Decoding Optical Responses of Contact-Printed Arrays of Thermotropic Liquid Crystals
Using Machine Learning: Detection and Reporting of Aqueous Amphiphiles with
Enhanced Sensitivity and Selectivity

Fengrui Wang,"" Shiyi Qin,>" Claribel Acevedo-Vélez,’ Reid C. Van Lehn,” Victor M. Zavala,>*"
and David M. Lynn"*"

'Dept. of Chemistry, Univ. of Wisconsin—-Madison, 1101 University Ave., Madison, WI 53706,
United States; “Dept. of Chemical and Biological Engineering, Univ. of Wisconsin—-Madison,
1415 Engineering Dr., Madison, WI 53706, United States; *Dept. of Chemical Engineering,
University of Puerto Rico-Mayagtiez, Call Box 9000, Mayagiiez, PR 00681-9000, United States,
‘Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave,
Lemont, IL, 60439, United States; "These authors contributed equally to this work. Email:
(D.M.L.) dlynn@engr.wisc.edu, (V.M.Z.) victor.zavala@wisc.edu

ABSTRACT: Surfactants and other amphiphilic molecules are used extensively in household
products, industrial processes, and biological applications, and are also common environmental
contaminants; as such, methods that can detect, sense, or quantify them are of great practical
relevance. Aqueous emulsions of thermotropic liquid crystals (LCs) can exhibit distinctive
optical responses in the presence of surfactants and have thus emerged as sensitive, rapid, and
inexpensive sensors or reporters of environmental amphiphiles. However, many existing LC-in-
water emulsions require the use of complicated or expensive instrumentation for quantitative
characterization, owing to variations in optical responses among individual LC droplets. In many
cases, the responses of LC droplets are also analyzed by human inspection, which can miss
subtle color or topological changes encoded in LC birefringence patterns. Here, we report an LC-
based surfactant sensing platform that takes a step toward addressing several of these issues and
can reliably predict concentrations and types of model surfactants in aqueous solutions. Our
approach uses surface-immobilized, microcontact printed arrays of micrometer-scale droplets of
thermotropic LCs and hierarchical convolutional neural networks (CNNs) to automatically
extract and decode rich information about topological defects and color patterns available in
optical micrographs of LC droplets to classify and quantify adsorbed surfactants. In addition, we
report computational capabilities to determine relevant optical features extracted by the CNN
from LC micrographs, which can provide insights on surfactant adsorption phenomena at LC-
water interfaces. Overall, the combination of microcontact-printed LC arrays and machine
learning provides a convenient and robust platform that could prove useful for developing high-
throughput sensors for on-site testing of environmentally or biologically relevant amphiphiles.
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Introduction

Surfactants are amphiphilic molecules that contain hydrophilic head groups and
hydrophobic tail groups, the combination of which allows them to self-assemble both in solution
and at interfaces (e.g., at solid surfaces or at interfaces between immiscible liquid phases).'
Because of their unique properties, surfactants are used in a wide range of industrial and
pharmaceutical products, including detergents, food additives, and as components of drug
delivery vehicles.” Amphiphilic molecules also play essential roles in living organisms, and
many have been identified as disease biomarkers.” ® As a result of their widespread use in
practical applications, surfactants can also end up as contaminants in consumer or
pharmaceutical products or may be discharged into the environment where they can harm
surrounding ecosystems.””

State-of-the-art methods for detecting and confirming the identities and structures of
natural and synthetic amphiphiles include mass spectrometry and high-performance liquid
chromatography (HPLC).> ' While these methods provide excellent sensitivity and selectivity,
they often require complex sample preparation procedures, costly laboratory infrastructure, and
highly trained personnel. Other lower-tech approaches have been developed, including
colorimetric and two-phase titration assays that can monitor different levels of anionic'' and
cationic'> detergents. However, this type of method often suffers from low reproducibility and
tends to be time-consuming."? Several other approaches have been developed to detect and
quantify specific analytes of interest with great sensitivity and specificity;’ nevertheless, these
methods can also be expensive, complex, and resource-intensive (for example, bacterial

endotoxins can be detected at very low concentrations and with high specificity using assays



with biomolecular components derived from the farming and large-scale milking of blood from
horseshoe crabs'* '%).

Owing to these general limitations, there has been an increasing number of studies
dedicated to developing new approaches to surfactant detection and quantification, including
many optical, electrochemical, and mechanical-based techniques.” '® Among these new
approaches, systems that exploit the unique properties of liquid crystals (LCs) have garnered a

growing amount of attention.'”**

Liquid crystals (LCs) are liquid-phase materials that possess
long-range directional order. Several decades of past research has shown that the adsorption of
amphiphiles to LC-water interfaces can alter surface anchoring energy and translate molecular-
level interfacial interactions into the bulk of the material, leading to optical changes, including
birefringence patterns, that can be readily observed using cross-polarized light.'® In recent years,
researchers have successfully designed various LC-based sensing platforms to detect amphiphilic
lipids, proteins, endotoxins, and nucleic acids at biologically relevant concentrations.'” '*- 222
Overall, LC-based systems address several practical issues associated with existing
methods for the detecting and reporting of environmental amphiphiles and, with further
development, have the potential to lead to affordable, mobile, and potentially high-throughput
sensing platforms. Many past studies have relied on visual inspection of polarized light
micrographs for qualitative analysis (e.g., to report on the presence or absence of surfactants).'”
> These methods are useful when changes in LC optical appearance are substantial; however,
optical changes in color and defect patterns that are subtle or masked by more salient visual
features can be easily overlooked by the use of the naked eye. The work reported here was

motivated by recent advances in data-centric modeling techniques and the hypothesis that

machine learning (ML) and related methods, including convolutional neural nets (CNNs), can be



used to reveal, extract, and exploit additional rich information contained in polarized light
micrographs of LC emulsions in ways that can further enhance sensitivity or selectivity for the
detection, reporting, and quantification of aqueous amphiphiles.

