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Graphical solutions to
one-phase free boundary problems

By Max Engelstein at Minneapolis, Xavier Fernández-Real at Lausanne and
Hui Yu at Singapore

Abstract. We study viscosity solutions to the classical one-phase problem and its thin
counterpart. In low dimensions, we show that when the free boundary is the graph of a con-
tinuous function, the solution is the half-plane solution. This answers, in the salient dimen-
sions, a one-phase free boundary analogue of Bernstein’s problem for minimal surfaces. As
an application, we also classify monotone solutions of semilinear equations with a bump-type
nonlinearity.

1. Introduction

In this work, we deal with the Bernoulli free boundary problem in both the classical
formulation, also known as the classical one-phase problem,

(1.1)

8
<̂

:̂

u � 0 in � ⇢ Rn;

Åu D 0 in πu > 0º \�;
jruj D 1 on �πu > 0º \�;

and the thin formulation, also known as the thin one-phase problem,

(1.2)

8
<̂

:̂

u � 0 in � ⇢ RnC1;

Åu D 0 in πu > 0º \�;� 1
2
⌫ u D 1 on �πu > 0º \ πxnC1 D 0º \�:

Here the “half-normal derivative” � 1
2
⌫ u is defined as� 1

2
⌫ u.z/ WD lim

t#0
t�

1
2u.z C t⌫.z//;
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where ⌫ 2 Sn \ πxnC1 D 0º is the inner normal vector along the free boundary,�Rn.πu > 0º \ πxnC1 D 0º/:
In each case, the solution u is a continuous function satisfying the equations in the viscosity
sense. For the precise definitions of viscosity solutions, see Definitions 2.2 and 5.2.

For the classical one-phase problem, the zero level set of the solution is sometimes
referred to as the contact set, namely,

(1.3) ƒ.u/ WD πu D 0º:
For the thin version, the contact set is contained inside a lower-dimensional subspace,

(1.4) ƒ.u/ WD πu D 0º \ πxnC1 D 0º:
Outside the contact sets, the solutions are harmonic. Along the boundary of the contact sets, the
so-called free boundaries, both the value and the rate of change of the solutions are prescribed,
leading to an overdetermined problem. As such, not every set can be the free boundary of
a solution, and to understand a solution it (essentially) suffices to understand the free boundary.

There has been a lot of research devoted to understanding the free boundary of both (1.1)
and (1.2) (see below for more details), of which one important aspect is the classification of
solutions in the entire space.

Such a classification has recently been completed for the obstacle problem (another free
boundary problem) by Eberle, Figalli and Weiss [44] (see also [47,49]), concluding a program
that lasted for more than 90 years (this classification also has implications for the fine properties
of free boundaries, cf. [46]). For the thin obstacle problem, a partial classification has been
achieved in [45, 48]. In both cases, the results state that, under some restrictions, the space of
entire solutions is finite dimensional.

The obstacle problem and its thin counterpart arise as Euler–Lagrange equations of con-
vex energy functionals. The convexity of the functionals implies that viscosity solutions are
minimizers of the energy, allowing the usage of both variational and nonvariational techniques.

For our problems (1.1) and (1.2), however, the underlying functionals are not convex,
and the spaces of viscosity solutions are much wider than minimizers of the functionals (see
Definition 2.7 and Definition 5.7 for the definitions of minimizers). Indeed, the original moti-
vation for the viscosity framework is to construct non-minimizing solutions [21], which show
up naturally in domain variation problems [60] and fluid mechanics [10, 28].

This flexibility of the viscosity framework allows a wide-range of behaviors, and some
important energy-based tools are no longer available (for instance, the nondegeneracy prop-
erty may not hold for general viscosity solutions, [63]). As a result, even in two dimensions,
the best classification result for smooth solutions to the classical one-phase problem requires
topological restrictions [61, 69]. For the classical one-phase problem in higher dimensions, or
for the thin one-phase problem, a full classification of entire solutions seems out of reach. This
can be thought of in analogy with globally defined minimal surfaces, for which a plethora of
examples exist in R3, but there is no complete list (see, e.g., [27]).

As a starting point for this classification, we propose to study solutions to (1.1) and (1.2)
with graphical free boundaries. To be precise, we study viscosity solutions whose contact sets
(see (1.3) and (1.4)) are subgraphs of continuous functions. Under this topological assumption,



Engelstein, Fernández-Real and Yu, Graphical solutions for one-phase free boundaries 157

we show that viscosity solutions are minimizers for the underlying energy functionals (a result
which may be of independent interest). This allows us to classify, in low dimensions, the space
of entire viscosity solutions with graphical free boundaries.

Our approach is inspired by the Bernstein conjecture for minimal surfaces, which states
that the only graphical minimal surface is the hyperplane [12]. It was shown that n-dimensional
minimal graphs in RnC1 must be hyperplanes for n  7 (see [3, 31, 58, 68]); while in higher
dimensions, it is false by an example given in [13]. Similarly, we do not expect our results to
hold in higher dimensions (large enough to allow for singular minimizers), though no analogue
to the construction in [13] has been found for (1.1) or (1.2).

In the following, we describe our results in the classical regime (1.1) in Section 1.1, and
in the thin regime (1.2) in Section 1.3.

1.1. The classical regime. The classical one-phase problem (1.1) arises as the Euler–
Lagrange equation to the Alt–Caffarelli functional

(1.5) J�.v/ D
Z

�
jrvj2 C jπv > 0ºj for v � 0; v 2 H 1.�/;

where � is a domain in Rn.
Motivated by models in flame propagation and jet flows [5–7, 15, 25], this energy was

originally studied from a mathematical point of view by Alt and Caffarelli in [4]. Since then,
regularity of the minimizer and its free boundary has been extensively studied, see, for instance,
[4, 20, 33, 53, 57]. We refer to [19] for a thorough introduction to the classical theory, and refer
to [70] for a modern treatment of the one-phase problem and related topics.

Even homogeneous minimizers of (1.5) (also known as minimizing cones) have not been
fully classified. By the works of Caffarelli, Jerison and Kenig [23] and Jerison and Savin [62],
it is known that for n  4, the only homogeneous minimizer1) is, up to a rotation, the half-plane
solution

(1.6) u.x/ D xC
n :

While in dimension 7, De Silva and Jerison [34] provides a nonflat minimizing cone.
The largest dimension in which homogeneous minimizers must be flat is currently un-

known. In this work, we denote the largest such dimension by n⇤
local, that is,

(1.7) n⇤
local WD maxπn W minimizing cones of (1.5) in Rn are rotations of (1.6)º:

With the aforementioned works, we have

4  n⇤
local  6:

Without assuming homogeneity, minimizers exhibit even richer behavior. For instance,
associated with each nonflat minimizing cone, there is a family of minimizers whose free
boundaries foliate the entire space Rn, see [36, 51].

Solutions to the one-phase problem (1.1) that are not minimizers of the Alt–Caffarelli
energy functional (1.5) arise naturally in problems involving domain variations [60] and fluid

1) The result applies to a larger class called stable solutions. They are critical points of the functional (1.5)
with nonnegative second variations.
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mechanics [10, 28]. In these contexts, the positive set, πu > 0º, of a solution u in the entire
space Rn is sometimes referred to as an exceptional domain. The classification of excep-
tional domains is an important topic that so far has been successful only for special classes
of domains.

With the half-plane solution from (1.6), we see that the half-plane πxn > 0º is an excep-
tional domain. The union of two half-planes, πxn > 0º [ πxn < �aº with a � 0, is also an
exceptional domain corresponding to the solution u D xC

n C .xn C a/�. By taking a trunca-
tion of the fundamental solution, we see that the exterior of the ball Rn n BR is an exceptional
domain if R > 0 is chosen properly. Apart from these classical examples, a family of catenoid-
like domains were discovered by Hauswirth, Hélein and Pacard [60] in the plane, and by Liu,
Wang and Wei [65] in general dimensions. A family of periodic exceptional domains appeared
in [10].

By the work of Traizet [69], we know that in the plane, these are all the exceptional
domains whose boundaries are smooth and have finitely many components. A similar result
was obtained by Khavinson, Lundberg and Teodorescu [64], who also showed that in gen-
eral dimensions, the exterior of a ball is the only smooth exceptional domain with bounded
complement.

In the first part of this work, we deal with viscosity solutions to (1.1) with graphical free
boundaries. Concerning these solutions, our first main result states:

Theorem 1.1. Let u be a viscosity solution to the classical one-phase problem (1.1)
in Rn for

n  n⇤
local C 1:

If its contact set ƒ.u/ is the subgraph of a continuous function, then we have

u D xC
n

up to a rotation and a translation.

Recall the critical dimension n⇤
local and the contact set ƒ.u/ defined in (1.7) and (1.3)

respectively.

Remark 1.2. For smooth �πu > 0º in R2, Hauswirth, Hélein and Pacard showed a sim-
ilar result (substituting the assumption on the contact set with the related assumption of mono-
tonicity in a direction) in [60] with complex variable techniques.

Remark 1.3. While we do not claim the condition requiring the graph to be continuous
is sharp, some regularity assumption is necessary on the graphical free boundary. Indeed, taking
u.x1; x2/ to be any solution in R2 (for instance, the catenoid-type solution in [60]), we can
extend it to R3 trivially as u.x1; x2; x3/ WD u.x1; x2/. For such a function, its contact set is the
subgraph of a (generalized) function of the form x3 D '.x1; x2/ with ' D �1 in πu > 0º and
' D C1 in πu D 0º.

To prove Theorem 1.1, the natural idea is to reduce the problem to the study of homo-
geneous solutions by a blow-down procedure. Unfortunately, due to the lack of variational
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tools (monotonicity formula, nondegeneracy property, etc.), a blow-down analysis for general
viscosity solutions seems difficult.

For the class of solutions we are considering, however, we can show they are actually
minimizers of the Alt–Caffarelli energy (1.5). This is one of our main technical contributions to
the classical one-phase problem and should be of independent interest (see, e.g., the discussion
in the introduction of [35]):

Theorem 1.4. Suppose that u is a viscosity solution to the classical one-phase problem
(1.1) in Rn, and that its contact set ƒ.u/ is the subgraph of a continuous function. Then u is
a global minimizer of the Alt–Caffarelli energy (1.5).

For the definition of a global minimizer, see Definition 2.7.

Remark 1.5. See Proposition 3.5 for a localized version of this theorem.

While this theorem is inspired by a similar result for graphical minimal surfaces (or for
strictly monotone solutions to semilinear equations), in our case the proof is more delicate.

Indeed, for a graphical minimal surface, its minimizing property can be established by
a standard sliding argument. To be precise, for a function ' satisfying the minimal surface
equation in Rn, we need to show that its graph, to be denoted by Ä' , minimizes the area
over surfaces with the same boundary data. Suppose not: we find BR ⇢ Rn and a surface M
which matches Ä' along �BR ⇥ R and has strictly less area. Without loss of generality, we
may assume M is a minimizer of the area with given boundary data.

Now we translate Ä' vertically. With Ä' ¤ M in BR ⇥ R, there is a critical instant when
Ä' lies on one side of M but Ä' \M is nonempty. Since the two surfaces are translations of
one another along �BR ⇥ R, the point of intersection can be found in the interior of the domain.
This contradicts the strict maximum principle between minimal surfaces.

To implement a similar strategy in our context, there are several challenges.
Firstly, our problem involves not only the free boundary but also the solution. To per-

form the sliding argument, we need to translate a comparison between the free boundaries
into a comparison between the associated solutions. This is achieved by showing that the
graphicality assumption implies the monotonicity of the solution (See Proposition 3.5).

