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Abstract— As climate warms and the transition from a peren-
nial to a seasonal Arctic sea-ice cover is imminent, understanding
melt ponding is central to understanding changes in the new
Arctic. National Aeronautics and Space Administration (NASA)’s
Ice, Cloud and land Elevation Satellite (ICESat-2) has the
capacity to provide measurements and monitoring of the onset
of melt in the Arctic and on melt progression. Yet ponds
are currently not identified on the ICESat-2 standard sea-ice
products, in which only a single surface is determined. The
objective of this article is to introduce a mathematical algorithm
that facilitates automated detection of melt ponds in the ICESat-2
Advanced Topographic Laser Altimeter System (ATLAS) data,
retrieval of two surface heights, pond surface and bottom, and
measurements of depth and width of melt ponds. With ATLAS,
ICESat-2 carries the first spaceborne multibeam micropulse
photon-counting laser altimeter system, operating at 532-nm
frequency. ATLAS data are recorded as clouds of discrete photon
points. The Density-Dimension Algorithm for bifurcating sea-ice
reflectors (DDA-bifurcate-seaice) is an autoadaptive algorithm
that solves the problem of pond detection near the 0.7-m nominal
along-track spacing of ATLAS data, utilizing the radial basis
function for calculation of a density field and a threshold
function that automatically adapts to changes in the background,
apparent surface reflectance, and some instrument effects. The
DDA-bifurcate-seaice is applied to large ICESat-2 datasets from
the 2019 and 2020 melt seasons in the multiyear Arctic sea-ice
region. Results are evaluated by comparison with those from a
manually forced algorithm.
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I. INTRODUCTION

S THE Arctic sea ice has been reported to reach historic

lows repeatedly [40], [45], [46], [48], [49], [50], the
sea-ice cover is transitioning from a perennial to a sea-
sonal ice [20], [49] and melt ponding is a key process.
Perovich et al. [36] alert to the complexity of melt ponds and
their evolution on the thinning sea ice. Predictions based on
models diverge [17], [18], [19], [33], [44], [48]. Since any
predictions are only as good as the data they are based on,
observations are essential in understanding changes in the
Arctic cryosphere and constraining models. Previous studies
have demonstrated the importance of melt ponds on summer
sea ice evolution [16], [37], [38], [55], and various in situ
studies have monitored their seasonal evolution [36], [39],
[41], [54]. Although satellite-based studies of melt ponds
exist [2], [7], [42], [43], [53], there is limited information on
the depth of melt ponds at an Arctic-wide level.

NASA’s Ice, Cloud and land Elevation Satellite (ICESat-2),
launched September 15, 2018, has the capacity to provide
measurements and monitoring of the onset of melt in the
Arctic and on melt progression [2], [6], [52]. Yet, ponds are
not identified in the standard sea-ice data product ATLO7 [23],
[25]. ATLO7 reports only a single-surface height, and in some
cases, this height is determined as somewhere between the
height of the surface and that of the melt-pond bottom [6]. The
single-surface tracking of this product does not provide useful
information on summer sea-ice melt ponds [23]. A segment-
type parameter on ATLO7 which can assume a value indicative
of a surface class labeled as “lead/melt pond” is a potential
source of error. Missing ponds or confusing ponds with sea-ice
leads can result in miscalculation of freeboard, which is
reported in ICESat-2 data product ATL10 [24], see [6].

What appears to be a discrepancy between the observation
capabilities of the sensor and the current status of official data
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products can be explained by a combination of the spatial
scale of change signals in Arctic sea ice and mathematical
algorithms applied in data analysis. With the Advanced Topo-
graphic Laser Altimeter System (ATLAS), ICESat-2 carries
the first spaceborne multibeam micropulse photon-counting
laser altimeter system. ATLAS registers returns from every
photon in the 532-nm (green light) spectral band of the
sensor, including photons from ambient light (background
photons) in addition to signal photons, which together form
a photon point cloud, reported on the product ATLO3 [30],
[31], [32]. The nominal along-track photon spacing is 0.7 m
(under clear-sky atmospheric conditions), calculated from the
~7-km/s along track the velocity of the satellite and the
ATLAS sensors’ pulse-repetition frequency of 10000 pulses
per second [13], [32].

The sea-ice ICESat-2 ATLAS data products ATLO7 and
ATL10 [24], [25] have facilitated significant findings on
sea-ice freeboard and seasonal changes for the entire Arctic
and Antarctic sea-ice regions [21], [22]. The mathematical
algorithms applied to derive the ICESat-2 ATLAS sea-ice
products [22], [23], which are based on a deconvolution
assuming a Gaussian surface height distribution, yield infor-
mation per along-track segment area, whose length depends
on fixed 150 photon counts, and thus, is variable, typically
between 17 m x 27 m and 17 m x 200 m [22], which then
significantly reduces the spatial resolution of surface heights
and freeboards reported on the sea-ice products compared
with the original ATLO3 data. The resultant products ATLO7
and ATL10 have a spatial resolution that is sufficient for
documentation and analysis of changes in the entire Arctic
or Antarctic regions [21], [22], but not for detection of melt
ponds.

Analyses of ATLO3 data collected over Arctic sea ice show
that melt ponds, snow depth, ridged, and rubbled ice are
resolved in the photon cloud, which suggests that geophysical
processes can be studied that lead to the formation of these
high-resolution signatures in the ice [2], [6], [52]. To auto-
matically detect and report melt ponds in ICESat-2 ATLAS
data and measure their depth, a new algorithm needs to be
developed that builds on the ATLO3 photon cloud. In this
article, we introduce such an algorithm.

More formally, a high-resolution algorithm that facilitates
retrieval of two surfaces wherever such are recorded is required
to report melt-pond existence and depth from ICESat-2 data.
In order to allow operational application for ICESat-2 pho-
ton data across large and small regions alike (including the
entire Arctic and Antarctic sea-ice regions), such a melt-pond
algorithm (MPA) needs to be designed to meet the following
criteria.

1) The algorithm needs to be fully automated (i.e., it should
not require a priori information on the existence or
location of a pond).

Detect ponds wherever returns from both pond bottom
and pond surface are recorded in ICESat-2 photon data.
Avoid false positives.

Automatically adapt to different background character-
istics of daytime and nighttime data and to changes in
apparent surface reflectance (ASR).

2)

3)
4)
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5) Find ponds among sea ice of different roughness types
(smooth, ridged, and complex).

6) Correctly determine the start and end points of a pond
along the ICESat-2 ground track.

7) Measure the pond depth.

8) Represent the complexity of the seaice at high

resolution.

In this article, we introduce an algorithm for melt-pond detec-
tion from ICESat-2 data that satisfies the above-mentioned
criteria, building on our concept of the Density-Dimension
Algorithm (DDA) for ICESat-2 data analysis [9], [11], [12],
[13], which facilitates ice-surface height determination at
the 0.7-m nominal resolution of the sensor (under clear-sky
atmospheric conditions). The new sea-ice algorithm is termed
DDA for bifurcating sea-ice reflectors (DDA-bifurcate-seaice
or DDA-bif-seaice for short).

The complexity of the task of automated melt-pond
detection and depth measurement is illustrated in [36,
Figs. 3 and 11], who collected mass-balance measurements
during the Surface Heat Budget of the Arctic Ocean (SHEBA)
experiment conducted October 1997—October 1998. A simple
algorithm for depth measurement of ponds has been described
and applied in [3], [6] and [4] [UMD-melt-pond-algorithm
(MPA)]. Their algorithm requires knowledge where a pond
exists, it is not automated and thus cannot be employed for
operational processing of ICESat-2 products.

This article will include a mathematical description of the
DDA-bif-seaice and its application to ICESat-2 data from the
Lincoln Sea. The DDA-bif-seaice will be applied to analyze
ICESat-2 ATLAS data from melt-pond regions in the Lincoln
Sea and other parts of the multiyear ice regions of the Arctic
Ocean.

As a means of evaluation, results from the DDA-bif-seaice
will be compared with results from a simple algorithm for
analysis of melt ponds in ICESat-2 ATLAS that requires
a-priori manual identification of ponds, developed at the Uni-
versity of Maryland (UMD MPA). The UMD MPA, described
in [1] and [5], is not automated, and thus, cannot be employed
for the operational processing of ICESat-2 products.

The DDA-bif-seaice is applied in a large-scale analysis
of ICESat-2 ATLAS datasets to study melt onset and the
evolution of melt ponds on multiyear sea ice in the Arc-
tic, reported in a companion paper [5] that also uses the
UMD MPA.

II. ICESAT-2 IN A NUTSHELL

A. Main Characteristics of Instrumentation, Observation,
and Resultant Data

ICESat-2 ATLAS is a micropulse photon-counting laser
altimeter system, which collects data in three pairs of two
beams, a strong beam and a weak beam, where the energy of
the weak beam is a quarter of that of the strong beam [27],
[32]. Across-track separation of the beams on the Earth’s
surface is 3.3 km between the centers of adjacent pairs and
90 m for the beams within each pair. The ICESat-2 observatory
yields observations through a complex geometry, illustrated
in [13, Fig. 3 and Table 1], the strong beam in a pair of
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beams can be either the right beam or the left beam (e.g.,
gt2r or gt2l), depending on whether ATLAS flies forward
or backward (orientation changes every few months). The
sensor operates in the 532-nm wavelength (green light) with
a pulse-repetition rate (PRF) of 10 kHz. The PRF combined
with the satellite’s along-track velocity of ~7 km/s results in
a nominal 0.7-m spacing of the laser pulses on the Earth’s
surface, under clear-sky atmospheric conditions. ATLAS has
a footprint diameter of less than 17.4 m at 85% encircled
energy. The field of view (FOV) of the receiver telescope is
83.8 urad, equivalent to 45-m FOV on the surface of the Earth.
Observatory performance has been assessed in [26], where the
actual footprint is characterized as closer to 11 m in diameter.
As the FOV moves along the satellite ground track and returns
from every single photon (in the 532-nm wavelength domain
of the sensor) are recorded, surface structures at a much
higher resolution than footprint diameter can be resolved (see
Sections III and V and [13]). We, therefore, refer to the
resolution of the ATLAS data as the nominal 0.7-m along-
track spacing (under clear-sky atmospheric conditions), for
the brevity of terminology, keeping in mind details on the
derivation of the photon point cloud.

