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ABSTRACT:  Surfactants and other amphiphilic molecules are used extensively in household 
products, industrial processes, and biological applications, and are also common environmental 
contaminants; as such, methods that can detect, sense, or quantify them are of great practical 
relevance. Aqueous emulsions of thermotropic liquid crystals (LCs) can exhibit distinctive 
optical responses in the presence of surfactants and have thus emerged as sensitive, rapid, and 
inexpensive sensors or reporters of environmental amphiphiles. However, many existing LC-in-
water emulsions require the use of complicated or expensive instrumentation for quantitative 
characterization, owing to variations in optical responses among individual LC droplets. In many 
cases, the responses of LC droplets are also analyzed by human inspection, which can miss 
subtle color or topological changes encoded in LC birefringence patterns. Here, we report an LC-
based surfactant sensing platform that takes a step toward addressing several of these issues and 
can reliably predict concentrations and types of model surfactants in aqueous solutions. Our 
approach uses surface-immobilized, microcontact printed arrays of micrometer-scale droplets of 
thermotropic LCs and hierarchical convolutional neural networks (CNNs) to automatically 
extract and decode rich information about topological defects and color patterns available in 
optical micrographs of LC droplets to classify and quantify adsorbed surfactants. In addition, we 
report computational capabilities to determine relevant optical features extracted by the CNN 
from LC micrographs, which can provide insights on surfactant adsorption phenomena at LC-
water interfaces. Overall, the combination of microcontact-printed LC arrays and machine 
learning provides a convenient and robust platform that could prove useful for developing high-
throughput sensors for on-site testing of environmentally or biologically relevant amphiphiles. 
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Introduction 

Surfactants are amphiphilic molecules that contain hydrophilic head groups and 

hydrophobic tail groups, the combination of which allows them to self-assemble both in solution 

and at interfaces (e.g., at solid surfaces or at interfaces between immiscible liquid phases).1 

Because of their unique properties, surfactants are used in a wide range of industrial and 

pharmaceutical products, including detergents, food additives, and as components of drug 

delivery vehicles.2-4 Amphiphilic molecules also play essential roles in living organisms, and 

many have been identified as disease biomarkers.5, 6 As a result of their widespread use in 

practical applications, surfactants can also end up as contaminants in consumer or 

pharmaceutical products or may be discharged into the environment where they can harm 

surrounding ecosystems.7-9 

State-of-the-art methods for detecting and confirming the identities and structures of 

natural and synthetic amphiphiles include mass spectrometry and high-performance liquid 

chromatography (HPLC).5, 10 While these methods provide excellent sensitivity and selectivity, 

they often require complex sample preparation procedures, costly laboratory infrastructure, and 

highly trained personnel. Other lower-tech approaches have been developed, including 

colorimetric and two-phase titration assays that can monitor different levels of anionic11 and 

cationic12 detergents. However, this type of method often suffers from low reproducibility and 

tends to be time-consuming.13 Several other approaches have been developed to detect and 

quantify specific analytes of interest with great sensitivity and specificity;5 nevertheless, these 

methods can also be expensive, complex, and resource-intensive (for example, bacterial 

endotoxins can be detected at very low concentrations and with high specificity using assays 
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with biomolecular components derived from the farming and large-scale milking of blood from 

horseshoe crabs14, 15).  

Owing to these general limitations, there has been an increasing number of studies 

dedicated to developing new approaches to surfactant detection and quantification, including 

many optical, electrochemical, and mechanical-based techniques.5, 16 Among these new 

approaches, systems that exploit the unique properties of liquid crystals (LCs) have garnered a 

growing amount of attention.17-22 Liquid crystals (LCs) are liquid-phase materials that possess 

long-range directional order. Several decades of past research has shown that the adsorption of 

amphiphiles to LC-water interfaces can alter surface anchoring energy and translate molecular-

level interfacial interactions into the bulk of the material, leading to optical changes, including 

birefringence patterns, that can be readily observed using cross-polarized light.18 In recent years, 

researchers have successfully designed various LC-based sensing platforms to detect amphiphilic 

lipids, proteins, endotoxins, and nucleic acids at biologically relevant concentrations.17, 19, 21, 22 

Overall, LC-based systems address several practical issues associated with existing 

methods for the detecting and reporting of environmental amphiphiles and, with further 

development, have the potential to lead to affordable, mobile, and potentially high-throughput 

sensing platforms. Many past studies have relied on visual inspection of polarized light 

micrographs for qualitative analysis (e.g., to report on the presence or absence of surfactants).17, 