CNNs are a powerful ML tool for feature extraction from 1D (e.g., feature array), 2D
(e.g., images and videos), and other higher-dimensional signals. These models have recently
been implemented in LC-based sensing systems; for example, Cao et al.,” Xu et al.,** Bao et al.,

% and Smith et al.*®

used CNN architectures to extract features from micrographs of LC thin
films (e.g., obtained from videos that recorded optical responses under polarized light) for
detection of aqueous and gaseous analytes. In these cases, the CNN improved sensor selectivity
and responsiveness. Jiang et al.'* investigated the use of free-floating LC-in-water emulsions for
the detection of bacterial endotoxins; in this approach, the authors characterized differences in
the scattering of light by LC droplets in emulsions using flow cytometry output as input signals
to CNNs to predict endotoxin concentrations. In a more recent study, Frazao et al.”’ investigated
LC emulsions embedded in hydrogels and used images of LC droplets as inputs to CNN-based
frameworks to classify volatile organic compounds with an accuracy (F1-score) above 93%.
Overall, these past studies reveal that there exist characteristic features in the optical
responses of various planar and colloidal LC-based materials that can be exploited using ML
techniques to improve sensitivity and selectivity. However, these studies have either focused on
the interactions between LCs and gaseous molecules” or require additional and expensive
characterization equipment, such as flow cytometry,'* to characterize or detect stimuli adsorption
at LC-water interfaces. Amphiphiles have not been fully explored as the stimuli of interest.

Furthermore, since the optical properties of LC droplets depend upon their size, variations in the

droplet size in LC-emulsion-based systems can lead to high variations in optical responses to



even a single analyte. Such high variations also make the chromatograms of the LC droplets
challenging and less explored as the inputs for ML. Systems that use videos as the model input
are further limited by the computational resources and video processing time.”” Here, we address
these limitations to demonstrate the potential of using LC micrographs as machine learning
inputs to detect and quantify amphiphiles in solution.

In this study, we report a strategy for the detection, reporting, and quantification of model
aqueous surfactants based on the use of surface-immobilized, microcontact printed LC droplet
arrays and a hierarchical CNN for the analysis of LC optical transitions captured using polarized
light microscopy. We demonstrate that microcontact printing yields uniform and immobile LC
droplets that exhibit optical responses upon contact with aqueous amphiphiles that are diagnostic
and, in several ways, similar to those of free-floating LC droplets investigated in past studies.
The uniform size of the immobilized LC droplets in these printed arrays significantly decreases
variations in optical responses upon the introduction of surfactants and thus decreases the
complexity needed to decode optical responses using CNNs to classify both surfactant type and
concentration. Our results demonstrate that this approach can extract rich information contained
in polarized light micrographs of LC droplets to improve the sensitivity of the system. We also
show that the system can be used to distinguish LC droplets treated with 0.05 nM concentrations
of the model surfactant sodium dodecyl sulfate (SDS), with a prediction accuracy of greater than
90%, from those treated with water as a control, despite the optical images having no apparent
meaningful or discernable differences when viewed and interpreted by trained human eyes. In
addition, our results show that this overall strategy and a hierarchical CNN can be used to
improve the selectivity of the system and permit accurate distinctions between multiple different

synthetic and natural surfactants with differences in both head group and tail group structures



(again, based on images that have no meaningful or reliable differences when viewed or
interpreted by human eyes). Generation of saliency maps reveals that the CNN can distinguish
prominent defect patterns using grayscale microscopy images, and that color information is
necessary for capturing subtle pattern changes in concentric rings at low surfactant
concentrations. Overall, this approach leads to improved sensitivity and selectivity and provides
a robust sensing workflow that does not require access to expensive instrumentation to provide
accurate and useful information about amphiphilic species in aqueous solutions. This approach
could therefore serve as a step toward the development of low-cost, convenient, and potentially
high-throughput methods for in-line or on-site testing, identification, and reporting of surfactants

and other environmentally or biologically relevant amphiphiles.



Experimental and Computational Methods

1. Experimental methods

Materials. The nematic thermotropic LC 4'-pentyl-cyanobiphenyl (5CB) was purchased from
HCCH Jiangsu Hecheng Display Technology Co., Ltd. (Jiangsu, China). Sodium dodecyl sulfate
(SDS) and dodecyltrimethylammonium bromide (DTAB) were obtained from Sigma-Aldrich
(Milwaukee, WI). PDMS (Sylgard 184 Silicon Elastomer) was purchased from Ellsworth
Adhesives (Germantown, WI). Glass coverslips were obtained from Fisher Scientific (Pittsburgh,
PA). Rhamnolipids, 90% pure (commercially obtained rhamnolipids used in this study were
isolated from P. aeruginosa as a mixture of congeners with different numbers of rhamnose sugar
moieties, mono- and di-, linked to one or two molecules of hydroxy acid that differ in their
aliphatic chain length) were purchased from AGAE Technologies (Corvallis, OR). Deionization
of distilled water was performed using a Milli-Q system (Millipore, Bedford, MA) to yield water

with a resistivity of 18.2 MQ. All materials were used as purchased without further purification

unless noted otherwise.

General considerations. All glass slides used for microcontact printing were soaked in ethanol
overnight and then rinsed under a stream of ethanol three times prior to use. Bright-field and
polarized-light microscopy images were acquired using an Olympus IX71 inverted microscope
(Waltham, MA) equipped with cross-polarizers (Olympus analyzer slider IX2-AN and condenser
attachment IX-LWPO). Fields of view were recorded using an OPTO-EDU (Beijing, China)
eyepiece camera model A59.2211 connected to a computer and controlled through ImageView

imaging software version A30.2201.



Microcontact Printing of LC Droplet Arrays. PDMS stamps consisting of an array of pillars
(100 pm x 100 pm square, spaced 100 um apart) were prepared as previously described.”®
Briefly, photolithography techniques were used to produce a silicon master with depressions, or
negative features, corresponding to final desired pillar structures and patterns. A mixture (10:1
w/w) of PDMS pre-polymer and curing agent was then degassed and poured onto the silicon
master. The PDMS layer was then cured at 70 °C in an oven for 1 hr to obtain the desired square-
array stamp. Inking of the stamps was achieved by first spreading a 5 uL droplet of 5SCB on a
clean glass substrate using another glass plate to produce a thin layer of LC. The stamp was
gently placed onto the LC-spread surface and then quickly transferred and placed gently on a
glass cover slide. Stamps were left in contact with the glass cover slides for 10 s and then
removed. The printing process was repeated one more time without reinking and this second
print was used for collecting data. Different aqueous surfactant solutions (20 uL) were then
carefully introduced to the printed LCs using a micropipette and LC droplet arrays were imaged
under cross polarized light. We estimate the height at the centers of droplets after introduction of

aqueous surfactant to be ~20 um.