The instrumentation and derivation of the recorded photon
point cloud are described in [32], and any technical component
of the instrument and dataset necessary for understanding the
work in this article is found in [13]. Information in this section
is modified after [14], where the validation of the ICESat-2
data collection over complex land ice surfaces is performed.

In addition to the photons that result from the active
lidar signal (signal photons), the photon point cloud also
includes background photons that stem from ambient light
in the 532-nm range of the spectrum and artifacts due to
instrument effects, such as dead-time effect and afterpulses.
The identification of signal photons in the point cloud or
classification of signal versus background photons constitutes
an ill-posed mathematical problem.

B. Standard ICESat-2 ATLAS Sea-Ice Products:
ATLO7 and ATLIO

The current standard data products for sea ice are ICESat-2
ATLAS products ATLO7 Sea Ice Height [25] and ICESat-2
ATLAS ATL10 Sea Ice Freeboard [24]. The derivation of the
standard sea-ice data products ATLO7 and ATL10 is described
in the algorithm theoretical basis document (ATBD) for ATLO7
and ATL10 [23] and in [22]. The ATLO7 algorithm is not
based on a fixed spatial resolution, but rather on a fixed
number of recorded photons, which results in sea-ice height
determinations of variable size. The ATLO7 algorithm is aimed
at resolving a single-surface height. Thus, it does not resolve
melt ponds. The determination of sea-ice freeboard can also
be affected by errors in the surface height determination [6].

III. OVERVIEW OF THE APPROACH DDA-BIF-SEAICE AND
EXAMPLES OF MELT-POND DETECTION

The central objective of this article is to introduce the
DDA -bifurcate-seaice and apply it to the detection and depth
determination of melt ponds in Arctic sea ice. A first view
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of the results of the DDA-bif-seaice is given in Fig. 1, which
illustrates that ponds can be detected across a range of different
environments indicated by different surface morphologies,
as well as for the central and outer beams of the ATLAS
instrument. The fact that ponds are found in situations of
highly variable ASR, indicated by the colors of the signal
photons in Fig. 1, points at the autoadaptive capability of the
algorithm, which allows detecting bifurcating and rejoining
surfaces in presence of different ASR levels.

Fig. 1(a) shows a large (over 200-m diameter) melt pond
that is located among ridged sea ice and has a complex
bottom topography, Fig. 1(b) illustrates the detection of shal-
low and relatively deep (3 m) ponds among smooth and
ridged ice. The right pond (at 335800) is located among
fault blocks, in a location that is typical for the formation
of melt ponds, and thus, is of interest for process studies.
From the view point of a detection algorithm, the sequence
of ponds in Fig. 1(b) illustrates a set of bifurcation points
(points where one sea-ice surface splits into two surfaces
of the melt-pond top and the melt-pond bottom) and rejoin-
ing points (where the two surfaces come together at the
end of a melt pond). The set of bifurcation and rejoining
points will be identified in the DDA-bif-seaice algorithm
to facilitate the identification of individual points, tracking
of ponds across analysis steps, and calculation of statistical
values, such as depth (range) and pond width (in the along-
track direction). Ponds are identified in situations of weak
surface reflectance [e.g., Fig. 1(e), (g), and (h)], strong sur-
face reflectance [Fig. 1(b), (c), and (f)] with density values of
250, and mixed-surface reflectance [Fig. 1(a)]. Ponds can be
identified in the outer beams, for example, in gt31 in Fig. 1(a)
and (d)—(f) and in gt1l in Fig. 1(b) and (c), as well as in the
center beam, gt2l, in Fig. 1(g) and (h). All examples in Fig. 1
stem from strong beams, but ponds are also detected in data
from the weak beam.

The examples may also serve to provide a first understand-
ing of the tasks that the DDA-bif-seaice performs and as such
motivate the mathematical description of the algorithm, given
in Section IV.

Following the mathematical description, the DDA-bif-seaice
will be applied to data from the multiyear Arctic sea-ice
region, for two different years, 2019 and 2020, during the melt
season (Section V). Corrections for the speed of light in sea
water to calculate the depth from range and challenges for the
algorithm are discussed in Section V as well. Results from
the DDA-bif-seaice will be compared with results reported
on the ICESat-2 standard product ATLO7 to demonstrate the
increase in information content.

IV. ALGORITHM: DDA-BIFURCATE-SEAICE

A. Family of Density-Dimension Algorithms

The DDA-bifurcate-seaice is part of the DDA fam-
ily. The DDAs have been developed for the analysis of
micro-pulse photon-counting lidar altimeter data, especially
data collected with the ICESat-2 ATLAS instrument and
its airborne predecessors such as the Sigma Space lidar,
the Multiple Altimeter Beam Experimental Lidar (MABEL)
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Examples of ponds detected with the DDA-bif-seaice in summer 2019 ICESat-2 ATLAS data, Multi-year Arctic sea-ice region. Lincoln Sea. All

ponds from strong beam data. (a) Pond among ridges with variable density at top. Surface follower (top) not optimized for ridges [1237 gt31 82.818.png
(mega 3)]. (b) Several ponds detected-shows bifurcation and rejoining points (1237 gt1l 82.906.png). (c) Not a false positive-bottom of pond has variable
topography (1237 gtll 82.906 2.png). (d) Complex regions with several ponds. Note rightmost pond is barely a pond in the making [1237 gt31 82.831.png
(mega 4)]. (e) Perfect pond [1298 gt31 82.637.png (mega 1)]. (f) Perfect pond below strongly reflecting surface (density 250) [1298 gt31 82.911.png (mega 2)].
(g) Pond among complex sea-ice topography. Center beam (gt21) (1298 gt21 82.727.png). (h) Pond among complex sea-ice topography. Center beam (gt21)
(1298 gt21 82.745.png). Examples in la, b, c, d, e are from ICESat-2 ATLAS granule ATL03 20190618062235 12370304 005 01.h5, reference ground track
(RGT) 1237, collected 2019-June-18, ICESat-2 ASAS version 5 data set. Examples in 1f, g ,h are from ICESat-2 ATLAS granule ATL0O3 20190622061415
12980304 005 01.h5, RGT 1298, collected 2019-June-22, ICESat-2 ASAS version 5 data set.

and the Slope Imaging Multi-polarization Photon-counting
Lidar (SIMPL), and include algorithms for ice surface
data (the DDA-ice) [12], [13], [14], for vegetation data
(the DDA-sigma-veg) [10], and for atmospheric layers (the
DDA-atmos) [9], [11]. Common to all DDAs is the ability to
retrieve surfaces and other reflectors in situations of complex
spatial data distributions and mathematically difficult signal-
to-noise relationships. Examples include crevassed and other-
wise morphologically complex ice surfaces, vegetation canopy
and ground under canopy, and tenuous atmospheric layers such
as optically thin clouds, blowing snow and aerosol layers. The
DDA-atmos is the algorithm applied for the identification of

atmospheric layers and surface in the ICESat-2 atmospheric
data product, ATLO9 (see also [34]).

B. DDA-Ice Mathematical Philosophy

The DDA-bif-seaice builds on the DDA for ice surfaces
(DDA-ice or DDA-ice-1). The DDA-ice is the original algo-
rithm for ice surfaces and the name DDA-ice-1 indicates that
it follows a single surface (more technically, the DDA-ice-1
performs a single-density run).

The main idea of the DDA-ice is that signal photons are
expected to have a neighborhood with a larger photon density
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than background photons. To quantify density, photons are
aggregated using a Gaussian rbf. A rbf is a real-valued
function whose value decreases with distance from the center ¢

P (x, c) = (lx—clD (D

for all x = (x,x;) with along-track location and height
coordinates (xp, x;) in a definition area D with respect to any
norm || - ||. The density field of the photon cloud is calculated
by letting every single photon take the role of a center ¢ =
(c1, c2) with coordinates (cj, c), evaluating the rbf for all
neighboring photons and forming the sum of weights from this
process [12]. This concept is especially useful for data aggre-
gation in the photon analysis problem because points closer to
the center are given a larger weight than points farther away.

Density is considered a dimension of the dataset, in addition
to location. Signal-background separation is performed by
an autoadaptive threshold function in the geolocation-density
domain. The threshold function is formulated using discrete
mathematics: Starting from the set of all photon points in a
height slab that contains the signal of largest counts at large
scale, the threshold function sorts candidate photons for signals
into different sets, using mathematical and statistical criteria
based on density and geolocation. The autoadaptive capability
of the algorithm implies that a threshold function is used which
automatically adapts to the variable background characteristics
of day-time and night-time observations in the photon point
cloud (a lot more photons from ambient light are recorded
during day-time), ASR, and other, including instrumental,
sources of background photons. The results of the DDA-ice-1
are not disturbed by instrument-related background photons,
such as those resultant from after-pulses (because these are
less dense than the surface signal). Surface height among and
between signal photons is determined using a ground follower,
a function that automatically adapts to surface roughness. The
option for areas of high surface roughness, originally designed
for surface-height determination over crevassed glaciers, facil-
itates surface-height determination of ridged and rubbled sea-
ice, while the option for low surface roughness works well
for simple, smooth surfaces of marine and terrestrial ice
environments [12], [13]. The DDA-ice-1 resolves surface
heights at the resolution of the sensor, i.e., of the point-cloud
data (nominally 0.7-m along-track) and height segments of
5 or 2.5 m, depending on surface roughness [13]. While an
individual photon point represents a measurement from an
approximately 11-m-diameter footprint, the analysis is based
on the photon point cloud, and the information in the point
cloud allows us to retrieve much more spatial detail of a sur-
face than points spaced 11 m would. The DDA utilizes a data
aggregation technique, which helps reveal the high-resolution
spatial variability in the point cloud. Herein lies the power of
the DDA as a data aggregation method as opposed to classical
statistics. The ground follower naturally reduces the resolution
of the output somewhat.

