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Abstract. We consider wave maps from R2+1 to a C1-smooth Riemannian manifold, N .
Such maps can exhibit energy concentration, and at points of concentration, it is known
that the map (suitably rescaled and translated) converges weakly to a harmonic map, known
as a bubble. We give an example of a wave map which exhibits a type of non-uniqueness of
bubbling. In particular, we exhibit a continuum of different bubbles at the origin, each of
which arise as the weak limit along a different sequence of times approaching the blow-up
time.

This is the first known example of non-uniqueness of bubbling for dispersive equations.
Our construction is inspired by the work of Peter Topping [Top04b], who demonstrated a
similar phenomena can occur in the setting of harmonic map heat flow, and our mecha-
nism of non-uniqueness is the same ‘winding’ behavior exhibited in that work.

Keywords. Soliton resolution conjecture, wave maps, non-uniqueness

1. INTRODUCTION

We consider wave maps from (1+2)-dimensional Minkowski space into a compact Rie-
mannian manifold (N , g ), which are defined formally as critical points of the Lagrangian

L (U ,@U ) = 1
2

ˆ
R1+2

¥ÆØ h@ÆU ,@ØU ig d td x,
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where ¥ is the Minkowski metric and g is the Riemannian manifold on N . In local coordi-
nates on N , wave maps are solutions u to the system

(1.1)

(
⇤ui = °i

k`(u)ruk ·ru`,

(u,@t u)
ØØ

t=0 = (u0,u1),

where °i
k` are the Christoffel symbols for N .

There is a conserved energy associated to (1.1) given by

(1.2) E (u,@t u)(t ) =
ˆ
R2

|ru|2g +|@t u|2g ¥ E (u0,u1),

whenever the right-hand side is finite. The coercivity of this energy implies that that the
Ḣ 1-norm of solutions remains bounded for all time. However, it is still possible for en-
ergy to concentrate producing “solitons" or “bubbles" in the suitably rescaled weak limit.
Bubbling is a well-studied phenomena in nonlinear evolution equations, particularly in
the parabolic setting, dating back to the work of Struwe [Str85], which built on the work of
Sacks and Uhlenbeck [SU81]. We will not attempt to do justice to the vast literature here,
particularly pertaining to parabolic flows, but we refer to [dP17] and references therein for
an overview on the history. The purpose of this paper is to provide the first example, in the
context of (1.1) where this weak limit is non-unique, see Theorem 1.7 below. In particular,
we construct a solution where, after rescaling around a particular point in space-time, dif-
ferent solitons are obtained by considering weak limits along different sequences of times.

To more precisely state our results, let us recall some background on wave maps. We
consider (1.1) for smooth, finite energy initial data belonging to a certain symmetry class
and satisfying certain quantitative higher regularity bounds; we will make these assump-
tions precise below. For such initial data, classical energy methods show that (1.1) admits a
unique smooth solution for small times, see e.g. [SS98]. When the domain is R2+1, the en-
ergy (1.2) is scale invariant, thus solutions to (1.1) can exhibit energy concentration even if
the initial data is smooth or highly symmetric, see, e.g. [KST08, RR12, RS10]. This concen-
tration can be ruled in certain cases under additional assumptions, say on the smallness
of the initial energy, see [Tao01, Tat05, Kri04], or by restricting the topology of the target,
see, e.g. [Str03a, KS12, Tao].

For general targets, Sterbenz and Tataru [ST10b] showed that inside any light cone a di-
chotomy holds: either energy does not concentrate too much, in which case solution can
be smoothly extended to the whole space with quantitative control, or the energy concen-
trates and the solution “bubbles off" a harmonic map. To state their result (in the infinite
time setting), we follow the notation in [ST10b], and fix

C[t0,t1] = {t0 … t … t1,r … t }

for the truncated light cone and

St = {(x, t ) | |x|… t }
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for the time sections of the light cone. We set

ESt =
1
2

ˆ
St

|ru|2g +|@t u|2g .

Theorem 1.1 ([ST10b, Theorem 1.5]). Let u : C[1,1) !N be a C1 wave map such that

lim
t!1

ESt [u] <1.

Then exactly one of the following possibilities must hold:

(a) There exists a sequence of points (tn , xn) 2C[1,1) and scales ∏n with

tn !1, limsup
n!1

|xn |
tn

< 1, lim
n!1

∏n

tn
= 0.

so that the rescaled sequence of maps

u(n)(t , x) = u(tn +∏n t , xn +∏n x)

converges strongly in H 1
loc to a Lorentz transform of an entire (time-independent)

harmonic map
u(1) :R2 !N

of nontrivial energy:

u(1) :R2 !N , 0 < ku(1)kḢ 1(R2) … lim
t!1

ESt [u].

(b) For each "> 0, there exists t0 > 1 and a wave map extension

u :R2 £ [t0,1) !N

with bounded energy:

E (u) … (1+"8) lim
t!1

ESt [u],

which satisfies

sup
t2[t0,1)

sup
k2Z

(kPk u(t )kL1
x +2°kkPk@t u(t )kL1

x ) … ",

where Pk are the Littlewood-Paley projections to frequency 2k .

An analogous dichotomy holds for finite time blowup, see [ST10b, Theorem 1.3].

Remark 1.2. In the previous theorem and throughout, we use Ḣ s(Rn) to denote the usual
homogeneous Sobolev space, with norm defined as

kukḢ s (Rn ) = k(°¢)s/2ukL2(Rn ).

Remark 1.3. It was observed in [ST10b] that part (b) in Theorem 1.1 implies that a certain
controlling norm for u is finite, and in [ST10a] it was proved that this implies that u con-
verges to a linear wave after applying a suitable gauge transformation. We note that this
is called scattering in the terminology of [ST10b], but is different from the usual use of that
term in nonlinear dispersive equations, see [LO16, Remark 1] for some discussion. We adopt
this terminology for brevity when referring to the behavior in part (b) of this theorem.
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Instead of working with the modified definition of scattering in [ST10a], we instead adopt
a more direct approach to demonstrate that our flow exhibits energy concentration via de-
gree considerations. We believe this approach illuminates certain features of scattering in
the current setting. This argument is inspired by arguments in [CTZ93, Str13, CKLS15b,
LO16], see Section 4 for more details.

The first case in Theorem 1.1 describes “bubbling” (a.k.a. energy concentration) to non-
constant harmonic maps. Note that the bubbling phenomenon described in Theorem 1.1
leaves open the question of whether the convergence along a discrete sequence of times
and scales can be strengthened to convergence as t !1 after rescaling, translating and
applying Lorentz transformations by some continuous functions, ∏(t ), x(t ) and ∞(t ).

To reduce the number of parameters, and to provide an example of non-uniqueness in
what we speculate is the simplest possible setting, we will impose an additional symmetry
on our solution, which will allow us to ignore translations and Lorentz transformations:

Definition 1.4. We say that a wave map u(x, t ) : R1+2 ! N is quasi-equivariant if there
exists a smooth one-parameter family of isometries, ©s 2 Isom(N ). with ©0 = IdN , such
that (using polar coordinates) one has u(r,µ+ s, t ) =©s ±u(r,µ, t ) for all r > 0, s,µ 2S1 and
t 2 [0,Tmax).

Remark 1.5. Many of Topping’s constructions for harmonic map heat flow (see, e.g. [Top04b,
Top97]) exhibit quasi-equivariant symmetries. While, Topping does not give this symmetry
a name, we introduce the term “quasi-equivariance" to stress its relation to the well-studied
notion of equivariant wave maps. In the language of Definition 1.4, if N is a surface of
rotation and©s is a rotation of N by s radians around the same axis, then u is equivariant.

We can now define uniqueness of bubbling for quasi-equivariant wave maps:

Definition 1.6. We say that a quasi-equivariant wave map, u : R1+2 ! N , has a unique
bubble at a point 0 2 R2 and time Tmax > 0 if there exists a continuous function, ∏(t ) :
[0,Tmax) ! (0,+1), with

(1.3) ∏(t ) =
(

o(Tmax ° t ) Tmax <1
o(t ) Tmax =1

such that u(t ,∏(t )x) !!(x) in C 0
loc(R2\{0};N ) for some non-trivial harmonic map! :R2 !

N .

In contrast to part (a) of Sterbenz-Tataru’s Theorem 1.1, which yields convergence to a
harmonic map along a sequence of times, the previous definition describes convergence
(after application of the relevant symmetries in the quasi-equivariant class) to a unique
harmonic map along all times. In general, it is difficult to prove that uniqueness in the
sense of Definition 1.6 fails. However, our Theorem 6.6 shows that if the convergence is
“winding" (see Definition 1.10), then the bubble is not unique.