2. Computational Methods

Droplet Detection and Size Calculation. We adapted the canny edge detection method™ to
extract only the center region that contains the droplet (removing the dark peripheral area that
does not contain any information) with high resolution from raw micrographs of LC droplet
arrays (4912x3684); this algorithm smooths a grayscale image using a Gaussian filter, generates

the corresponding edge mask (binary) based on gradient computation through a Sobel operator,



and links the broken edges via non-maximum suppression coupled with thresholding. To account
for the halo effect, we performed edge dilation that keeps the peripheral area of the detected
droplet. After this, we applied contour detection®® to obtain a square bounding box around the
droplet, followed by image cropping. The size of each cropped image was used to approximate
the diameter of the droplet by a unit conversion from the pixels to microns. Since the droplet
detection algorithm includes the background halo, the calculated diameters are expected to be
larger than the actual droplet sizes, yet the relative sizes can be studied to analyze the uniformity
of the LC droplets prepared by microcontact printing. Additionally, this workflow has the
capability of detecting multiple droplets in complex systems with high computational efficiency
compared with more common machine learning approaches that are intended for the same
purpose, such as YOLOv3®' used by Frazao er al.”’ for optical gas sensing with LC, which
requires model training to fit millions of parameters (e.g., Darknet-53 has 53 convolutional
layers). Since the droplets have sufficient distinguishing factors from the background, a simple

gradient-based method is efficient to accomplish the task.

Image Preparation and Augmentation. In the study reported here 1,371 raw LC micrographs
were obtained directly from approximately 130 different experimental trials. For each raw
micrograph, we first applied the droplet detection algorithm to extract the droplet region. After
droplet detection, the micrographs were resized to 256x256 and augmented 20-fold with
combinations of random rotation, shifting, shearing, zooming, and flipping. The augmentation
parameters were controlled in a way that simulates experimental variations. For instance, the
zooming range was set to 95% to 105%, which is consistent with the standard deviation (~10%)

of the droplet size reflected by the dimension of the cropped micrographs. Overall, the resulting



image dataset contained 27,420 pre-processed LC micrographs that were categorized into 13
classes (based on the type and concentration of the corresponding surfactant exposure) for

training and validation.

Topological Analysis using Radial Distribution Profiles. We computed a radial distribution
(RD) profile of the color intensity I as a function of radius (pixel) r for each micrograph; the RD
profiles served as simple topological descriptors to represent the LC droplet data and are defined

as shown in Equation 1:

1 )
I(r) = WLZ,’ ﬂ{dij=r}lij (Equation 1)

where i and j are the row and column of a pixel, I;; represents the corresponding color intensity,

and d;; = \/ (i—c)?+ (j - Cy)z is the Euclidean distance between a pixel and the center point

(cx, ¢y) of the droplet. The location of the center point was determined by the weighted average

of the coordinates along the row and column of a micrograph; the weights were calculated from

the binary mask M;; obtained after image thresholding using Equations 2-4

Cx = ZiZj iMij (Equation 2)

Cy = ZLZ]]MLJ (Equation 3)

(Equation 4)

0, otherwise

_ {1, I;; = 70" percentile
i

Color Space Transformation of LC Micrographs. Digital images are viewed as grid data

objects with single or multiple color channels, each being a 2D matrix with numerical values
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describing the color intensity at individual pixels. The LC micrographs are color images with red,
green, and blue (RGB) channels. In this study, we performed color space transformations to
identify important color channels that contribute most to surfactant quantification. Apart from
the RGB color space, we generated grayscale (a linear combination of RGB channels) images
and explored the L*a*b* color space (nonlinear conversion from RGB) introduced by the
International Commission on Illumination (CIE). The L*a*b* channels represent the lightness,
red/green value, and blue/yellow value, respectively; since red/green and blue/yellow are
opponent color pairs, the L*a*b* color space has a strong correlation with human visual
perception.”” According to Levit ef al.,”® the thermochromic behavior of cholesteryl ester liquid
crystals can be associated with the cumulative change in the L*a*b* color space. Therefore, we
investigated various combinations of the individual color channels from the

RGB/L*a*b*/grayscale color spaces as alternative ways to represent the input data.

CNN Architectures for Different Data Representations. Based on the type of input data
representations, we developed three CNN architectures to extract and summarize features from

data for classification of surfactant concentrations.

1D CNN. A convolution operation computes the weighted sum across local domains of the input
data for feature extraction. For RD profiles that are mathematically represented as 1D vectors
with 3 channels (RGB), we applied 1D CNNs. In a 1D CNN, we define an input RD vector v in
a discrete domain of radius r and a kernel (or filter) vector k. The 1D convolution operator for

each channel c is formulated as shown in Equation 5
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he[r] = velr] * k[r] = X)__, ve[r'] - k[r —r'] (Equation 5)

and the channel-wise hidden features are summarized by Equation 6

hlr] = Zce{red,green,blue} h¢[r] (Equation 6)

2D CNN. Similar to the 1D CNN, 2D CNNs incorporate the same architecture on images, which
are 2D objects (matrices with multiple channels). Using the same set of annotations, the 2D
convolution operator for each channel c is formulated as shown in Equation 7

heli, j1 = ve[i, j1 # k6] = Ejio_ oo Xit=—oo V[i", '] - k[i — &', j — J'] (Equation 7)

where i and j denote the row and column of a pixel, and the channel-wise hidden features are
again calculated by the sum of the hidden features of each color channel.

For both 1D and 2D CNNs, we applied zero padding, a technique that adds zero entries to the
start and the end of each input, to ensure that the input and output signals have the same
dimension. The convolution operation is followed by nonlinear activation o; here, we chose
Rectified Linear Unit (ReLU), which is a commonly used activation function that avoids
vanishing gradients while retaining sensitivity.”* The output from nonlinear activation (k) then
undergoes batch normalization as a regularization method to avoid overfitting as well as to
increase convergence speed.”> Next, the normalized data are sent to a pooling layer for size
reduction through techniques such as averaging the values within a local domain. Besides size
reduction, the pooling layer also allows for invariance to small input translation,”® which is a

desired feature in data processing. The abovementioned convolution, batch normalization, and
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pooling layers are bundled together and repeated to extract hidden features from the input data at

a deeper level.

Hierarchical CNN. The hierarchical CNN proposed in this study operates on images and
contains two levels of 2D CNNs that are trained on different data representations. The selection
of the data representation for each level relies on the detection focus. The first level is intended
to differentiate defect patterns, including bipolar, pre-radial/escaped radial, and radial
configurations, and therefore grayscale images, which highlight the contrast between light and
shade and contain sufficient information for defect pattern classification. The second level, on
the other hand, is forced to learn patterns that are less distinguishable and thus require color
information (e.g., RGB). We note here that although this hierarchical CNN architecture selects
grayscale images as the input for the first level and RGB images as the input for the second level,
alternative data representations were explored, such as the L*a*b* color space and individual
color channels. However, these data representations did not improve model accuracy in our early

studies and therefore were not selected for further study.

