core
profile), Flange generates new switch rules to redirect flows
to larger more capable InPEs.We assume a static set of cores
and build the profile offline for this work.

FireSim evaluations

The following FireSim simulation experiments are run on
Amazon Web Services (AWS) F1 FPGA instances (Xilinx
Alveo Smart NICs) (Xilinx, 2022) and are designed to
collect meaningful real-world parameters to be used in the
cost model for our modeling infrastructure, as evaluated
below.

We test our compute kernels on the BOOM core, a
superscalar out-of-order core with a 7-stage instruction
pipeline. The single-core BOOM CPU runs at 3.2 GHz and

contains 4MB of L2 cache and 16 GB of DDR3. The core is
deployed as a simulated 2-node cluster connected by a
single top-of-rack switch. Each core runs baremetal C code,
where the producer sends packets to the consumer at
varying message rates for different function kernels for 1 s.
To be on par with our previous InPE work, we tested the
compute kernels with a 1 Gbps maximum NIC bandwidth.
FireSim provides a parameterizable interface for defining
network behavior; we use the port-port switching latency of
10 cycles (3.125 ns) and link latency of 6,405 cycles (2 µs)
to simulate our system. Table 2 describes the function
kernels we have implemented for the experiments.

Figure 10 shows the timing information for the producer
running on BOOM. We define the transmission time as the
total time taken to send the data packets from producer to
consumer, and it depends on the data payload size. As the
message rate increases, for the same rate (same number of
messages sent to the consumer), the difference between
sending different-sized packets (1, 8, and 16 64-bit values)
increases. As the NIC egress flow contains memory reads
and transferring data via the network, each memory word
read adds to the total transmission time. In this experiment,
the maximum attainable message rate for the 1 Gbps NIC
bandwidth is 6,000,000 packets per second without any loss
of packets. We can increase the maximum supported NIC
bandwidth to support transmitting more 64-bit data words
and message rates on the producer without overwhelming
the system.

Figure 11 shows the timing information for the consumer
running on BOOM. Here, we depict the total execution
time, comprising the time taken to receive packets and
execute the function kernels on the incoming data. Here, a
similar execution time is seen for function kernel pairs
(rolling sum and avg, sliding window and vector operations)
as an equal number of operations is performed on an equal
number of incoming data elements. As the function com-
plexity increases, from simple addition, addition and
multiplication between two vectors, and matrix multipli-
cation, the execution time also increases.

Table 2. Function kernel description.

Function
Operation
type Operation

Window
size

Of 64-bit
values

rolling-sum sliding window sum of a window of elements 10 1
rolling-avg sliding window average of a window of elements 10 1
vec-dot-
prod

vector dot product between two vectors A and B (A � B) NA 8

vec-triad vector Scalar multiplication and addition between two vectors A, B and scalar
value c (A + cB)

NA 8

mat-mul matrix multiply two 4 × 4 matrices A and B (A × B) NA 16

Ossen et al. 455

Function placement performance

In order to evaluate the performance of the Flange NOS, we
ran two scaling experiments. We performed these experi-
ments using simulated networks in order to examine a wide
range of network scales and degrees of function density.
Fortunately, the structure of the Flange ecosystem supports
network simulation natively. By providing the model with a
simulated topology and discarding the instructions gener-
ated by the Flange NOS we can perform placement oper-
ations on any arbitrary topology. Doing so fails to correctly
simulate the feedback loop used by the Flange daemon in
order to provide active network management, but since
these experiments are meant to demonstrate placement
performance, a simple passive application is sufficient. We
considered the following three parameters during simula-
tion: the density of data products, the producer count, and
the InPE node capacity.

All placement scaling experiments were run on an Intel
i7-8705G at 3.1 GHz and 16 GB of DDR4 2,400 MT/s.
Each parameter sweep performs 100 runs per configuration;
graphs display the mean performance and one standard
deviation per configuration.

In our first scaling experiment, we maintained a simple
policy across all runs with three product types and infinite
InPE node capacity. Our goal here was to determine the
effect of increasing graph size on the placement algorithm
on a successful solution; limiting the InPE capacity would
have injected failure states that would have increased the
error for larger graphs without providing any useful feed-
back. The Flange NOS is able to perform early detection on
flows that exceed the network capacity. This produces an
apparent sudden performance improvement when the
produced data exceeds network capacity—a useful feature
for practical applications, but not ideal for examining the
scaling behavior of our implementation.