Secondly, while graphical minimal surfaces instantly regularize in the interior of the
domain, see [14], a similar property for graphical free boundaries (in fact, for monotone solu-
tions) holds when assuming the minimizing property (in fact under the weaker assumption that
the positivity set has some quantitative topology) [35], which is what we need to prove. This
lack of regularity for free boundaries also means the comparison principle is much weaker.
Even among minimizers of the Alt–Caffarelli functional, a strict maximum principle has only
recently been established in [51]. For viscosity solutions, such a result is not known. We
overcome this difficulty by working with sup/inf-convolutions instead of the original solution.

The last challenge we need to overcome is the “boundary stickiness” phenomenon, that
is, a large portion of the positive set πu > 0º of a minimizer “invades” the zero region on the
fixed boundary. For instance, suppose that u is a minimizer in the two-dimensional domain
π.x1; x2/ W x1 2 .�1; 1/; x2 2 .0; ı/º with u D 1 on πx2 D ıº, and u D 0 on the remaining
parts of the boundary. By choosing ı small, it can be shown that u will be positive in the
entire domain. When this happens, the free boundary is “stuck” to the fixed boundary in some
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sense, and the sliding argument described above could fail due to contact points along the fixed
boundary. To rule out this possibility, we need precise information about the separation of the
free boundary from the fixed boundary. Fortunately for us, this result has recently been obtained
by Chang-Lara and Savin [26], allowing us to complete the proof of Theorem 1.4.

With Theorem 1.4 in hand, we can perform a blow-down analysis of the solution u to
obtain a minimizing cone u1 in Rn. With n  n⇤

local C 1, its free boundary has smooth trace
on the sphere Sn�1 (here is where we use the restriction on the dimension). Being the limit
of graphical solutions, this cone u1 is also graphical. A maximum principle-type argument,
applied to the directional derivatives of u1, implies that u1 is a half-plane solution.

This means that our original solution u is “flat at large scales”. An improvement of
flatness argument as in [33] gives the desired flatness of u.

1.2. Application to semilinear equations. De Giorgi conjectured in 1978, [32], that
monotone solutions (critical points) u of the Ginzburg–Landau energy (alternatively, solutions
to the Allen–Cahn equation)

Åu D �u.1 � u2/ in Rn;

with kukL1.Rn/  1, must have one-dimensional symmetry (alternatively, all level sets must
be hyperplanes) in Rn with n  8. This is currently known as De Giorgi’s conjecture. It was
proven to hold in a series of papers in dimensions 2 and 3, [8, 59], that culminated with
the remarkable work by Savin [67] for 4  n  8, where it was shown under the additional
assumption

(1.8) lim
xn!˙1

u.x0; xn/ D ˙1;

which ensures that solutions are minimizers to the corresponding energy. A counter-example
when n � 9was constructed in [43]. The paper [67] also applies to general solutions to semilin-
ear equations Åu D f .u/ in Rn, provided that f is the derivative of a “double-well potential”
(with wells of the “same depth”). This established a relation between the study of minimal
surfaces (and in particular, entire minimal graphs) and solutions to semilinear equations arising
from local minimizers of an energy (for f coming from double-well potentials; in particular,
f with zero integral in the range of u).

For other types of semilinear equations (namely, those where f is similar to a bump
function or a Dirac delta; alternatively, when f has nonzero and finite integral in the range
of u) the corresponding analogy is not with minimal surfaces, but instead, with the one-phase
problem (see [9,19,54]). In particular, under the appropriate scaling of non-double-well poten-
tial functionals, the corresponding limits are solutions to the one-phase problem, and hence
the corresponding zero-level set converges to the free boundary of a one-phase problem. This
relation was already observed in [19], and then studied in [54] to classify global solutions, and
more recently in [9] to obtain a classification of global minimizers to semilinear equations with
f of bump type.

In analogy with De Giorgi’s conjecture, we have:

Problem 1.6. Let u satisfy Åu D f .u/ in Rn for some f of bump type and �xnu > 0

in Rn. If n  n⇤
local C 1, then u is a one-dimensional solution.
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Here, we say that f is of bump type if f � 0, f .0/ D 0, f 0.0/ > 0 and
R 1

0 f D 1; these
are the types of semilinear equations studied in [9, 54].

As a consequence of our previous result, and thanks to [9], we prove that Problem 1.6 is
true under the following additional growth assumption (in analogy with (1.8)):

(1.9) lim
xn!�1u.x0; xn/ D 0 and lim

xn!C1
u.x0; xn/ D 1:

Thus, we have:

Corollary 1.7. Problem 1.6 holds with the additional assumption (1.9).

1.3. The thin regime. The thin one-phase problem (1.2) corresponds to the Euler–
Lagrange equation of the thin one-phase energy functional. Given a domain � ⇢ RnC1 that is
even in the last variable,2) and denoting

(1.10) x D .x0; y/ 2 Rn ⇥ R;

we define

(1.11) J
0
�.v/D

Z

�
jrvj2 dx C �H

n.πv > 0º \ πy D 0º \�/; v � 0; v 2H 1.�/;

where H
n denotes the n-dimensional Hausdorff measure, and � > 0 is a universal constant.3)

This functional was introduced by Caffarelli, Roquejoffre and Sire to address certain phe-
nomena in plasma physics and semi-conductor theory that involve long-range interactions [24].
Since then, the regularity of minimizers of (1.11) as well as viscosity solutions to (1.2) has been
studied extensively. See, for instance, [37, 38, 42, 52].

Just as in the classical case, the classification of homogeneous minimizers/ minimizing
cones remains an important open question for the thin one-phase problem. For this problem,
the corresponding half-plane solution is

(1.12) u.x/ D U.xn; y/ WD 1p
2

r
xn C

q
x2

n C y2:

This is shown to be the only minimizing cone in dimension 2C 1 (see [40]). If we assume axial-
symmetry of the cones, nonflat minimizing cones4) can be ruled out in dimensions nC 1  6

(see [56]).
The half-plane solution is expected to be the only minimizing cone in low dimensions.

However, it is currently unknown what the critical dimension is. In this work, we denote it
by n⇤

thin, that is,

(1.13) n⇤
thin WD maxπn W minimizing cones of (1.11) are rotations of (1.12) in RnC1º:

2) The evenness of the domain, the function and/or the boundary conditions is a natural assumption for this
problem which we will make throughout and is shared by most of the literature. We mention here only that it comes
out of a connection to a nonlocal free boundary problem in the thin-space πxnC1 D 0º and encourage the reader to
look into the introductions of [24, 37, 52] for more background and information

3) This constant is chosen so that the free boundary condition in (1.2) has value 1 as the right-hand side.
4) The result in [56] rules out stable cones, that is, those cones with nonnegative second variation for (1.11).



162 Engelstein, Fernández-Real and Yu, Graphical solutions for one-phase free boundaries

For the classification of entire viscosity solutions, even less is known. To the knowl-
edge of the authors, the only result available is in [40, Proposition 6.4]. That result states that
for a homogeneous viscosity solution u, if its contact set ƒ.u/ (see (1.4)) is the subgraph of
a Lipschitz function, then u must be a half-plane solution.

In dimensions lower than n⇤
local C 1, our main result in the thin case removes the assump-

tion on homogeneity and Lipschitz regularity of the free boundary:

Theorem 1.8. Let u be a viscosity solution to the thin one-phase problem (1.2) in RnC1

with
n  n⇤

thin C 1:

If its contact set ƒ.u/ is the subgraph of a continuous function on πxnC1 D 0º, then

u D 1p
2

r
xn C

q
x2

n C y2

up to a rotation and a translation.

Similar to the classical case, it remains to be seen what the sharp assumption on the
regularity of the free boundary is, see Remark 1.3.

The key ingredient in the proof of Theorem 1.8 is again the variational structure provided
by the graphicality assumption, namely:

Theorem 1.9. Let u be a viscosity solution to the thin one-phase problem (1.2) in RnC1

whose contact set ƒ.u/ is the subgraph of a continuous function on πxnC1 D 0º. Then u is
a global minimizer of the thin one-phase energy (1.11).

See Definition 5.7 for the definition of a global minimizer.

Remark 1.10. See Proposition 6.5 for a localized version of this result.

Remark 1.11. See also [16], where the authors prove, by constructing a new nonlo-
cal calibration functional, that strictly monotone (bounded) solutions to semilinear nonlocal
equations are minimizers of the corresponding functional.

The challenges we described after Theorem 1.4 are still present for the thin case, and
most can be overcome with similar strategies. The issue of “boundary stickiness”, however,
requires new ideas, as the boundary behavior of minimizers, in the sense of Chang-Lara and
Savin [26], has not been studied in the thin case. We address this in the following theorem,
which may be of independent interest:

Theorem 1.12. Let w be a minimizer of the thin one-phase energy (1.11) in

� D B1 \ πx1 � 0º ⇢ RnC1

with
w D  on B1 \ πx1 D 0º:
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If we assume that

 2 C 1
2 .πx1 D 0º/ and  D 0 on πy D 0º,

then we have w 2 C 1
2 .B1=2 \ πx1 � 0º/ with

kwk
C

1
2 .B1=2\πx1�0º/

 C.k k
C

1
2 .B1\πx1D0º/

C kwkL1.B1\πx1�0º/ C 1/

for some C depending only on n. If we further assume that

  !.jyj/jyj 1
2 on πx1 D 0º

for some modulus of continuity!, then for each x 2 B1=2 \ πy D 0º \ πw > 0º and r 2 .0; 1
2/,

we have
sup

Br .x/\πx1�0º
w � cr

1
2

for some c depending only on n and !.

Recall our convention for the coordinate system in RnC1 from (1.10).
With Theorem 1.12, we establish Theorem 1.9, which allows us to use tools based on

the variational structure of the problem (monotonicity formula and nondegeneracy, etc). This
reduces the problem to the study of homogeneous minimizers, and finally gives our classifica-
tion of graphical viscosity solutions in low dimensions as in Theorem 1.8.

1.4. Structure of the paper. In Sections 2 to 4, we study the classical one-phase prob-
lem (1.1). In Section 2, we recall some preliminary results and introduce some notations.
In Section 3, we show that graphical solutions are minimizers as stated in Theorem 1.4. In
Section 4, we complete the classification of graphical solutions in low dimensions and prove
Theorem 1.1.

We deal with the thin one-phase problem (1.2) in Sections 5 to 8. Our structure parallels
the classical treatment. Section 5 is devoted to some preliminaries and notations. In Section 6,
we show that monotone solutions are minimizers, as stated in Theorem 1.9, assuming Theo-
rem 1.12. Section 7 is devoted to the blow-down analysis and the classification of graphical
minimizing solutions in low dimensions. Finally, in Section 8, we prove Theorem 1.12.

Acknowledgement. This paper was finished while the first and third authors were in
residence at Institut Mittag-Leffler for the program on “Geometric Aspects of Nonlinear Partial
Differential Equations”. They thank the institute for its hospitality. The authors would also like
to thank Yash Jhaveri for fruitful discussions on the topics of this paper. All three authors
would like to thank the anonymous referee for their careful reading and many comments which
improved the manuscript.

2. Preliminaries and notations: The classical regime

In this section, we collect some preliminary facts about solutions to the classical one-
phase problem (1.1).