Model Implementation. Images were pre-processed using OpenCV (version 4.4.0) for tasks
including resizing, droplet detection, and color space transformation mentioned previously. The
CNN models were implemented using PyTorch (version 1.2.0).>” The major hyperparameters we
varied include the kernel size (5,7,9), number of convolution layers (1,2,3), pooling function
(max-pooling or average-pooling), and learning rate (0.0001,0.0005,0.001). The tested models
were trained with the cross-entropy loss, the Adam optimizer, and a learning rate of 0.0001. We

performed 5-fold cross-validation (CV) with stratified random sampling for hyperparameter
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tuning and model evaluation. Stratification was based on the class labels. All evaluation metrics
were computed using the compilation of the validation data in each fold to obtain a realistic

estimation of the model performance. More implementation details can be found in Table 1.

Table 1. Hyperparameters of CNN architectures.

2-Level 2D CNN

CNN Architecture 1D CNN 2D CNN st ad
1 Level 2 Level
Radial Distribution Micrograph Micrograph Micrograph
Input Data (RGB) (RGgB)p (Grfy)p (RdgE.)p
Input Data SiZe R180X3 RZSSXZSGXS RZSSXZSGXI R256X256X3
# Convolution+Pooling Layers 3 3 2 3
Convolution Kernel Size 7 7x7 7x7 77
Pooling Type Average Pooling
Batch Normalization Enabled
Zero Padding Enabled
# Fully-connected Layers 2
Activation ReLU

Saliency Calculations. Saliency maps were generated using integrated gradients (IG)*® as shown

in Equation 8

aFCNN(x'+%(x—x'))

axi

IGPP (x) = (x; — x))X Xy X % (Equation )

where Fyy denotes the trained CNN model, i denotes individual features (in this case color
intensity of a pixel), x denotes input images, x’ denotes a baseline image (zero tensor with the
same dimension as the input), and m (set to 50) denotes the number of steps in the
approximation. IG is one of the state-of-the-art methods for model interpretation, which has
proven to be sensitive to important features and insensitive to unimportant features and thus

reduce visual diffusion.*® In this study, IG was implemented using Captum*” (version 0.4.1).
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Results and Discussion
Fabrication of Surface-Immobilized Arrays of LC Droplets by Microcontact Printing

For sensing applications, microscale LC droplets with uniform sizes are desirable because
variations in droplet size (e.g., as present in aqueous emulsions prepared using many
conventional methods) can lead to variations in the types of optical responses that are observed

upon the adsorption of amphiphiles.*' ** **

In past studies, researchers have used various methods
to create monodispersed LC droplets, including microfluidic devices,** the filling and subsequent
removal of monodisperse hollow capsule templates,** capture of LCs on micropatterned self-
assembled monolayers (SAMs),” and inkjet printing™ to create either free-floating LC droplets
or arrays of surface-immobilized droplet arrays. Here, we used a simple PDMS-based
microcontact printing method to create immobile and relatively uniform LC droplet arrays.
Compared to other methods used in past studies noted above, this microcontact-printing method
requires minimal material or preparation, is low cost, and produced arrays of uniformly sized
droplets sufficient for all subsequent experiments described below.

We first performed a series of experiments to determine whether the surface-immobilized
droplets in these arrays, which are non-spherical and in substantial contact with an underlying
glass surface, respond to stimuli in ways that are similar to those often associated with free-
floating spherical LC droplets and immobilized LC droplets created using other methods. For
these and all other studies described below, we selected the well-studied LC 5CB as a model LC

and characterized the behavior of arrays in the absence or presence of an overlayer of water or

other aqueous surfactant solutions using bright field and cross-polarized light microscopy.
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As shown in Figure 1A, contact-printed LC droplets under air had relatively circular shapes
when viewed from above in the bright-field. When observed using cross-polarized light (Figure

1B), the birefringent patterns of the LC droplets resembled those generally characteristic of LC

22.5 25.0
w Micron

G H

Figure 1. LC droplets prepared by microcontact printing. (A) Printed LC droplets under a bright-field microscope. (B) Printed
LC droplets under a cross-polarized microscope. (C) LC droplets with water treatment under a bright-field microscope. (D) LC
droplets with water treatment under a cross-polarized microscope. (C) and (D) display a smaller droplet size due to the change in
wetting behavior of printed LCs when water is introduced. (E) Magnified view of (D) where a bipolar configuration is observed.
(F) Magnified view of the microcontact-printed LC droplets when treated with 1 mM model surfactant SDS. A radial
configuration is observed. (G)-(H) Schematic illustrations of the surface anchoring of printed LC molecules with bipolar (planar
anchoring) and radial (homeotropic anchoring) configurations, respectively. (I) Size distribution of microcontact-printed LC
droplets based on cross-polarized LC micrographs of water-treated LCs. The computationally obtained droplet diameters take
into account the background halo and have a mean of 23.1 um with a standard deviation of 2.1 um, resulting in a polydispersity
index of 0.09.

thin films.*” Upon the introduction of an overlayer of water, the printed LCs beaded up to form
partially wetted droplets and had substantially smaller footprints (Figure 1C) as compared to the
droplets in arrays under air (Figure 1A). When observed under cross-polarized light (Figure 1D),
microcontact-printed LC droplets covered by an overlayer of water exhibited optical appearances
similar in many ways to those of LC droplets in emulsions created using other methods. As

shown in the higher magnification view shown in the inset of Figure 1E, two defect regions can
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be observed at opposite poles of the individual droplets. This optical texture is similar to the so-
called ‘bipolar’ configuration®' observed in free-floating spherical LC droplets, in which the LC
adopts a planar anchoring at the oil-water interface (as depicted in Figure 1G for the present case
of surface-immobilized droplets; for simplicity, we refer to immobilized, non-spherical droplets
having this appearance as being in a ‘bipolar’ configuration from here on).