22  These methods are useful when changes in LC optical appearance are substantial; however, 

optical changes in color and defect patterns that are subtle or masked by more salient visual 

features can be easily overlooked by the use of the naked eye. The work reported here was 

motivated by recent advances in data-centric modeling techniques and the hypothesis that 

machine learning (ML) and related methods, including convolutional neural nets (CNNs), can be 
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used to reveal, extract, and exploit additional rich information contained in polarized light 

micrographs of LC emulsions in ways that can further enhance sensitivity or selectivity for the 

detection, reporting, and quantification of aqueous amphiphiles. 

CNNs are a powerful ML tool for feature extraction from 1D (e.g., feature array), 2D 

(e.g., images and videos), and other higher-dimensional signals. These models have recently 

been implemented in LC-based sensing systems; for example, Cao et al.,23 Xu et al.,24 Bao et al., 

25 and Smith et al.26 used CNN architectures to extract features from micrographs of LC thin 

films (e.g., obtained from videos that recorded optical responses under polarized light) for 

detection of aqueous and gaseous analytes. In these cases, the CNN improved sensor selectivity 

and responsiveness. Jiang et al.14 investigated the use of free-floating LC-in-water emulsions for 

the detection of bacterial endotoxins; in this approach, the authors characterized differences in 

the scattering of light by LC droplets in emulsions using flow cytometry output as input signals 

to CNNs to predict endotoxin concentrations. In a more recent study, Frazao et al.27 investigated 

LC emulsions embedded in hydrogels and used images of LC droplets as inputs to CNN-based 

frameworks to classify volatile organic compounds with an accuracy (F1-score) above 93%.  

Overall, these past studies reveal that there exist characteristic features in the optical 

responses of various planar and colloidal LC-based materials that can be exploited using ML 

techniques to improve sensitivity and selectivity. However, these studies have either focused on 

the interactions between LCs and gaseous molecules27 or require additional and expensive 

characterization equipment, such as flow cytometry,14 to characterize or detect stimuli adsorption 

at LC-water interfaces. Amphiphiles have not been fully explored as the stimuli of interest. 

Furthermore, since the optical properties of LC droplets depend upon their size, variations in the 

droplet size in LC-emulsion-based systems can lead to high variations in optical responses to 
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even a single analyte. Such high variations also make the chromatograms of the LC droplets 

challenging and less explored as the inputs for ML. Systems that use videos as the model input 

are further limited by the computational resources and video processing time.27 Here, we address 

these limitations to demonstrate the potential of using LC micrographs as machine learning 

inputs to detect and quantify amphiphiles in solution.     

In this study, we report a strategy for the detection, reporting, and quantification of model 

aqueous surfactants based on the use of surface-immobilized, microcontact printed LC droplet 

arrays and a hierarchical CNN for the analysis of LC optical transitions captured using polarized 

light microscopy. We demonstrate that microcontact printing yields uniform and immobile LC 

droplets that exhibit optical responses upon contact with aqueous amphiphiles that are diagnostic 

and, in several ways, similar to those of free-floating LC droplets investigated in past studies. 

The uniform size of the immobilized LC droplets in these printed arrays significantly decreases 

variations in optical responses upon the introduction of surfactants and thus decreases the 

complexity needed to decode optical responses using CNNs to classify both surfactant type and 

concentration. Our results demonstrate that this approach can extract rich information contained 

in polarized light micrographs of LC droplets to improve the sensitivity of the system. We also 

show that the system can be used to distinguish LC droplets treated with 0.05 nM concentrations 

of the model surfactant sodium dodecyl sulfate (SDS), with a prediction accuracy of greater than 

90%, from those treated with water as a control, despite the optical images having no apparent 

meaningful or discernable differences when viewed and interpreted by trained human eyes. In 

addition, our results show that this overall strategy and a hierarchical CNN can be used to 

improve the selectivity of the system and permit accurate distinctions between multiple different 

synthetic and natural surfactants with differences in both head group and tail group structures 
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(again, based on images that have no meaningful or reliable differences when viewed or 

interpreted by human eyes). Generation of saliency maps reveals that the CNN can distinguish 

prominent defect patterns using grayscale microscopy images, and that color information is 

necessary for capturing subtle pattern changes in concentric rings at low surfactant 

concentrations. Overall, this approach leads to improved sensitivity and selectivity and provides 

a robust sensing workflow that does not require access to expensive instrumentation to provide 

accurate and useful information about amphiphilic species in aqueous solutions. This approach 

could therefore serve as a step toward the development of low-cost, convenient, and potentially 

high-throughput methods for in-line or on-site testing, identification, and reporting of surfactants 

and other environmentally or biologically relevant amphiphiles.   
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Experimental and Computational Methods 