We begin with the definition of viscosity solutions to (1.1) as in Caffarelli and Salsa [19]
(cf. also with [22]). To do that, we first introduce comparison solutions, that will work as test
functions.
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Definition 2.1. Let u 2 C.�/ for some domain � ⇢ Rn, u � 0 in �.

(i) We say that u is a (strict) comparison subsolution to the classical one-phase problem
(1.1) if

u 2 C 2.πu > 0º/; Åu � 0 in πu > 0º;
the free boundary �πu > 0º is a C 2 manifold, and for any xı 2 �πu > 0º we have

u⌫.xı/ WD ⌫ � ru.xı/ > 1;

where ⌫ 2 Sn�1 is the inward normal to �πu > 0º at xı, ⌫ D ru
jruj.xı/.

(ii) We say that u is a (strict) comparison supersolution to the classical one-phase problem
(1.1) if

u 2 C 2.πu > 0º/; Åu  0 in πu > 0º;
the free boundary �πu > 0º is a C 2 manifold. and for any xı 2 �πu > 0º we have

u⌫.xı/ < 1;

where ⌫ 2 Sn�1 is the inward normal to �πu > 0º at xı, ⌫ D ru
jruj.xı/.

By means of the previous definition, we can introduce the notion of a viscosity solution:

Definition 2.2. Let u 2 C.�/ for some domain � ⇢ Rn, u � 0 in �. We say that u is
a viscosity solution to the classical one-phase problem (1.1) if

Åu D 0 in πu > 0º \�;

and any strict comparison subsolution (resp. supersolution) cannot touch u from below (resp.
from above) at a free boundary point xı 2 �πu > 0º.

In the previous definition, we say that a strict comparison subsolution v touches from
below u at a free boundary point xı 2 �πu > 0º if xı 2 �πv > 0º and v  u in a neighborhood
of xı.

Unless otherwise specified, solutions should always be understood in the viscosity sense
in the remaining part of the paper. In general, singularities are inevitable on the free boundary
of a viscosity solution. To use various comparison principles, it is often necessary to regularize
the free boundary first. To this end, sup/inf-convolutions are powerful technical tools.

Definition 2.3. For a domain � ⇢ Rn and t > 0, define

�t WD πx 2 � W dist.x;�c/ > tº:

For u 2 C.�/; its t -sup-convolution is defined as

ut .x/ WD sup
Bt .x/

u for x 2 �t .

Its t -inf-convolution is defined as

ut .x/ WD inf
Bt .x/

u for x 2 �t .
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The following lemma motivates the use of sup/inf-convolutions. We refer to [19, Sec-
tion 2.3].

Lemma 2.4. Let u 2 C.�/ be a viscosity solution to the classical one-phase prob-
lem (1.1) in �. For t > 0, let ut and ut denote its sup-convolution and inf-convolution as in
Definition 2.3. Then:

✏ ut satisfies Åut � 0 in πut > 0º \�t and, for each xı 2 �πut > 0º \�t , there is
a point p such that

Bt .p/ ⇢ πut > 0º and xı 2 �Bt .p/;

and
ut .x/ � hx � xı; ⌫iC C o.jx � xıj/

near xı, where ⌫ WD 1
t .p � xı/.

✏ ut satisfies Åut  0 in πut > 0º \�t and, for each xı 2 �πut > 0º \�t , there is
a point p such that

Bt .p/ ⇢ πut D 0º and xı 2 �Bt .p/;

and
ut .x/  hx � xı; ⌫iC C o.jx � xıj/

near xı, where ⌫ WD 1
t .xı � p/.

We now turn to some well known results regarding the regularity of viscosity solutions.
First we recall that, viscosity solutions in the entire space Rn have a dimensional gradient
bound:

Lemma 2.5. Let u be a viscosity solution in Rn to the classical one-phase problem.
Then there is a dimensional constant C such that

jruj  C in Rn.

For a proof, see, for instance, [19, Lemma 11.19].
A fundamental tool in the study of the one-phase problem is the following improvement-

of-flatness lemma from [33]. We will use it at large scales to classify entire solutions in low
dimensions.

Lemma 2.6. Suppose that u is a solution to the classical one-phase problem (1.1) in B1

with 0 2 �ƒ.u/ and
.xn � "/C  u  .xn C "/C in B1.

There are dimensional constants N", r , and C such that if " < N", then we can find e 2 Sn�1

satisfying
je � enj  C"2;

and
.x � e � "r

2 /C  u.x/  .x � e C "r
2 /C in Br .
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A special class of solutions to the classical one-phase problem (1.1) arises as the mini-
mizers of the Alt–Caffarelli functional (1.5).

Definition 2.7. For � ⇢ Rn and u 2 H 1.�/, we say that u is a minimizer of the Alt–
Caffarelli functional (1.5) in � if u � 0 in �, and

J�.u/  J�.v/ for all v � 0; v � u 2 H 1
0 .�/:

For u 2 H 1
loc.R

n/ with u � 0, we say that it is a global minimizer in Rn if it is a minimizer in
BR for every R > 0.

Compared with viscosity solutions, minimizers are particularly nice since we can apply
variational tools. This allows us to perform the following blow-down argument.

Lemma 2.8. Let u be a global minimizer of the Alt–Caffarelli functional in Rn. For
a sequence ri " 1, define

ui .x/ WD u.rix/

ri
:

Then, perhaps passing to a subsequence, we can find a nonzero one-homogeneous global
minimizer u1 such that

ui ! u1 locally uniformly in Rn

with
ƒ.ui / ! ƒ.u1/ in L1

loc,

and �ƒ.ui / ! �ƒ.u1/ locally in the Hausdorff distance sense.

Proof. The convergence to a nonzero global minimizer follows from the Lipschitz and
nondegeneracy estimates for minimizers in [4] (see also [30]; this is written explicitly in
[50, Theorem 1.3]). Using the Weiss monotonicity formula and arguing as in [71], the one-
homogeneity of u1 follows as long as

lim
ri "1

W.u; ri / < 1;

where W is the Weiss energy functional.
Towards this end, we note

W.u;R/  1

Rn

Z

BR

jruj2 C �πu>0º  C;

for a dimensional constantC , where we used the universal gradient bound from Lemma 2.5.

Homogeneous minimizers have smooth free boundaries on the sphere in low dimensions.
Recall the critical dimension n⇤

local defined in (1.7).

Lemma 2.9. Let u be a homogeneous minimizer in Rn with

n  n⇤
local C 1:

Then �ƒ.u/ \ Sn�1 is smooth.
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Remark 2.10. This is the only place where we require the restriction of dimensions.

Proof. Suppose not; then we find a singularity on �ƒ.u/ \ Sn�1, say, at point e1.
Then we perform a blow-up analysis as in [71] and end up with a minimizer v, which is

independent of the variable x1 and has a line of singularities on the free boundary.
By restricting v to the variables .x2; x3; : : : ; xn/, we get a homogeneous minimizer

in Rn�1 with a singularity at 0. This contradicts the definition of n⇤
local as in (1.7).

As mentioned in the introduction, one important tool we use to address the “boundary
stickiness” phenomenon is the following theorem on boundary regularity of minimizers as
in [26]. See Figure 1 for a graphical representation of this setting.

Theorem 2.11. Let � ⇢ Rn be a domain with C 2 boundary, and let Z ⇢ �� be open
with respect to the topology of ��. Let u W � ! Œ0;1/ be a minimizer of the Alt–Caffarelli
functional in � such that

u D 0 on Z:

Then u solves (in the viscosity sense),
8
<̂

:̂

Åu D 0 in �C WD πu > 0º \�;
jruj � 1 on ��C \Z;
jruj D 1 on ��C \�:

Furthermore, ��C is C 1 in a neighborhood of every xı 2 ��C \Z.

Figure 1. Theorem 2.11 says that this is the only way in which the free boundary can detach from
the fixed boundary (from the interior of the zero level set on the fixed boundary). In
particular, there is always a well-defined normal at xı.

3. Graphical solutions are minimizers: The classical regime

In this section, we introduce the class of solutions we are interested in, namely, viscosity
solutions to (1.1) with graphical free boundaries. Under the mild assumption that the contact
set is the subgraph of a continuous function, we show that solutions in this class are actually
minimizers of the Alt–Caffarelli functional (1.5). This, in turn, allows us to use the variational



168 Engelstein, Fernández-Real and Yu, Graphical solutions for one-phase free boundaries

structure of the problem. In particular, we consider Proposition 3.5 to be our main contribution
in the classical setting and of independent interest.

We begin by formally introducing the class of solutions with graphical free boundaries:

Definition 3.1. Suppose that u is a solution to the classical one-phase problem in Rn as
in Definition 2.2, and that e 2 Sn�1. We say that u is a graphical solution in direction e, and
write

u 2 G .e/;

if
ƒ.u/C ⌧e � ƒ.u/ for all ⌧ > 0.

Recall that the contact set ƒ.u/ is defined in (1.3).

Remark 3.2. This definition gives a very weak notion of graphical free boundaries.
Indeed, it says that we can see the free boundary �πu > 0º as a graph of a “generalized func-
tion” over the hyperplane πe � x D 0º; such a function does not need to be defined everywhere;
we only require that the intersection of �πu > 0º with each line perpendicular to the hyperplane
πe � x D 0º is connected.

By definition, if a solution is monotone in the direction e, then it has graphical free
boundaries. We see now that the converse is true. This will be useful in turning geometric
comparison of the free boundaries into analytic comparison between the solutions.

Lemma 3.3. Let u 2 G .en/. Then u is monotone nondecreasing in the direction en.

Proof. We assume ƒ.u/ ¤ ;, otherwise u is constant. Let us argue by contradiction,
and let us assume that we have (with the universal gradient bound as in Lemma 2.5),

� WD � inf
Rn n ƒ.u/

�nu > 0:
Consider a sequence xi 2 πu > 0º such that�nu.xi / ! �� as i ! 1

and let yi 2 ƒ.u/ be such that

ri WD jxi � yi j D dist.xi ; ƒ.u//:

If we rescale the solution as
wi .x/ WD u.rix C xi /

ri
;

then ´
Åwi D 0 in B1;

wi � 0 in B1:

With jrwi j  C in Rn by Lemma 2.5, and

(3.1) wi .yi / D 0; where yi WD yi � xi

ri
2 Sn�1,
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we have, up to a subsequence,

wi ! w locally uniformly in Rn, and in C 1
loc.B1/

for some harmonic function w. In particular, we have

(3.2) w � 0 and jrwj  C in Rn;

and �nw.0/ D �� and �nw � �� in B1.

Strong maximum principle, applied to �nw, implies that �nw ⌘ �� in B1, and we can
write

w.x0; xn/ D ��xn C g.x0/ in B1

for some Lipschitz function g depending on x0 2 Rn�1. Moreover, with w � 0, we have
g.x0/ � � jxnj � 0 for any .x0; xn/ 2 B1. Restricting to �B1, we have

(3.3) g.x0/ � �
q
1 � jx0j2 � 0 for any jx0j  1:

Up to a subsequence, the points yi from (3.1) converge to some y 2 Sn�1. The condition
that each wi 2 G .en/ implies that Nyi � en  0 and so y � en  0. If y � en < 0, then w.y/ D 0

and �nw D �� < 0 implies w.y C ten/ < 0 for small t > 0, contradicting (3.2). Therefore,
we have

y � en D 0 and jy0j D 1:

As a result, we have g.y0/ D w.y/ D 0. Now we take p 2 Sn�1; then (3.3) implies that

g.p0/ � g.y0/ D g.p0/ � �
q
1 � jp0j2 � 1

2
�

q
jy0 � p0j;

contradicting the Lipschitz regularity of g for p0 close to y0.