We then characterized the response of these microcontact-printed LC droplets after the
introduction of an overlayer of water containing the model surfactant SDS (I mM). Figure 1F
shows cross-polarized images of printed LC droplets after the introduction of SDS; all droplets
show a characteristic cross-like pattern with a single defect near the geometric center of the
droplets in this top-down view. This optical appearance is similar in many ways to the so-called
‘radial’ configuration®' observed in spherical LC droplets, in which the LC adopts homeotropic
anchoring at the oil-water interface (as depicted in Figure 1H for the present case of surface-
immobilized droplets; for simplicity, we refer to immobilized, non-spherical droplets having this
general optical appearance as being in a ‘radial configuration in the discussion below). The
results of these experiments demonstrate that the microcontact-printed LC droplet arrays
reported here respond to the presence or absence of water or aqueous surfactant in ways that are
similar to those of spherical droplets reported in past studies and sufficiently diagnostic to
provide optical patterns that can be used to identify the presence or absence of amphiphilic
species in the surrounding aqueous environment. The LC droplet arrays used here were stable
when stored under air, and were generally stable (e.g., droplets did not delaminate or decrease
substantially in size) when stored for periods of at least several days under an overlayer of water.

These features confer potential practical advantages relative to conventional LC-in-water

17



emulsions used in past studies, which can coalesce, wet surrounding surfaces, or undergo
changes in size distribution over a time scale of several hours.*

We then conducted experiments to characterize the uniformity of the microcontact-printed
LC droplets and the consistency of their response to amphiphilic species. The droplet size
distribution of a representative array is shown in Figure 11 (the method used to determine the
diameters of these droplets is summarized in the Methods section above). The average diameter
of the printed droplets was 23.9 + 2.1 um and the polydispersity index based on the distribution
was 0.09, which is comparable to droplets created by microfluidic devices® and indicates that
the printed LC droplets are relatively monodisperse. To examine the consistency of optical
responses to chemical stimuli, we collected multiple micrographs of LC arrays treated with a
variety of different model surfactants at various specified concentrations. As shown in each
column of Figure 2A, the droplets exhibited comparable and generally similar visual optical
appearances in response to each surfactant across multiple trials; additional analysis and
discussion of similarities and difference in these images is provided below.

We note that different surfactants can cause different changes in the surface tension and
that differences in the charge of surfactant head groups can lead to different interactions at
LC/solid interfaces. Because the printed LC droplets are partially wetting the underlying glass
surface, both factors could cause LC droplets to have different wetting behaviors and lead to

changes in birefringence patterns that differ from those of free-floating LCs.”" >

For example,
when high concentrations of positively charged DTAB adsorb to the LC, it can interact with the
negatively charged glass surface, resulting in optical appearances that look like a four-clove
46, 51

structure and resemble the appearance of flattened droplets with homeotropic anchoring.

Overall, despite some differences in droplet wetting behavior in the presence of different
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surfactants, the microcontact printed LC droplets do show characteristic optical appearances that
are similar in many ways to those of free-floating LC droplets and that, as described in the
sections below, can be used as diagnostic inputs for processing using ML methods. The
uniformity and immobility of the microcontact-printed droplets also reduce variations in the LC
responses and facilitate the rapid imaging of large numbers of droplets, respectively, further

facilitating the collection of high-throughput data for ML processing.

Decoding LC Micrographs using ML to Detect and Quantify SDS

Quantifying SDS Concentrations Using Radial Distribution Profiles: We performed a
series of computational experiments in which we used ML methods to extract quantitative and
qualitative information from micrographs of LC droplet arrays and determine whether this
information could be used to reliably detect and quantify aqueous surfactant concentrations. We
first selected SDS as a model surfactant and attempted to quantify its concentration using direct
feature extraction from the LC micrographs to establish a baseline measurement of the predictive
power of our proposed approach. We first generated radial distribution (RD) profiles for each
micrograph as described in the Methods, where the color intensity of image pixels was plotted as
a function of the droplet radius. RD profiles provide a useful summary that helps visualize
differences in the topological features of LC droplets. Figure 2B shows the RD profiles of two
representative LC micrographs, one with a bipolar configuration (treated with water) and the
other with a radial configuration (treated with 1 mM SDS). For the LC droplet with the bipolar
configuration, the RD profile shows an overall decreasing trend in the color intensity from the
center to the edge of the droplet; for the LC droplet with the radial configuration, the RD profile

reveals low intensity near the center of the droplet. Overall, these two different RD profiles
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reflect large and characteristic differences in the defect patterns of these two LC droplet optical
configurations that can also be readily discerned by human visual inspection.
We used statistical analysis to determine whether images of LC droplets were

representative across different arrays and trials using water and analyte solutions at seven
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Figure 2. Examples of LC micrographs and radial distribution (RD) profiles. (A) Examples of LC micrographs after droplet
extraction and resizing. The micrographs are labeled by surfactant type and concentration, and they are categorized into 13
classes. (B) The RD profiles of the LC micrograph examples boxed in yellow in (A). Each LC micrograph is first converted to a
grayscale image, which is used to generate a binary mask for droplet center detection. With the center point coordinate, the LC
micrograph is then broken down into its composing RGB channels, and the corresponding radial distribution is computed using
the color intensities of individual pixels. The radius is units of pixels. (C) Statistical summary of the RD profiles for water (0 mM
SDS) and seven SDS concentration classes. For each SDS quantification class, the mean and standard deviation are calculated
using all the LC micrographs from different experimental trials for that class.

different SDS concentrations. The SDS concentrations used were selected to encompass a range

of concentrations that lead to a wide range of different optical appearances of LC droplets,
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including bipolar and radial configurations and several different intermediate optical textures.
Figure 2C shows the mean and standard deviation of the RD profiles summarized over individual
SDS classes. The summary plots smooth out the local peaks that appear in each individual plot
due to variation in the relative positions of the concentric rings observed in different LC
micrographs, but the general shape of the RD profile is retained. At low concentrations of SDS
(<0.5 mM), all droplets exhibit bipolar-like configurations and hence the color intensities in the
RD profiles drop as the radius increases. At 0.5 mM and 1 mM SDS, the RD profiles reveal
unique patterns that were different from those at other concentrations. At 0.5 mM, the
immobilized LC droplets exhibited optical appearances similar in many ways to so-called ‘pre-
radial’ or ‘escaped radial’ configurations* reported previously for spherical droplets, for which
the defect regions start to appear closer to the center of the droplets. Therefore, in the RD
profiles of these droplets, the intensities at the center of the droplet are smaller and show a
plateau region. At 1 mM SDS, the LC droplets exhibited a radial configuration and RD profiles
having a bimodal distribution with declining peak heights (indicative of maximum color
intensities that move away from the centers of the droplets). In general, the appearance and shift
of the peaks in these RD profiles consistently and successfully captured the most salient visual
differences in the defect patterns of LC droplets treated with different concentrations of SDS in
this range.