C. Input Data, Algorithm Development, and Version

As input for analysis, the DDA-bifurcate-seaice uses the
geolocated photon point cloud, which includes signal and
background photons, as reported in the ICESat-2 ATLAS
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ATLO3 data product [30], [31], [32]. The DDA algorithms
do not use the photon classification that is provided on
ATLO3 [13]. Simply speaking, the photon classification on
ATLO3 often fails to properly identify signal photons in
situations of crevassed or otherwise morphologically complex
cryospheric terrain for the strong beam and the weak beam,
and the DDA-ice does not require classified photons as input,
but carries out a signal-noise separation as part of the algo-
rithm [13]. The ATLO3 datasets are publicly available via the
NASA Earthdata site and updated at regular time intervals of
about six months.

Analyses in this article utilize the ICESat-2 ATLAS data
products ATLO3 (ATLAS/ICESat-2 L2A Global Geolocated
Photon Data), version 5 [30], described in the ATBD for
ATLO3 [31].

The algorithm DDA-bif-seaice was developed on local
desktops (iMacs) of the Geomathematics, Remote Sensing
and Cryospheric Sciences Laboratory, University of Colorado
at Boulder, Boulder, CO, USA, the computational code is
implemented using python 3. The algorithm described in this
article is that of DDA-ice geomath version v18.0 (latest version
as of June 2022; committed December 2021).

For the processing of large amounts of ICESat-2 ATLAS
collected over the multiyear Arctic sea-ice region, the DDA-
ice-bifurcate was transferred to the NASA cloud (ADAPT).
Results are reported in the companion paper on the evolution
of melt ponding [5]. An advanced version of the DDA-bif-
seaice algorithm may be included in a future version of the
standard ICESat-2 products.

D. Challenges Specific to Melt-Pond Detection Over Seaice

The occurrence of melt ponds is by no means specific
to sea ice, as melt ponding occurs over glaciers, ice sheets,
and snow fields as well [8]. There are, however, challenges
specific to melt-pond detection over sea ice, which warrant
the development of a specific sea-ice algorithm. We have
developed an algorithm for bifurcating reflectors, aimed at
the detection of large melt ponds on the Amery Ice Shelf
and for the detection of melt ponds and channels on the
Greenland Ice sheet. The ponds on land ice and ice shelves
are much larger (kilometers to tens of kilometers) and deeper
than those on sea ice; thus, the identification of bifurcation
and rejoining locations of the two surfaces, pond surface, and
pond bottom, is naturally much more robust to the selection
of algorithm-specific parameters that determine the resolution,
and false positives are avoided relatively easily. The situation
for sea ice is much more complex. Ponds can form in smooth
sea-ice regions as well as in ridged ice areas, where ponds
typically occur on the side of a faulted sea-ice block. The
ridge height is often larger than the pond depth, creating an
additional challenge for an automated detection algorithm.

An additional challenge is due to the fact that sea ice is,
simplified, stratified into frozen seawater overlain by a snow
layer, and the two layers interact differently with the incom-
ing lidar signal. The penetration, scattering, and reflection
properties of lidar signals in complex media are far from
understood (see [47]). As melting progresses, snow and ice
transform into slush, forming sea-ice ponds in the making,
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which can already be seen in the lidar signal [for example,
in Fig. 1(d)]. Other examples illustrating the complexity of sea
ice include ponds with a solidly frozen surface, where a pond
formed and the surface refroze, subnivean ponds, ponds with
solid bottoms [Fig. 1(a)] and ponds with ill-defined bottoms
[Fig. 1(c)]. For imagery of sea ice as well as other remote-
sensing observations, we refer to [15] and [29], [51].

We have previously developed a second-order algorithm, the
DDA-ice-2, for the case that the stronger reflecting surface
is always on top. For the melt-pond detection problem, this
assumption cannot be made. The stronger reflecting surface
can be the top of a melt pond or its bottom, or both surfaces
can be of similar strength, or the strength of the reflector may
even switch from top to bottom depending on location. These
complexities of the problem motivate the development of a
DDA-bifurcate for the analysis of lidar data over sea ice.

A key challenge in designing a melt-pond-detection algo-
rithm for photon-cloud data (such as ATLO3 data) lies in the
identification of bifurcation locations of the reflecting surfaces
and in the identification of locations where the two surfaces
rejoin (rejoining locations). The bifurcation algorithm needs
to be robust w.r.t. the distribution of the point-cloud data:
1) to identify small and shallow ponds, with the goal of vertical
resolution of 0.1 m and 2) to avoid false positives (locations
that show point clusters at two or more different heights, where
a pond does not exist).

A problem that is especially severe in the analysis of sea-ice
data is posed by the occurrence of signal saturation, which
in combination with the detector dead-time effect leads to
delayed registration of photons, resulting in apparent sec-
ondary layers below the actual surface at (pseudo) depths that
overlap with typical depths of melt ponds on sea ice. There
are several such pseudodepths, at 0.43 m and farther below.
This problem is addressed in Section V-C.

E. Algorithm Steps of the DDA-Ice-1

The DDA-bif-seaice builds on the DDA-ice-1 (there called
the DDA-ice), the algorithm for primary surface detection,
as described in [12]. Here, we describe the algorithm to the
extent necessary to understand the concept of the DDA-bif-
seaice. The algorithm steps are illustrated in Fig. 2 for an
example of ATLAS data over sea ice. The algorithm is driven
by a set of algorithm-specific parameters, described in [12].
Parameters, specific to the DDA-bif-seaice and the analysis
described in this article, are given in Table I.

The DDA-ice-1 has the following steps.

1) Large-scale separation of signal and noise slabs.

2) Calculation of the density field using the radial basis
function, rbf.

Operation of an autoadaptive threshold function to sep-
arate noise and signal photons, using density as an
additional dimension.

Application of a piecewise linear ground follower with
1-10-m resolution over smooth surfaces and 0.5-5 m
over crevasses, sastrugi, and other rough surfaces.
The ground follower automatically adapts to surface
roughness.

3)

4)
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(Step 1) Separation of Signal and Noise Slabs: The
large-scale separation of signal and noise slabs utilizes a
simple histogram-based criterion that evaluates photon counts.
The signal slab centers in height around the height bin of
strongest return (highest photon count) and the noise slab is
determined as the slab of the same height interval located
immediately above the signal slab. For sea ice, bin sizes are
50 m along-track and 10 m in height, and the slab thickness
is 30 m for the resultant signal and noise slabs (see Table I).

(Step 2) Calculation of the Density Field: The density field
is calculated for every single photon, using that photon as
the center point, ¢ of a kernel. The description follows [12].
A Gaussian rbf, formally defined in (1), is evaluated as
follows, letting r = x —c and s € R:

O(r) = 2

1
2 s?
The rbf has the shape of (half) a Gaussian bell curve rotated
around the location of a center ¢ € R?.
Using

3)

with standard deviation o and mean p of a statistical popula-
tion and replacing o = s and p = 0 yields (4)

“4)

For each point in the definition set D (each photon in the
cloud, for both signal and noise slabs), a density value f;(c)
is calculated as

() = fnormpdf-

fa©) =) We(x)

xeD,.

(&)

for all x within the search region D,, where the weights W,(-)
are derived from the rbf as

Wic, x) = We(x) = @(|lx—cll) (6)

with x € D, (see [12, eq. (11)]).

Algorithm-Specific Parameters: The kernel of the rbf is
controlled by the algorithm-specific parameters standard devi-
ation o, anisotropy a, and cutoff x, where « is the number
of standard deviations used to define the extent of the search
region. For a # 1, points with the same rbf value ®(||x — c||,)
are located on an ellipsoid with axes (a,a, 1) around the
center point ¢, rather than on a circle. In the original DDA,
anisotropy is selected such that the resultant ellipsoid has a
longer axis parallel to the horizontal, motivated by the idea that
the probability of finding more ground signal points is larger
in the approximately horizontal direction than in the vertical
direction; for the validation of this concept and examples
from the ICESat-2 airborne simulator, SIMPL data, see [12].
The fact that typical sea ice has a large horizontal extension
motivates the use of a large anisotropy factor of a = 20.

With anisotropy, the density value, f;,(c), is calculated as

frae) =" Wea(x). (7)

x€D; 4

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 09,2023 at 22:19:57 UTC from IEEE Xplore. Restrictions apply.



HERZFELD et al.: AUTOMATED DETECTION AND DEPTH DETERMINATION OF MELT PONDS ON SEA ICE

4300922

TABLE I

ALGORITHM-SPECIFIC PARAMETERS FOR THE DDA-BIFURCATE-SEAICE. THIS TABLE LISTS ALL PARAMETERS AND THEIR VALUES USED TO RUN
DDA-BIF-SEAICE, INCLUDING THOSE OF THE DDA-ICE-1. CODE VERSION V.122 (JUNE 2022). STRONG BEAM AND WEAK BEAM—ATLAS

BEAMS. SYMBOL (-) GIVEN FOR COMPUTED PARAMETERS. PARAMETER VALUES AS USED FOR ALL EXAMPLES GIVEN IN THIS ARTICLE
AND FOR THE MELT-POND EVOLUTION STUDY, 2020. THE DATA ANALYSIS UTILIZES THE SAME PARAMETERS FOR THE STRONG
BEAM AND THE WEAK BEAM, BUT DIFFERENT PARAMETERS CAN BE USED. THE OPTION “USING DENSITY HISTOGRAMS?”
REFERS TO AN ALTERNATIVE ALGORITHM THAT Is NOT USED IN THIS ANALYSIS

symbol meaning strong beam weak beam
math ATLAS ATLAS
(code) (actual) (actual)
parameters for DDA-ice-1
numpass | number of passes 1 1
o (s) standard deviation 3 3
K (u) cutoff 2 2
a (a) anisotropy 20 20
- kernel width in meters (pass0) 240.0 240.0
- kernel height in meters (pass0) 12.0 12.0
1 slab thickness (m) for signal and noise slabs 30 30
pix (vector) | pixel-size for histogram-based slabs (m) (50, 10] [50, 10]
tpin (b) bin-width for thresholding 5 5
tofset(k) threshold offset 1 1.0
q threshold quantile 0.15 0.15
R resolution of ground follower (m) 10 10
T factor to reduce the R parameter 2 2
- resolution of ground follower for rough surfaces (m) 5 5
Q crevasse depth quantile 0.5 0.5
S standard deviation threshold 1.75 1.75
of thresholded signal to trigger
small step size in ground follower (m)
data handling information
C data chunk size (in along-track meters) 3000 3000
photon data read as [dt, lon, lat, elev] | [dt, lon, lat, elev]
additional parameters for DDA-bif-seaice
m DDA-bifurcate (melt pond) run? 1=true 1=true
mp_-biny, (z) | horizontal bin size (DDA-bif) (m) 25.0 25.0
mp-bin, (v) | vertical bin size (DDA-bif) (m) 0.1 0.1
dq meltpond quantile (DDA-bif) 0.75 0.75
D using density histograms? (DDA-bif) O=false O=false
M minimum peak in histograms (DDA-bif) 3.0 3.0
O minimum prominence in histograms (DDA-bif) 3.0 3.0
This calculation is carried out for each photon as a center Mathematically, this reads as follows (summarized
point and yields the density field. from [12]).