Using this approach, our main theorem gives the first example of a bubbling solution to
a non-linear wave equation for which uniqueness in the sense of Definition 1.6 is known
not to hold.
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Theorem 1.7 (Main Theorem). There exists a compact smooth Riemannian manifold (N , g )
given by

N =T2 £ f S
2

for a certain C1(T2) warping function, f 1, and C1-smooth, finite energy, quasi-equivariant
initial data (u0,u1), which satisfy

k(u0,u1)kḢ 3£Ḣ 2 <1, E (u0,u1) < Equasi(N )+"1,

such that the corresponding solution (u,ut ) to (1.1) develops a bubble as t ! Tmax which
fails to be unique in the sense of Definition 1.6. Above, "1 > 0 is a constant which depends
only on N , and Equasi(N ) denotes the smallest energy of a non-trivial quasi-equivariant
harmonic map, ! :S2 !N .

The energy assumption above is reminiscent of work which considers wave maps with
energies slightly above the “ground state" (that is, the lowest energy of a non-trivial har-
monic map into the target manifold). We do not show that Equasi(N ) is the energy of the
ground state, but it plays that role within our considered symmetry class and we will some-
times abuse terminology and refer to it as the energy of the ground state (see Lemma 5.4
and the remark after).

Remark 1.8. A few clarifying remarks on Theorem 1.7:

• Bubbling for radially symmetric wave maps into general targets has been ruled out
under a number of different weak assumptions [Str03b, Nah13, CKL18]. Thus it is
perhaps unreasonable to expect that Theorem 1.7 could hold under stronger symme-
try assumptions on the initial data.

• The fact that f 2 C1, as opposed to analytic, allows f (p)° f (q) to vanish to arbi-
trarily high order as p ! q. Much previous work on wave maps has assumed non-
degeneracy conditions (e.g. conditions (A1)-(A3) in Section 3 of [JK17]) which rule
out this behavior.

• In addition to C1 smoothness and finite energy, we require some additional quanti-
tative regularity of the initial data. While Ḣ 1+"£ Ḣ" regularity (for any "> 0) would
suffice, we assume Ḣ 3£Ḣ 2-regularity of the initial data since the proof of local well-
posedness proceeds by classical energy methods and is simpler than the techniques
required to get the almost critical result. This additional regularity is used in Lemma
4.1.

• The proof of Theorem 1.7 actually establishes the existence of an infinite family of
quasi-equivariant initial data (u0,u1) for which the corresponding solution has non-
unique bubbling, as opposed to a specific construction of the initial data.

Remark 1.9. We do not, currently have more precise control on the rates {rn} for the bub-
bling in Theorem 1.7 than what is provided in [ST10b]. In the case of equivariant wave
maps into S2, it is remarked in [CKLS15b] that various possibilities exist, and we refer to

1Recall that if (M , g1), (N , g2) are Riemannian manifolds and f : M ! R, is positive, then the warped prod-
uct manifold, M £ f N , is a Riemannian manifold consisting of the product space M £N endowed with the
Riemannian metric g := g1 + f 2g2.
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[Jen17, Pil19] for the construction of an infinite-time blow-up in this setting. In [Top04b],
Topping establishes a lower bound on the rate of blow-up in the context of harmonic map
heat flow. A key ingredient in Topping’s proof of this lower bound is a quantitative “neck
estimate”, see [Top04b, Lemma 4.4], due to Qing and Tian [QT97], see also Lemma 2.9
in [Top04a]. While neck estimates have been recently made available for wave maps into
spheres in the work of Grinis [Gri17], those estimates are non-quantitative, and thus it re-
mains unclear how to use them to gain control on the rate of bubbling for wave maps, even
if we were to adapt them to the case of general targets.

1.1. Soliton Resolution Conjecture and Prior Work. One motivation for establishing The-
orem 1.7 stems from the large amount of recent activity in establishing the soliton res-
olution conjecture for nonlinear wave and wave map equations. The soliton resolution
conjecture posits that solutions for a broad class of nonlinear dispersive equations should
decompose asymptotically as a sum of “bubbles" and radiation. In the setting of (quasi-
)equivariant wave maps,√ :R2+1 !M , the conjecture states that if√ develops at least one
bubble at t = 1, then there exists a collection of finite energy harmonic maps, {Q j }J

j=1 :

R2 ! M , continuous scaling parameters, 0 < ∏1(t ) ø ∏2(t ) ø . . . ø ∏J (t ) ø t , and a finite
energy linear wave, ¡L , such that

(1.4) √(°, t ) =¡L(°, t )+
JX

j=1
Q j

µ °
∏ j (t )

∂
+"(t ),

where "(t ) ! 0 in the appropriate function space as t !1 (see the introduction of [Côt15,
Gri17] for a more detailed discussion of the soliton resolution conjecture for wave maps
into the sphere). In particular, (1.4) implies uniqueness in the sense of Definition 1.6 for
each of the bubbles, Q j . We note that such a description goes beyond Theorem 1.1 which,
together with uniqueness in the sense of Definition 1.6, only describes the dynamics of
energy concentration at one scale. We refer to the examples of [Jen19, JL18] which demon-
strate that such multi-scale concentration is in fact possible.

Much progress has been made on the soliton resolution conjecture a variety of settings.
Thus far, the full conjecture has been proved in the work of Duyckaerts, Kenig and Merle
[DKM13] and [DKM19] for the radial, focusing energy-critical nonlinear wave equation in
odd space dimensions, and wave maps into S2 under various symmetry and energy as-
sumptions, see, for instance, [CKLS15a, CKLS15b, DJKM18, JL18] and references therein2.
Nonetheless, in many cases the conjecture in its full strength remains open. Often, one
can show that an asymptotic decomposition in the vein of (1.4) holds along a sequence
of times tn ! Tmax, see [Côt15, JK17, DJKM17]. In these instances, the difficulty becomes
proving that the decomposition is independent of the sequence {tn}. Our main theorem,
Theorem 1.7, demonstrates that in some settings, it may be impossible to move beyond
the soliton resolution along a sequence of times to the full conjecture.

2Since this article was first posted on the arXiv, full soliton resolution for (k-)equivariant wave maps into S2

has been established in [DKMM22] and [JL21]
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We hope that our theorem may shed some light on the specific difficulties in proving
continuous time soliton resolution. Indeed, for quasi-equivariant non-linear wave equa-
tions there are two main ways in which the decomposition could depend on the sequence
of times. The first is that the bubbles can “switch places", i.e. Q j may develop at a smaller
scale than Qk along one sequence of times but at a larger scale along another sequence
of times. The second is that the bubbles, Q j , themselves could depend on the sequence
of times considered. In both cases, a careful understanding of the potential bubbles, i.e.
non-trivial harmonic maps at specified energy levels, and possible interactions between
bubbles separated in scale or in space has appeared to be a crucial ingredient in proofs
which ultimately establish uniqueness for such problems (see, e.g. [JL18, DKM19] respec-
tively).

A full understanding of the possible bubbles and their interactions is often achieved
by imposing symmetry assumptions; for example, there is one (up to rescaling) radially
symmetric stationary solution to the non-linear wave equation considered in [DKM13].
In other situations, energy constraints can rule out multi-soliton configurations, see, for
instance, [CKLS15a, CKLS15b] which establishes continuous-time soliton resolution for
equivariant wave maps into S2 with energy less than three times the energy of the lowest
energy harmonic map into the sphere, and [DJKM18] for the result without the equiv-
ariance assumption when the energy is restricted to just above the energy of the ground
state. In contrast to these cases, the target manifold in Theorem 1.7 admits a continuum
of quasi-equivariant harmonic maps! :R2 !N at the lowest admissible non-zero energy
level, and the richness of this family plays an essential role in the proof of non-uniqueness
for Theorem 1.7.

Finally, we note one further aspect of our setting which contributes to non-uniqueness,
specifically compared to the setting considered in [DJKM18]. While in both cases wave
maps with energy just above the ground state are considered, in [DJKM18] the authors
exploit the fact that for wave maps into spheres, the energy is coercive near the travel-
ing waves, which traps the wave map in increasingly small neighborhoods of the trav-
eling wave, yielding uniqueness. In contrast, while the second component of our target
manifold is the sphere, the first component has an infinite length geodesic which, us-
ing standard coordinates T2 = (w, z), wraps around the torus infinitely many times as it
approaches the circle {w = 0}. This winding behavior allows the first coordinate of the
wave map to exit a small neighborhood of a soliton infinitely many times, even though
the behavior of the second component of the map will be well controlled (i.e. the second
component may be almost constant).

1.2. Comparison with non-uniqueness in elliptic and parabolic problems. For the har-
monic map heat flow (the parabolic version of (1.1)), the analogue of the soliton resolu-
tion conjecture is also open, even when the target isS2, despite being an object of intense
study. For a small sample of this work, see [Top04a, Rup21, SW20] on questions of unique-
ness and [DdPW20, Top00] for constructions of solutions that blowup at multiple different
points simultaneously or form non-trivial bubble trees at a single point.
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In [Top04b], Topping showed that the analogue of soliton resolution cannot hold for
harmonic map heat flow without additional assumptions on the target manifold; our con-
struction is heavily inspired by that paper. In particular, our target manifold, including the
warping function, is essentially equivalent to Topping’s (more on this in Section 3). We also
use the same mechanism as Topping to ensure non-uniqueness, what he calls “winding".
Note that we record only the definition of winding as it applies in the quasi-equivariant
setting, and a more general definition would take into account translational and Lorentz
symmetries.