Figure 12 shows our simple three product policy applied
to networks with scaling source node counts. For this ex-
periment, the graph is a simple star topology in which one
virtualized InPE node and between 100 and 2,000 data
producers are routed through a single programmable switch.
Results represent the time required for the Flange NOS to
calculate an InPE placement scheme and generate a routing
plan for the n nodes through the switch (the cost of the latter
is dominated by the former, but it is worth considering that
these times also include the routing performance).

The choice to model this scenario with a single pro-
grammable switch lies in the virtualization techniques used
by the Flange NOS. With no route optimization conditions
in the program, a more complex routing topology—such as
a Clos network—would be functionally reduced in model to
a single routing vertex as part of the graph reduction pass.
Making these two graphs isomorphic for all practical
purposes in this scenario.

Figure 10. Timing information for BOOM Producer.

Figure 11. Timing information for BOOM Consumer.

Figure 12. Placement algorithm performance with scaling
network size.

456 The International Journal of High Performance Computing Applications 37(3-4)

We observe a clear polynomial growth in placement per-
formance. This is within our expectations based on our in-
heritance of the OðN ∗ logjN jÞ Worst-Fit bin packing
algorithm. These values are within our expectations for a proof
of concept implementation of the algorithm, however, overall
performance still leaves much to be desired. In a production
environment, recalculating placement is performed rarely
enough that an order of minutes compilation time is acceptable
in most scenarios, but clearly not ideal. For instance, when
using active monitoring with the Flange daemon, this is not
sufficiently performant to respond to sudden changes in net-
work congestion; though it is sufficient to support periodic
fluctuations such as daily use patterns.

It is our belief that with optimization of the constant
factor, we will be able to further refine the placement al-
gorithm to allow for fully responsive reconfiguration.

Interestingly, performance begins to become more un-
stable past the 1,500 node threshold in this experimental
configuration. This is due to the implementation of the
virtual InPE node’s properties. Past 1,500, the number of
required collapse operations performed increases linearly
due to the source cost exceeding the base number of
available InPE tiles. Up to this threshold, collapse is per-
formed only when necessary due to a particularly large flow
exceeding the tile capacity.

Another observation here is the relative real and usr
times. The usr time scales proportionally while IO represents
less than 6.6% of the execution time—indicating that external
factors such as our network model implementation have
minimal impact on the performance of INDIANA.

Figure 13 shows the results of our second Flange scaling
experiment in which we used a static 300 source network in
a star topology with a single virtualized InPE node. The
experiment scaled the function type density from 0.05
(15 function types) to 1.0 (300 function types) over the
300 source nodes in increments of 0.05.

The performance scales linearly as function types are
added to the solution. This scaling factor is the result of the
Flange NOS’s attempt to find an optimal arrangement of
functions on the compute node to balance the flows across
the available resources.

There is a disruption around 225 function types. This
correlates with the point at which the node can no longer
place node function in place onto the node and needs to
begin performing collapse operations to successfully place
all of the function types.

Combining these two results, we confirm the average
runtime of our implementation of OðF ∗N ∗ logjN jÞ where
F is the function type density and N is the number of
mapped flows.

Limitations and future work

Low-level framework limitations

Implementing a low-level framework, designed to be im-
mediately placed in or beside high-speed switching hard-
ware, has limitations in the computation it can offer.
Specifically, any operation that requires storing state, such
as an element of windows, adds more complexity as we
need to allocate resources for storage, reducing available
resources for computation. Often performing compute-
intensive operations also requires complex solutions
(Kohler et al., 2018; Xiong and Zilberman, 2019; Zheng and
Zilberman, 2021). We are limited in the capability to use
existing software libraries known for improving perfor-
mance. We also run into the problem of a heavily pipelined
solution dropping packets in a network-intensive applica-
tion when memory-intensive and compute-intensive oper-
ations dictate performance timing. However, using FPGA
hardware accelerated modules and ISA extensions to del-
egate specific functionality from the core can significantly
provide performance improvements. We intend to explore
this space of solutions for significant performance im-
provements in future work.