 

1. Experimental methods 

Materials. The nematic thermotropic LC 4′-pentyl-cyanobiphenyl (5CB) was purchased from 

HCCH Jiangsu Hecheng Display Technology Co., Ltd. (Jiangsu, China). Sodium dodecyl sulfate 

(SDS) and dodecyltrimethylammonium bromide (DTAB) were obtained from Sigma-Aldrich 

(Milwaukee, WI). PDMS (Sylgard 184 Silicon Elastomer) was purchased from Ellsworth 

Adhesives (Germantown, WI). Glass coverslips were obtained from Fisher Scientific (Pittsburgh, 

PA). Rhamnolipids, 90% pure (commercially obtained rhamnolipids used in this study were 

isolated from P. aeruginosa as a mixture of congeners with different numbers of rhamnose sugar 

moieties, mono- and di-, linked to one or two molecules of hydroxy acid that differ in their 

aliphatic chain length) were purchased from AGAE Technologies (Corvallis, OR). Deionization 

of distilled water was performed using a Milli-Q system (Millipore, Bedford, MA) to yield water 

with a resistivity of 18.2 MΩ. All materials were used as purchased without further purification 

unless noted otherwise.  

 

General considerations. All glass slides used for microcontact printing were soaked in ethanol 

overnight and then rinsed under a stream of ethanol three times prior to use. Bright-field and 

polarized-light microscopy images were acquired using an Olympus IX71 inverted microscope 

(Waltham, MA) equipped with cross-polarizers (Olympus analyzer slider IX2-AN and condenser 

attachment IX-LWPO). Fields of view were recorded using an OPTO-EDU (Beijing, China) 

eyepiece camera model A59.2211 connected to a computer and controlled through ImageView 

imaging software version A30.2201.  
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Microcontact Printing of LC Droplet Arrays. PDMS stamps consisting of an array of pillars 

(100 µm x 100 µm square, spaced 100 µm apart) were prepared as previously described.28 

Briefly, photolithography techniques were used to produce a silicon master with depressions, or 

negative features, corresponding to final desired pillar structures and patterns. A mixture (10:1 

w/w) of PDMS pre-polymer and curing agent was then degassed and poured onto the silicon 

master. The PDMS layer was then cured at 70 °C in an oven for 1 hr to obtain the desired square-

array stamp. Inking of the stamps was achieved by first spreading a 5 µL droplet of 5CB on a 

clean glass substrate using another glass plate to produce a thin layer of LC. The stamp was 

gently placed onto the LC-spread surface and then quickly transferred and placed gently on a 

glass cover slide. Stamps were left in contact with the glass cover slides for 10 s and then 

removed. The printing process was repeated one more time without reinking and this second 

print was used for collecting data. Different aqueous surfactant solutions (20 uL) were then 

carefully introduced to the printed LCs using a micropipette and LC droplet arrays were imaged 

under cross polarized light. We estimate the height at the centers of droplets after introduction of 

aqueous surfactant to be ~20 µm. 

 

2. Computational Methods 

Droplet Detection and Size Calculation. We adapted the canny edge detection method29 to 

extract only the center region that contains the droplet (removing the dark peripheral area that 

does not contain any information) with high resolution from raw micrographs of LC droplet 

arrays (4912×3684); this algorithm smooths a grayscale image using a Gaussian filter, generates 

the corresponding edge mask (binary) based on gradient computation through a Sobel operator, 
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and links the broken edges via non-maximum suppression coupled with thresholding. To account 

for the halo effect, we performed edge dilation that keeps the peripheral area of the detected 

droplet. After this, we applied contour detection30 to obtain a square bounding box around the 

droplet, followed by image cropping. The size of each cropped image was used to approximate 

the diameter of the droplet by a unit conversion from the pixels to microns. Since the droplet 

detection algorithm includes the background halo, the calculated diameters are expected to be 

larger than the actual droplet sizes, yet the relative sizes can be studied to analyze the uniformity 

of the LC droplets prepared by microcontact printing. Additionally, this workflow has the 

capability of detecting multiple droplets in complex systems with high computational efficiency 

compared with more common machine learning approaches that are intended for the same 

purpose, such as YOLOv331 used by Frazao et al.27 for optical gas sensing with LC, which 

requires model training to fit millions of parameters (e.g., Darknet-53 has 53 convolutional 

layers). Since the droplets have sufficient distinguishing factors from the background, a simple 

gradient-based method is efficient to accomplish the task. 