Definition 1.10 ([Top04b, Definition 1.12]). A quasi-equivariant wave map u : R1+2 ! M

develops a winding bubble at time Tmax and the origin 0 2 R2 if there exists sequences {∏n},
and {tn}, satisfying

(1.5) tn " Tmax, ∏n =
(

o(Tmax ° tn) Tmax <1
o(tn) Tmax =1

such that u(tn ,∏n x) !!(x) in C 0
loc(R2\{x0};M ), where ! is a non-constant harmonic map,

the lifts û(tn ,∏n x) have no convergent subsequence in C 0
loc(R2\{x0}; cM ) (here and through-

out, cM is the universal cover of M ).

Despite the similarities in set-up, the execution of our proof differs substantially from
Topping’s. This is due to fundamental differences between the parabolic and Hamiltonian
settings, even at the level of ODEs, which we had to overcome. To elucidate these issues,
we elaborate here on two examples.

For analytic functions, f , bounded gradient flows, ẋ(t ) =°r f (x(t )), have a unique limit
as t ! 1, due to the Łojasiewicz inequalities [Łoj65]. It is a beautiful observation of L.
Simon [Sim83] that this fact about ODEs can be applied to study the long time behavior
of the gradient flows of many elliptic functionals which arise naturally in geometry. These
“Łojasiewicz-Simon" inequalities have found subsequent use in a huge range of geomet-
ric and variational problems. For example, to prove uniqueness of tangent objects for
variational problems (e.g. minimal surfaces, [Sim83] and mean curvature flow [CM15])
and to show the uniqueness of long time limits of geometric flows (e.g. Yamabe flows
[Bre05], harmonic map heat flow [FM19]). However, this phenomena does not hold in the
Hamiltonian setting. Indeed, if f (x1, x2) = 1

2 (x2
1 + x2

2) then the equation ẍ(t ) = °r f (x(t ))
becomes ẍ(t ) =°x(t ). One solution to this ODE is the bounded flow x(t ) = (cos(t ),sin(t )),
which clearly does not have a unique limit as x(t ) !1.

When f is not analytic, but is C1, then the classic “goat tracks" example

(1.6) f (r,µ) =
(

1 r … 1,

1+e° 1
r°1

°
sin( 1

r°1 +µ)+2
¢

r > 1,

generates a gradient flow ẋ(t ) = °r f (x(t )) which is bounded but doesn’t have a unique
limit as t !1, in fact, every point on the circle r = 1 is a limit point. This example is at
the heart of Topping’s construction [Top04b] (see also the examples of non-uniqueness
for singularities of harmonic maps, [Whi92], and the long term behavior of harmonic map
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heat flow, [Top97]). In contrast, the corresponding flow given by ẍ(t ) =°r f (x(t )) cannot
exhibit the same asymptotic behavior as the gradient flow does. The Hamiltonian flow
stays bounded as long as |x(0)| is close to one and ẋ(0) is small enough, however, by work-
ing in polar coordinates, one can see that if |x(t )| ! 1 as t ! 1 it must also be the case
that |ẋ(t )|! 0 as t !1. This would violate the conservation of the energy, |ẋ|2(t )+ f (x(t ))
(provided ẋ(0) 6= 0).

As these examples show, one needs caution when using long-term behavior of non-
linear parabolic flows to provide insight into the Hamiltonian setting. On a practical level,
while energy conservation provides some control for Hamiltonian flows, it is not a sub-
stitute for the maximum principle and energy dissipation, which hold in the parabolic
setting. For example, as in [Top04b] we show that the image of the flow is contained in a
geodesic in the target manifold, see Lemma 4.1. However, we are faced with the additional
difficulty of showing that the flow cannot leave this geodesic before the blow-up time. We
note that this issue is not present in the parabolic setting, where stationary solutions act
as a barrier to constrain the flow. Additionally, energy dissipation allows Topping to de-
termine that his flow blows up in finite time via topological considerations and Lemaire’s
theorem. On the other hand, we must leave open the possibility that the winding singu-
larity may occur at either finite or infinite time (we speculate either situation can occur).

Nonetheless, we believe that our proof exhibits, morally, a phenomenon exploited in
work of Grinis [Gri17] (and observed earlier in work of [CTZ93, ST10b, ST10a]): that non-
linear wave equations start to exhibit elliptic behavior in the (strict) interior of a light-cone
in which energy is concentrating.

1.3. Structure of the Paper. Here we briefly outline the structure of the paper. In Sec-
tion 2 we record some preliminaries about wave maps and harmonic maps into general
Riemannian manifolds.

In Section 3 we construct the target manifold N from Theorem 1.7. This follows much
as in [Top04b, Section 3], with additional complications caused by the fact that we are
unable to use the maximum principle to constrain the image of the flow. We overcome
this difficulty by working with a compact target manifold and carefully defining our metric
twist globally on T2.

In Section 4 we establish some preliminary results on the Hamiltonian flow. In subsec-
tion 4.1 we also rule out “scattering" to a solution of the underlying linear wave equation.
In [Top04b] the analogous parabolic phenomena, relaxation to a stationary solution, can
be quickly ruled out using topology. The wave map setting requires a more involved esti-
mate of the energy flux through the wall of the light cone.

In Section 5 we study the harmonic maps into N which can arise as bubbles in the flow.
Here the analysis is complicated by the fact that the metric twist had to be defined globally
on T2. In particular, we use energy arguments to rule out bubbles which wrap “the wrong
way" around the T2 component, see Lemma 5.4.

Finally, in Section 6 we establish properties of the bubbling, in particular winding, prov-
ing Theorem 1.7.
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2. PRELIMINARIES FOR WAVE MAPS AND HARMONIC MAPS

In this section we collect some basic facts about the regularity of (quasi-equivariant)
wave maps and harmonic maps. As mentioned in the introduction, we will consider wave
maps

u :R1+2 !T2 £ f S
2 ¥N

for a certain C1(T2) warping function, f . Using polar coordinates in the domain of u, and
coordinates (x, y,Æ,µ) in the target,3 we suppose that the initial condition has the form

(2.1) u0(r,µ) = (0, y0,Æ0(r ),µ), u1(r,µ) = (0, y1(r ),Æ1(r ),0).

We will rely on the following local existence and persistence of regularity result, which
follows via energy estimates and holds for wave maps in general. Note too that the optimal
local theory is known, see for instance [KS97].

Proposition 2.1 (Classical local existence and persistence of regularity). Let s0 > 1 and let
(u0,u1) 2 Ḣ s0+1£ Ḣ s0 . There exists a Tmax ¥ Tmax(u) > 0 such that for every T < Tmax, there
exists a unique solution

u : [0,T ]£R1+2 !N

of (1.1) such that

sup
0<t…T

ku(t )kḢ s0+1 <1.(2.2)

Moreover, if (u0,u1) 2 H s+1 £H s for any s > s0, then

sup
0<t…T

ku(t )kḢ s+1 <1.

The uniqueness conclusion of Proposition 2.1 implies that the wave map retains rota-
tional and quasi-equivarient symmetry. Therefore, the solution will have the form

u(t ,r,µ) = (X (t ,r ),Y (t ,r ),Æ(t ,r ),µ).(2.3)

3Æ is the polar angle and runs from 0 to º, µ is the azimuth angle which runs from 0 to 2º. We define the x, y
coordinates on T2 through a change of variables in (3.1).
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In the coordinates of (2.3), the energy has the form

(2.4) E (t ) = 2º
ˆ 1

0

µ
1
2
|r(X ,Y )|2 + 1

2
|@t (X ,Y )|2 + f (X ,Y )e(Æ)

∂
r dr,

where e(Æ) is the “spherical" part of the energy

e(Æ) := 1
2

∑µ
@Æ

@r

∂2

+
µ
@Æ

@t

∂2

+ sin2Æ

r 2

∏
.

If the initial conditions (2.1) have finite energy, E (u0,u1) <1, then E (t ) ¥ E (u0,u1) for
all t < Tmax. Furthermore, if u bubbles to ! at Tmax in the sense of Theorem 1.1 or the
analogous finite time result, then as stated in case (a) of that theorem,

´
|D!|2 … E (u0,u1).

In order to satisfy ˆ 1

0
f (X ,Y )e(Æ)r dr <1

for all t it must be the case that Æ(t ,0) = mº and Æ(t ,1) = nº for all t 2 Imax(u) for some
integers n,m. That the integers must be constant for all t follows from the continuity in
time of the flow. We will take m = 0 in the sequel, and we define the degree of the wave
map to be the integer n.