A useful corollary is the stability of the class G .e/:

Corollary 3.4. If ui 2 G .e/ and ui ! u1 locally uniformly, then u1 2 G .e/.

The following proposition establishes the variational structure behind monotone viscosity
solutions. For this proposition, it is more convenient to use the cylindrical coordinates. For
R;L > 0, we denote by

B 0
R WD πx D .x0; xn/ 2 Rn W xn D 0; jx0j < Rº:

Proposition 3.5. For L > H > 0, let u be a viscosity solution to the classical one-
phase problem (1.1) in � D B 0

2 ⇥ .�2L �H; 2LCH/ with�nu � 0 in �:

If its contact set is a subgraph

ƒ.u/ D π.x0; xn/ W xn  f .x0/º
for a continuous function f satisfying

�H < f < H in B 0
2;

then u is the unique minimizer of the Alt–Caffarelli functional (1.5) in D D B 0
1 ⇥ .�L;L/.
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Remark 3.6. With Lemma 3.3, Proposition 3.5 implies Theorem 1.4.

Remark 3.7. This is the only reason why we require the free boundary to be continuous
in the main results.

Proposition 3.5 follows from the following two lemmata, where we show, respectively,
that u is no less than any minimizer, and that u is no larger than any minimizer in D.

Lemma 3.8. Under the same assumptions as in Proposition 3.5, let w be a minimizer
of the Alt–Caffarelli functional (1.5) in D with w D u on �D. Then u � w in D.

Proof. Suppose not; then there exist some xı 2 D and ⌘ı > 0 such that

w.xı/ > u.xı/C ⌘ı:

For ⌧ 2 R, define the translation of u as

u⌧ .x
0; xn/ WD u.x0; xn C ⌧/:

Fix s > 0 small such that
w.xı/ > us.xı/C 1

2
⌘ı:

Step 1: Setting up the inf-convolution. By monotonicity of u and the uniform conti-
nuity of the free boundary in D, there is a set E such that

πu > 0º \D b E b πus > 0º;

(see Figure 2). By strict maximum principle in the interior of E, we have

inf
E
�nus > 0;

which gives ı > 0 such that

(3.4) us � uC ı in πu > 0º \D:

For ⇢ > 0 small denote the inf-convolution of u⌧ , as in Definition 2.3,

v⌧ .x/ WD inf
B⇢.x/

u⌧ :

By the monotonicity of u, we have

vsCt � vs for all t � 0:

Moreover, if we pick ⇢ > 0 small enough (depending on ı and the modulus of continuity for u),
we have (in light of (3.4)) that

vs.x/ � u.x/ for all x 2 D;

w.xı/ > vs.xı/C 1

4
⌘ı:

(3.5)
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Figure 2. Setting in the proof of Lemma 3.8.

Step 2: Initializing the sliding argument. By the upper bound on f as in Proposi-
tion 3.5, we see that if t is large enough such that t > ⇢CH C L � s, then vsCt > 0 in D.
With Lemma 2.4, this implies

ÅvsCt  0 in D:

On the other hand, we know that for all t � 0, vsCt � u D w on �D. Since Åw � 0 in D, we
have

(3.6) vsCt � w in D

if t > ⇢CH C L � s.
Let us define now the critical contact time

t⇤ D infπt � 0 W vsCt � w in Dº:

From (3.5), t⇤ > 0.

Step 3: The contact point in the sliding argument. Let x 2 πw > 0º \D be such
that

vsCt⇤.x/ D w.x/:

Note that such a touching point must exist, otherwise the nonnegativity and monotonicity of u
would imply that vsCt⇤�" � w for some small ", contradicting the definition of t⇤.

With (3.4), if we take ⇢ small, then we can assume

(3.7) vsCt⇤ � vs � uC ı

2
D w C ı

2
on πu > 0º \ �D:

Thus x … πw > 0º \ �D. Meanwhile, in πw > 0º \D, we have ÅvsCt⇤  0 D Åw. Com-
bined with vsCt⇤ � w, this tells us that vsCt⇤ > w in πw > 0º \D and that x … πw > 0º \D.
As a result, we must have

vsCt⇤. Nx/ D w. Nx/ D 0:

Step 4: The contradiction. Finally, there are two possibilities to consider, depending
on whether this touching point lies on �D or inside D.
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If Nx 2 �πw > 0º \D, then we have Nx 2 �πvsCt⇤ > 0º. With the existence of a tangent
ball as in Lemma 2.4, the point Nx is a regular point of �πw > 0º (see, e.g., [4, Theorem 8.1]).

Since w is a minimizer, we have

w.x/ D hx � Nx; ⌫iC C o.jx � Nxj/;
where ⌫ is the inner unit normal of �πu > 0º at x. On the other hand, the supersolution property
in Lemma 2.4 implies

vsCt⇤.x/  hx � Nx; ⌫iC C o.jx � Nxj/:
These contradict Hopf’s lemma for the nonnegative harmonic function vsCt⇤ � w at x. Conse-
quently, we must have

Nx 2 �.πw > 0º \D/ \ πw D 0º \ �D:
With vsCt⇤.x/ D 0 and (3.7), we have Nx … �πu > 0º \ �D and thus, there is a neighbor-

hood Z ⇢ �D of Nx, where
w D u D 0 on Z.

We are now in the situation of Theorem 2.11, which means that �.πw > 0º \D/ \ πw D 0º is
C 1 around Nx, and rw is well-defined at Nx (since the normal is well-defined) with jrw. Nx/j � 1.
Proceeding as in the previous setting, we get again a contradiction with Hopf’s lemma at Nx.

Lemma 3.9. Under the same assumptions as in Proposition 3.5, let w be a minimizer
of the Alt–Caffarelli functional (1.5) in D with w D u on �D. Then u  w in D.

Proof. Suppose not; we find xı 2 D and ⌘ı such that

u.xı/ > w.xı/C ⌘ı:

With the same notation for the translation as in the previous proof, we fix s > 0 small such that
u�s.xı/ > w.xı/C 1

2⌘ı.
As before, there exists some ı > 0 small such that

(3.8) u � u�s C ı in πu�s > 0º \D;
and some ⇢ small enough such that

(3.9) zv�s.x/ WD sup
B⇢.x/

u�s  u.x/ for all x 2 D; zv�s.xı/ > w.xı/C 1

4
⌘ı:

With the assumption on the lower bound on f as in Proposition 3.5, we have

zv�s�t ⌘ 0  w in D

if t C s > LCH C ⇢. Also, from (3.8) (taking ⇢ smaller if necessary)

(3.10) zv�s�t  w � ı

2
on πzv�s > 0º \ �D � πzv�s�t > 0º \ �D:

We define
t⇤ D infπt � 0 W zv�s�t  w in Dº:

Arguing as before, we have t⇤ > 0, and there exists some Nx 2 πzv�s�t⇤ > 0º \D such that

zv�s�t⇤. Nx/ D w. Nx/:
Moreover, we have Nx … πzv�s�t⇤ > 0º \D by the maximum principle, and Nx … �D by (3.10).
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As a result, we have
Nx 2 �πzv�s�t⇤ > 0º \D:

With the asymptotic expansion of w and v�s�t⇤ from Definition 2.2 and Lemma 2.4, this again
contradicts Hopf’s lemma.

Thus, as a consequence of the previous two lemmata, we obtain:

Proof of Proposition 3.5. It is a combination of Lemmas 3.8 and 3.9.

We finally have:

Proof of Theorem 1.4. It follows from Lemma 3.3 and Proposition 3.5

4. Flatness of graphical solutions: the classical regime

In this section we prove our main result in the classical regime, namely, Theorem 1.1.
With Theorem 1.4 (see also Lemma 3.3 and Proposition 3.5), it suffices to consider global
minimizers.

We start with the following technical lemma, which says that if u is monotone in the
direction e and has smooth free boundary, then either e is never tangent to the free boundary
or the solution is independent of the direction e.

Lemma 4.1. Let u be a viscosity solution in the sense to (1.1) in B1 with �ƒ.u/ \ B1

being C 2-submanifold with inward pointing unit normal ⌫. Also assume that πu > 0º \ B1 is
connected. If, for some e 2 Sn�1, �eu � 0� in B1;

then, either ⌫.x/ � e > 0 for all x 2 �πu > 0º \ B1, or �eu ⌘ 0 in B1.

Proof. Suppose not; we have �eu 6⌘ 0 in B1,

but
⌫.xı/ � e D 0 for some xı 2 �πu > 0º \ B1.

As such �eu.xı/ D e � ⌫.xı/ D 0.
Since �eu 6⌘ 0 and �eu � 0, we can apply Hopf’s lemma to deduce that�e�⌫.xı/u.xı/ D �⌫.xı/�eu.xı/ > 0:

On the other hand, the function �πu > 0º 3 x 7! �⌫.xı/u.x/ has a maximum at x0. As e is
tangent to �πu > 0º at x0 we get �e�⌫.xı/u.xı/ D 0, the desired contradiction.

With this lemma, we show that graphical cones are flat in low dimensions. Recall the crit-
ical dimension n⇤

local defined in (1.7) and the notion of global minimizers from Definition 2.7.

Proposition 4.2. Let u 2 G .en/ in Rn with

n  n⇤
local C 1:
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If u is a homogeneous minimizer, then
u D .x � e/C

for some e � en � 0.

Proof. Lemma 2.9 implies that for each x 2 �πu > 0º \ Sn�1, the unit normal ⌫.x/
to �πu > 0º (outward with respect to πu D 0º) exists and is a continuous function of x. The
assumption u 2 G .en/ implies that en � ⌫.p/ � 0 for all p 2 �πu > 0º \ Sn�1. By continuity
there exists a direction

eı 2 arg min
Ne2Sn�1

π Ne � en W Ne � ⌫.x/ � 0 for all x 2 �πu > 0º \ Sn�1º:

We claim that there is a point pı 2 �πu > 0º \ Sn�1 such that eı � ⌫.pı/ D 0. If not,
then by compactness there is a ı > 0 such that eı � ⌫.p/ � ı for all p 2 �πu > 0º \ Sn�1.
This implies that for any Ne 2 Sn�1 with kNe � eık < ı

2 we have

Ne � ⌫.p/ � ı

2
> 0 for all p 2 �πu > 0º \ Sn�1,

contradicting the minimality of eı.
If en D eı, let pı 2 �πu > 0º \ Sn�1 be such that ⌫.pı/ � en D 0. Recall that for every

globally defined minimizer u, πu > 0º is connected (see, e.g., [29, Theorem 2.2] or [51, Theo-
rem 2.3]). Hence, we can apply Lemma 4.1 to the connected component ofB1=2.pı/ \ πu > 0º
with pı on its boundary (u is monotone in the en direction, by Lemma 3.3), to conclude that u
is invariant in the direction en in all of Rn (by analyticity and connectedness of πu > 0º). As
a result, the restriction of u into the space perpendicular to en is a minimizing cone in Rn�1.
The criticality of n⇤

local implies that u is a half-plane solution.
So we may assume en � ⌫.p/ > 0 for all p 2 �πu > 0º \ Sn�1 and thus en ¤ eı. If we

can show that u 2 G .eı/, we may argue as above around the point pı (where eı � ⌫.pı/ D 0)
to conclude that u is a half-plane solution. In order to prove that u 2 G .eı/, we first note
that because en � ⌫.p/ > 0, by homogeneity, and by Lemma 2.9, we have that �πu > 0º is
the graph of a Lipschitz function in the en direction (and in fact, �πu > 0º n π0º is a smooth
graph). A simple computation shows that for any ı > 0, we have .eı C ıen/ � ⌫.x/ > 0 for all
x 2 �πu > 0º \ Sn�1. So by the implicit function theorem, �πu > 0º \ Sn�1 is the graph of
a smooth function over the equator perpendicular to eıCıen

keıCıenk . By homogeneity this implies
that

u 2 G
�

eıCıen

keıCıenk
�

for all ı > 0.