Because changes in LC defect regions reflect different levels of ordering transitions
triggered by surfactant adsorption, we hypothesized that the RD profiles generated above could
be used to quantify surfactant concentrations. To test this hypothesis, as shown in Figure 3A, we
used RD profiles as the input for a simple 1D CNN architecture to predict eight different

concentrations of SDS (including pure water, which corresponds to zero SDS concentration). We
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chose this 1D CNN architecture due to its feature extraction power by inspecting the correlations
between signals at local domains. For 8-class multiclassification of SDS concentration, the 1D

CNN architecture achieved an overall accuracy of 59% (after 5-fold cross-validation) with an
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Figure 3. SDS classification with 1D and 2D CNN architectures. (A) Schematic of 1D CNN using RD profiles as the inputs. (B)
Schematic of 2D CNN using LC micrographs as the inputs. Both input data representations in (A) and (B) keep the three RGB
color channels, and each CNN is trained for 8-class classificaiton using cross entropy loss. The categorical-wise accuracies are
summarized in (C) and (D), respectively. Numerical values are colored in grayscale with different shades of gray corresponding
to the numerically indicated prediction accuracy with a scale varying from white (for values equal to zero) to black (for values
equal to 1). (E) Bar plot of the binary classification using RGB and grayscale LC micrgraphs as the inputs. The details of the
architecture are summarized in Table 1. The dashed line shown at 90% accuracy is included to guide the eye.

22



average Fl-score of 0.59, which is much higher than a random guess (12.5% for 8-class
classification). The categorical-wise accuracy is summarized in the confusion matrix shown in
Figure 3C. In general, highlighted concentrations, at which droplets adopt configurations with
topological defects that are readily distinguishable by visual inspection, such as pre-radial,
escaped radial, and radial, have a relatively high prediction accuracy. These results are consistent
with the visual observations of the LC micrographs. We note that the “water” category (no SDS)
also exhibited a relatively high accuracy, which was not initially anticipated, given that bipolar
configurations at very low SDS concentrations were almost identical to the trained naked eye.
This observation is also supported by Figure 2C; the differentiating RD features, although subtle,
show a unique pattern in the red color channel. Because even trace amounts of surfactant
adsorption can cause changes in color/light intensity, it is possible for the CNN to distinguish
droplets with a perfect bipolar configuration (where the defects are always at the edge of the
droplet) from those with bipolar-like configurations (where the defects are in slightly different
positions).

To summarize, RD profiles encode sufficient information for LC pattern classification
between bipolar, pre-radial/escaped radial, and radial configurations using a 1D CNN, but this
approach fails to make accurate predictions for low SDS concentrations. Because RD profiles are
only a high-level summary of the topological features of the LC droplets, it is understandable
that they could miss subtle pattern differences among bipolar-like configurations at low SDS
concentrations that are not sufficiently high to trigger substantial topological defect changes.
Nevertheless, RD profiles have direct physical relevance to the appearance of the LC after

surfactant adsorption and can be interpreted easily. Moreover, as a simple data representation
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method that retains only the high-level topological features of a micrograph, RD profiles have
better overall prediction accuracy than a random guess.

Quantifying SDS Concentrations Using LC Micrographs: With the baseline established
by the RD profiles in hand, we further investigated whether it was possible to improve
classification accuracy using LC micrographs directly as inputs to a 2D CNN (Figure 3B).
Because the micrographs contain information about the LC droplets that is much richer than that
captured in the corresponding RD profiles, we reasoned that they would serve as a more effective
data representation for surfactant quantification with improved sensitivity. The resulting
confusion matrix (Figure 3D) reveals an increased accuracy across all classes of SDS
concentrations compared to the baseline, and the overall cross-validation accuracy increased
from 59% to 78%, with the F1-score being 0.78. The prediction accuracy for water, 0.5 mM, and
1 mM SDS exceeded 90%, which again confirms the capability of 2D CNNs to discriminate
between LC droplets with stable topological defects. Another significant improvement lies in the
successful classification (> 80%) of the LC droplets that are treated with lower concentrations of
0.1 and 0.25 mM SDS. For droplets treated with 0.25 mM SDS, their configurations fall, by
visual inspection, into the transition region intermediate to bipolar and pre-radial/escaped radial
configurations. In this transition region, the defect structures begin to move around the surface of
the droplets, leading to complex optical responses that do not have any apparent distinctive
pattern, which adds difficulty to pattern recognition. However, these complex optical responses
that sometimes resemble both bipolar and pre-radial configurations are still being classified
successfully by the strong feature extraction power of 2D CNNs. For LC droplets treated with
even lower 0.1 mM SDS, all the droplets are in bipolar-like configurations, and yet the CNN is

still able to distinguish these droplets from those treated with water or other lower concentrations
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of SDS. It is also worth noting that, for LC droplets treated with micro- or nanomolar
concentrations of SDS, the class-wise accuracy rises by approximately 20% as compared to the
analysis of the RD profiles, demonstrating that the LC micrographs themselves contain more
information that is useful for surfactant quantification.

In summary, our results of these initial studies demonstrate the potential utility of
combining micrographs of microcontact-printed LCs with ML methods to quantify aqueous
surfactant concentrations in surrounding media. With the rich information in the LC micrographs
decoded by a 2D CNN, the classification accuracy was greatly improved. The tuned 2D CNN
architecture can successfully quantify concentrations of SDS ranging from 0.1 mM to 1 mM, and
even at concentrations of SDS that are not sufficiently high to lead to any observable pattern
changes that can be reliably interpreted as distinct by the trained human eye. Such results show
the power of 2D CNN to extract hidden features and to use such information to differentiate

between similar bipolar droplets to some extent.

Detecting Trace Amounts of SDS through Binary Classification: The results above demonstrate
that 2D CNNs can distinguish micrographs of the water-treated LC droplets (no SDS) from the
remainder of the surfactant concentration categories. Motivated by this observation, we further
explored whether hidden information in the optical responses could be used to detect trace
amounts of SDS with high accuracy (thus testing the detection limit of the sensing system using
this approach). To investigate this, we conducted a binary classification between the control
group (“water”’) and any SDS-treated group. The bar plot in Figure 3E shows the results for the
binary classification. The cross-validation accuracy exceeded 90% in each task, even for SDS

concentrations in the nanomolar regime. As SDS concentration decreased, overall, the accuracy
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decreased. We tested an extreme condition where the labels were randomly assigned to the
control group (“random water”) to mimic negligible SDS treatment, and the resulting prediction
accuracy was approximately 50%. This result confirms that there indeed exists a detection limit
and illustrates that the 2D CNN is not relying on random features but, rather, capturing hidden
features that are invisible to or difficult to interpret by the trained naked eye.