2.1. Regularity for Weakly Harmonic Maps from R2
. Let (M , g ) be a closed smooth Rie-

mannian manifold. Throughout we will assume that M is smoothly embedded into Rn .
Weakly harmonic maps! :R2 !M ΩRn are critical points of the energy E(u) ¥

´
R2 |Du|2g

under perturbations of the form u"(x) = º(u +"'(x)) where º is the nearest point projec-
tion of Rn onto M , which is well defined and smooth in a small neighborhood of M , and
' 2C 1

c (R2;Rn).
Equivalently, these maps (weakly) satisfy the semi-linear PDE:

°¢!+ A(!)(r!,r!) = 0

where A(!) is the second fundamental form of M . In general, weakly harmonic maps
need not be continuous (see, e.g. [Riv95]), but when the domain is two-dimensional all
weakly harmonic maps are C1 by the fundamental result of [Hél91]. As such, we will refer
to weakly harmonic maps from R2 as simply harmonic maps. Finally, if ! : R2 ! M is
harmonic, then (composing with a stereographic projection) we get a harmonic map e! :
S2\{1} !M , which we can smoothly extend to all of S2 by the work of Sachs-Uhlenbeck
[SU81]. We will often abuse notation and identify the harmonic maps !, e!.

Our first theorem quantifies the regularity of two-dimensional harmonic maps (the pre-
cise statement for non-minimizing maps on R2 is hard to track down. However, one can
argue as in [SU82] or consider the stationary case of the parabolic regularity proven in
[Str88]):

Theorem 2.2. Let! :R2 !M be a harmonic map. There exists an "̄> 0 small, and depend-
ing on M , such that if

(2.5)
ˆ

BR (x0)
|D!|2 … "̄,



12 M. Engelstein, & D. Mendelson

then,

(2.6) R2 sup
BR/2(x0)

|D!|2 …C
ˆ

BR (x0)
|D!|2d x,

where C > 0 depends on N but not on x0,R or !. Equivalently, given the small energy
condition (2.5)

(2.7) sup
x,y2BR/2(x0)

dM (!(x),!(y)) …C
µˆ

BR (x0)
|D!|2d x

∂1/2

,

where dM (p, q) is the geodesic distance between p, q 2M and C > 0 is as above.

There are two standard corollaries of Theorem 2.2 which will be important to us. The
first states that there is a least energy non-trivial harmonic map into any target.

Corollary 2.3. For any weakly harmonic map ! :R2 !M , one of following two hold:

• E (!) ¥
´
R2 |D!|2 = 0 and ! is almost everywhere equal to a constant p 2M .

• E (!)   "̄> 0, where "̄ is the constant from Theorem 2.2

The second corollary states that the shortest path between two points in the image of a
harmonic map cannot have infinite length:

Lemma 2.4. Let ! : R2 ! M be a weakly harmonic map. There cannot be two points
p1, p2 2 Im! such that the shortest path between the two points in N has infinite length.

Proof. Let x, y 2R2 and let Lx,y be the line segment connecting the two. Let E be the energy
of the harmonic map. Since ! 2C1(R2), for all z 2 Lx,y there exists an rz > 0 such thatˆ

Brz (z)
|D!|2 < "̄.

By compactness there are finitely many zi 2 Lx,y such that

Lx,y Ω
M[

i=1
Brzi

(zi ).

Using the oscillation estimate (2.7), we have that dM (!(x),!(y)) …C M
p
"̄<1. ⇤

We end this section with some elementary facts about harmonic maps ! :S2 !S2.

Lemma 2.5. Let ! be a harmonic map S2 ! S2. Let ES2 denote the lowest energy level
of a non-trivial harmonic map between spheres, which is guaranteed to exist by Corollary
2.3. There is a unique (up to a conformal transformation ofS2) equivariant harmonic map
!(r,µ) = (Æ(r ),µ) such that E (!) = ES2 . Furthermore, if ! is equivariant and E (!) > ES2

then it must be that E (!)   2ES2 .

3. CONSTRUCTION OF THE TARGET

We now construct the target manifold N using a modification of Topping’s construction
in [Top04b]. Recall that we will construct N as a twisted product of the torus T2 with S2,
i.e.

N =T2 £ f S
2,
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where f 2 C1(T2) denotes the warping function. We introduce coordinates (w, z) on T2

where w, z 2 [0,1] ª=S1. From here on, we will refer to M when our theorems apply to arbi-
trary target manifolds and N when the target is the manifold constructed in this section.

We define the curve

∞(s) =
µ

1
º

cot°1(s), s mod 1
∂

, s 2 (°1,1),

where inverse cotangent is defined so that cot°1(s) : (°1,1) ! (0,º). Observe that cot°1

is C1 with uniform control on all derivatives in any [°K ,K ] Ω (°1,1). We want to define
a metric on T2 such that ∞ is a geodesic. We claim that

h(w, z) =
µ

º2 ºsin(ºw)2

ºsin(ºw)2 1+ sin(ºw)4

∂

gives such a metric. To see that this is the case, and to simplify our analysis of the wave
maps equation, it will be useful to make the following coordinate change:

(3.1) © : (w, z) 7! (x, y) = (cot(ºw)° z, z), D©=
√ °º

sin2(ºw)
°1

0 1

!

We note that D© is well defined and invertible away from w = 0 ¥ 1, and we will show in
Lemma 4.1 that when t < Tmax the flow stays away from this curve, hence the change of
variables remains valid up until the first blow-up time. We further note that © respects
the symmetry of T2 given by w ª= w + 1 and that the image of © will have the symmetry
(x, y) ª= (x +1, y °1), and thus will be a cylinder. We shouldn’t expect the image of © to be
a topological torus as© is not well defined at w = 0,1.

In the (x, y) coordinates
∞(s) = (0, s), s 2 (°1,1)

and the pushforward of the metric, h, is given by

h(x, y) =
√

1
(1+(x+y)2)2 0

0 1

!
.

It is now straightforward to compute that ∞ is a geodesic. As a check, we observe that
(x, y) ª= (x +1, y °1) is an isometry of Im© equipped with the metric h.

We now turn to the construction of the warping function f (w, z). Here we face a techni-
cal difficulty not present in [Top04b] which is our inability to constrain the flow using the
maximum principle. Thus we need to carefully define the warping function on all of N

and not just in a neighborhood of w = 0. We do this by means of a smooth cutoff function,
the existence of which is guaranteed by the following lemma.

Lemma 3.1. There exists a C1 bump function ¬ :T2 ! [0,1] with the following properties:

(3.2)

8
>><
>>:

¬¥ 1 w 2 [0,1/4][ [3/4,1]

¬¥ 0 w 2 [7/16,9/16]

r¬|∞ “ ∞̇ w 2 (1/4,3/4).
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Proof. We provide only a sketch of this proof. To ease notation, let X = {(w, z) | w 2 (1/4,3/4)} Ω
T2. To define the cut-off function ¬, we smoothly connect a cut-off defined in a neighbor-
hood of the geodesic∞, with another depending only on w outside this neighborhood. The
latter construction is simpler, so we only describe the former. Let ∞± = {p 2T2 | dist(p,∞) <
±}. Inside of X , ∞ is parameterized by a C1 function with uniform bounds on all the deriva-
tives, therefore, there exists a ±0 > 0 such that we can smoothly parameterize ∞±0 by (t ,n)
where the t coordinates are parallel to∞ and the n coordinates are normal to∞. In X\∞±0/2,
we define ¬ to depend only on t (working in t ,n coordinates) and to C1 interpolate be-
tween 0 and 1 so that the first two conditions of (3.2) hold. ⇤

With ¬ defined we can now define the metric twist f̃ in a neighborhood of w = 0 ª= 1:

f̃ (w, z) ¥ e°2ºcot(ºw)
≥
sin2º

°
cot(ºw)° z °1/8

¢
+
p

2
¥
+1,

and then globally define the twist by

(3.3) f (w, z) =

8
>>>>>>><
>>>>>>>:

1 w = 0

f̃ (w, z) 0 < w … 1/4

¬(w, z) f̃ (w, z)+ (1°¬(w, z))M 1/4 < w … 1/2

¬(w, z) f̃ (1°w,1° z)+ (1°¬(w, z))M 1/2 < w … 3/4

f̃ (1°w,1° z) 3/2 < w < 1

where M > 1 is a constant to be chosen later. Note that f is C1 away from w = 0,1 (as
it is the sum of products of C1 functions). At w = 0 we observe that f̃ ° 1 vanishes to
infinite order and similarly f̃ (1°w,1° z) at w = 1. Thus f 2 C1(T2), and furthermore, f
is invariant under the isometries of the space, i.e. (w, z) ª= (w +n, z +m) for (n,m) 2Z£Z.

In (x, y) coordinates, we have

f̃ (x, y) = e°2º(x+y)
≥
sin2º

°
x °1/8

¢
+
p

2
¥
+1.

It is a straightforward calculation to see the following properties of f :

(i) @x f̃ (0, y) = 0
(ii) @y f̃ (0, y) < 0.