Sending ı # 0 and invoking Corollary 3.4, we are done.

We then have, by a blow-down argument:

Corollary 4.3. Let u 2 G .en/ be a global minimizer to the Alt–Caffarelli functional
in Rn with

n  n⇤
local C 1:

Then u D .x � e/C for some e � en � 0.

Proof. Consider the rescalings

uR.x/ D u.Rx/

R
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as R ! 1. By Lemma 2.8, we have

uRi
! v locally uniformly

along a subsequence Ri " 1, where v is some homogeneous minimizer to the one-phase
problem. With Corollary 3.4 and Proposition 4.2, we have

v D .x � e0/C

for some e0 2 Sn�1.
Given small " > 0, we have

kuRi
� vkL1.B1/ < " for i large enough:

From here, we iterate Lemma 2.6 to conclude juRi
� vkj  . r0

2 /
k" in Brk

0
, where each vk is

a half-plane solution. That is, ju � vkj  Ri .
r0

2 /
k" inBRi rk

0
. ChoosingRi and k large enough,

we conclude
ku � vkkL1.B1/  ":

Since " is arbitrary and the set of half-plane solutions compact, we conclude u is a half-plane
solution in B1. A similar argument can be used to show that u is a half-plane solution in any
compact subset of Rn. That e � en � 0 follows immediately the fact that u 2 G .en/.

Combining the previous results, we directly get Theorem 1.1:

Proof of Theorem 1.1. Thanks to Theorem 1.4, u is a global minimizer. We are now
done by Corollary 4.3.

And we also get Corollary 1.7:

Proof of Corollary 1.7. Suppose that u is a solution toÅu D f .u/. Condition (1.9) and�xnu > 0 implies that u is a minimizer of the corresponding energy functional. This can be
proven by constructing a foliation. In fact, the same proof used in [17, Theorem 2.4] works in
this context, where condition (1.9) ensures that (large) translations of u are completely above
or below a potential minimizing competitor on a given compact set K (see also the proof
of [1, Theorem 4.4]).

The result is now a consequence of [9]. We use [9, Proposition 5.1] to obtain that an
appropriate rescaling is arbitrarily close to a global solution to the one-phase problem. Since
the graphicality condition in Definition 3.1 passes well to the limit (see also [9, Lemma 5.2]),
thanks to our classification result in Corollary 4.3 we are done by applying [9, Theorem 1.4].

5. Preliminaries and notations: The thin case

In this section, we collect some preliminary facts about solutions to the thin one-phase
problem (1.2).

We begin with the definition of viscosity solutions to (1.2), see, e.g., [37] or [40], which
parallels the classical definition (recall Definitions 2.1 and 2.2).
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In the following, we denote by F.u/ the free boundary of u � 0 in �, which is the
boundary of a set in πxnC1 D 0º (with respect to its relative topology):

F.u/ WD �Rn.πu > 0º \ πxnC1 D 0º/ \�;

and we also denote

Sn
0 WD πe 2 Sn W enC1 D 0º D πe D .e0; enC1/ 2 Rn ⇥ R W je0j D 1; enC1 D 0º:

Finally, recall from (1.12) the one-phase solution:

U.xn; y/ WD 1p
2

r
xn C

q
x2

n C y2:

Definition 5.1. Let u 2 C.�/ for some domain � ⇢ RnC1, u � 0 in �, even with
respect to the plane πxnC1 D 0º:

(i) We say that u is a (strict) comparison subsolution to the thin one-phase problem (1.2) if

u 2 C 2.πu > 0º/; Åu � 0 in πu > 0º;

the free boundary F.u/ is a C 2 manifold, and for any xı 2 F.u/ there exists a ˛.xı/ > 1
such that, denoting z D .z0; znC1/ 2 Rn ⇥ R,

u.xı C z/ D ˛.xı/U.z0 � ⌫; znC1/C o.jzj 1
2 /;

where ⌫ 2 Sn
0 is the inward normal to F.u/ at xı, and U.xn; y/ is given by (1.12).

(ii) We say that u is a (strict) comparison supersolution to the thin one-phase problem (1.2)
if

u 2 C 2.πu > 0º/; Åu  0 in πu > 0º;
the free boundary F.u/ is a C 2 manifold, and for any xı 2 F.u/ there exists a ˛.xı/ < 1
such that, denoting z D .z0; znC1/ 2 Rn ⇥ R,

u.xı C z/ D ˛.xı/U.z0 � ⌫; znC1/C o.jzj 1
2 /;

where ⌫ 2 Sn
0 is the inward normal to F.u/ at xı, and U.xn; y/ is given by (1.12).

As in the classical case, we use these comparison solutions as test functions to define
a viscosity solution:

Definition 5.2. Let u 2 C.�/ for some domain � ⇢ RnC1, u � 0 in �, even with
respect to the plane πxnC1 D 0º. We say that u is a viscosity solution to the thin one-phase
problem (1.2) if

Åu D 0 in πu > 0º \�;
and any strict comparison subsolution (resp. supersolution) cannot touch u from below (resp.
from above) at a free boundary point xı 2 F.u/.

In the previous definition, we say that a strict comparison subsolution v touches from
below u at a free boundary point xı 2 F.u/ if xı 2 F.v/ and v  u in a neighborhood of xı.
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As in the classical case we want to define the sup/inf-convolutions. Note that in this
setting the neighborhoods over which we are taking the supremum and infimum are “thin”.

Definition 5.3. For a domain � ⇢ RnC1 (even with respect to πxnC1 D 0º) and t > 0,
define

�t;thin WD π.x0; y/ 2 � W .x0; y C ⌧/ 2 � for all ⌧ 2 .�t; t /º:
For u 2 C.�/, its t -sup-convolution is defined in �t;thin as

ut .x; y/ WD sup
π.x0;y/Wjx�x0j<tº

u.x0; y/:

Its t -inf-convolution is defined on �t;thin as

ut .x; y/ WD inf
π.x0;y/ W jx�x0j<tº

u.x0; y/:

As in the classical case, these convolutions satisfy good comparison properties (the proof
of this lemma follows as in the classical case once one has [38, Lemma 7.5], see also [42, Corol-
lary 2.9]).

Lemma 5.4. Let u 2 C.�/ be a viscosity solution to the thin one-phase problem (1.2)
in �. For t > 0, let ut and ut denote its sup-convolution and inf-convolution as in Defini-
tion 5.3. Then:

✏ ut satisfies Åut � 0 in πut > 0º \�t;thin and, for each xı 2 F.ut /, there is a point
p D .p0; 0/ such that

B 0
t .p/ ⇢ πut > 0º \ πxnC1 D 0º and xı 2 �Bt .p/;

and
ut .x

0; 0/ � hx0 � x0
ı; ⌫i

1
2

C C o.jx0 � x0
ıj 1

2 /

for x0 near x0
ı, where ⌫ WD 1

t .p
0 � x0

ı/.

✏ ut satisfies Åut  0 in πut > 0º \�t;thin and, for each xı 2 F.ut /, there is a point
p D .p0; 0/ such that

B 0
t .p/ ⇢ πut D 0º \ πxnC1 D 0º and xı 2 �Bt .p/;

and
ut .x

0; 0/  hx0 � x0
ı; ⌫i

1
2

C C o.jx0 � x0
ıj 1

2 /

for x0 near x0
ı, where ⌫ WD 1

t .x
0
ı � p0/.

We turn now to the regularity of viscosity solutions. Corresponding to Lemma 2.5, we
have the following (with an analogous proof):

Lemma 5.5. Let u be a solution in RnC1 to the thin one-phase problem 1.2. Then there
is a dimensional constant C such that

Œuç
C

1
2 .RnC1/

 C in RnC1.
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In terms of the free boundary, we have an improvement of flatness lemma [37, Theo-
rem 7.1]:

Lemma 5.6. Let u be a viscosity solution to the thin one-phase problem (1.2) in B1,
and assume that 0 2 F.u/ and

U.xn � "; xnC1/  u.x/  U.xn C "; xnC1/ for all x 2 B1;

where U.xn; xnC1/ is given by (1.12). There are dimensional constants N" > 0 and r > 0 such
that if "  N", then we can find e 2 Sn�1 such that

U.x � e � "r
2 ; xnC1/  u.x/  U.x � e C "r

2 ; xnC1/ for all x 2 Br :

A particular class of solutions to the thin problem are minimizers of an appropriate energy
functional, (1.11):

Definition 5.7. For� ⇢ RnC1 and u 2 H 1.�/, both even with respect to πxnC1 D 0º,
we say that u is a minimizer of the thin Alt–Caffarelli functional (1.11) in� if u � 0 in�, and

J
0
�.u/  J

0
�.v/ for all v � 0; v � u 2 H 1

0 .�/:

For u 2 H 1
loc.R

nC1/ with u � 0 and even with respect to πxnC1 D 0º, we say that it is
a global minimizer in RnC1 if it is a minimizer in BR for every R > 0.

As in the classical setting, minimizers have nondegeneracy and compactness properties
that allow for additional arguments. In particular, we can execute a blow-down argument using
a Weiss-type monotonicity formula (see, e.g., [2]):

Lemma 5.8. Let u be a global minimizer of the thin Alt–Caffarelli functional in RnC1.
For a sequence ri " 1, define

ui .x/ WD u.rix/

r
1=2
i

:

Then, perhaps passing to a subsequence, we can find a nonzero 1
2 -homogeneous global mini-

mizer u1 such that
ui ! u1 locally uniformly in RnC1

with
�πui D0º\πxnC1D0º ! �πu1D0º\πxnC1D0º in L1

loc.πxnC1 D 0º/;
and

F.ui / ! F.u1/ locally in the Hausdorff distance sense.

Proof. The proof is the same as the local setting (Lemma 2.8) using the Weiss-type
monotonicity formula adapted to the thin case in [2] and the compactness properties of mini-
mizers to the thin functional (see, e.g., [52, Lemma 3.4]).

Finally, in analogy to the classical setting, homogeneous minimizers have smooth free
boundaries on the sphere in low dimensions. Recall the critical dimensionn⇤

thin defined in (1.13).
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Lemma 5.9. Suppose that u is a homogeneous minimizer in RnC1 with

n  n⇤
thin C 1:

Then F.u/ \ Sn
0 is smooth.

Remark 5.10. For the thin one-phase problem, this is the only place where we require
the restriction on dimension.

Proof. The proof proceeds exactly as in the classical case (Lemma 2.9).

6. Graphical solutions are minimizers: The thin case

As in the classical case, we first show that graphical solutions are minimizers to the thin
one-phase functional. The first step is adapting the definition of graphical free boundaries,
Definition 3.1, to the thin setting:

Definition 6.1. Let u be a solution to the thin one-phase problem in RnC1 as in Defini-
tion 5.2, and that e 2 Sn

0 . We say that u is a graphical solution in direction e, and write

u 2 Gs.e/;

if
ƒ.u/C ⌧e � ƒ.u/ for all ⌧ > 0.

Recall that the contact set ƒ.u/ is defined in (1.4).