Because some concentrations of SDS tested here were extremely low, we speculate that,
in addition to defect patterns, the algorithm is observing other optical features, such as the unique
color patterns that originate from the long-range directional ordering of the LCs. To provide
further insight, we performed binary classification using only grayscale images (weighted
averages of the RGB color channels). Since these grayscale images are only summaries of the
detailed information contained in the individual color channels, we expected to see a slight
decrease in prediction accuracy. This was confirmed, as illustrated in Figure 3E, where the
prediction accuracies for low SDS concentrations using grayscale images dropped by 5% to
10%, as compared to RGB images. This result indicates that the inclusion of individual color
channels is necessary for detecting low SDS concentrations.

Overall, with the addition of the 2D CNN, it is possible to detect SDS concentrations in
the nanomolar regime with high accuracy. However, the binary classification model has a limited
number of use cases, as it can only identify the existence of SDS rather than distinguishing
between various SDS concentrations (which was achieved earlier). Here, we investigated binary
classification to push the predictive power to the extreme for potential applications of low SDS
detection. This part of the study was also used to show the existence of a detection limit and
confirm that the information encoded in individual color channels is useful for surfactant

quantification. It is worth noting that we picked SDS as a proof-of-concept model surfactant to
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determine whether CNNs can help improve the sensitivity of this LC-based system. In the
sections below, we show that this general approach can also be applied to detect and quantify

trace amounts of other aqueous amphiphiles.

Maximizing Selectivity Through Hierarchical CNNs
Differentiating various surfactants using LC micrographs: The results above demonstrate that
CNNs can extract and decode hidden information from LC micrographs to quantify
concentrations of aqueous SDS with improved sensitivity. We also investigated whether CNNss
can uncover information that can be used to increase selectivity to this LC sensing system. Past
studies report that as surfactants adsorb to LC-water interfaces, their hydrophobic regions
penetrate into the LC surface and that variations in tail branching or tail number can lead to
differences in optical transitions.”> Such structural differences can lead to different
concentrations at which bipolar-to-radial transitions are triggered. However, to the human eye,
micrographs of bipolar or radial LC droplets treated with single-tail surfactants generally look
identical (or very similar) to those treated with two-tailed surfactants. Past studies have
determined the hydrophilic head groups of surfactants to play less of a direct role in influencing
LC alignment.” However, the structure of surfactant head groups can still affect the assembly of
surfactants at LC-water interfaces through charge interactions and hydrogen bonding, which
could lead to changes in the configurations of LC droplets that are less visible or more difficult
to interpret by the naked eye.

In this part of the study, we performed experiments to determine whether ML can further
extract hidden features that are relevant to surfactant chemical structure and thereby introduce
new degrees of selectivity to this LC sensing platform. To evaluate both the influence of

hydrophobic tail groups and hydrophilic head groups, we acquired micrographs of LC droplets
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treated with aqueous solutions containing SDS, DTAB, and rhamnolipid (RL), an amphiphilic

bacterial toxin that is also used as a commercial biosurfactant. The chemical structures of these
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Figure 4. Classification of multiple surfactants using hierarchical CNN. (A) Schematic of proposed hierarchical CNN
architecture. The first level focuses on classifying droplet patterns that have unique visual or RD patterns using grayscale
micrographs while the second level concentrates on further distinguishing the subtle differences between bipolar-like LC droplets
and labeling their specific surfactant type and concentration. The details of the CNN architecture are summarized in Table 1. (B)
The confusion matrix from cross-validation. The surfactant types are color-coded, and the surfactant concentrations are listed. (C)
Examples of the saliency maps overlayed on top of the original LC micrograph for each class in level 1.

amphiphiles are shown in Figure 4. For both SDS (anionic) and DTAB (cationic), the
hydrophobic region contains a single 12-carbon chain. Rhamnolipid contains a mixture of
molecules with either one or two fatty acid tails. As shown in Figure 2A, at low concentrations
for each surfactant system, droplets remain in bipolar configurations. At high concentrations, all

droplets show a cross pattern representing radial configurations. For the SDS-treated droplets,
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the patterns remain colorful, while the DTAB-treated droplets appear to be monochromatic,
which is more commonly observed for flattened radial droplets. For rhamnolipid, both
monochromatic and colorful radial configurations were observed. Additionally, a surfactant
mixture system containing an equimolar ratio of SDS and DTAB was prepared as a
representation of a more complex surfactant system. The concentration of the surfactant mixture
selected here (6 uM) is low enough not to trigger bipolar-to-radial transitions, and leads to LC
configurations similar to those of droplets treated with 0.25 mM SDS.

Other results discussed above demonstrate that color-rich images are important for
differentiating micrographs that have similar optical responses, whereas grayscale images are
sufficient to classify distinguishable defect patterns. Hence, to increase model interpretability
and potentially lower computational burden without sacrificing accuracy, we used a hierarchical
CNN approach. As illustrated in Figure 4A, grayscale images were submitted to the first level of
the CNN to classify the images into five major droplet configurations, all of which have unique
visual or RD patterns. At this level, all of the bipolar-like droplets were grouped into a single
class. After that, a second-level CNN was trained using the colored LC micrographs to label each
bipolar-like droplet with a specific surfactant type and concentration. In general, the LC
micrographs were classified into 13 classes (Figure 2A), addressing both the sensitivity and
selectivity of surfactant detection.