Combined with what we know about ¬, this implies that r f |∞ is parallel to ∞ in all of
T2\{w = 0}, allowing for the fact that r f is zero away from the support of ¬.

We can define f globally in (x, y) coordinates by

(3.4) f (x, y) =

8
>>>><
>>>>:

f̃ (°x,°y) x + y <°cot°1(º/4)

¬(x, y) f̃ (°x,°y)+ (1°¬(x, y))M x + y 2 [°cot°1(º/4),0)

¬(x, y) f̃ (x, y)+ (1°¬(x, y))M x + y 2 [0,cot°1(º/4))

f̃ (x, y) x + y > cot°1(º/4)

Furthermore, by picking M > 2supT2 f̃ we can guarantee that

sgn(y)@y f (0, y) … 0 with equality if and only if f ¥ M
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(i.e. y › supp¬). This can be seen through a chain rule computation and the fact that
@y f̃ (0, y) < 0.

We end this section by summarizing the properties of f and N which are important to
us.

Lemma 3.2 (Properties of the target Manifold). The function f , manifold N = T2 £ f S
2

and curve ∞, described above, have the following properties:

(1) f 2C1(T2) and f   1 always with f = 1 iff w = 0.
(2) The curve ∞(s) : (°1,1) !T2 is a geodesic with the following properties:

(a) For any s 2R, `(∞((°1, s)) =1= `(∞((s,1))).
(b) sgn(s) d

d s f (∞(s)) > 0 except in a neighborhood of 0, in which f ¥ M ¿ 1
(c) {w = 0} Ω ∞((°1,1)) but {w = 0}\∞(°1,1) =;.
(d) For any s 2R, r f (∞(s)) “ ∞0(s).

Let us quickly comment on some of these conditions:

Remark 3.3. It is not so important that f ,N satisfy the conditions 1, 2c precisely. The argu-
ments here work for any f which is globally bounded away from zero and which achieves its
minimum on a topological circle that is in the closure of (but does not intersect) a geodesic
∞. These facts will help us control the image of possible bubbles; cf. Lemma 5.4.

Second, conditions 2a,2b 2d imply that the gradient flow generated by f starting at a
point along the curve ∞ will be bounded but will not have a unique limit as t !1. Rather,
each point in {w = 0} will be an accumulation point of the flow. As we mentioned in Section
1.2, this property would not possible if f were analytic.

4. ANALYSIS OF THE HAMILTONIAN FLOW

We now turn to the setting of wave maps into N . Our first result of this section estab-
lishes that for wave maps with initial conditions of the form (2.1), the flow stays inside
Im∞£ f S

2 for all t < Tmax(u). Throughout this section, we will denote by P1 and P2 the
projection of N onto its two-dimensional components:

P1 : N !T2, P2 : N !S2.

Lemma 4.1. Let u : R2+1 ! N be a wave map with initial conditions (2.1), which also
satisfy k(u0,u1)kḢ 3£Ḣ 2 <1. Then for all t < Tmax(u), using the notation of (2.3), X (t , ·) ¥ 0,
and

°1< Y (t , ·) <1.(4.1)

Proof. We prove that as long as the initial conditions lay in ∞£T∞we have X (t ,r ) ¥ 0. This
follows from the fact that ∞£S2 lies totally geodesically within N (cf. [Top04b] Section
3), and then the classical fact that wave maps with initial conditions in totally geodesic
submanifolds stay in that submanifold.

Let us briefly sketch how this works: ∞ is a geodesic in T2 which implies that the image
of (¢T2 )|∞ is contained in T∞ Ω TT2. The first component of the wave map satisfies the
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equation
@2

t t P1 ±u =°¢T2 P1 ±u °r f (P1 ±u)e(Æ).

Since r f (P1 ±u) and ¢T2 P1 ±u lie tangent to ∞, the flow stays in ∞ for the whole time of
existence.

Finally, to obtain boundedness of Y , we note that by assumption (0, y0) 2 ∞, so, to fix
notation, suppose that s0 2R is such that ∞(s0) = (0, y0). Note that

`
°
∞
°
(s0,1)

¢¢
=1= `

°
∞
°
(°1, s0)

¢¢
, 8s0 2 (°1,1),

so we will conclude by establishing that the image of a finite energy wave map with Ḣ 3£Ḣ 2

bounds cannot contain an infinite length path, which will establish that |Y (·, t )| <1 for
all t < Tmax proving (4.1). This is where we rely on the persistence of regularity result from
Proposition 2.1. We note again that Ḣ 1+£ Ḣ 0+ bounds would suffice for this argument.

For any r0 > 0 and r1,r2 > r0, letting b = (0,Y (t ,r2)) and a = (0,Y (t ,r1)) and abusing
notation so that (a,b) refers to the portion of ∞ connecting these two points, we have

`(a,b) …
ˆ r2

r1

|DY |dr … E (u)
1
r0

,

Hence for any given time, the only point in the domain at which Y (t ,r ) can be infinite is
r = 0. However, for p > 2 and for any r1 … 1, letting c = Y (t ,r1) and d = Y (t ,0), we further
have that

`(c,d) …
µˆ r1

0
|DY |p r dr

∂1/p

…
µˆ 1

0
|DY |2r dr

∂1°µ µˆ 1

0
|D3Y |2r dr

∂µ

…C
°
t ,k(u0,u1)kḢ 3£Ḣ 2 ,E (u0,u1)

¢
,

where the first inequality is an application of Hölder and the second inequality holds for

some 0 < µ ¥
1° 2

p

2 < 1 by Gagliardo-Nirenberg. Hence Y (t ,0) cannot pass through {±1}.
⇤

4.1. Energy Concentration at Tmax =1. In this subsection we assume that Tmax = +1.
We want to show that scattering (i.e. outcome (b) in Theorem 1.1) cannot occur unless the
wave map is degree zero.

We begin by rewriting the system of equations for Y and Æ, which, in light of Lemma
4.1, is given by

@2Y
@t 2 = @2Y

@r 2 + 1
r
@Y
@r

° @ f
@y

(0,Y )e(Æ), (Y ,Yt )
ØØ

t=0 = (y0, y1),

@2Æ

@t 2 = @2Æ

@r 2 + 1
r
@Æ

@r
° sin(2Æ)

2r 2 + 1
f (0,Y )

@ f
@y

(0,Y )
@Y
@r

@Æ

@r
, (Æ,Æt )

ØØ
t=0 = (Æ0,Æ1).

(4.2)

We plan on showing that energy concentrates inside the light cone |x| < t as t ! 1
(i.e. that outcome (a) of Theorem 1.1 holds). We start by observing that the norms of
derivatives of quasi-equivariant functions have radial symmetry:

Proposition 4.2. Let u :R1+2 ! (M , g ) be a quasi-equivariant wave map, then |rxu|g , |rt u|g
and hrxu,rt uig are all radially symmetric functions.
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Proof. Recall that u(r,µ+ s, t ) =©s ±u(r,µ, t ) for ©s 2 Isom(M ). In particular this implies
that D©s satisfies

hD©s v,D©s wig (©s (p)) = hv, wig (p) , 8p 2M , v, w 2 TpM .

We can then compute,

hrxu(r,µ+ s, t ),rt u(r,µ+ s, t )ig =hD©srxu(r,µ, t ),D©srt u(r,µ, t )ig

=hrxu(r,µ, t ),rt u(r,µ, t )ig .

The same argument applies for |rxu|g , |rt u|g . ⇤
We also record a standard Hölder regularity estimate for quasi-equivariant wave maps.

Note that we abuse notation and use | · | to denote the distance within the manifold.

Lemma 4.3. Let u :R1+2 !M be a quasi-equivariant finite energy wave map into a smooth
manifolds M and {©s}s2S1 the associated smoothly parameterized one parameter family of
isometries (see Definition 1.4). Then, for any r0 > 0 there exists

C ¥C (E (u0,u1),r0, sup
s2S1

k@s©skC1(T M )) > 0

such that for any t 2R,µ1,µ2 2S1 and any r, s 2Rwith r0 < r, s we have

|u(t ,r,µ1)°u(t , s,µ2)|…C
°
|r ° s|1/2 +|µ1 °µ2|

¢
.

Proof. First, fix r > 0. For any ¡,µ 2S1, t 2Rwe have

|u(t ,r,µ)°u(t ,r,¡)| = |u(t ,r,µ)°©¡°µ(u(t ,r,µ))| < kId°©¡°µkC1(M ) <C |¡°µ|.(4.3)

Note, a similar argument shows that for r, s, t > 0 |u(t ,r,µ)°u(t , s,µ)| is independent of µ.
Fix µ 2S1, s > r > r0 > 0. Then, by Hölder’s inequality,

|u(t ,r,µ)°u(t , s,µ)|2 = 1
2º

ˆ 2º

0

µˆ s

r
@r u(t ,r 0,µ)dr 0

∂2

dµ(4.4)

…
µ

1
2º

ˆ 2º

0

ˆ s

r
|@r u(t ,r 0,µ)|2r 0dr 0dµ

∂ |r ° s|
r0

.(4.5)

Putting (4.3) and (4.4) together, the conclusion follows. ⇤
For 0 < T <1 and define, for any A   0

(4.6) Flux(u,T, A) :=
ˆ

r=T°A
|rxu(r,µ,T )+rt u(r,µ,T )|2g dæ(µ).