By definition, if a solution is monotone in the direction e, then it has a graphical free
boundary in that direction. As in the classical case, the converse is also true in the thin setting.

Actually, the statement in the thin case is more general as it does not involve the free
boundary condition (see Remark 6.3 for a direct proof that uses the free boundary condition).
This is, in part, due to the fact that we can apply the boundary Harnack inequality in any slit
domain [41].

Proposition 6.2. Let u be a solution to
8
<̂

:̂

Åu D 0 in RnC1 nƒ;
u � 0 in RnC1;

u D 0 on ƒ;

where ƒ D πu D 0º ⇢ πy D 0º. If there is e 2 Sn
0 such that

ƒ.u/C ⌧e � ƒ.u/ for all ⌧ > 0,

then u is monotone nondecreasing in the direction e.

Proof. Let us define, for some ⌧ > 0,

u⌧ .x/ D u.x � ⌧e/:
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We have 8
<̂

:̂

Åu⌧ � 0 in RnC1 nƒ;
u⌧ � 0 in RnC1;

u⌧ D 0 on ƒ:

We have used here thatÅu � 0 globally, and u⌧ D 0 onƒ. Thus, u⌧ and u are globally defined
nonnegative and continuous functions that vanish continuously on some slit domain ƒ, and u
is harmonic outside of ƒ, whereas u⌧ is subharmonic (and harmonic outside the thin space).

Boundary Harnack inequality for slit domains [41, Corollary 3.4] (see also [66, Theo-
rem 1.8]) for even functions gives a constant C depending only on n such that

(6.1) g⌧ .R/u⌧  Cu in BR;

where g⌧ .R/ denotes
g⌧ .R/ WD u.RenC1/

u⌧ .RenC1/
:

We comment that [41, Corollary 3.4] concerns two solutions whereas u⌧ is a subsolution.
However an inspection of the proof shows that the one sided inequality (6.1) holds when u⌧ is
a subsolution.

Let us start by bounding g⌧ .R/ in terms of ⌧ and R:

jg⌧ .R/ � 1j D ju.RenC1/ � u⌧ .RenC1/j
u⌧ .RenC1/

 ⌧
krukL1.BR=4.RenC1//

u⌧ .RenC1/
;

where we are taking R > 4 and ⌧ < 1. By the interior Harnack inequality applied to u⌧ (notice
that Åu⌧ D 0 in BR.RenC1/), we also know that

u⌧ .RenC1/ � ckukL1.BR=2.RenC1//

for some c depending only on n. Hence,

(6.2) jg⌧ .R/ � 1j  C⌧
krukL1.BR=4.RenC1//

kukL1.BR=2.RenC1//


zC ⌧
R

for some constant zC depending only on n, where in the last inequality we are applying gradient
estimates for harmonic functions in a ball of radius R

2 .
On the other hand, from (6.1) we can define a function

w WD u � g⌧ .R/

C
u⌧

that satisfies 8
<̂

:̂

Åw  0 in RnC1 nƒ;
w � 0 in BR;

w D 0 on ƒ:

We can therefore apply again the boundary Harnack inequality in slit domains to deduce

Cw �
w

�
R
2 enC1

�

u
�

R
2 enC1

� u D
✓
1 � 1

C

g⌧ .R/

g⌧

�
R
2

�
◆
u in BR=2;
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for the same constant C as in (6.1). Rearranging terms with the definition of w, this implies

g⌧ .R/u⌧ 
✓
C C 1

C

g⌧ .R/

g⌧

�
R
2

� � 1
◆
u in BR=2:

Observe that, from (6.2), if R � R0 for some universal R0 � 8 zC , then

g⌧ .R/

g⌧

�
R
2

� 
1C zC ⌧

R

1 � 2 zC ⌧
R

D 1C 3
zC ⌧

R � 2 zC ⌧
 1C 4 zC ⌧

R
:

Hence we have

(6.3) g⌧ .R/u⌧ 
✓
C C 1

C
� 1C C 0 ⌧

R

◆
u in BR=2

for some constant C 0 depending only on n. Thus, we have gone from (6.1) to (6.3), where the
constant is improved (if R is large enough). Iterating the procedure, we have that

(6.4) g⌧ .R/u⌧  Cku in B2�kR

for all k 2 N such that 2�kR � R0, and where Ck satisfy the recurrence relation:

(6.5) C0 D C; CkC1 D C C 1

C
� 1C C 0 ⌧

2�kC1R
:

Now let ˛ > 0 be fixed, and let us consider the recurrence

x˛
0 D C; x˛

kC1 D x˛
k C 1

x˛
k

� 1C ˛ for k 2 N:

Then if C > 1
1�˛ , x˛

k
is decreasing and with limit 1

1�˛ . So for any 0 < ˛ < 1
4 , assuming C is

large enough, there exists some k˛ such that x˛
k

 1C 2˛ for all k � k˛.
Fix ˛ 2 .0; 1

4/. The constant C > 0 comes from (6.1) and we can always take it bigger
so that C > 1

1�˛ . This fixes C 0 > 0 as in (6.3). Let R � R˛ with R˛ such that

C 0

2�k˛C1R˛
 ˛:

Then, from (6.5) (recall ⌧ < 1) we know Ck  x˛
k

for k  k˛, and thus

Ck˛
 x˛

k˛
 1C 2˛:

Hence, in (6.4) we have
✓
1 �

zC ⌧
R

◆
u⌧  .1C 2˛/u in B2�k˛ R:

We now let first R ! 1, and then ˛ # 0, to get

u⌧ D u. � � ⌧e/  u in RnC1:

Since 0 < ⌧ < 1 is arbitrary, this implies that u is monotone in the direction e, as we wanted
to see.
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Remark 6.3. For the thin one-phase problem (1.2), such monotonicity follows directly
from Lemma 5.5 and the scaling of the problem: If we assume u 2 Gs.e/ with πu D 0º ¤ ;
and define v.x/ D 1

⌧ Œu.x/ � u.x � ⌧e/ç, then the graphicality of the free boundary implies
that Åv� � 0 in RnC1. As a consequence, we have

v�.0/  C

✓«

BR

v2

◆ 1
2

 C

✓
1

⌧

Z ⌧

0

«

BR

u2
e. � � te/

�
dt

◆ 1
2

 CR� 1
2 ;

where the last inequality follows from the Caccioppoli estimate for the subharmonic func-
tion u (where its growth is controlled by Lemma 5.5). Sending R ! 1 gives the desired
monotonicity.

As in the local case, compactness of “monotone” solutions follows immediately:

Corollary 6.4. Suppose that ui 2 Gs.e/ with ui ! u1 uniformly on compact sets.
Then u1 2 Gs.e/.

We are now ready to show, in the thin setting, that global monotone solutions are actually
minimizers of the functional (1.11). As in the local case, we believe this to be a contribution of
independent interest.

For R > 0 we define

B 00
R WD πx0 2 Rn�1 W jx0j < Rº:

Proposition 6.5. For L > H > 0, let u be a viscosity solution to the thin one-phase
problem (1.2) in � D B 00

2 ⇥ .�2L �H; 2LCH/ ⇥ .�2L; 2L/ with�nu � 0 in �:

If its contact set is a subgraph

ƒ.u/ D π.x0; xn; 0/ W xn  f .x0/º

for some continuous function f satisfying

�H < f .x0/ < H in B 00
2 ;

then u is the unique minimizer of the thin Alt–Caffarelli functional (1.11) in the domain D,
where D WD B 00

1 ⇥ .�L;L/ ⇥ .�L;L/.

As in the classic case, we split this proposition up into two pieces:

Lemma 6.6. Under the same assumptions and using the same notation as Proposi-
tion 6.5, if w is a minimizer to the functional (1.11) in D with w D u on �D, then u � w

in D.

The proof of this lemma follows the same scheme as its local counterpart (Lemma 3.8)
but, as mentioned in the introduction, there is no known thin analogue to the results of Chang-
Lara and Savin [26]. Instead, we use a growth result whose proof we defer to Section 8 (see
Theorem 1.12):
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Proof. We assume not, so that, for some xı 2 D0 ⇥ π0º and ⌘ı > 0,

w.xı/ > u.xı/C ⌘ı:

(Observe that such an xı exists on πy D 0º by the maximum principle applied on the domain
DC WD B 00

1 ⇥ .�L;L/ ⇥ .0; L/.) We define for ⌧ 2 R,

u⌧ .x
00; xn; y/ WD u.x00; xn C ⌧; y/;

and by the continuity of u we can pick s > 0 small and fixed such that w.xı/ > us.xı/C 1
2⌘ı.

Step 1: Setting up the inf-convolution. By the monotonicity of u in the en direc-
tion (Proposition 6.2) and the uniform continuity of the free boundary in D, there exists a set
E ⇢ πy D 0º such that

πu > 0º \ .D0 ⇥ π0º/ b E b πus > 0º \ πy D 0º;
where the compact inclusions need to be understood in the induced topology of πy D 0º. By
the strong maximum principle,

inf
E
�nus > 0

and there exists some ı > 0 small such that

(6.6) us � uC ı on πu > 0º \ .D0 ⇥ π0º/:
Let ⇢ > 0 be small enough, to be determined later and denote the inf-convolution of u⌧ , as in
Definition 5.3, by

v⌧ .x; y/ WD inf
z2B 0

⇢.x/
u⌧ .z; y/:

By monotonicity, we have vsCt .x/ � vs.x/ for all t � 0 and x 2 D. Picking ⇢ small enough,
depending on ⌘ı above, ı > 0 from (6.6), and the (uniform) modulus of continuity of us , we
have

(6.7) vs.x/ � u.x/ for all x 2 D and w.xı/ > vs.xı/C 1

4
⌘ı:

Step 2: Initializing the sliding argument. As in the local case, our vs will be a family
of supersolutions which we will “slide” down until we touchw and get a contradiction. We start
by showing that for t large we have vsCt � w. Indeed, if t > ⇢CH C L � s then vsCt > 0

in D and
ÅvsCt  0 in D if t > ⇢CH C L � s

(in the viscosity sense). On the other hand, for all t � 0,

vsCt � u D w on �D;
so that by maximum principle (since Åw � 0 in D)

vsCt � w in D if t > ⇢CH C L � s:
Let us define now

t⇤ WD infπt � 0 W vsCt � w in Dº D infπt � 0 W vsCt � w on D0 ⇥ π0ºº;
where the second equality follows from the maximum principle (applied in D \ πy > 0º). By
(6.7), t⇤ > 0.
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Step 3: The contact point in the sliding argument. From (6.6) (taking ⇢ smaller if
necessary, depending only on s) for any t > 0,

(6.8) vsCt � vs � uC ı

2
D w C ı

2
on πu > 0º \ �D \ πy D 0º:

By continuity and (6.8), together with the monotonicity in the en direction, there exists a touch-
ing point Nx 2 πw > 0º \ .D0 ⇥ π0º/, i.e. vsCt⇤. Nx/ D w. Nx/.

We claim that vsCt⇤. Nx/ D w. Nx/ D 0. Indeed, if Nx 2 πw > 0º\ .D0 ⇥ π0º/, then we have
ÅvsCt⇤. Nx/  0 D Åw. Nx/ with vsCt⇤ � w in D, contradicting the maximum principle in the
domain πw > 0º \D. Furthermore, Nx … πw > 0º \ �D \ πy D 0º, by (6.8).

Step 4: The contradiction. This leaves us two cases to consider, either the touching
point is inside D0 ⇥ π0º or on �D0 ⇥ π0º.