The results of the hierarchical CNN approach are summarized in the confusion matrix
shown in Figure 4B. The CNN in the first hierarchical level achieved a cross-validation accuracy
of around 98.9%. This is not surprising based on the RD profiles of the LC micrographs. Despite
the presence of some overlapping optical features across radial droplets treated with different

surfactants, the RD profiles have already shown some distinctive peaks. We also created saliency
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maps, a gradient-based calculation to highlight the key regions in an image used to make a
classification, to decipher what information the CNN was capturing. Figure 4C shows a few
examples of the original grayscale images with their corresponding saliency maps overlayed on
top. The highlighted regions in the saliency map resemble the overall optical patterns of the
original images, indicating that the first level of the CNN is classifying the images based on what
a trained human eye would consider to be obvious optical features. For the second hierarchical
level, the overall classification accuracy was around 77.4%. The categorical-wise prediction
accuracy for 0.1 mM SDS and 0.25 uM DTAB were 88% and 77%, respectively. Despite
showing no apparent reliable visible differences in the LC micrographs all at bipolar
configurations, the prediction accuracy was relatively high. A closer examination of the
confusion matrix revealed that low DTAB concentrations were more likely to be misclassified as
water (19%) than low SDS concentrations (3%). This indicates that the trained CNN might be
picking out hidden features that are not visually apparent, but are unique to DTAB adsorption.
As mentioned above, for droplets treated with 0.25 mM SDS, an equimolar mixture of SDS and
DTAB, or 5 pg/mL rhamnolipid, micrographs share a substantial number of common optical
features. These droplets are within the transition spectrum between bipolar and pre-radial
configurations and thus cover many complex patterns that either look alike or are difficult to
distinguish reliably using visual inspection. Despite that, they were all classified here with
relatively high accuracies; for 0.25 mM SDS, the SDS+DTAB mixture, and 5 pg/mL
rhamnolipid, the F1 scores were 84%, 96%, and 93%, respectively.

Understanding Hierarchical CNN Predictions Using Saliency Maps: To further
understand the results discussed above, we statistically analyzed the saliency maps using RD

profiles of the saliency maps themselves (rather than the LC micrographs, which was performed
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to generate the results in Figure 2) as topological descriptors. Figure 5 shows the summarized

RD profiles of the saliency maps for each class in the second level of the hierarchical CNN
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Figure 5. Examples of the saliency maps overlayed on top of the original LC micrograph for each class in level 2. We performed
the same RD analysis on the saliency map (instead of the original micrographs) and visualized the summary statistics for all the
samples in each class. Most of SDS treated droplets show an overall decreasing trend with the highest intensity point located
around the origin of the RD profiles, suggesting that the model is mostly relying on information around the center of the droplets
for classification. Most interestingly, we see a unique RD pattern in the green channel for cases where DTAB is present. Unlike
SDS or RL, DTAB contains a positively charged head group, which might be the reason for this peak although the micrographs
are visually similar.

(referred to as level 2 and corresponding to visually indistinguishable droplets with low
surfactant concentrations). As shown in Figure 5, most SDS-treated droplets showed an overall
decreasing trend in the sum (grey) channel, with the highest intensity point located around the

origin of the RD profiles. This suggests that the algorithm is mostly relying on information
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around the center of the droplets to classify them. There are no characteristic peaks that can set
different SDS concentrations apart, which is consistent with the relatively low accuracy for low
concentrations of SDS. However, closer inspection of the individual color channels revealed that
there are some differences in these three channels that facilitate SDS classification. For both 0.1
mM and 0.25 mM SDS-treated droplets, we see a relatively smaller standard deviation,
suggesting that the observed highlighted regions are more consistent across all the images as
compared to other classes. The relatively low variations in information extracted from the
original images might be the reason for their higher prediction accuracy.

For droplets treated with only water (no surfactant), both the sum, the red, and the green
channels have a much longer plateau as compared to other treatments. This indicates that the
algorithm is using information collected from not only the center but also the near edge of the
droplets to classify water. Since defect regions of the bipolar configurations are present around
the near edge of the droplets, the presence or positions of the defects are potentially the
distinctive feature the algorithm is relying on for classifying water.

We also observed a unique peak in the green channel for the 0.25 uM DTAB condition.
This peak was also present in the surfactant mixture condition, and so might be caused by some
hidden but distinctive optical response resulting from adsorption of DTAB. Since both
rhamnolipid and SDS are anionic surfactants and their RD profiles lack this peak, the positively
charged head group of DTAB might be the reason for the difference in adsorption. We also
observed a plateau in the red channel of the 0.25 uM DTAB condition; this potentially explains
the tendency for this condition to be misclassified as water. Finally, we note that the blue channel
of the surfactant mixture system also has a unique peak. This peak can also be found in some of

the low concentrations of SDS, but it becomes much more prominent in the mixture. This could
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be diagnostic of some unique optical features triggered by synergetic effects of the mixed
surfactants. We did not see many distinctive patterns in the RD profiles for low concentrations of
rhamnolipid, however we note that the highest intensity point in the red and the sum channel is
no longer at the center, suggesting that the distinctive features for rhamnolipid are not at the
center of the droplet. Overall, on the basis of the results above, we conclude that ML algorithms
can be used in combination with this LC droplet array platform to distinguish the presence of

different types of aqueous surfactants.

Summary and Conclusions

We have developed a surfactant sensing method using arrays of LC droplets prepared by
microcontact printing; the surfactant-induced optical responses of LC droplets were captured by
cross-polarized microscopy and analyzed by feature extraction with CNN-based architectures.
This experimental system allows for consistent optical responses from uniformly sized LC
droplets, and the two-level hierarchical CNN (where the first level classifies defect patterns using
grayscale images and the second level classifies color patterns using RGB images) enables the
classification of surfactant type and concentration with enhanced selectivity and sensitivity.
Delegating different focuses of feature extraction into separate levels also helps model
interpretation to obtain physical insights via statistical analysis of the saliency maps, such as RD
profiles, which serve as a physically intuitive descriptor for LC micrographs. Overall, these
findings demonstrate the potential of the proposed method for on-site and high-throughput
sensing of surfactants.

The experimental, materials, and computational components of this study could be

expanded in a number of ways to develop new array-based platforms for the rapid detection

33



and/or identification of many different classes of natural and synthetic amphiphiles with
increased accuracy and sensitivity. This array-based approach could also lead to new insights
useful for the design and iterative improvement of sensing platforms based on LC-in-water
emulsions reported in past studies. The computational framework and analysis methods could
also be extended to other image-based models. For instance, separating training tasks into
multiple CNN levels and analyzing saliency maps with RD descriptors may be applied to similar
LC systems to obtain meaningful insights. Moreover, the droplet detection algorithm could be
directly applied to micrographs of LC-in-water emulsions to extract micrographs of individual
LC droplets and bypass the need for complex object segmentation algorithms such as YOLO.?’
Future studies will also explore the use of different data representations, such as Euler
characteristics™* (a topological descriptor as an alternative to RD) to decode optical responses of

LC micrographs.
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Supporting Information. All data and scripts needed to reproduce the results can be found at

https://github.com/zavalab/ML/tree/master/LC_CNN_Micrograph.
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