As suggested by its name, the flux measures the energy entering the (translated inwards
by A) light cone at time T . We can see this in the following energy identity:

(4.7)
ˆ
|x|<T1°A

|rx,t u(x,T1)|2g d x °
ˆ
|x|<T2°A

|rx,t u(x,T2)|2g d x =
ˆ T1

T2

Flux(u, t , A)d t .

It follows from (4.7) that

T 7!
ˆ
|x|<T°A

|rx,t u(x,T )|2g d x
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is monotone increasing for any A   0. Since the integral is monotone increasing in T and
bounded by E(u0,u1), it follows that

lim
T!1

ˆ
r<T°A

|rx,t u(x,T )|2g d x

exists and, therefore,

(4.8) lim
T "1

Flux(u,T, A) = 0.

Our next proposition shows that the energy in a linear neighborhood of the boundary
of the light cone still goes to zero in infinite time; this observation was first made in the
setting of radial wave maps, c.f. [CTZ93], see also Proposition 2.1 in [CKLS15b] and Lemma
4.1 in [Str13].

Proposition 4.4. Let u be finite energy quasi-equivariant wave map, with Tmax =+1. Then
for any ∏ 2 (0,1) we have

(4.9)
ˆ
∏T<|x|<T°A

|rxu(x,T )|2g +|rt u(x,T )|2g d x ! 0 as T, A !1 for A … (1°∏)T .

Proof. We follow the notation from [Str13], see also [SS98]. Let

e := 1
2

≥
|rxu|2g +|rt u|2g

¥
, m := hrxu,rt ui , L := 1

2

≥
|rxu|2g ° |rt u|2g

¥
.

From these we have the algebraic relations,

(4.10)
@t (r e)°@r (r m) =0

@t (r m)°@r (r e) =L.

Note that these identities follow from the wave map equation (1.1) and Proposition 4.2,
which, in this context, implies that @r e = @xe and similarly with m.

It will be convenient to reparameterize (t ,r ) space by the coordinates ª= t ° r and ¥=
t + r . We also introduce the quantities A 2 = r (e +m) and B2 = r (e °m). Then @ªA 2 = L =
°@¥B2. From this equation and the algebraic observation that 8r 2(e2 °m2)   L2, we see
that

(4.11)
|@ªA 2|…C

r
B

|@¥B2|…C
r

A .

Let Q denote the quadrilateral in (ª,¥) space with vertices

((1°∏)T, (1+∏)T ), (A,2T ° A), (A,2s ° (1°∏)T ), ((1°∏)T,2s ° (1°∏)T )

where s ¿ T > 0, see Figure 1 (the ordering above is the order of the vertices in the Figure,
starting from the lower left and moving counter-clockwise).
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R
=
�t

R
=
t�

A

R
=
t

Q

I

FIGURE 1. The quadrilateral Q

By (4.10) the vector (r e,°r m) is divergence free, so we can conclude

(4.12)

0 =
ˆ
@Q

(r e,°r m) · n̂

=°
ˆ T°A

∏T
er dr

| {z }
I

°
ˆ 2s°(1°∏)T

2T°A
A 2(A,¥0)d¥0

| {z }
I I

+
ˆ (1°∏)T

A
B2(ª0,2s ° (1°∏)T )dª0

| {z }
I I I

°
ˆ 2s°(1°∏)T

(1+∏)T
A 2((1°∏)T,¥0)d¥0

| {z }
IV

.

The terms I ° IV correspond to integrating along the sides of the quadrilateral Q in Figure
1, beginning at I and moving counter-clockwise.

In (4.12), integral I is exactly the one we want to show goes to zero as T, A go to infinity,
and hence we have

|I |… |I I |+ |I I I |+ |IV |.
We will handle each term on the right separately. Note that

I I …
ˆ 1

T
Flux(u, t , A)d t ,

and hence letting T "1, (4.7) implies that I I goes to zero.
For the next terms, we introduce some notation: let

E∏(ª) =
ˆ 1

1+∏
1°∏ª

A 2(ª,¥0)d¥0.
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FIGURE 2. The shaded region is created by taking a lightcone with vertex
(0, a), removing the lightcone with vertex (0,b) and intersecting that region
with the backwards lightcone with vertex (0,¥0)

Now we handle term III. Integrating between two light cones, i.e. the shaded region in
Figure 2, we see thatˆ b

a
B2(ª0,¥0)dª0 =

ˆ ¥0

a
A 2(a,¥0)d¥0 °

ˆ ¥0

b
A 2(b,¥0)d¥0.

Define

F (a,b) = lim
¥!1

ˆ b

a
B2(ª0,¥)dª0,

and note that the limit in this definition exists since

F (a,b) = E0(a)°E0(b).(4.13)

The identity (4.13) also implies that E0(°) is a decreasing function since F (a,b)   0. There-
fore, since F (a,b) … E0(a) < E (u0,u1), we can define

F (a) ¥ lim
b!1

F (a,b).

Now, noting that
I I I …F (A),

we need to establish the limit of the right-hand side is zero. But since we know that E0(°)
is decreasing and non-negative, limb!1E0(b) exists, and, consequently, lima!1F (a) = 0,
which concludes the proof for term I I I .

Finally, it is clear that IV … E∏((1°∏)T ), and hence we are done if we can show that

(4.14) lim
T "1

E∏((1°∏)T ) = 0.

Here we argue exactly as in [CTZ93, Lemma 1]. While that lemma is written in the setting
of radially symmetric wave maps (with arbitrary target), we note that all the relevant quan-
tities in our setting are radial by Proposition 4.2. Therefore, (4.14) holds and the proof is
complete. ⇤
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We can then quickly conclude that the kinetic energy of a quasi-equivariant wave map
vanishes inside of the light cone (this corresponds to Corollary 2.2 in [CKLS15b]):

Corollary 4.5. Let u be a finite energy quasi-equivariant wave map with Tmax =1. Then

(4.15) lim
A!1

limsup
T!1

1
T

ˆ T

A

ˆ t°A

0
|@t u|2(r, t )r dr d t = 0.

Proof. From (4.10), it follows that

@t (r 2m) = @r (r 2e)° r |@t u|2g .

The proof then follows as in [CKLS15b, Corollary 2.2]. ⇤

Now we narrow our focus to solutions to the system (4.2). We aim to prove the following:

Proposition 4.6. For wave maps, u, given by (4.2), scattering cannot occur when Æ is not of
degree zero. In particular, if Tmax(u) =+1 then there exists tn "1 and ∏(tn) ø tn such that
u(tn +∏n t ,∏(tn)r ) !! in H 1

loc, where ! :R2 !N is a non-trivial harmonic map.

Our arguments will follow very closely those in [CKLS15b, Sections 2 and 3], where an
analogous proposition is proven for equivariant wave maps into spheres, see [CKLS15b,
Theorem 3.2]. The Æ component of our wave map is not equivariant wave map itself (it
satisfies a different equation), however, we will be able to use, essentially unchanged, any
arguments in [CKLS15b] which are purely energy theoretic, since E(Æ) … E(u).

The first step is to show that the Æ component converges to a constant when r   ∏t .
Here we can argue exactly as in [CKLS15b] with our Proposition 4.4 and Corollary 4.5 tak-
ing the place of [CKLS15b, Proposition 2.1 and Corollary 2.2].

Corollary 4.7 (Cf. [CKLS15b, Corollary 2.3]). Let∏> 0 and u = (Y ,Æ) be a finite energy wave
map which solves the system (4.2). Then Æ(1, t ) := limr!1Æ(r, t ) exists and, furthermore,

lim
t"1

kÆ(r, t )°Æ(1, t )kL1(r ∏t ) = 0.

From Corollary 4.7 we can construct our sequence ∏(tn):

Lemma 4.8. Let u = (Y ,Æ) be a finite energy wave map which solves (4.2). Further assume
that Æ is not of zero degree. For each t > T0, let ∏(t ) be such that

(4.16) 1 … 2º
ˆ 2∏(t )

0
e(r, t )r dr … 2,

then ∏(t ) ø t .

We first note that if Æ has degree not equal to zero then E(u) > ES2 = 2º. So, by continu-
ity of the energy, there exist ∏(t ) which satisfy (4.16).
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Proof. Imagine that there are tn "1 and a ∏> 0 such that ∏(tn) >∏tn . It would then follow
thatˆ 2∏(tn )

0
e(r, tn)r dr  

ˆ ∏tn

0
e(r, tn)r dr  

ˆ ∏tn

0

µ
(@rÆ)2 + sin2(Æ)

2r 2

∂
r dr

 
ˆ ∏tn

0
|@rÆ| |sin(Æ)|dr  

ˆ Æ(∏tn )

0
sin(Ω)dΩ

Corollary 4.7!
ˆ º

0
sin(Ω)dΩ = 2.