If Nx 2 F.w/ \ .D0 ⇥ π0º/, we can proceed as in the proof of Lemma 3.8 to say that�πw > 0º has an exterior touching ball at Nx and thus Nx is a regular point (cf. [52, Proposi-
tion 5.10]).

By the free boundary condition for minimizers,

w.x; y/ � U..x � Nx/ � ⌫; y/C o.j.x; y/ � . Nx; 0/j 1
2 /;

where ⌫ is the inward pointing unit normal to the ball at Nx. In the other direction, Lemma 5.4
implies

vsCt⇤.x/  U..x � Nx/ � ⌫; y/C o.j.x; y/ � . Nx; 0/j 1
2 /

This contradicts the nonlocal Hopf’s lemma in this interior touching ball (see [18, Proposi-
tion 4.11]).

So we are left to consider the case Nx 2 F.w/ \ .D0 ⇥ π0º/ \ .�D0 ⇥ π0º/. As vsCt⇤ � w

in D, we also have Nx 2 �RnπvsCt⇤ > 0º. From (6.8), Nx … F.u/ and thus there is a neighbor-
hood, Z ⇢ �D0, of Nx where u D w D 0 on Z ⇥ π0º.

By our assumption that the contact set for u is the subgraph of a continuous function in
� c D, there is a small ✓ > 0 such that B 0

4✓
. Nx/ ⇥ π0º ⇢ ƒ.u/ \�. Using the harmonicity

of u in � \ πy > 0º we can assume that ju.x; y/j  C2jyj in B2✓ . Nx/. From this we can first
conclude that w D 0 on .B 0

2✓
. Nx/ \ �D0/ ⇥ π0º and that jwj  C2jyj on B2✓ . Nx/ \ �D so we

can invoke Theorem 8.3 to get

(6.9) sup
Br . Nx/\D

w � c1r
1
2 for all r 2 .0; ✓/:

Furthermore, if ' solves the boundary value problem
8
<̂

:̂

Å' D 0 in B✓ . Nx/ \D;
' D C2jyj on B✓ . Nx/ \ �D;
' D 1 on �B✓ . Nx/ \D;

thenw C' inB✓ . Nx/\D by the maximum principle (recall thatw is a minimizer soÅw � 0).
Note that the values of ' are Lipschitz continuous in B3✓=4. Nx/ \ �D, so we may invoke

boundary Schauder estimates for harmonic functions to conclude that for any " > 0 there exists
c" > 0 such that

(6.10) '.x/ D j'.x/ � '. Nx/j  C"jx � Nxj1�" in B✓=2. Nx/:
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Taking " D 1
4 in (6.10) and invoking (6.9) we get,

c1r
1
2  sup

Br . Nx/\D

w  sup
Br . Nx/\D

'  C 1
4
r

3
4 ;

for all r 2 .0; ✓
2 /, which is a contradiction.

The bound from the other direction proceeds exactly as it does in the local case (Lem-
ma 3.9), and as such we will simply state the thin result without proof:

Lemma 6.7. Under the same assumptions and using the same notation as Proposi-
tion 6.5 if w is a minimizer to the functional (1.11) in D with w D u on �D then u  w

in D.

Thus, we obtain:

Proof of Proposition 6.5. It is a combination of Lemmas 6.6 and 6.7.

Proof of Theorem 1.9. It follows from Proposition 6.2 and Proposition 6.5

7. Flatness of graphical solutions: the thin case

Let us now show an analogous result to Lemma 4.1 in the nonlocal setting. Recall that
this lemma showed that if F.u/ is smooth an u is monotone in a direction, then either that
direction is transverse to F.u/ at every point or u is independent of that direction:

In the following lemma we consider �0 ⇢ Rn to be a smooth domain (i.e. C 2;˛), and
� D �0 ⇥ π0º. Abusing notation, we let �� denote the boundary of�0 inside of Rn and denote
by ⌫.x/ 2 Sn

0 the unit outward normal vector to �0 at x 2 ��. Finally, in order to avoid the
statement being empty, we assume that �� \ B1 \ πy D 0º ¤ ;.

Lemma 7.1. Let u be a viscosity solution to

(7.1)

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Åu D 0 in B1 n�;
u D 0 in � \ B1;

lim
x!xı

u

d
1
2

.x/ D 1 for xı 2 �� \ B1; x 2 πy D 0º \ .B1 n�/;

u � 0 in B1:

We assume also that, for some e 2 Sn
0 ,�eu � 0 in B1.

Then either ⌫.x/ � e > 0 for all x 2 �� \ B1, or �eu ⌘ 0 in B1.

Proof. By assumption, we immediately have ⌫.x/ � e � 0 for x 2 ��. Let us argue by
contradiction, and so we may assume (up to a rotation and translation) that 0 2 �� and e D e1,
with ⌫.0/ D en (so ⌫.0/ � e D 0). Let us also suppose �1u 6⌘ 0 in B1.
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We denote by ı D ı.x0/ the signed distance to �� inside of Rn,

ı.x0/ D
´

dist.x0; ��0/ for any x0 2 B1 n�0;
�dist.x0; ��0/ for any x0 2 �0 \ B1;

whereas r denotes the distance to �� in B1,

r.x/ D r..x0; y// D
q
ı2.x0/C y2 for any x D .x0; y/ 2 B1:

We define
zU WD 2� 1

2 .r C ı/
1
2 :

Then, by [39, Theorem 3.1] we know that a solution to (7.1) can be expanded around a free
boundary point (in this case, 0) as

u.x0; y/ D zU.x/
�
P0.x

0; r/CO.j.x0; r/j1C˛
�

D zU.x/
�
a.0/ C a.1/ � x0 C a.2/r CO.j.x0; r/j1C˛/

�
;

(7.2)

for some polynomial P0 of degree 1. By the viscosity condition, we immediately get a.0/ D c⇤.
Moreover, by [39, Theorem 3.1], we know

u.x0; y/
zU.x/

ˇ̌
ˇ̌
yD0

⌘ u.x0; 0/

ı
1
2

C
.x0/ DW ⌘.x0/ 2 C 1;˛.B 0

1 n�0/:

Since ⌘ ⌘ c⇤ on ��, �i⌘.0/ D 0 for 1  i  n � 1 (recall ⌫.0/ D en), and hence in (7.2) we
get

a
.1/
i D 0 for 1  i  n � 1.

On the other hand, by [39, Theorem 3.1, equation (3.4)], for 1  i  n � 1,�iu.x/ D
zU.x/
r

�
P0;i .x

0; r/CO.j.x0; r/j1C˛/
�
;

with
P0;i .x

0; r/ D ra
.1/
i for 1  i  n � 1:

Combining the above, �1u.x/ D
zU.x/
r

O.j.x0; r/j1C˛/:

Let h be harmonic outside ofƒ.u/with boundary values equal to �1u on �B3=4 and equal
to 0 on ƒ.u/. By boundary Harnack for slit domains [41, Corollary 3.4] there exists a constant
c > 0 such that h � cu inside B1=2. On the other hand, �1u � h in B3=4 as both are harmonic
in B3=4 nƒ.u/ but �1u � 0 on F.u/. Using the expansion above this yields

O.j.x0; r/j1C˛/ � r.c⇤ CO.j.x0; r/j//;

which gives a contradiction as j.x0; r/j # 0.

As in the local setting, this tells us that homogeneous minimizers in low-dimensions are
one-dimensional.
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Proposition 7.2. Let u 2 Gs.en/ in RnC1 with

n  n⇤
thin C 1:

If u is a homogeneous minimizer, then

u D U..x � e/; y/

for some e 2 Sn
0 with e � en � 0, and U given by (1.12).

Proof. The restriction on the dimension implies, by Lemma 5.9, that ⌫.x/ exists and is
a continuous function of x 2 F.u/ \ Sn

0 . As in the classical setting, we consider eı 2 Sn
0 such

that
eı 2 arg min

Ne2Sn
0

π Ne � en W Ne � ⌫.x/ � 0 for all x 2 �� \ Sn
0º:

Arguing as in the local setting by minimality, there exists a point pı 2 F.u/ \ Sn
0 such that

eı � ⌫.pı/ D 0. If eı D en, then we can invoke Lemma 7.1 (recalling that F.u/ is smooth
away from 0 by Lemma 5.9) to conclude that u is invariant in the direction eı. We do not need
to worry about connectivity in B1=2.pı/ because of the assumption that pı 2 F.u/. Further-
more, the positivity set of any (nontrivial) global solution to the thin free boundary problem
is connected.

If eı ¤ en, then arguing as in the classical case (but invoking Corollary 6.4) we see that
u 2 Gs.eı/ and then Proposition 6.2 implies that u is monotone in the direction eı. We again
apply Lemma 7.1 to conclude that u is invariant in the direction eı.

In either case, restricting u to the space perpendicular to eı gives a minimizing cone
in Rn. The definition of n⇤

thin implies that u is a one-dimensional solution.

Finally, a blow-down argument shows us that global minimizers in low dimensions with
graphical free boundaries are one dimensional.

Corollary 7.3. Let u 2 Gs.en/ in RnC1 with

n  n⇤
thin C 1:

If u is a global minimizer to the thin Alt–Caffarelli functional (1.11), then

u D U.x � e; y/

for some e 2 Sn
0 with e � en � 0, and U given by (1.12).

Proof. Consider the blow-down

uR.X/ D u.RX/

R
1
2

;

as R " 1. By Lemma 5.8 we have

uRi
! v locally uniformly

along some subsequence Ri , where v is a homogeneous minimizer to the thin one-phase
problem. By Proposition 7.2 we have that v D U..x � e/; y/. Furthermore, e � en � 0 since
v 2 Gs.en/ by Corollary 6.4.



188 Engelstein, Fernández-Real and Yu, Graphical solutions for one-phase free boundaries

Arguing as in the proof of Corollary 4.3, we can now apply the improvement of flatness
Lemma 5.6 to conclude.

From this result the main theorem in the thin setting follows immediately:

Proof of Theorem 1.8. By Proposition 6.5 v is a globally defined minimizer to the thin
one phase functional (1.11). The theorem then follows after invoking Corollary 7.3

8. Boundary growth near the fixed boundary for
minimizers to the thin functional

This section is devoted to proving the key growth result we need to complete the proof
that all monotone viscosity solutions to the thin problem are minimizers.

Throughout this section, w is a minimizer of the thin one-phase energy J
0
� in the domain

� D B1 \ πx1 � 0º ⇢ RnC1. We denote by Ä its free boundary, which is the boundary of
πw > 0º in the relative topology of πy D 0º. In particular, Ä D Ä 0 ⇥ π0º.

We will often use that if w is minimizer, then wr.x/ WD w.rx/
r1=2 is a minimizer with its

own boundary data as well.

Lemma 8.1 (Nondegeneracy). Let w and Ä as above. Let us suppose that w D 0 on
πx1 D y D 0º \ B1. Then

w.x0; 0/ � c dist
1
2 .x0;Ä 0/ for any x0 2 B 0

1=2 \ πx1 � 0º

for some c depending only on n.

Proof. If we denote r.x0/ WD dist.x0;Ä 0/ and since w D 0 on πx1 D y D 0º \ B1, we
always have Br.x0/..x

0; 0// ⇢ πw > 0º\B1 \ πx1 � 0º for x0 2 πw > 0º\B 0
1=2

\ πx1 � 0º.
The proof now follows as in [24, Theorem 1.2].