(Step 3) Threshold Function: An autoadaptive threshold
function, described in [12], is employed to separate signal
and noise photons. The threshold function is controlled by a
quantile and threshold offset as algorithm-specific parameters
(see Table I).

In this algorithm version (DDA-ice-py3, v18.0) we use a
two-step threshold function. In the first step, the maximum
density values of photons in the noise slab are calculated, and
photons with a density value larger than this maximum plus
a threshold-offset value are passed into a set. In the second
step, the g-quantile of this set is passed into a second set. The
second set forms the set of ice-surface signal photons.

Threshold-determination is carried out in along-track bins
of size tyy,, with fpy, = 5 m for the melt-pond analysis in
this article. For each bin, indexed by s, the maximal value of
density for all points in the noise slab Dyise s for this bin is
found according to

fmax,noise,s = max {fd,a(c) | (GRS Dnoise,x} (8)

using (7) for the density value f; ,(c). Next a first threshold-
value t, is calculated as

Is1 = fmax,noise,s + Loffset (9)
by adding a global threshold offset 7o € R to the maximal
density value found in the noise slab.
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We define the set 7; as the set of all photon returns (center
points) ¢ in the corresponding bin in the signal slab Dgignar s
with density value larger than the first threshold ¢ ;

Ty = {fa.a(0) | ¢ € Dyignats A fa.alc) > t51} (10)

A second threshold ¢, is defined as the g-quantile of the
set 7y, i.e., t, o = v for the value v for which the density value
satisfies

Jaa(c) <v

for a fraction 0 < ¢ < 1 of the points ¢ in the set 7;.

Then, a photon in bin s of the signal slab is identified as an
ice-surface return if the density value of the photon is larger
than the g-quantile of the set 7, i.e., if

fd,a(c) > L2 (12)
defining the set of ice-surface returns in along-track bin s as
Ss = {C | [4S 7; A fd,a(c) > ts,2}- (13)

The autoadaptive thresholding process is illustrated in
Fig. 2. The analysis uses fosec = 1 and g = 0.15.

The set of all ice-surface returns is the joint set of S, for
all along-track bins

S={c|ceS&,seJ}

for the index set J of all threshold-bin indices.

After the application of the threshold function, surface
height is given by the height values of individual photons that
are classified as signal photons. The output of the threshold
function has the same resolution as the originally registered
photons (without background photons), reported on ATLO3,
and therefore, the spatial resolution of the output of the
DDA-ice at this step is the same as the nominal 0.7-m
resolution of ATLAS. This is possible because the DDA-ice
utilizes a data aggregation, not a data averaging operation.

(Step 4) Roughness-Controlled Piecewise linear Ground
Follower: For users interested in surface height at a given loca-
tion or users who prefer a continuous line of surface heights
over heights at individual photon locations, a piecewise lin-
ear ground follower is applied. The terminology “roughness-
controlled piecewise linear ground follower” is a simplified
description of a mathematical interpolator that builds on the
segmentation of an interval into short sections where the
surface is rough and into larger sections where the surface
is smooth. The height determination rules are summarized as
follows: if the standard deviation of the photons determined
as signal photons (in Step 3) in a given along-track segment
of length R (here: R = 10 m) exceeds a value S (the standard
deviation for the ground follower), then the smaller stepsize,
calculated as £ is used for the piecewise linear interpolator.
The height determination employs a density-weighted interpo-
lator [12, eq. (30)], which allows placing the surface height
depending on surface properties.

Determination of Algorithm-Specific Parameters (Sensitivity
Studies): The values of the algorithm-specific parameters are
determined in a sensitivity study. A sensitivity study is a
stepwise optimization process, during which parameters are
varied one at a time, holding the rest of the parameter set
constant around a control parameter set (typically the last

(1)

(14)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

parameter set used in successful data analysis). Once a new
optimal solution is found, this is set as the control set, and
the next iteration, varying each parameter, is carried out.
Iterations are continued until a satisfactory parameter set has
been determined, aided by experience in photon-counting lidar
data analysis or validation data.

Data Handling Information: Version v18.0 of the
DDA-ice-py3 allows processing of large files (entire ICESat-2
ATLAS granules). This is facilitated by so-called “chunking,”
an operation that loads segments of the datasets (here: 3000 m
along-track). Chunking requires involved handling of data and
intermediate algorithm results when passed to subroutines,
to avoid effects at “chunk” boundaries. The mathematical
details of the chunking algorithm developed specifically for
the DDA-bif-seaice algorithm go beyond the objectives of this
article.

Photon data are read in as

(dt, lon, lat, elev).
Photon data are appended with distance along track as

(delta_time, lon, lat, elev, distance).

F. Algorithm Steps of the DDA-Bifurcate-Seaice
(DDA-Bif-Seaice)

The idea of a bifurcating algorithm is to identify locations
where two geophysically valid surfaces exist, here, the top
and bottom of a melt pond on sea ice. Two surfaces can
clearly be identified in ICESat-2 data in some situations,
but less clearly in others. Implementation of this simple
concept as an automated algorithm has several complications,
due to the complexity of: 1) the melt ponding process and
2) the lidar observations (interactions of the lidar signal with
complex cryospheric materials, including snow, ice, slush,
and water). As discussed in Section IV-D, the cryospheric
materials undergo a metamorphosis during the melt process,
and the different materials resulting from the stages of this
metamorphosis result in different returns of the lidar signal,
manifested in the spatial distribution of photons in the point
cloud. The ATLO3 data can show many stages of “ponds in
the making.” The question is then, at which stage should
an algorithm identify two surfaces and call out a pond?
Determination of the location of a bifurcation and rejoining
point is a third problem.

Critical to these problems as part of an algorithm is the
determination of spatial resolution. The current analysis uses
a horizontal resolution of 25 m and a vertical bin size of
0.1 m in the bifurcation criterion, which strikes a balance
between the conflicting goals of finding enough signal pho-
tons to identify bifurcations while avoiding false positives.
Pond bottom depths (and ice-surface heights) are resolved at
5-m and 10-m along-track resolution for rough and smooth
surfaces, respectively, with the smallest detectable ponds of
15- and 30-m widths. The values have been determined in
sensitivity studies.

In the following, we describe how the bifurcation algorithm
for sea-ice data is interleaved into the DDA-ice-1. Algorithm
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Fig. 2. Megaplots illustrating the steps of the DDA-bif-seaice. (a) 1298_gt31_82.637.png — gt3] outer beam, strong [mega 1]; (b) 1298_gt2] 82.727.png —

gt2l1, center beam, strong [mega 2]. Granule information in caption of Fig. 1.

steps already detailed for the DDA-ice-1 in Section IV-F
are simply summarized. New algorithms steps specific to the
DDA -bif-seaice are introduced here.

Algorithm steps of the DDA-bif-seaice are illustrated in
Fig. 2. There, four examples are given to provide insights
into the operation of the algorithm steps for different sea-
ice environments, reflection situations, and morphological
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complexities and for an outer beam (strong beam 3) compared

with the near-nadir central beam (strong beam 2).

(x —

(Step 1) Large-scale separation of signal and noise
slabs:
The input to this step is the set of raw ICESat-2 ATLAS
photons, also called the photon point cloud, seen in Fig. 2

1, where x = a,b,c,d). The signal of the Earth’s
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(Continued.) Megaplots illustrating the steps of the DDA-bif-seaice. (c) 1237_gt31_82.818.png — gt3l outer beam, strong [mega 3]; large pond with

variable density (d) 1237_gt31_82.831.png — gt3l, outer beam, strong [mega 4]. Granule info in caption of Fig. 1.

surface, where the surface of sea ice, sea water, or pond water,
coincides with the height range of the strongest reflectors. The
separation of noise and signal slabs at large spatial scales is
relatively robust and can be carried out using histograms. The
result is shown in Fig. 2 (x — 2).

(Step 2) Calculation of the density field using the radial
basis function, rbf, for the signal slab and the noise slab (the
same as DDA-ice-1).

The density field is shown in Fig. 2 (x — 3).

(Step 3) Operation of an autoadaptive threshold function
to separate noise and signal photons, using density as an
additional dimension.

At this point, the same threshold algorithm is run as in the
DDA-ice-1, but with a lower quantile, currently g = 0.15 (see
the table of algorithm-specific parameters, Table I), that passes
more photons as candidates for examination in the following
steps. Running the autoadaptive threshold function creates a
set of signal photons, denoted by S (14). Note that S is a
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subset of the set of photons in the signal slab (for DDA-ice-1
and DDA-bifurcate-seaice). With the lower quantile, the set S
is not the set of ice-surface photons anymore, but rather a set of
photons, which are candidates for melt-pond surface or bottom
photons. Running the original threshold algorithm with a really
low threshold serves to eliminate outlier photons. We call the
resultant set the presignal set. The main thresholding will be
applied at a later step in the melt-pond algorithm of the DDA-
bifurcate-seaice (see Step 4).

The operation of the autoadaptive threshold function for the
presignal set is illustrated in Fig. 2 (x —4), with the resultant
presignal set shown in Fig. 2 (x —5).

(Step 4) Melt-Pond Detection: Bifurcation algorithm with
additional autoadaptive thresholding.

The actual melt-pond detection comprises several steps. The
result of these steps is shown in Fig. 2 (x — 6). Building on
the logic of the thresholding algorithm (Step 3), a new bifur-
cation algorithm with additional autoadaptive thresholding is
designed. The new algorithm for melt-pond detection is imple-
mented in a function called compute_threshold_melt_pond,
abbreviated as ctmp, applied to signal photons only, i.e.,
to photons in the set S that results from Step 3. Note that ctmp
is not applied to all photons in the signal slab, only to signal
photons resultant from Step 3. The function ctmp currently
uses the same quantile, ¢, as the thresholding in Step 3 (i.e.,
qg = 0.15.)