This contradicts the defintion of ∏(t ) (i.e. (4.16)). As such ∏(tn) ø ∏tn for any tn "1 and
∏> 0. ⇤

We can now finish just as in the proof of [CKLS15b, Theorem 3.2], we sketch the argu-
ment below:

Sketch of Proof of Proposition 4.6. Let∏(t ) be defined as in Lemma 4.8 and let A(t ) be such
that A(t ) !1 as t !1but also∏(t ) … A(t ) ø t . Arguing from Corollary 4.5 (see [CKLS15b,
Lemma 3.3]) there exists tn "1 and ∏n :=∏(tn), An := A(tn) such that

lim
n!1

1
∏n

ˆ tn+∏n

tn

ˆ t°An

0
|@t u|2r dr d t = 0.

Rescaling so that un(x, t ) = u(∏n x,∏n t + tn) gives that

(4.17)
ˆ 1

0

ˆ rn

0
|@t un |2g r dr d t ! 0,

where rn = (tn ° An)/∏n !1.
This scaling also preserves the energy. Thus the un * u1 in Ḣ 1

loc. Furthermore, u1 is
time independent by (4.17) and therefore is a finite energy harmonic map, which can be
assumed to be smooth and globally defined by the work of [Hél91] and [SU81]. We now
want to show that this convergence is strong, which also implies that u1 is non-trivial by
(4.16).

Away from 0, we may assume the sequence converges locally uniformly by local uniform
Hölder continuity of Lemma 4.3. Near 0 we use (4.16) to see that un(B1(0)) is contained
in a coordinate chart in N (and the chart can be taken uniformly for n large enough).
Then one can argue exactly as in [Str03a, Theorem 2.1] (see in particular (3.17) onwards)
to conclude that the convergence is strong near 0. ⇤

5. AN ENERGY GAP FOR BUBBLES ARISING IN THE FLOW

In this section we study the space of harmonic maps which can possible arise as bubbles
in the flow (4.2). We begin with the following consequence of Lemma 4.3.

Proposition 5.1. Let u : R1+2 ! M be a quasi-equivariant wave-map to the smooth man-
ifold M . Let tn " Tmaxu and ∏n > 0. If u(n) (defined in Theorem 1.1) converges in H 1

loc to a
non-trivial harmonic map, ! :S2 !M then, for each t , up to passing to a susbsequence,

u(n)(t , x) !! :R2 !M ,

in C 0
l oc (R2 \ {0}, M ) as n !1.
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Proof. By Lemma 4.3, the sequence u(n) = u(tn+∏n t ,∏n x) is uniformly Hölder continuous
on any compact region K ΩΩ R2 \ {0}. By Arzelá-Ascoli, to extract a uniformly convergent
subsequence, hence by a diagonal argument and passing to a further subsequence, we can
product a subsequence which converges uniformly on any compact subset of R2 \ {0}. By
uniqueness of limits, we have convergence to !. ⇤

From this convergence, we can conclude first that the image of the bubble is topologi-
cally connected to the image of the rest of the flow.

Proposition 5.2 (Connectedness of the flow). Let u : R1+2 ! M be a quasi-equivariant
wave map into a smooth manifold M , such that bubbling (as above) occurs at time Tmax(u)
and that the rescaled wave maps converge to the non-trivial harmonic map ! : S2 ! M .
Then [

t<Tmax (u)
u(t ,R2)[!(S2)

is a connected subset of M .

Proof. The fact that union of the images of the wave map components

U :=
[

t<Tmax (u)
u(t ,R2)

and the image of the harmonic map!(S2) are each connected follows from the continuity
of the involved maps (in both space and time in the case of the wave maps). To see that
the union of these two components is connected, we note that by Proposition 5.1, the set
!(R2 \ {0}) contains limit points of U , which implies the result. ⇤

The following immediate corollary of Propositions 5.1 and 5.2 constrains the form and
image of any bubble arising in the flow (4.2):

Corollary 5.3. Any harmonic map ! : S2 ! N (where N is the manifold constructed in
Section 3) arising as a non-trivial bubble in the flow (4.2) must be of the form

(5.1) !(r,µ) = (0,Y (r ),Æ(r ),µ),

and satisfy !(S2) Ω ∞£ f S
2.

We are now ready to state and prove the main result of this section: a classification of
the bubbles arising in the flow (4.2) at low energies. Before we do, let us recall from Lemma
2.5 that ES2 is the smallest possible energy of a non-trivial harmonic map! :S2 !S2. Also
recall, from above, that P1 : N !T2 is the projection map onto the first coordinate and P2 :
N ! S2 is the projection map onto the second coordinate. Finally, using stereographic
projection (which is energy preserving) we can think of ! : R2 ! S2 and will do so when
convenient.

Lemma 5.4. Let ! :S2 !N be a non-trivial harmonic map arising as a bubble in the flow
(4.2). Let "0 = min{"̄, (cot(7º/16)/2C )2} > 0, where "̄ > 0 is the constant given by Theorem
2.2 and C > 0 is the constant given by (2.7). Then, either E (!) = ES2 , or E (!) > ES2 +"0/2. In
the former case, P1! is a constant map into the set {w = 0} and P2! is a degree one harmonic
map from S2 !S2.
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In this proof we will use Y ,Æ interchangeably with P1!,P2! respectively.

Proof. By Lemma 2.4, ImP1! is either a subset of ∞ or of {w = 0} ¥ ∞ \ ∞. In the latter case,
f is constant on {w = 0} so P2! is a harmonic map between spheres and P1! is a harmonic
map from S2 ! S1. The maximum principle implies that P1! is a constant, so P2! must
be non-trivial, as ! is non-trivial. Therefore, P2! is either a degree one harmonic map or
E (P2!)   2ES2 , and the conclusion of the lemma holds in both cases.

Thus, it suffices to rule out the presence of harmonic maps where ImP1!Ω ∞ satisfying
our energy constraint. We first claim that P2!must be non-trivial. Indeed, if P2! is trivial,
then P1! is a bounded harmonic map from R2 to ∞(°1,1) ª= R. Such a map must be
trivial which contradicts the non-triviality of !. Moreover, since P2! is non-trivial and
equivariant, the maximum principle implies that the image of P2! cannot be contained
in a hemisphere, and thus E (P2!)   ES2 .

Let
S = {r 2R2 | f (0,Y (r )) < 2},

and assume that E (!) < ES2 +"0/2. Sinceˆ
R2\S

f (0,Y )e(Æ)r dr > 2
ˆ
R2\S

e(Æ)r dr,

we can estimate,

ES2 +"0/2 > E (!)  
ˆ
R2\S

f (0,Y )e(Æ)r dr +
ˆ

S
e(Æ)r dr   2E (P2!)°

ˆ
S

e(Æ)r dr,

and recalling that E (P2!)   ES2 , it must be the case that

(5.2)
ˆ

S
e(Æ)r dr > ES2 °"0/2.

Again recalling that ES2 +"0/2 > E (!), we getˆ
R2\S

|D!|2g < "0.

Thus the hypothesis of Theorem 2.2 are fulfilled inside of any ball B Ω R2\S. P1! = Y is
radial, so the oscillation of Y inside any component of R2\S is bounded by 2C"1/2

0 . Note
that M > 2 so f (0,Y (r )) < 2 implies that |Y | > cot(7º/16) (see (3.3), (3.2)). As 2C"1/2

0 <
cot(7º/16), we conclude that Y does not change sign on R2.

Composing with the diffeomorphism™s : (x, y,Æ,µ) 7! (x, y + s,Æ,µ) we see that

(5.3)
d

d s
E (™s ±!)|s=0 =

ˆ
R2
@y f (0,Y )e(Æ)r dr 6= 0,

where the last “non-equality" follows from (5.2) and the fact that Y does not change sign
on R2 (and, consequently, @y f (0,Y ) has a sign). That the deformation in (5.3) changes the
energy to first order contradicts the fact that ! is harmonic. Thus there are no harmonic
maps ! with P1!Ω ∞ satisfying our energy constraint, and our proof is complete. ⇤
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Remark 5.5. It is not hard to show that ES2 is exactly the energy of the lowest energy non-
trivial quasi-equivariant harmonic map, ! :S2 ! N , what we call Equasi(N ) in Theorem
1.7.

6. PROPERTIES OF THE SINGULARITY

We now turn to the proof of our main theorem, which we recall here:

Theorem (Main theorem). There exists a compact smooth Riemannian manifold (N , g )
given by

N =T2 £ f S 2

for a certain C1(T2) warping function, f , and C1-smooth, finite energy, quasi-equivariant
initial data (u0,u1), which satisfy

k(u0,u1)kḢ 3£Ḣ 2 <1, E (u0,u1) < Equasi(N )+"1,

such that the corresponding solution (u,ut ) to (1.1) has a bubbling singularity as t ! Tmax

which fails to be unique in the sense of Definition 1.6. Above, "1 > 0 is a constant which
depends only on N , and Equasi(N ) denotes the smallest energy of a non-trivial quasi-
equivariant harmonic map, ! :S2 !N .