Swapping workloads and reprogamming cores

In this work, we program each RISC-V core with the C code
before starting the simulation using FireSim. Therefore it is
equivalent to statically assigning programs at initialization.
However, to be a framework supporting dynamic service
deployment, we need the capability to swap workloads and
reprogram cores on-the-fly. As previously stated, using partial
reconfiguration for FPGA designs consumes considerable
time. A less complex and faster alternative to reprogramming a
core might be to associate a separate fast network path in the
SDN-capable switch, introduce tiny packets containing the
program code and utilize this network path to program the core
via a reset. To realize this implementation, we will have to

Figure 13. Placement algorithm performance as function type
density increases.

Ossen et al. 457

expose the L1 instruction and data caches and any scratchpads
holding function code. We can either replace existing function
codes or place the new function code in a separate address
space and perform context switching between the hardware
threads using the Thread Scheduler.Wewill be exploring these
avenues in our future work.

Flow scheduling pitfalls

In the current implementation of the Flange language and
NOS, there are several features that fall short of the intended
design. A major hurdle when designing policies in the
current implementation of the Flange NOS is the restriction
of one logical flow per conjunctive clause. Every flow is
considered an independent flow; placement and routing is
performed dependently in the sense that flow a may nearly
exceed the capacity on a node, preventing flow b from being
placed on the same node, but it is impossible to express that
a is directly dependent on the existence of b. The Flange
language supports these types of assertions as seen in
Program 4 but the NOS will reject the program as invalid.

Listing 4: A simple program with dependent flows

exists node e, node s1, node s2,
flow f2, flow f2 :

f2 == s1 �> e and
f1 == s2 �> e

The logic in this program is similar to Program 5; in both
examples, two flows are asserted, but in Program 4 the flows
are dependent while in Program 5 each flow can exist or fail
to exist independently.

Listing 5: A simple program with dependent flows

exists node e, node s1, node s2:
forall flow f :

f == s1 �> e or
f == s2 �> e

Transforming the solution space from a list of candidate
flows to a list of lists containing dependent flows is the obvious
correction, but invokes a performance cost for resolving de-
pendent flows. We plan to explore optimizations that reduce the
overhead of solving dependent flows in future work.

Policy language limitations

The type space used in the Flange language is ultimately very
limiting. We provide the four constant types-strings,
integers, floats and booleans-along with the none
special type. Variable types are limited to only two types-
nodes and flows. It is clear that the addition of arbitrary
variable substitution within expressions would greatly increase

the expressiveness of the Flange language; consider the ex-
ample program we have used throughout this paper, Program
2. The version of this program with variable substitution and a
map type could be reduced further to Program 6.

Listing 6: An hypothetical example of variable substi-
tution in Flange

exists node e, map M :
e.type == ”sink” and
M == {”A”:foo, ”B”:bar, ”C”:baz} and
forall flow f :

exists node s, string x :
f == s �> e and
s.type == x and M[x](f)

Furthermore, functions like the above examples foo,
bar, and baz are defined in built-in libraries. Additional
functions can be added by registering them through UNIS
records, but we hope to implement in-language support for
defining functions to support our “network as a single
programmable target” philosophy.

Implementing wider support for in language type
definition and variable support would greatly expand
Flange’s expressive power and is a major task to support
future research to solve more generalized flow scheduling
problems.

Related work

In addition to previous work performed in this project for in-
network function placement (Brasilino et al., 2018, 2020;
Ossen et al., 2022) and network orchestration (Musser et al.,
2019; 2020), we took inspiration from several similar ap-
proaches described herein.

We investigate the execution of stateful dataflow operators
within the in-network computing space first. Due to limi-
tations on switch-ASIC resources, several designs propose
approximation (Jepsen et al., 2018), careful estimation
(Gupta et al., 2018), or finite state machines (Kohler et al.,
2018) for evaluating stateful operators. In addition, the ab-
sence of general-purpose computing elements such as loops,
floating point, and arithmetic operators support also hinders
the ability to use fast switching hardware.

We also explore the work of network processors and
FPGA -based in-networking solutions. λ-NIC (Choi et al.,
2020) is an in-network serverless framework implemented on
Netronome Agilio SmartNICs by defining an abstract ma-
chine model to deploy lambdas. NanoPU (Ibanez et al., 2021)
is a design for deploying short μs scale services. A fast
network path between the RISC-V Rocket core and the
programmable NIC enables direct placement of message
payload on core registers and subsequently provides low
latency service times.