The function returns the photon signal sets associated with
the top surface and the bottom surface (if applicable); these
are subsets of the presignal set from Step 3. In case only one
surface is found, the result is identical to that of the DDA-ice-1
(with appropriate parameters).

(Step 4.1a) ctmp-la: Calculate a vertical histogram of the
signal photons.

The bifurcation code begins by determining if two surfaces
exist. A vertical histogram is calculated for the photons in
the set S (at vertical resolution mp_bin, ), for every segment
of a horizontal resolution mp_bin,. Here, we use mp_bin, =
0.1 and mp_bin, = 25 (units in meters). All following steps
are carried out for each horizontal step of resolution mp_bin,,.

(Step 4.1b) ctmp-1b: Apply a binomial filter to the his-
togram.

Then, the histogram, H, is filtered (or smoothed) using
the Butterworth filter. In this simple form, it is a binomial
filter. The new histogram counts H,y, at vertical location x
(or elevation), are given the value

Hpew(x) = H(x —2)-0.0625 + H(x — 1) - 0.25
+H(x)-0375+ H(x +1)-0.25

+ H(x +2) - 0.0625. (15)

For edge cases, one simply drops the term that is out of
bounds. For example, for bin 0, we use

Hew(0) = H(0) - 0.375+ H(1) - 0.25 4+ H(2) - 0.0625.
(16)

(Step 4.2) ctmp-2: Find peaks in the filtered vertical his-
togram of signal photons.
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Fig. 3. Histograms illustrating bifurcation criterion in the DDA-bif-seaice
submodule ctmp (steps 4.1 and 4.2). (a) Histogram (filtered) typical of a
single surface. (b) Histogram (filtered) typical of a melt pond. Histograms
stem from example 1298_gt3]1_82.637.png, shown in Figs. 1(e) and 2(a).
— gt3l outer beam, strong. Example from ICESat-2 ATLAS granule
ATL03_20190618062235_12370304_005_01.h5, RGT 1237, collected June
18, 2019, ICESat-2 ASAS version 5 dataset.

Peaks in the filtered vertical histogram will indicate reflec-
tors, and if there is more than one reflector, a melt-pond
may exist in the examined location. The determination of
peak locations is currently implemented as a call to the scipy
library function find_peaks, which is called with the maximum
number of peaks set to 2. There are two cases possible: 1) if
at least two peaks are found, then set peak, = top and
peak, = bottom and apply the algorithm for the bifurcation
case and 2) if only one peak is found, then only one surface is
identified. The scipy function also determines a saddle point
(a minimum between the two peaks). The two cases of peak
determination are illustrated in typically filtered histograms in
Fig. 3; such histograms can be output by the DDA-bif-seaice
as an option.

1) If at least two peaks are found, then the algorithm finds
the two largest peaks, where pkl is the bin associated
with the top surface and pk2 is the bin associated with
the bottom surface. Next, we find a specific histogram
range, or a signal “slab,” for each peak (or associ-
ated surface). We first find the minimum histogram
bin between the two peaks pk_min, referred to as the
saddle point. The number of bins, or distance, between
the saddle point and the peak for the top surface,
is called d. The slab associated with the higher surface
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(top surface) is bounded below by the saddle bin and
above by pkl + d. Thus, the upper slab is centered at
the peak pkl with a size determined by the separation
of the peak bin from the saddle point bin between
the two peaks. If the upper boundary is above the
histogram limit, then the top of the slab boundary is
set to the uppermost histogram bin. The second slab,
associated with the lower surface, ranges from the saddle
bin pk_min to the first bin below the second peak pk2
that drops to O signal photon counts. In this case of
two identified surfaces (case 1), the function returns
the two-photon signal sets associated with the top and
bottom surface, using Sy, to denote the set of the top
(surface) photons and S, to denote the set of bottom
photons.

The determination of the peaks utilizes the following
values (see Table I). The count of a minimal peak
in the histograms is set as M = 3 photons, and the
minimal prominence of a peak above the saddle is set
as D = 3 photons, applied to the filtered histogram;
i.e., a peak must at least have three photons and be
at least three photons above the saddle point in the
filtered histogram. These are algorithm-specific, tunable
parameters. In addition, minimal pond depth is set to
be 0.5 m, a constraint that is associated with the 1.5-ns
pulsewidth of the ATLAS sensor (1.5 ns equals 0.45 m
at the speed of light).

As a result, each photon that has been identified as
a signal photon is associated with one of the classes of
pond bottom or pond surface for a ponded area. Up to
this point in the algorithm, all operations are carried
out per photon, and in consequence, the nominal 0.7-m
along-track resolution (point spacing) of the ATLO3 data
is retained in the pond detection. The regular ground
follower is then applied in a modified version to both
signal sets S;,, and Sy to interpolate the two distinct
surfaces (for each along-track bin). Note that in the code
the ground follower is applied to the union of all the
along-track bins, i.e., the entire track, all at once. It uses
the same quantile dg = 0.75 for both surfaces. The
modified ground follower is described in (Step 5).
There is also the case where only a single surface
is identified (one peak returned from the find_peaks
function with our parameterization). In this case, the
threshold function acts as for DDA-ice-1 to return the
thresholded photons to be interpolated by the ground
follower. The code simply returns the same thresholded
set of photons as the photon signal slab for both the top
and bottom surfaces, which implies that the two surfaces
would merge in the ground follower (Step 5); formally,
the same ground estimate is output for both surfaces for
this particular horizontal or along-track bin. The ground
follower is described in (Step 5) for this case as well.

(Step 4.3) ctmp-3: Create a set of bifurcation and rejoining
points: a counter for discrete ponds.

In this step, a set of bifurcation points and a set of rejoining
points are created, which aid in keeping track of the start and
end locations of discrete ponds. This set is later examined

2)
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in the melt-pond ground follower, which has the capability
to function for pond regions and regions of a single surface.
Numerically, the identification of bifurcation and rejoining
points is carried out as part of (Step 4.2), changing the value of
an indicator whenever a switch in the number of peaks occurs.

As a result of this step, we are able to carry out analyses of
properties per pond, such as maximal and average pond depth
and pond width.

(Step 5) Pond-specific surface follower:

In Step 5, a melt-pond specific surface follower is applied
to both the top surface signal-photon set, S, set and
the bottom surface signal-photon set, Sp,;. The surface fol-
lower employs the same roughness-adaptive ground follower
function, as described for the DDA-ice-1. Numerically, the
ground-follower algorithm moves along track, calculating
surface heights for each segment for both surface sets. The
melt-pond ground follower uses a melt-pond quantile, dg =
0.75. The role of the melt-pond quantile in the ground follower
function is to “place” the reflector/ground height at a certain
percentile of the set of signal photons in the respective set
(the set of surface signal photons or the set of bottom signal
photons). In the current code version, the same melt-pond
quantile dg = 0.75, is applied for both surfaces, but different
quantiles could be used in a future version of the algorithm.
There is also an option to place surface height at max density,
which is not used in the current melt-pond analysis.

The same values of the ground-follower resolution, R =
10 [m], and the reduction factor for rough surfaces, r = 2, are
employed for both surfaces, but one can be smooth (resulting
in the 10-m resolution) and the other one can be rough
(resulting in the 5-m resolution). Typically, the pond bottom is
rougher than the pond surface, but we do not force the pond
surface to be flat at this point (because the top surface could
also be a ridged surface between ponds).

The result of the surface follower is a set of piecewise
linearly interpolated surface heights, Sop-inerp, and piecewise
linearly interpolated bottom heights, Sporinterp-

Case 2: In case (2) (no pond), the algorithm works as
follows: if no pond is detected (and between ponds, i.e.,
wherever only one surface exists), then the roughness-adaptive
ground follower is applied, as described in Step 4 of the
DDA-ice-1. This capacity creates a surface that follows ridges
(rough sea-ice areas) with a smaller segmentation in the
piecewise ground follower, as well as smooth sea ice, where a
larger segmentation is used (see Table I). The result of the
surface follower is a set of piecewise linearly interpolated
surface heights, S;op-inserp-

In case (1) (pond), an additional algorithm module for
correction of melt-pond surface heights is applied (Step 6).
Technically, to avoid edge effects in the ground follower
between case 1 (two surfaces) and case 2 (single surface),
the surface is duplicated into two identical sets for case 2.

(Step 6) Correction of melt-pond surface heights and cal-
culation of pond statistics.

(Step 6.1) Correction of melt-pond surface heights.

Case 1: In case (1) (pond), the surface follower.

1) Makes the top surface flat and horizontal.

2) Throws out false negatives.
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For case (1), the following steps are carried out. This is
implemented as running a “for” loop over the ponds, and the
following steps are carried out for each pond.

(Case 1.1): If the mean elevation of the surface is larger
than the elevation of the pond edges plus a small value e,
then it is determined that de facto no pond exists: calculate
m(s) as the mean of the surface height for the top of the pond,
based on the heights of the photons in the top surface signal
slab, and calculate the edge average as a(e) = h((left_edge) +
h(right_edge))/2. Then apply the following criterion, if:

m(s) > a(e) + ¢ (17)

then set top = bot.

This throws out false positives created by too small height
differences.

Current value is € = 0.2 m.

(Case 1.2): If the two pond edges are very different in
height, the set top = bot.

Current code uses

|h(left_edge) — h(right_edge)| > 1. (18)

This step throws out false positives created by ridge edges.

(Case 1.3): Min-width criterion: a minimum-width criterion
is applied to map ponds. This requires that a least three depth
measurements are taken, i.e., the pond needs to have a minimal
size of three segments of the ground follower.

Based on the ground follower resolution, the minimal pond
size is 30 m for smooth surfaces, if the length of piecewise
linear interpolator size is 10 m (see Table I). Using R = 2 for
the ratio of smooth to rough segment lengths in the ground
follower, the minimal pond size that is mapped is 15 m. That
means, if the bottom is rough then we can find ponds of 15-m
minimal size.