 

Image Preparation and Augmentation. In the study reported here 1,371 raw LC micrographs 

were obtained directly from approximately 130 different experimental trials. For each raw 

micrograph, we first applied the droplet detection algorithm to extract the droplet region. After 

droplet detection, the micrographs were resized to 256×256 and augmented 20-fold with 

combinations of random rotation, shifting, shearing, zooming, and flipping. The augmentation 

parameters were controlled in a way that simulates experimental variations. For instance, the 

zooming range was set to 95% to 105%, which is consistent with the standard deviation (~10%) 

of the droplet size reflected by the dimension of the cropped micrographs. Overall, the resulting 
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image dataset contained 27,420 pre-processed LC micrographs that were categorized into 13 

classes (based on the type and concentration of the corresponding surfactant exposure) for 

training and validation. 

 

Topological Analysis using Radial Distribution Profiles. We computed a radial distribution 

(RD) profile of the color intensity 𝐼 as a function of radius (pixel) 𝑟 for each micrograph; the RD 

profiles served as simple topological descriptors to represent the LC droplet data and are defined 

as shown in Equation 1: 

 

𝐼(𝑟) = !
𝟙 !!"!!!!

𝟙{!!"!!}𝐼!"!!   (Equation 1) 

 
where 𝑖 and 𝑗 are the row and column of a pixel, 𝐼!" represents the corresponding color intensity, 

and 𝑑!" = 𝑖 − 𝑐! ! + 𝑗 − 𝑐!
!
 is the Euclidean distance between a pixel and the center point 

(𝑐! , 𝑐!) of the droplet. The location of the center point was determined by the weighted average 

of the coordinates along the row and column of a micrograph; the weights were calculated from 

the binary mask 𝑀!" obtained after image thresholding using Equations 2-4  

 

𝑐! = 𝑖𝑀!"!!   (Equation 2) 
 
𝑐! = 𝑗𝑀!"!!   (Equation 3) 
 

𝑀!" =
1, 𝐼!" ≥ 70!! 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (Equation 4) 

 

Color Space Transformation of LC Micrographs. Digital images are viewed as grid data 

objects with single or multiple color channels, each being a 2D matrix with numerical values 
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describing the color intensity at individual pixels. The LC micrographs are color images with red, 

green, and blue (RGB) channels. In this study, we performed color space transformations to 

identify important color channels that contribute most to surfactant quantification. Apart from 

the RGB color space, we generated grayscale (a linear combination of RGB channels) images 

and explored the L*a*b* color space (nonlinear conversion from RGB) introduced by the 

International Commission on Illumination (CIE). The L*a*b* channels represent the lightness, 

red/green value, and blue/yellow value, respectively; since red/green and blue/yellow are 

opponent color pairs, the L*a*b* color space has a strong correlation with human visual 

perception.32 According to Levit et al.,33 the thermochromic behavior of cholesteryl ester liquid 

crystals can be associated with the cumulative change in the L*a*b* color space. Therefore, we 

investigated various combinations of the individual color channels from the 

RGB/L*a*b*/grayscale color spaces as alternative ways to represent the input data. 

 

CNN Architectures for Different Data Representations. Based on the type of input data 

representations, we developed three CNN architectures to extract and summarize features from 

data for classification of surfactant concentrations.  