458 The International Journal of High Performance Computing Applications 37(3-4)

Conclusion

In this paper, we presented INDIANA, a generalized approach
to deploying microservices that provides a high degree of
control to users without incurring the performance cost of
virtualization or containerization. We discussed our two
pronged approach with InPE programmable execution units
applied to clusters of Programmable Nodes in a Compute
Cluster and workload orchestration across these clusters
through the use of task graphs which are shaped and reshaped
by the Flange NOS. This NOS applies placement policy to an
active model of the network and generates placement plans
across Compute Clusters to satisfy the asserted policies de-
fined by users. We demonstrated that this placement scales
polynomially respective to the size of the network graph and
function density. The measurements obtained from running
RISC-V cores on FireSim show that as function complexity
increases, the execution time increases and that as the number
of data elements in packets transmitted between nodes in-
creases, the realistic time taken to transmit the values also
increases. We intend to introduce new RISC-V instructions
and hardware accelerators to mitigate this increase in time for
both function execution and data transmission.

Acknowledgements

This research is based upon work supported by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), through the Advanced
Graphical Intelligence Logical Computing Environment (AGILE)
research program, under Army Research Office (ARO) contract
number W911NF22C0084 and the NSF Grant number 2126266.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the ODNI, IARPA, ARO, NSF, or the U.S. Government.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research is based uponwork supported by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), through the Advanced Graphical In-
telligence Logical Computing Environment (AGILE) research
program, under Army Research Office (ARO) contract number
W911NF22C0084 and the NSF Grant number 2126266.

ORCID iDs

Sabra Ossen  https://orcid.org/0000-0002-2264-8516
Jeremy Musser  https://orcid.org/0000-0002-2781-2127

Luke Dalessandro  https://orcid.org/0000-0002-4803-8003
Martin Swany  https://orcid.org/0000-0001-8028-1161

References

Anderson CJ, Foster N, Guha A, et al. (2014) Netkat: Semantic
foundations for networks. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14. New York, NY, USA: Asso-
ciation for Computing Machinery, pp. 113–126. DOI: 10.
1145/2535838.2535862

Ansible RH (2017) Ansible in Depth. Portola Valley: Red Hat.

Apache (2023a) Apache Storm. https://storm.apache.org/

Apache (2023b) Stateful Functions: A Platform-independent
Stateful Serverless Stack. https://nightlies.apache.org/flink/
flink-statefun-docs-stable/

Asanovic K, Patterson DA and Celio C (2015) The Berkeley Out-Of-
Order Machine (Boom): An Industry-Competitive, Synthesizable,
Parameterized Risc-V Processor. University of California at
Berkeley Berkeley United States.

Asch M, Moore T, Badia R, et al. (2018) Big data and extreme-
scale computing: Pathways to convergence-toward a shaping
strategy for a future software and data ecosystem for scientific
inquiry. The International Journal of High Performance
Computing Applications 32(4): 435–479. DOI: 10.1177/
1094342018778123

BensonRM,Munsell E, BertrandN, et al. (2019) Amulti-environment
hpc-scale puppet infrastructure for compliance and systems au-
tomation. In: Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines
(Learning), PEARC ’19. New York, NY, USA: Association for
Computing Machinery. DOI: 10.1145/3332186.3332240

Swany M, Kissel E, Pilachowski C, et al. (2020) In-network
processing for edge computing with inlocus. International
Journal of Cloud Computing 9(1): 55–74.

Brasilino LR, Shroyer A, Marri N, et al. (2018) Data distillation at
the network’s edge: Exposing programmable logic with in-
locus. In: 2018 IEEE International Conference on Edge
Computing (EDGE). IEEE, pp. 25–32.

Bucchiarone A, Dragoni N, Dustdar S, et al. (2018) From
monolithic to microservices: An experience report from the
banking domain. Ieee Software 35(3): 50–55.

Chen X,Mao Y,Mao ZM, et al. (2010) Decor: Declarative network
management and operation. ACM SIGCOMM Computer
Communication Review 40(1): 61–66. URL. DOI: 10.1145/
1672308.1672321 DOI: 10.1145/1672308.1672321

Choi S, Shahbaz M, Prabhakar B, et al. (2020) λ-nic: Interactive
serverless compute on programmable smartnics. In: 2020 IEEE
40th International Conference on Distributed Computing Sys-
tems (ICDCS). IEEE, pp. 67–77.

Cooke RA and Fahmy SA (2020) Characterizing latency over-
heads in the deployment of fpga accelerators. In: 2020 30th
International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, pp. 347–352.