This can be interpreted as follows: if a pond formed on
really rough ice and melting started and the sea-ice morphol-
ogy was approximately preserved during subsiding, leading to
rough pond bottoms, then we can identify 15-m wide ponds.
Notably, the along-track bin size of the ground follower can
be smaller than the horizontal bin size of the bifurcation
algorithm, because Step 5 is applied to the signal photons
in the bottom and top signal slabs.

(Step 6.2) Calculation of pond statistics.

As the algorithm steps through the set of ponds, statistical
values of interest to sea-ice scientists are calculated. These
include the following.

1) Pond width.
2) Maximal pond depth.
3) Average pond depth.

Values of maximal and average pond depth are not corrected
for the lower speed of light in water, compared with the speed
of light in air. Atmospheric corrections on the ATL0O3 product
account for the slightly lower speed of light in air, compared
with the speed of light (in vacuum), see [32].

(Step 6.3) Correction for speed of light in water.

As an approximation, the range between the pond surface
and the pond bottom can be multiplied by 1.3. (Water has a
refractive index of 1.3, whereas the refractive index of vacuum
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is 1.0). This correction is currently applied outside of the
DDA-bif-seaice in the postprocessing of pond depths.

Results of the pond statistics are utilized in the companion
paper on the evolution of melt ponding on Arctic seaice in
the multiyear seaice region, including the Lincoln Sea (see
Section V and [5]).

V. APPLICATION: MELT-POND DETECTION IN ICESAT-2
ATLAS DATA FROM THE MULTIYEAR ARCTIC
SEA-ICE REGION

The DDA-bif-seaice was applied to ICESat-2 ATLAS data
from the multiyear Arctic sea-ice region [multiyear Arctic
sea-ice region (MYASIR); Fig. 4] for the melting seasons
(June—August) of 2019 and 2020. In the Central Arctic, early
melt onset and melt onset occurred on the 3rd and 16th of
June 2020, respectively (cf. [28]). We conclude the study in
August, as imagery of the region shows freeze conditions
and a pond with a frozen surface is no longer penetrable by
the laser. The study region and time period are described in
more detail in [5]. Results from 2019 are given in Fig. 1 and
already discussed in Section III, focusing on the illustration
of pond detection capabilities: 1) in different beams; 2) in
different sea-ice environments; and 3) in various situations
of background and signal strength. Now that the algorithm
has been introduced, we take a closer look at examples that
illuminate certain typical sea-ice morphological situations and
problems of pond detection.

A. Ponds Among Ridges and in Complex Sea-Ice Topography

A frequently occurring morphological type of sea ice is that
of faulted ice blocks. These form when compressive stress is
applied to a sea-ice province, for example by wind, causing
fracturing of the sea ice into blocks, which are then thrust
upward and can be partly pushed on top of each other. Melt
ponds tend to form on the side of a faulted block. Detection of
ponds aside from fault blocks may provide useful information
for modeling sea-ice physical processes at high resolution.

The example in Fig. 5(a) shows two ponds, which have
surfaces at different heights and the two ponds are forming in
two of the typical, but different, neighboring environments:
pond 1 (at 4400) is located among of sea ice with a low
topographic relief, which is relatively smooth to the left of
pond 1 and somewhat ridged on the right of pond 1. A small
fault block could be located immediately right of pond 1.
Pond 2 (at 4600) is situated to the side of a fault block, where
the fault block forms a ridge.

The surface follower is not optimized to follow the
ridge topography in this code version (DDA-ice v18.0,
December 2021), resulting in unrealistically smoothed-out
topography [Fig. 5(a)]. Analysis of ridged and ponded areas
with an older code version (DDA-ice v16.0, October 2021),
which includes a different surface follower for single surfaces,
renders ridge topography more realistically [Fig. 5(b)].

B. Results From Summer 2020 Data

For the 2019 data, analysis was carried out automatically
detecting ponds, which were already detected manually as well
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Location of melt ponds detected by the DDA-bif-seaice in the study area, the MYASIR, for summer 2020. Each small red circle indicates a melt

pond detected with the DDA-bif-seaice, a total of approximately 10200 ponds are shown. Note that DDA-bif-seaice was run over about 10% of ICESat-2

tracks, outer strong beams.
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Automated detection of melt-ponds on sea ice among ridges and complex surfaces with the DDA-bifurcate-seaice. ICESat-2 data from the Lincoln

Sea. (a) Example from ICESat-2 ATLAS granule ATL03 20200628121109 00480804 005 01.h5, RGT 48, collected 2020-June-28, ICESat-2 ASAS version
5 data set. Strong outer beam gt1l. Example of two ponds with different different surface heights in complex sea-ice environments. pond 1 (at 4400), pond 2
(at 4600), artifact avoided at 4850. Ground follower not optimized for ridge topography (2020 data, seg0). (b) Application of DDA-bif-seaice (v.16.0) with
surface follower for single surfaces optimized to adapt to rough surfaces, such as ridge topography, between ponds. Examples from ICESat-2 ATLAS granule
ATLO03 20190618062235 12370304 003 01.hS, reference ground track (RGT) 1237, collected 2019-June-18, ICESat-2 ASAS version 3 data set (2019 data,

1298 gt31 82.637.png). The same example as Fig. 1(e).

as with the UMD MPA to provide a proof of concept. The
UMD algorithm requires visual determination of pond location
(thus, ponds have pond identifiers in the file names and these
are utilized in comparisons of results from the two algorithms
and in the examples in Fig. 1). The DDA-bif-seaice was
applied to the same ATLAS tracks, without giving information
on pond location to the algorithm, and pond existence and
location were determined fully automatically.

For the 2020 data, a large set of tracks (10% of all tracks
collected) was processed for a large area of the Arctic, using
only strong-beam data. Results from July 13, 2020 data
(Fig. 6) show ponds at different stages of formation and in
different sea-ice environments, some of which are province
types not previously illustrated in Fig. 1. Notably, total signal
strength in examples Fig. 6(a)—(e) is significantly lower than
in the 2019 examples presented, but higher for the examples
in Fig. 7. The analysis for all 2019 and 2020 data was

run using DDA-ice v18.0 with the same algorithm-specific
parameter sets, given in Table I, which further demonstrates
the autoadaptive capability of the algorithm. In Fig. 1(h),
a large pond neighbors small ponds that are correctly detected,
as well as a region of dead-time effects that are appropriately
avoided.

Examples include the following: 1) a pond at an early stage
of formation, located in a smooth sea-ice area [Fig. 6(a)].
Neighboring areas show the penetration of ice with water,
likely leading up to pond formation; 2) ponds among ridges
at various formation stages [Fig. 6(b)]; 3) a pond in a partly
ridged, partly smooth area [Fig. 6(c)]; 4) a pond in a typical
location near a ridge [Fig. 6(d)], as already described in
Section V-A; 5) an unusually small pond at an early formation
stage [Fig. 5(e)]; 6) a small pond that is detected. Notably,
no false positives are detected in a high-density area between
665 600 and 665800 (see Section V-C); and 7) an unusually
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Fig. 6. Examples of ponds detected with the DDA-bif-seaice in summer 2020 ICESat-2 ATLAS data, Multi-year Arctic sea-ice region. Examples of ponds
are from ICESat-2 ATLAS granule 20200713151204 02790804 005 01 gtll strong outer beam, reference ground track (RGT) 279, collected 2020-July-13,
ICESat-2 ASAS version 5 data set. (a) Pond in the making, located in smooth sea-ice area. Neighboring areas show penetration of ice with water, likely
leading up to pond formation (2020 data/0713, seg305). (b) Ponds among ridges area, various formation stages. Surface follower not optimized for ridge
topography in the code version (2020 data/0713, seg319). (c) Pond in partly ridged, partly smooth area (2020 data/0713, seg344). (d) Pond in typical location
near a ridge (2020 data/0713, seg586). (e) Small pond detected (2020 data/0713, seg368). (f) Small pond detected. no false positive detected in high-density
area between 665600 and 665800 (2020 data/0713, seg665). (g) DDA avoids dead-time effects (seen as high-density regions below the surface and parallel
to the surface. Here, three levels.). Thus DDA avoids false positives (2020 data/0713, seg626). (h) Large pond detected at 676000. Small ponds detected near
675600. Avoidance of saturation effects in regions of high surface reectance (density 350 or larger) (2020 data/0713, seg675 and 676).

deep pond (approximately 4-m uncorrected depth and corre-
sponding to 5.2-m corrected depth), that is situated between
two small ponds (near 675 600) and a region of high surface
reflectance (density 350 or larger).

A physical interpretation of melt-pond evolution based on
the results from analysis of large datasets over the MYASIR
with the DDA-bif-seaice is given in [5].

C. Avoidance of Saturated Signals

In situations of highly reflective sea-ice surfaces, the lidar
signal received by the ATLAS sensor can become saturated.
This means that more photons are received than can be

counted. As a result, a second range bin of photons will appear
at a fixed range, or distance, determined by the detector dead
time. The first of these is 0.43 m below the saturated surface.
For the central beam pair, whose beams are near-nadir pointing
at the ice surface, saturation is relatively common over spec-
ular refrozen ponds or specular water surfaces of melt ponds.
This effect creates a challenge in possible misclassification of
saturation effects as melt ponds because the range of 0.43 m
lies within the depth range of melt ponds. The dead-time
effect leads to signals that are a fixed distance below the
height of the primary surface and follows the shape of the
primary surface. For pond surfaces, which are flat, the artifact
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region. Examples of ponds are from ICESat-2 ATLAS granule 20200803013027 05910804 005 01 gtll strong outer beam, reference ground track (RGT) 591,
collected 2020-August-3, ICESat-2 ASAS version 5 data set. (a) A false positive pond identification (between 1.2064 and 1.2066) (2020 data/0803, seg4).
(b) All false positives are avoided in this segment of dominated by saturated signals (2020 data/0803, segl13).

surface is also flat [see Fig. 7(b)]. The dead-time effect can be
persistent over long distances of the ICESat-2 ground tracks
[see Fig. 7(a) and (b)].