 

1D CNN. A convolution operation computes the weighted sum across local domains of the input 

data for feature extraction. For RD profiles that are mathematically represented as 1D vectors 

with 3 channels (RGB), we applied 1D CNNs. In a 1D CNN, we define an input RD vector 𝑣 in 

a discrete domain of radius 𝑟 and a kernel (or filter) vector 𝑘. The 1D convolution operator for 

each channel 𝑐 is formulated as shown in Equation 5 
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ℎ! 𝑟 = 𝑣! 𝑟 ∗ 𝑘[𝑟] = 𝑣![𝑟′] ∙ 𝑘[𝑟 − 𝑟!]!
!!!!!   (Equation 5) 

 

and the channel-wise hidden features are summarized by Equation 6 

 

ℎ 𝑟 = ℎ![𝑟]!∈{!"#,!"##$,!"#$}   (Equation 6) 

 

2D CNN. Similar to the 1D CNN, 2D CNNs incorporate the same architecture on images, which 

are 2D objects (matrices with multiple channels). Using the same set of annotations, the 2D 

convolution operator for each channel 𝑐 is formulated as shown in Equation 7 

ℎ! 𝑖, 𝑗 = 𝑣! 𝑖, 𝑗 ∗ 𝑘[𝑖, 𝑗] = 𝑣![𝑖!, 𝑗′] ∙ 𝑘[𝑖 − 𝑖!, 𝑗 − 𝑗′]!
!!!!!

!
!!!!!   (Equation 7) 

where 𝑖 and 𝑗 denote the row and column of a pixel, and the channel-wise hidden features are 

again calculated by the sum of the hidden features of each color channel. 

For both 1D and 2D CNNs, we applied zero padding, a technique that adds zero entries to the 

start and the end of each input, to ensure that the input and output signals have the same 

dimension. The convolution operation is followed by nonlinear activation 𝜎; here, we chose 

Rectified Linear Unit (ReLU), which is a commonly used activation function that avoids 

vanishing gradients while retaining sensitivity.34 The output from nonlinear activation 𝜎(ℎ) then 

undergoes batch normalization as a regularization method to avoid overfitting as well as to 

increase convergence speed.35 Next, the normalized data are sent to a pooling layer for size 

reduction through techniques such as averaging the values within a local domain. Besides size 

reduction, the pooling layer also allows for invariance to small input translation,36 which is a 

desired feature in data processing. The abovementioned convolution, batch normalization, and 
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pooling layers are bundled together and repeated to extract hidden features from the input data at 

a deeper level. 

 

Hierarchical CNN. The hierarchical CNN proposed in this study operates on images and 

contains two levels of 2D CNNs that are trained on different data representations. The selection 

of the data representation for each level relies on the detection focus. The first level is intended 

to differentiate defect patterns, including bipolar, pre-radial/escaped radial, and radial 

configurations, and therefore grayscale images, which highlight the contrast between light and 

shade and contain sufficient information for defect pattern classification. The second level, on 

the other hand, is forced to learn patterns that are less distinguishable and thus require color 

information (e.g., RGB). We note here that although this hierarchical CNN architecture selects 

grayscale images as the input for the first level and RGB images as the input for the second level, 

alternative data representations were explored, such as the L*a*b* color space and individual 

color channels. However, these data representations did not improve model accuracy in our early 

studies and therefore were not selected for further study.  

 

Model Implementation. Images were pre-processed using OpenCV (version 4.4.0) for tasks 

including resizing, droplet detection, and color space transformation mentioned previously. The 

CNN models were implemented using PyTorch (version 1.2.0).37 The major hyperparameters we 

varied include the kernel size (5,7,9), number of convolution layers (1,2,3), pooling function 

(max-pooling or average-pooling), and learning rate (0.0001,0.0005,0.001). The tested models 

were trained with the cross-entropy loss, the Adam optimizer, and a learning rate of 0.0001. We 

performed 5-fold cross-validation (CV) with stratified random sampling for hyperparameter 
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tuning and model evaluation. Stratification was based on the class labels. All evaluation metrics 

were computed using the compilation of the validation data in each fold to obtain a realistic 

estimation of the model performance. More implementation details can be found in Table 1. 

 

Table 1. Hyperparameters of CNN architectures.  

CNN Architecture 1D CNN 2D CNN 2-Level 2D CNN 
1

st

 Level 2
nd

 Level 
Input Data Radial Distribution 

(RGB) Micrograph 
(RGB) Micrograph 

(Gray) Micrograph 
(RGB) 

Input Data Size ℝ!"#×! ℝ!"#×!"#×! ℝ!"#×!"#×! ℝ!"#×!"#×! 
# Convolution+Pooling Layers 3 3 2 3 

Convolution Kernel Size 7 7×7 7×7 7×7 
Pooling Type Average Pooling 

Batch Normalization Enabled 
Zero Padding Enabled 

# Fully-connected Layers 2 
Activation ReLU 

 

 

Saliency Calculations. Saliency maps were generated using integrated gradients (IG)38 as shown 

in Equation 8 

𝐼𝐺!
!""#$% 𝑥 = 𝑥! − 𝑥!! ×

!!!"" !!! !
! !!!!