Ossen et al. 459

https://orcid.org/0000-0002-2264-8516
https://orcid.org/0000-0002-2264-8516
https://orcid.org/0000-0002-2781-2127
https://orcid.org/0000-0002-2781-2127
https://orcid.org/0000-0002-4803-8003
https://orcid.org/0000-0002-4803-8003
https://orcid.org/0000-0001-8028-1161
https://orcid.org/0000-0001-8028-1161
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://storm.apache.org/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://doi.org/10.1177/1094342018778123
https://doi.org/10.1177/1094342018778123
https://doi.org/10.1145/3332186.3332240
https://doi.org/10.1145/1672308.1672321
https://doi.org/10.1145/1672308.1672321
https://doi.org/10.1145/1672308.1672321

Dang HT, Bressana P, Wang H, et al. (2020) P4xos: Consensus as a
network service. IEEE/ACM Transactions on Networking
28(4): 1726–1738.

El-Hassany A, Kissel E, Gunter D, et al. (2013) Design and
implementation of a Unified Network Information Ser-
vice. In: 10th IEEE International Conference on Services
Computing.

Foster N, Harrison R, Freedman MJ, et al. (2011) Frenetic: A
network programming language. In: Proceedings of the
16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11. New York, NY,
USA: Association for Computing Machinery,
pp. 279–291. DOI: 10.1145/2034773.2034812

Fu X, Ghaffar T, Davis JC, et al. (2019) {EdgeWise}: A better
stream processing engine for the edge. In: 2019 USENIX
Annual Technical Conference (USENIX ATC 19).
pp. 929–946.

Gog I, Schwarzkopf M, Gleave A, et al. (2016) Firmament: Fast,
centralized cluster scheduling at scale. In: Proceedings of the
12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16. Berkeley: USENIX Association,
pp. 99–115.

Gupta A, Harrison R, Canini M, et al. (2018) Sonata: Query-driven
streaming network telemetry. In: Proceedings of the
2018 conference of the ACM special interest group on data
communication, pp. 357–371.

Henning S and Hasselbring W (2021) Theodolite: Scalability
benchmarking of distributed stream processing engines in
microservice architectures. Big Data Research 25:
100209.

Hinrichs TL, Gude NS, Casado M, et al. (2009) Practical
declarative network management. In: Proceedings of the
1st ACM Workshop on Research on Enterprise Net-
working, WREN ’09. New York, NY, USA: Association
for Computing Machinery. p. 1–10. DOI:10.1145/
1592681.1592683.

Ibanez S, Mallery A, Arslan S, et al. (2021) The nanopu: A
nanosecond network stack for datacenters. In: 15th {USENIX}
Symposium on Operating Systems Design and Im-
plementation ({OSDI} 21), pp. 239–256.

Jepsen T, Moshref M, Carzaniga A, et al. (2018) Life in the fast
lane: A line-rate linear road. In: Proceedings of the Sympo-
sium on SDN Research, pp. 1–7.

Jha DN, Garg S, Jayaraman PP, et al. (2021) A study on the evaluation
of hpc microservices in containerized environment. Concurrency
and Computation: Practice and Experience 33(7): 1–1.

Kanter D (2016) Risc-v offers simple, modular isa. Micropro-
cessor Report.

Karandikar S, Mao H, Kim D et al. (2018) Firesim: Fpga-accelerated
cycle-exact scale-out system simulation in the public cloud. In:
2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, pp. 29–42.

Kohler T, Mayer R, Dürr F, et al. (2018) P4cep: Towards in-network
complex event processing. In: Proceedings of the 2018 Morning
Workshop on In-Network Computing, pp. 33–38.

Martello S and Toth P (1990) Knapsack Problems: Algorithms and
Computer Implementations. USA: John Wiley & Sons, Inc.

Monsanto C, Foster N, Harrison R, et al. (2012) A compiler and run-
time system for network programming languages. ACM SIG-
PLAN Notices 47(1): 217–230. DOI: 10.1145/2103621.2103685

Musser J, Kissel E, Skipper G, et al. (2019) Multi-layer stream
orchestration with flange. In: 2019 IEEE International
Conference on Fog Computing (ICFC). IEEE, pp. 115–123.

Musser J, Kissel E, Swany M, et al. (2020) Applying osiris nmal to
network slices on slate EPJ Web of Conferences. EDP Sciences,
245: 07055.