The DDA-ice-1 has the property to avoid secondary signals
in most situations, simply because those are less dense than
the primary surface. For the DDA-bif-seaice, the challenge is
larger, because the goal is now to detect secondary surfaces
that are weaker. In many cases, detection of false positives,
misidentified as ponds, is avoided by the cmfp module of
the algorithm, as illustrated in Fig. 6(f) (between 665600
and 665800) and Fig. 6(g) (between 626600 and 626 800).
However, avoidance of misclassification of dead-time effect-
generated secondary surfaces as false ponds is far from perfect,
as seen in the example in Fig. 7(a) between 1.2064 and 1.2066,
among, otherwise, correctly avoided secondary signals, while
Fig. 7(b) gives an example of a strong saturation effect
(density 400).

Data situations, such as seen in Fig. 1(d), may benefit
from a validation campaign (see Section VII), to distinguish
between sections that may be dominated by saturation (dead-
time effect), while the ponds in Fig. 1(c) and (f) have complex
bottom topographies, and thus, are not saturation (dead-time)
artifacts, despite the strong surface reflectance (density values
of 200-250). Notably, the absolute density value is not a
well-defined criterion for saturation, because the density value
depends on the algorithm-specific parameters that control the
kernel as well as on background intensity and because the
threshold function is autoadaptive.

An experimental algorithm to avoid saturation effects is
in development, but not applied here. Because of the sat-
uration problem, the analysis in [5] utilizes only results
from the outer beams, pairs 1 and 3. Furthermore, the
analysis in [5] was restricted to strong beams, because
only a subset of all ICESat-2 tracks crossing the multi-
year Arctic sea-ice region could be processed due to con-
straints of computer time on ADAPT and detection capa-
bility is better for strong beams than for weak beams in
general.

The ATLO3 product has flags for “saturated” and
“near-saturated” signals, preliminary analysis indicates that
these flags do not correlate well with saturation effects
and do not provide a good solution for the saturation
problem.

VI. EVALUATION: COMPARISON WITH RESULTS FROM
ATL0O7 AND FROM THE UMD MELT-POND ALGORITHM

A. Comparison With ICESat-2 ATLAS Sea-Ice
Product ATLO7

The ICESat-2 ATLAS sea-ice product ATLO7 is not
designed to detect two surfaces; hence, melt ponds are not
reported and in ponded regions, the surface height on ATLO7
may represent that of the surface or a value between the
surface and the pond bottom [6]. A few examples show-
ing the information gain between ATLO7 and results from
the DDA-bif-seaice are given in Fig. 8. The results suggest the
inclusion of melt-pond information in a future version of the
ICESat-2 ATLAS products.

In regions without melt ponds, surface heights of ATLO7
and from the DDA-bif-seaice are in good agreement, where
surface topography is smooth or moderately rough; however,
in ridged areas, the DDA ground follower needs to be revisited
to better reflect high topographic relief (see Fig. 5).

B. Comparison to Melt-Pond Depth Measurements Using the
UMD Algorithm

In addition to the visual interpretation of the photon cloud,
results from several hundred manually identified ponds from
the 2019 melt season were employed for evaluation of the
DDA-bif-seaice results during the early stages of algorithm
development (Fig. 8). The 2019 data analyses were rerun with
the latest DDA algorithm version (v18.0) for inclusion in this
article. Ponds were visually identified in ICESat-2 ATLAS
photon cloud data (ATLO3 data) and computationally analyzed
using the UMD MPA. To facilitate a study of the evolution of
melt ponds across the entire MYASIR, a representative subset
(10%) of all ICESat-2 ATLAS data collected in this region
in the summer of 2020 (June—August) was analyzed with the
DDA-bif-seaice. The 2020 data analysis supports a statistical
comparison of results from the two algorithms (Fig. 9).

1) Description of the University of Maryland Melt-Pond
Algorithm: The UMD MPA is a computational algorithm for
the detection of melt ponds in ICESat-2 ATLAS (ATLO03) data
that requires a priori determination of the location where a
pond exists, then centers the pond analysis on the middle of
the pond and computes the depth of the pond in increments.
Control points at the pond bottom can be added. The MPA is
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Fig. 8. Comparison of pond detection with the DDA-bif-seaice and UMD MPA to results on ICESat-2 ATLAS sea-ice product ATLO7.
(a)—(d) Comparison of pond detection with the DDA-bif-seaice to results on ICESat-2 ATLAS sea-ice product ATLO07. Blue—ATL07,
red—DDA-bif-seaice surface heights, and green—DDA-bif-seaice pond bottom heights. Examples in (a) and (c) are from ICESat-2 ATLAS granule
ATL03_20190618062235_12370304_005_01.h5, RGT 1237, collected June 18, 2019, ICESat-2 ASAS version 5 dataset. Examples in (b) and (d) are from
ICESat-2 ATLAS granule ATL03_20190622061415_12980304_005_01.h5, RGT 1298, collected June 22, 2019, ICESat-2 ASAS version 5 dataset. (a) 2019:
1298_gt31_82.637 [see Fig. 1(e)]. (b) 2019: 1237_gt31_82.831 [see Fig. 1(d)]. (c) 2019: 1298_gt31_82.911 [see Fig. 1(f)]. (d) 2019: 1237_gt31_82.818 [see
Fig. 1(a)]. (e)—~(i) Comparison of pond detection with the DDA-bif-seaice and the UMD MPA to results reported on ICESat-2 ATLAS sea-ice product
ATLO07. (e) and (f) 2020 data. Top panels in (a) and (b): ATLO7 (blue). Bottom panels in (a) and (b): green—DDA-bif-seaice pond bottom, magenta—UMD
MPA pond bottom, and red—DDA-bif-seaice surface of ponds and between ponds. (a) and (b) From Buckley et al. [2]. (¢) Example where ATLO7 follows the
pond surface. Examples in (e) are from ICESat-2 ATLAS granule ATL03_20200628055359_00440804_005_01.h5, RGT 44, strong outer beam gt3l, collected
June 28, 2020, ICESat-2 ASAS version 5 dataset. start_dt 78559154.55 and stop_dt 78559154.71. (f) Example where ATLO7 follows the pond bottom.
Examples in (f) are from ICESat-2 ATLAS granule ATL03_20200701061119_00900804_005_01.h5, RGT 90, strong outer beam gt31, collected July 01,
2020, ICESat-2 ASAS version 5 dataset. start_dt 78819350.67 and stop_dt 78819350.84 (g, h, i): 2019 data. Examples in (g) and (i) are from ICESat-2
ATLAS granule ATL03_20190622061415_12980304_005_01.hS5, RGT 1298, collected June 22, 2019, ICESat-2 ASAS version 5 dataset. Examples in (h) are
from ICESat-2 ATLAS granule ATLO03_20190618062235_12370304_005_01.h5, RGT 1237, collected June 18, 2019, ICESat-2 ASAS version 5 dataset.
(g) 2019 data: 1298_gt31_82.637 [see Fig. 1(e)]. (h) 2019: 1237_gt31_82.831 [see Fig. 1(d)]. (i) 2019: 1298_gt2l_82.727 [see Fig. 1(g)].
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Fig. 9.  Scatter plot of mean pond depths for ponds tracked by both the

DDA-bif-seaice and the UMD MPA in June and July 2020, 113 ponds total.
Residual mean pond depth for DDA-bif-seaice and UMD MPA, calculated as
DDA-heights minus MPA-heights.

described in detail in [5] and a brief description is included
here. The MPA was developed to track the melt-pond surface
and bathymetry in the ATLO3 photon cloud. We examined
cloud-free areas and manually (visually) identified melt ponds
in the photon cloud. In the ATLO3 photon cloud, melt ponds
present as a level surface, and a bowl-shaped bathymetry
with minimal photons return between these two surfaces.
We note the start and end of a pond as the point at which
the two surfaces become distinguishable. Across the pond,
we bin photons into 0.1-m vertical bins and find the surface
as the mode of the binned distribution. Next, the photons are
binned into 10-m along-track bins and 0.1-m vertical bins.
For each 10-m along-track segment, we locate modes below
the surface that have at least 5% of the surface photons.
The subsurface mode closest to the surface is associated
with the reflections from the bottom of the pond and the
bathymetry is defined as the vertical bin elevation of this
mode. Bathymetry is determined in this way for each of the
10-m along-track segments. To determine melt-pond depth,
we subtract the secondary surface that tracks the melt-pond
bathymetry from the primary surface that tracks the melt-pond
surface. However, the ATL03 algorithm does not account for
the change in the speed of light in water when determining
the geolocation of the photons. To determine the correct melt-
pond depth, we multiply the uncorrected depth by the ratio
of the speed of light in water to the speed of light in the air
(0.749). To increase the along-track resolution, we interpolate
the pond depths at 5-m increments.

2) Comparison of Retrieval Results From the MPA and the
DDA-Bif-Seaice: To compare results from the two algorithms,
the UMD MPA and the DDA-bif-seaice, statistically, we exam-
ine retrieved average surface heights and surface widths for the
113 ponds that both algorithms tracked. The statistical analysis
utilizes DDA-derived heights resampled at 5-m increments for
consistency with MPA-derived heights (rather than average
height and width values output by the DDA directly). For each
pond, we determine the mean pond depth and plot MPA and
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DDA mean pond depth [as seen in Fig. 8(e) and (f)]. We find
the algorithms in good agreement, with a correlation value
of 0.77, a mean difference of —0.04 m (DDA-MPA; i.c., the
bottom height is generally lower in the DDA-bif-seaice results)
(Fig. 9). The standard deviation of the residuals is 0.22 m. The
difference in depth retrievals between the two algorithms is
attributed to the different physical-mathematical philosophies
regarding the interaction of light with the cryospheric materials
at the bottom of a pond [see, Fig. 8(e) and (f)]; further work
on this requires field validation (see Section VII).