Indeed, after a rescaling it is enough to show that if x D .x0; 0/ is at distance 1 from the
free boundary, then w.x/ D " cannot be arbitrarily small. By the Harnack inequality we know
that C�1

0 "  w  C0" in B1=2.x/, and by defining ' to be a smooth nonnegative function such
that ' D 0 in B1=4.x/ and ' D 2C0 in B1=2.x/ n B1=3.x/ we have that

v D minπw; "'º

is an admissible competitor for w in B1=2.x/.
Then Z

B1=2.x/
jrvj2 

Z

B1=2.x/
jrwj2 C C"2;

and
H

n
�
πv > 0º \ B 0

1=2.x/
�

 H
n
�
πw > 0º \ B 0

1=2.x/
�

� H
n
�
B 0

1=4.x/
�
:

Consequently, if " > 0 small enough depending only on n, we have

J
0
B1=2.x/.v/ < J

0
B1=2.x/.w/;

which is a contradiction with the minimality of w.



Engelstein, Fernández-Real and Yu, Graphical solutions for one-phase free boundaries 189

On the other hand, we also have the following result on the optimal regularity of w.

Theorem 8.2 (Optimal regularity). Let w as above with w D  on πx1 D 0º, where
 2 C 1

2 .πx1 D 0º/ and  ⌘ 0 on πy D 0º. Then w 2 C 1
2 .B1=2 \ πx1 � 0º/ with

kwk
C

1
2 .B1=2\πx1�0º/

 C
�
k k

C
1
2 .B1\πx1D0º/

C kwkL1.B1\πx1�0º/ C 1
�

for some C depending only on n.

Proof. Let us denote

Cı D k k
C

1
2 .B1\πx1D0º/

C kwkL1.B1\πx1�0º/:

Let ' be the solution to 8
<̂

:̂

Å' D 0 in B1 \ πx1 � 0º;
' D jyj 1

2 on B1 \ πx1 D 0º;
' D 1 on �B1 \ πx1 � 0º:

Then, by the regularity up to the boundary for harmonic functions with Hölder boundary data,
we have that

'.x/  Cx
1
2

1 C y
1
2  C.x2

1 C y2/
1
4 in B1=2 \ πx1 � 0º

for some C depending only on n. Since Åw � 0 (as w minimizes the energy), by comparison
principle we have that

(8.1) w.x/  CCı.x2
1 C y2/

1
4 in B1=2 \ πx1 � 0º:

Let us first show our estimate on the thin space:
Let z1; z2 2 B1=2 \ πy D 0º \ πx1 � 0º, and let us denote

ri WD dist.zi ;Ä/ D dist.zi ; Nzi /; ⇢i WD .zi /1 D dist.zi ; πx1 D 0º/ for i D 1; 2;

where Ä is the free boundary ofw on πy D 0º, and Nz1; Nz2 2 Ä are the corresponding projections
on the free boundary. Let us denote ı WD jz1 � z2j. We split into two cases:

✏ If 5 r1  ⇢1, then B4⇢1=5. Nz1/ ⇢ π0 < x1 < 2⇢1º. Since w is a minimizer in B4⇢1=5. Nz1/

with Nz1 a free boundary point, we can invoke universal C
1
2 estimates for minimizers of

the thin problem (see [52, Remark 7.10]) to get

kwk
C

1
2 .B⇢1=2

. Nz1//
 C;

and hence if ı  ⇢1=2, we get

jw.z1/ � w.z2/j  Cı
1
2 :

On the other hand, if ı � ⇢1=2 we have w.z1/  CCıı
1
2 by (8.1) and ⇢2  ⇢1 C ı  3ı,

so that
w.z2/  C⇢

1
2

2  CCıı
1
2

again by (8.1). In all cases we get jw.z1/ � w.z2/j  C.1C Cı/ı
1
2 .
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✏ If 5 r1 � ⇢1, Åw D 0 in Br1.z1/ \ πx1 � 0º with C
1
2 boundary datum on πx1 D 0º.

Combined with the fact that

w  CCır
1
2

1 in Br1.z1/ \ πx1 � 0º
by (8.1), estimates for the Laplace equation yield

kwk
C

1
2 .Br1=2

.z1/\πx1�0º/
 CCı;

and so if ı < r1=2, we are done. On the other hand, if ı � r1=2, we have w.z1/  Cı
1
2

directly from (8.1), and as above we have ⇢2  ⇢1 C ı  11ı and so w.z2/  CCıı
1
2

thanks to (8.1).

From the estimates on the thin space we obtain our desired estimate in B1=2 \ πx1 � 0º
by standard techniques using boundary estimates and the fact that we have a barrier in (8.1).
Indeed, to obtain the result in πy > 0º it is enough to show

oscBr .z/w  C.1C Cı/r
1
2 for all B2r.z/ ⇢ B1=2 \ πx1 � 0º \ πy � 0º

(see, for example, [55, Appendix A]). Now, given any z 2 B1=2 \ πx1 � 0º \ πy � 0º, let
us suppose ⇢1 WD z1  znC1 (the other case is symmetric). From the above observation, it is
enough to see that

kwk
C

1
2 .B⇢1=2

.z1//
 C.1C Cı/;

and this follows from boundary estimates for the Laplace equation together with the bar-
rier (8.1).

Finally, thanks to the previous considerations we have a second nondegeneracy-type
result:

Theorem 8.3 (Nondegeneracy in the full space near the fixed boundary). Under the
hypotheses from Theorem 8.2, let us assume, moreover, that  .x/  !.y/jyj 1

2 for some mod-
ulus of continuity !. Let Ä be the free boundary of w. Then, for any z 2 Ä \ B1=4 \ πx1 � 0º
we have

sup
Br .z/\πx1�0º

w � cr
1
2 for all r 2 .0; 1

2/;

for some c > 0 depending only on n and !.

In order to prove this estimate we first show the following lemma:

Lemma 8.4. Let u be a minimizer of the thin one-phase energy in B2Mr \ πx1 � ��º
for some M; r > 0, � � 0, such that 0 2 F.u/ and

kuk
C

1
2 .B2Mr /\πx1���º  C⇤

for some C⇤ > 0. Let us suppose, moreover, that 0  u  !.y/jyj 1
2 on πx1 D ��º for some

modulus of continuity !, and thatB 0
r.z/ ⇢ πu > 0º \ πx1 � ��º for some jzj D r . There exist

rı, ıı, and M such that if r < rı, then

sup
B 0

M r \πx1���º
u � .1C ıı/u.z/;

where the constants rı, ıı, and M depend only on n, C⇤, and !.
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Proof. The proof follows by contradiction, assuming instead that there is a sequence of
functions uk , which minimize the thin one-phase energy in B2Mkrk

\ πx1 � ��kº such that 0
is a free boundary point for uk ,

Œukç
C

1
2 .B2Mkrk

/\πx1���kº  C⇤;

0  uk  !.y/jyj 1
2 on πx1 D ��kº, B 0

rk
.zk/ ⇢ πuk > 0º \ πx1 � ��kº for some jzkj D rk ,

but
lim

k!1
1

uk.zk/
sup

B 0
Mkrk

\πx1���kº
uk D 1;

for some sequence Mk ! 1 and rk # 0.
If we define

Nuk.x/ WD uk.rkx/

r
1=2
k

;

then . Nuk/k2N are a minimizers in B2Mk
\ πx1 � ��kr

�1
k

º with 0 a free boundary point,
satisfying

Œ Nukç
C

1
2 .B2Mk

/\πx1���kr�1
k º  C⇤;

0  Nuk  !.rky/jyj 1
2 on πx1 D ��kr

�1
k

º, B 0
1. Nzk/ ⇢ π Nuk > 0º \ πx1 � ��kr

�1
k

º for some
j Nzkj D 1, and

lim
k!1

1

Nuk. Nzk/
sup

B 0
Mk

\πx1���kr�1
k º

Nuk D 1:

In particular, thanks to Lemma 8.1 there exists some universal constant c⇤ such that

Nuk. Nzk/ � c⇤ > 0:

Since Nuk.0/ D 0, the uniform estimates on the C
1
2 -seminorm inB2Mk

allows us to apply
Arzela–Ascoli to obtain that

Nuk ! u1 locally uniformly in RnC1:

Up to a subsequence, we assume Nzk ! Nz1 with j Nz1j D 1, so that B 0
1.z1/ ⇢ πu1 > 0º

(again invoking Lemma 8.1). Furthermore, Nuk. Nzk/ � c⇤ > 0, so we know that u1.0/ D 0 but
u1 6⌘ 0. Up to a subsequence, we can further assume �kr

�1
k

! �1 for some 0  �1  1,
so B 0

1. Nz1/ ⇢ πu1 > 0º \ πx1 � ��1º (again thanks to Lemma 8.1). In particular, u1 is
harmonic in πy ¤ 0º and in B 0

1. Nz1/.
Finally, we also have u1 D 0 on πx1 D ��1º and Nz1 is a global maximum for u1.

By taking the odd reflection of u1 with respect to ��1 (if �1 < 1), denoted Nu1, we have
that Nu1 is a globally defined function, harmonic in πy ¤ 0º and on πy D 0º \ π Nu1 ¤ 0º, with
a global positive maximum at Nz1. This contradicts the maximum principle for the fractional
Laplacian .�Å/ 1

2 .

Using the previous lemma, we can now prove Theorem 8.3:

Proof of Theorem 8.3. We follow the ideas of [11] (see also [24]).
Let rı, ıı, and M be given by Lemma 8.4 with ! given by the statement and C⇤ given

by Theorem 8.2. Let z 2 Ä \ B1=4 \ πx1 � 0º as in the theorem statement. Translate z to the
origin and we are in a situation where, as long as 2Mr  1

2 , we can apply Lemma 8.4 with
� D �z1.
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Let 0 < r < rı be fixed. We construct inductively starting from z0 2 Br=10 \ πw > 0º
a sequence of points .zk/k2N with zk 2 πw > 0º and rk WD dist.zk;Ä/ D dist.zk; Nzk/ such
that zkC1 2 B 0

Mrk
. Nzk/ and

u.zkC1/ � .1C ıı/u.zk/;

thanks to Lemma 8.4. Observe that

jzkC1 � zkj  .M C 1/rk

and that u.zk/ is increasing geometrically. We can do this as long as B 0
Mrk

. Nzk/ ⇢ B 0
3=4
.�z/

We denote by kı C 1 the first value of k 2 N such that zk falls outside of Br . If

rkı >
r

10.M C 1/
;

then u.zkı/ � cr
1
2

kı � c0r
1
2 by Lemma 8.1 and we are done. So we can assume that

rkı <
r

10.M C 1/

which means that jzkı j > r � .M C 1/rkı >
9r
10 . Also in this case B 0

Mrkı
. Nzkı/ ⇢ B 0

3=4
.�z/.

Using the estimates above,

u.zkı/ �
X

1ikı

.u.zi / � u.zi�1// � ıı
X

0ikı�1

u.zi /:

Now, thanks to Lemma 8.1 we know u.zi / � cr
1
2

i , and thus

u.zkı/ � ııc

.M C 1/
1
2

X

0ikı�1

jziC1 � zi j
1
2 � c0

ˇ̌
ˇ̌

X

0ikı�1

.ziC1 � zi /

ˇ̌
ˇ̌

1
2

� c00r
1
2 ;

for some c00 depending only on n and !. That is, given 0 < r < rı, we have found a point
zkı 2 Br such that u.zkı/ � c00r

1
2 for some c00. Since r was arbitrary and rı and M depend

only on n and !, we get the desired result.
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