Ortiz G, Boubeta-Puig J, Criado J, et al. (2022) A microservice
architecture for real-time iot data processing: A reusable web
of things approach for smart ports. Computer Standards &
Interfaces 81: 103604.

Ossen S, Brasilino LR, Dalessandro L, et al (2022) Enabling
stateful functions for stream processing in the programmable
data plane. In: Proceedings of the 2nd Workshop on High
Performance Serverless Computing, pp. 24–30.

Shukla A, Chaturvedi S and Simmhan Y (2017) Riotbench: An iot
benchmark for distributed stream processing systems. Concur-
rency and Computation: Practice and Experience 29(21): e4257.

Soulé R, Basu S, Marandi PJ, et al. (2014) Merlin: A Language for
Provisioning Network Resources. DOI: 10.48550/ARXIV.1407.
1199

Tokusashi Y, Dang HT, Pedone F, et al. (2019) The case for in-
network computing on demand. In: Proceedings of the
Fourteenth EuroSys Conference 2019. pp. 1–16.

Xilinx (2021) Vivado High-Level Synthesis. https://docs.xilinx.com/v/
u/en-US/ug902-vivado-high-level-synthesis (accessed 16 Janu-
ary 2021).

Xilinx (2022) Alveo U250 Product Page, p. 2023. https://www.xilinx.
com/products/boards-and-kits/alveo/u250.html (accessed 16 Jan-
uary 2021).

Xiong Z and Zilberman N (2019) Do switches dream of
machine learning? toward in-network classification. In:
Proceedings of the 18th ACM workshop on hot topics in
networks, pp. 25–33.

Zheng C and Zilberman N (2021) Planter: Seeding trees within
switches. In: Proceedings of the SIGCOMM ’21 Poster and
Demo Sessions, SIGCOMM ’21. New York, NY, USA: As-
sociation for Computing Machinery, pp. 12–14. DOI: 10.
1145/3472716.3472846

Author biographies

Sabra Ossen is a Graduate Student in the Luddy School of
Informatics, Computing, and Engineering at Indiana Uni-
versity. Her research interests include programmable

460 The International Journal of High Performance Computing Applications 37(3-4)

https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1145/1592681.1592683
https://doi.org/10.1145/1592681.1592683
https://doi.org/10.1145/2103621.2103685
https://doi.org/10.48550/ARXIV.1407.1199
https://doi.org/10.48550/ARXIV.1407.1199
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://doi.org/10.1145/3472716.3472846
https://doi.org/10.1145/3472716.3472846

networks concentrated on FPGA-based Smart NICs, dis-
tributed systems, and computer microarchitecture focusing
on RISC-V cores. Her recent work focuses on accelerating
compute-intensive functions in streaming computation
within the computer network layer, using ISA-level and
system-level enhancements.

Jeremy Musser is a Graduate Student and Lecturer in the
Luddy School of Informatics, Computing, and Engineering
at Indiana University. His research centers around network
modeling and orchestration. In particular, his interests are in
applying contemporary compiler theory to full network
resource allocation and optimization.

Luke Dalessandro is a Research Scientist in the Department
of Intelligent Systems Engineering within the Luddy School
of Informatics, Computing, and Engineering at Indiana
University. His research interests include high-performance
parallel and distributed computing, programming language
design and implementation, and graph processing.

Martin Swany is a Professor in the Luddy School of In-
formatics, Computing, and Engineering at Indiana Uni-
versity and chair of the Intelligent Systems Engineering
department. His research interests include high-
performance parallel and distributed computing and
networking.

Ossen et al. 461

	INDIANA—In
	Introduction
	High-Level Design
	Programmable Hardware Abstraction
	Hardware level abstraction
	Task graphs

	Serverless Architecture
	In
	INDIANA engine

	Generalized Flow Placement
	Defining discrete applications

	Implementation
	INDIANA processsing element
	INDIANA operator placement
	Network flow scheduler
	Flange assertion graph
	Flange network model
	Passive versus active flow scheduling
	Flow policy language
	Quantifying assertions

	Evaluation
	FireSim evaluations
	Function placement performance

	Limitations and future work
	Low
	Swapping workloads and reprogamming cores
	Flow scheduling pitfalls
	Policy language limitations

	Related work
	Conclusion
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iDs
	References
	Author biographies