!!!
!
!!! × !

!
  (Equation 8) 

 

where 𝐹!"" denotes the trained CNN model, 𝑖 denotes individual features (in this case color 

intensity of a pixel), 𝑥 denotes input images, 𝑥′ denotes a baseline image (zero tensor with the 

same dimension as the input), and 𝑚  (set to 50) denotes the number of steps in the 

approximation. IG is one of the state-of-the-art methods for model interpretation, which has 

proven to be sensitive to important features and insensitive to unimportant features and thus 

reduce visual diffusion.39 In this study, IG was implemented using Captum40 (version 0.4.1). 
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Results and Discussion 

Fabrication of Surface-Immobilized Arrays of LC Droplets by Microcontact Printing 

For sensing applications, microscale LC droplets with uniform sizes are desirable because 

variations in droplet size (e.g., as present in aqueous emulsions prepared using many 

conventional methods) can lead to variations in the types of optical responses that are observed 

upon the adsorption of amphiphiles.41 42 43 In past studies, researchers have used various methods 

to create monodispersed LC droplets, including microfluidic devices,44 the filling and subsequent 

removal of monodisperse hollow capsule templates,42 capture of LCs on micropatterned self-

assembled monolayers (SAMs),45 and inkjet printing46 to create either free-floating LC droplets 

or arrays of surface-immobilized droplet arrays. Here, we used a simple PDMS-based 

microcontact printing method to create immobile and relatively uniform LC droplet arrays. 

Compared to other methods used in past studies noted above, this microcontact-printing method 

requires minimal material or preparation, is low cost, and produced arrays of uniformly sized 

droplets sufficient for all subsequent experiments described below.  

We first performed a series of experiments to determine whether the surface-immobilized 

droplets in these arrays, which are non-spherical and in substantial contact with an underlying 

glass surface, respond to stimuli in ways that are similar to those often associated with free-

floating spherical LC droplets and immobilized LC droplets created using other methods. For 

these and all other studies described below, we selected the well-studied LC 5CB as a model LC 

and characterized the behavior of arrays in the absence or presence of an overlayer of water or 

other aqueous surfactant solutions using bright field and cross-polarized light microscopy.  
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As shown in Figure 1A, contact-printed LC droplets under air had relatively circular shapes 

when viewed from above in the bright-field. When observed using cross-polarized light (Figure 

1B), the birefringent patterns of the LC droplets resembled those generally characteristic of LC  

 
Figure 1. LC droplets prepared by microcontact printing. (A) Printed LC droplets under a bright-field microscope. (B) Printed 
LC droplets under a cross-polarized microscope. (C) LC droplets with water treatment under a bright-field microscope. (D) LC 
droplets with water treatment under a cross-polarized microscope. (C) and (D) display a smaller droplet size due to the change in 
wetting behavior of printed LCs when water is introduced. (E) Magnified view of (D) where a bipolar configuration is observed. 
(F) Magnified view of the microcontact-printed LC droplets when treated with 1 mM model surfactant SDS. A radial 
configuration is observed. (G)-(H) Schematic illustrations of the surface anchoring of printed LC molecules with bipolar (planar 
anchoring) and radial (homeotropic anchoring) configurations, respectively. (I) Size distribution of microcontact-printed LC 
droplets based on cross-polarized LC micrographs of water-treated LCs. The computationally obtained droplet diameters take 
into account the background halo and have a mean of 23.1 µm with a standard deviation of 2.1 µm, resulting in a polydispersity 
index of 0.09. 
 

thin films.47 Upon the introduction of an overlayer of water, the printed LCs beaded up to form 

partially wetted droplets and had substantially smaller footprints (Figure 1C) as compared to the 

droplets in arrays under air (Figure 1A). When observed under cross-polarized light (Figure 1D), 

microcontact-printed LC droplets covered by an overlayer of water exhibited optical appearances 

similar in many ways to those of LC droplets in emulsions created using other methods. As 

shown in the higher magnification view shown in the inset of Figure 1E, two defect regions can 
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be observed at opposite poles of the individual droplets. This optical texture is similar to the so-

called ‘bipolar’ configuration21 observed in free-floating spherical LC droplets, in which the LC 

adopts a planar anchoring at the oil-water interface (as depicted in Figure 1G for the present case 

of surface-immobilized droplets; for simplicity, we refer to immobilized, non-spherical droplets 

having this appearance as being in a ‘bipolar’ configuration from here on).  