The DDA-bif-seaice can detect ponds of a minimal size
of a nominal size of 15 m (for rough areas or pond bot-
toms) and 30 m (for smooth areas or pond bottoms). While
these values are algorithm constraints, the detailed analysis
of melt-pond evolution in [5] demonstrates that the DDA-bif-
seaice facilitates the detection of a multiple of the number
of ponds compared with the UMD MPA. As seen in Fig. 4,
the DDA-bif-seaice detected approximately 10200 ponds. The
statistics of the pond sizes in the referenced study shows
that the size range of ponds detected with the DDA-bif-
seaice is much larger, including large ponds of several hundred
meters width as well as ponds of tens of meters width,
whereas the MPA finds only large ponds (as may be expected
from a manually forced detection). For both algorithms, melt-
pond size is found to increase as melting progresses early
in the season. This again is likely explained by the ability
of the DDA-bif-seaice to detect narrow, shallow ponds. The
agreement in trends is sufficient to support the physical inter-
pretation of melt-pond processes in the Arctic [5]. Because
of the general agreement of pond location and depth trend for
the ponds detected in both algorithms, the DDA-bif-seaice has
the capabilities expected from a fully automated algorithm for
melt-pond detection in ICESat-2 ATLAS data.

VII. DISCUSSION AND OUTLOOK

The DDA-bifurcate-seaice has been successfully applied to
the automated detection of ponds and measurement of their
depth and extension, as demonstrated in this article and in the
applied companion paper [5].

The evaluation of the DDA-bif-seaice in this article has
been carried out by application of satellite data analysis
and comparison with results from another, also unvalidated,
algorithm. Depth determination builds on experience gained
in the analysis of water in crevasses, observed during an
ICESat-2 airborne validation campaign over the Negribreen
Glacier System and on heuristics and sensitivity studies [14].
Systematic differences in pond depth between results from
the UMD MPA and the DDA-bif-seaice are attributable to
different philosophies applied in the rules for “placing” the
surface and pond bottom heights within the photon cloud [5].

Close scrutiny of the four examples of “megaplots” [Fig. 2,
threshold function panels (x — 4)] shows that large numbers
of photons pass in regions of ponds that are characterized
by weakly reflecting pond surfaces with clear pond interiors,
indicating melt/slush at and below the bottom of the ponds
[Fig. 2(a) and (b)]. In contrast, ponds with strongly reflecting
surfaces (perhaps refrozen water) have vertically narrower sets
of signals at or near the pond bottom, which might indicate
a colder, less slushy environment [Fig. 2(c) and (d)]. The
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DDA-bif-seaice is controlled by an algorithm-specific set of
parameters. The exact optimization of these parameters to
identify pond bottom heights within the lower set of signal
photons requires validation data from a field campaign. On the
other hand, the thought experiments that can be carried out
with the mere photon data alone already suggest a wealth
of information on the cryomaterials (firn/slush/ice/water) is
captured in the ICESat-2 photon data and their density field.

For this article, the algorithm-specific parameter set for the
DDA-bif-seaice has been determined by preliminary sensitivity
studies, which are a form of mathematical optimization that
utilizes iterative steps. Effects of parameter changes on detec-
tion and measurement results are analyzed, using a variety of
parameters around evolving control parameter sets [12]. This
process leaves uncertainties in the depth and width determi-
nation of ponds. Actual uncertainties determined in sensitivity
studies are on the order of £0.2 m, which when integrated
over a large part of the Arctic oceans are significant enough to
warrant further study. For comparison, an average systematic
depth difference of 0.44 m with a standard deviation of
0.22 m was found between results from DDA-bif-seaice and
UMD MPA ponds for 113 larger ponds identified by both
algorithms in this study. Critical is the penetration of the
lidar signal into complex marine cryospheric media, which
include, in addition to ice and water, snow on top of the
sea ice, snow during metamorphosis, firn, slush, seawater,
and brine. As is well-known [47], the penetration depends on
frequency. The average ice-surface height difference from red
and green lidar data is on the order of 0.15 m (with heights
from green laser data generally lower) and standard deviation
0.23 m [12], but specifics depend on the cryomaterials and
there are many unknowns. Airborne field data, including red
and green lidar data and high-resolution image data, were
collected during the ICESat-2 Arctic summer sea-ice campaign
in July 2022. These data, once processed and analyzed, may
provide constraints for optimization of the algorithm-specific
parameter set of the DDA-bif-seaice, and thus, may allow a
reduction of uncertainty in depth estimation.

VIII. SUMMARY AND CONCLUSION

The importance of understanding melt processes in the Arc-
tic sea ice in the current realm of climatic warming motivates
the development of an advanced mathematical algorithm for
the detection of ponds in ICESat-2 ATLAS data. In this article,
we introduce the Density-Dimension Algorithm for bifurcating
sea-ice reflectors (DDA-bifurcate-seaice or DDA-bif-seaice for
short), an algorithm that facilitates automated detection of
melt ponds in ICESat-2 ATLAS data, retrieval of two surface
heights, pond surface and bottom, and measurements of depth
and width of melt ponds.

The ATLAS instrument is the first spaceborne multibeam
micropulse photon-counting laser altimeter system, it operates
at 532-nm (green light) frequency and registers returns from
every single photon in the green-light domain of the sensor.
Data are reported in the ICESat-2 ATLAS geolocated photon
point cloud product, ATLO3. ICESat-2 ATLAS data resolve
returns from the top and bottom of melt ponds in the photon
point cloud, but because of the high background especially
during daylight conditions, separation of noise and signal
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and especially detection of two surfaces of typically different
intensities are mathematically ill-posed problems.

The DDA-bifurcate-seaice is an autoadaptive algorithm that
solves the problem of pond detection at the 0.7-m nominal
resolution (received photon spacing) of ATLAS data. In a
pond area, each photon identified as the signal is associated
with one of the classes of pond surface or pond bottom. The
DDA-bif-seaice builds on the Density-Dimension Algorithm
for ice surfaces (DDA-ice), utilizing the radial basis function
for calculation of a density field and a threshold function
that automatically adapts to changes in background, apparent
surface reflectance (ASR) and some instrument effects. The
centerpiece of the DDA-bif-seaice is a bifurcation module,
designed to satisfy the following criteria for a melt-pond
algorithm for analysis of point cloud data of lidar data:
1) the algorithm needs to be fully automated (i.e., it should
not require a priori information on the existence or location
of a pond); 2) detect ponds wherever they exist; 3) avoid
false positives; 4) automatically adapt to different background
characteristics of daytime and nighttime data and to changes in
ASR; 5) find ponds among sea ice of different roughness types
(smooth, ridged, and complex); 6) correctly determine the start
and end points of a pond along the ICESat-2 ground track;
7) measure the pond depth; and 8) represent the complexity
of the sea ice at high resolution. The DDA-bif-seaice includes
a ground follower that automatically adapts to the roughness
of the pond surface and pond bottom (or of a single surface
where no ponds exist). The smallest width of ponds tracked
with the ground follower is 15 m for rough surfaces and
30 m for smooth surfaces, currently used height resolution
(depth resolution) is 0.1 m. Ponds can be identified in typical
locations at the side of ridges formed by fault blocks and
in other complex environments. ICESat-2 has been found to
penetrate shallow water to 15 m (or more) with both top
and bottom surfaces trackable by the DDA-bifurcate [35];
therefore, there is no sensor-related or algorithm-related prac-
tical maximal depth limit to melt-pond detection on sea ice
with ICESat-2 and the DDA-bif-seaice. The minimal pond
depth is 0.5 m, a constraint that is associated with the 1.5-ns
pulsewidth of the ATLAS sensor (1.5 ns equals 0.45 m at
the speed of light) and implemented in the algorithm. Its
computational efficiency suggests that a future version of the
DDA-bif-seaice may be applied as an operational algorithm for
the analysis of ICESat-2 ATLAS data across large regions,
including the entire Arctic and Antarctic sea-ice regions.
The problem of signal saturation is explained and needs to
be addressed in future algorithm development, as currently
saturation effects are partly avoided, but can also lead to false
positives, especially in near-nadir central beams.

Melt ponds are not reported on the standard ICESat-2
ATLAS sea-ice products ATLO7 (sea-ice surface heights) and
ATL10 (sea-ice freeboard), because of the low along-track
resolution of the products and because the ATLO7 algorithm
is designed to determine a single-surface height. The signal-
noise separation algorithm of the DDA-bif-seaice identifies
every photon as signal or noise (background) and hence retains
the 0.7-m nominal photon spacing of the ICESat-2 point
cloud, whereas the ATL07/10 algorithm relies on segments of
150 photons, typically between 17 m x 27 m and 17 m X
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200 m [22]. Thus, the DDA-bif-seaice can derive features
with a much higher resolution than the ATL0O7/10 algorithm.
To illustrate the increase in information, results from the
DDA-bif-seaice are compared with results from the ATLO7
algorithm. Because ATL10 results are derived from ATLO7,
ponded areas can be mistaken for open water, and thus,
freeboard is miscalculated. Results from an advanced version
of the DDA-bif-seaice analysis may be included in a future
version of the standard ICESat-2 ATLAS data products. This
may not only add information on the existence, location, depth,
and size of ponds to the ICESat-2 sea-ice products but also
facilitate the improvement of freeboard determination.

To demonstrate the capabilities of the DDA-bif-seaice as
a fully automated algorithm for melt-pond detection that
automatically adapts to changing background conditions, espe-
cially to the more challenging conditions of daylight, the
DDA-bifurcate-seaice is applied to large ICESat-2 datasets
from the 2019 and 2020 melt seasons in the multi-year Arctic
sea-ice region (MYASIR). The analysis is carried out for about
10% of all ICESat-2 data collected in the summer of 2020
(outer strong beam data), which is considered representative
of the entire ICESat-2 ATLAS dataset for this time frame and
area. The results from the 2020 analysis yield approximately
10200 ponds and are utilized in a large-scale study on the
evolution of melt ponding [5].

As a means of evaluation, results from the DDA-bif-
seaice are compared with and integrated with results from
UMD MPA, which is a computational algorithm for pond
determination and depth measurement that requires a priori,
manually determined information on locations where melt
ponds exist. Agreement in pond location between the two
algorithms is generally good. The DDA-bif-seaice finds a
large multitude of the number ponds compared with the UMD
MPA with sizes across all size ranges, while the MPA aids
in finding larger, deeper ponds. A systematic difference of
about 0.44 m in pond depths, with DDA depths generally
larger, attributed to different physical-mathematical principles
in lidar data analysis in the two algorithms, indicates that
a field validation campaign is needed to resolve such depth
uncertainties. The agreement is sufficient for the geophysical
interpretation of trends in the pond evolution. The comparison
further documents that the DDA-bif-seaice meets the criteria
expected from a fully automated algorithm.
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