Before proceeding with the proof of the main result we summarize what we know so far
about solutions to (1.1), or more precisely to solutions of (4.2). In light of Sterbenz and
Tataru’s dichotomy, Theorem 1.1, at every finite time t0, the solution either concentrates
energy at a point and bubbles off (a Lorentz transform of) a finite energy harmonic map or
it can be continued smoothly past t0. If the solution exists as t !1 then it either scatters
in the limit or bubbles off (a Lorentz transform of) a finite energy harmonic map. If the
“spherical part" of the initial data has degree one, Proposition 4.6 implies that blow-up in
the form of bubbling off a harmonic map must occur (either in finite time or as t !1).

Now note that quasi-equivariance implies that there is no Lorentz transform symmetry
in the solutions, and hence the convergence of the bubbling sequence (as described in
part (a) of Theorem 1.1) must be to an entire, non-constant harmonic map. Moreover,
singularity formation at any point in the domain requires the bubbling of at least as much
energy as the lowest energy non-trivial harmonic map. Hence by additivity of the energy,
bubbling can occur only at finitely many points, and so in the quasi-equivariant setting
the only possible blow-up point in the domain is the origin x = 0.

Finally, if the initial conditions (2.1) have energy less than ES2 + "0/2, then it must be
the case that the bubble also has energy less than this. By Lemma 5.4, this implies that the
harmonic map, !, decomposes into a constant map into {w = 0} Ω T2 and a degree one
equivariant harmonic map between spheres.

Summarizing the previous discussion, we have, thus far, established that:

Theorem 6.1. Consider the wave map equation (1.1) with smooth, quasi-equivariant sym-
metric, finite energy initial data of the form (2.1). Further assume that Æ0 (the “spherical
part" of the initial conditions) is a degree one map between 2-spheres. Then there exists a
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unique solution to (1.1) on the time interval [0,Tmax), and a sequence of times tn " Tmax and
scales ∏n with

(6.1) ∏n =
(

o(Tmax ° tn) Tmax <1
o(tn) Tmax =1

so that the rescaled sequence of maps

u(n)(t , x) = u(∏n t + tn ,∏n x)

converges strongly in H 1
loc to an entire Harmonic map

! :R2 !N

of nontrivial energy. Furthermore, if

E (u0,u1) < ES2 +"0/2,

then ! = (P1!,P2!) satisfies that P1! = (0, z0) for some z0 2 [0,1] and P2! is a degree one
equivariant harmonic maps between 2-spheres.

We note that it is easy to produce initial conditions which satisfy the hypothesis of
Theorem 6.1. Using the notation of (2.1), one such example is letting (Æ0(r ),µ) be a de-
gree one equivariant harmonic map, Æ1(r ) ¥ 0 ¥ Y1(r ) and Y0(r ) ¥ c where c is a con-
stant large enough such that f (0,c) < 1+ "0/(2ES2 ). It is important to observe that even
though (Æ0,µ) is a harmonic map into S2 and Y0 is a harmonic map into T2 the map
u0(r,µ) := (0,Y0,Æ0(r ),µ) : R1+2 ! T2 £ f S

2 is not a harmonic map (as one reduces en-
ergy to first order by “sliding down" the geodesic ∞). As such these initial conditions do
not lead to a stationary wave map (see Proposition 6.5 below).

6.1. Winding Singularities. In this subsection we prove that the bubbling guaranteed by
Theorem 6.1 is winding in the sense of [Top04b], and in fact enjoys a stronger form of
winding which we introduce below, which we call “strongly winding”. We will then prove
that a strongly winding bubble implies non-uniqueness in the sense of Definition 1.6. Our
stronger notion of winding requires winding along all sequences, as opposed to just one.
We find this definition to be slightly easier to work with, and, in the situation where only
one bubble develops at a given point and time, equivalent to the standard definition of
winding.

Before we introduce the following stronger notion of winding recall that if M is a Rie-
mannian manifold, then cM its its universal cover and, given a function u :R1+d !M , we
let û :R1+d ! cM be its lift to the universal cover.

Definition 6.2 (Strongly winding bubbling). A quasi-equivariant wave map u : R1+2 !M

exhibits strongly winding bubbling at time Tmax and the origin 0 2 R2 if for any sequences
{rn}, and {tn}, satisfying

(6.2) tn " Tmax, rn =
(

o(Tmax ° tn) Tmax <1
o(tn) Tmax =1
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such that u(tn ,rn x) ! !(x) in C 0
loc(R2\{0};M ), where ! is a non-constant harmonic map,

the lifts û(tn ,rn x) have no convergent subsequence in C 0
loc(R2\{0}; cM ).

For a solution u with winding bubbling, we say that u has a winding bubble with respect
to sequences {tn} and {rn}, when {tn} and {rn} are the sequences guaranteed by Definition
1.10. The following proposition provides an equivalent definition of (strongly) winding.

Proposition 6.3. If u :R1+d !M develops a bubble at (Tmax,0), then the bubble is winding
with respect to sequences {tn} and {rn} if and only if there exists a compact K ΩΩRd \{0} such
that every subsequence

{û(tn j ,rn j x)
ØØ
K }

is unbounded.

Proof. This proposition follows readily from the equicontinuity of the lifts and compact-
ness, but we include the details for completeness. Suppose first that the bubble is wind-
ing in the sense of Definition 1.10. Since the sequence {u(n)} is equicontinuous on every
compact set, the family given by the lifts û(n) := û(tn ,rn x) is still equicontinuous on every
compact set. Indeed, fix a compact set K ΩΩ Rd \{0}, x 2 K and " > 0, and let ± > 0 be as
in the definition of equicontinuity of the family {u(n)}. Making ± smaller if necessary, we
can restrict to a sufficiently small neighborhood so that the covering map trivializes. This
yields the equicontinuity of the lifts. Hence, the only way the lifted sequence can fail to be
precompact is if there exists a compact set on which the family is unbounded.

Conversely, if there exists such a compact subset K , then unboundedness implies that
there is no convergent subsequence, and hence the singularity is winding. ⇤
Remark 6.4. The previous proposition adapts readily to strongly winding bubbling.

We are now prepared to establish the following main proposition about the nature of
the singularity.

Proposition 6.5. The flow described (4.2) with initial conditions as in Theorem 6.1 exhibits
strongly winding bubbling at (Tmax ,0).

Proof. We know the flow needs to converge to a bubble as described in Lemma 5.4. Let ∞
be the geodesic described in Section 3. By the path lifting property, ∞ may be lifted to a
unique path ∞̂ in the universal cover, which is necessarily an unbounded curve since ∞ is
not null-homotopic in N and º1(N ) =Z2.

Let now {tn} and {∏n} be any sequences along which

u(n)(t , x) = u(∏n t + tn ,∏n x)

converge to !, see Theorem 6.1. It simplifies things to fix a time slice, so we abuse no-
tation by letting u(n)(x) = u(n)(0, x). Lemma 5.4 tells us that P1! Ω {w = 0} which implies
that for any t0 ¿ 1 and any compact set K ΩΩ R2\{0}, there exists an N = N (t0,K ) such
that if n   N , then P1un(K ) Ω ∞((°1,°t0][ [t0,1))4. Lifting to the universal cover, the

4Recall that by Proposition 5.1, P1un ! P1! in C 0(K ) and that {w = 0} is exactly the set of limit points of ∞(t )
as t !±1
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unboundedness of ∞̂ implies that the sequence û(n)|K := û(tn ,rn x)|K must be unbounded,
and hence by Proposition 6.3, the singularity is winding. ⇤

Our final result shows that a strongly winding bubbling cannot give rise to a unique
bubble in the sense of Definition 1.6.

Theorem 6.6. If u exhibits strongly winding bubbling at x0 and time Tmax, then it does not
have a unique bubble at that point and time.

Proof. Suppose for contradiction that u exhibits strongly winding bubbling at the origin
at time Tmax , and a unique bubble ! to which it converges under rescaling by r (t ). and
translation by x(t ).

We will show that for every compact K ΩΩRd \{0}, there exists a subsequence

{û(tn j ,rn j x)
ØØ
K }

which is bounded, contradicting Proposition 6.3. Fix a compact set K ΩΩRd \{0} and note
that b!(K ) is compact. Define the "-neighbourhood of a set A by

N"(A) := {x | dist(x, A) < "}.

Fix "= 1, since u(t ,r (t )°) !! in C 0
loc, there exists t0, such that for all t > t0 we have

u(t ,r (t )K ) Ω N1(!(K )).

But we then have that {û(tn ,r (tn)K )}{n|tn>t0} Ω N1(b!(K )), and, in particular, the sequence
is bounded, which contradicts Proposition 6.3, and concludes the proof. ⇤
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