We then characterized the response of these microcontact-printed LC droplets after the 

introduction of an overlayer of water containing the model surfactant SDS (1 mM). Figure 1F 

shows cross-polarized images of printed LC droplets after the introduction of SDS; all droplets 

show a characteristic cross-like pattern with a single defect near the geometric center of the 

droplets in this top-down view. This optical appearance is similar in many ways to the so-called 

‘radial’ configuration21 observed in spherical LC droplets, in which the LC adopts homeotropic 

anchoring at the oil-water interface (as depicted in Figure 1H for the present case of surface-

immobilized droplets; for simplicity, we refer to immobilized, non-spherical droplets having this 

general optical appearance as being in a ‘radial configuration in the discussion below). The 

results of these experiments demonstrate that the microcontact-printed LC droplet arrays 

reported here respond to the presence or absence of water or aqueous surfactant in ways that are 

similar to those of spherical droplets reported in past studies and sufficiently diagnostic to 

provide optical patterns that can be used to identify the presence or absence of amphiphilic 

species in the surrounding aqueous environment. The LC droplet arrays used here were stable 

when stored under air, and were generally stable (e.g., droplets did not delaminate or decrease 

substantially in size) when stored for periods of at least several days under an overlayer of water. 

These features confer potential practical advantages relative to conventional LC-in-water 
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emulsions used in past studies, which can coalesce, wet surrounding surfaces, or undergo 

changes in size distribution over a time scale of several hours.48 

We then conducted experiments to characterize the uniformity of the microcontact-printed 

LC droplets and the consistency of their response to amphiphilic species. The droplet size 

distribution of a representative array is shown in Figure 1I (the method used to determine the 

diameters of these droplets is summarized in the Methods section above). The average diameter 

of the printed droplets was 23.9 ± 2.1 µm and the polydispersity index based on the distribution 

was 0.09, which is comparable to droplets created by microfluidic devices49 and indicates that 

the printed LC droplets are relatively monodisperse. To examine the consistency of optical 

responses to chemical stimuli, we collected multiple micrographs of LC arrays treated with a 

variety of different model surfactants at various specified concentrations. As shown in each 

column of Figure 2A, the droplets exhibited comparable and generally similar visual optical 

appearances in response to each surfactant across multiple trials; additional analysis and 

discussion of similarities and difference in these images is provided below.  

We note that different surfactants can cause different changes in the surface tension and 

that differences in the charge of surfactant head groups can lead to different interactions at 

LC/solid interfaces. Because the printed LC droplets are partially wetting the underlying glass 

surface, both factors could cause LC droplets to have different wetting behaviors and lead to 

changes in birefringence patterns that differ from those of free-floating LCs.20, 50 For example, 

when high concentrations of positively charged DTAB adsorb to the LC, it can interact with the 

negatively charged glass surface, resulting in optical appearances that look like a four-clove 

structure and resemble the appearance of flattened droplets with homeotropic anchoring.46, 51 

Overall, despite some differences in droplet wetting behavior in the presence of different 
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surfactants, the microcontact printed LC droplets do show characteristic optical appearances that 

are similar in many ways to those of free-floating LC droplets and that, as described in the 

sections below, can be used as diagnostic inputs for processing using ML methods. The 

uniformity and immobility of the microcontact-printed droplets also reduce variations in the LC 

responses and facilitate the rapid imaging of large numbers of droplets, respectively, further 

facilitating the collection of high-throughput data for ML processing. 

 
Decoding LC Micrographs using ML to Detect and Quantify SDS 

Quantifying SDS Concentrations Using Radial Distribution Profiles: We performed a 

series of computational experiments in which we used ML methods to extract quantitative and 

qualitative information from micrographs of LC droplet arrays and determine whether this 

information could be used to reliably detect and quantify aqueous surfactant concentrations. We 

first selected SDS as a model surfactant and attempted to quantify its concentration using direct 

feature extraction from the LC micrographs to establish a baseline measurement of the predictive 

power of our proposed approach. We first generated radial distribution (RD) profiles for each 

micrograph as described in the Methods, where the color intensity of image pixels was plotted as 

a function of the droplet radius. RD profiles provide a useful summary that helps visualize 

differences in the topological features of LC droplets. Figure 2B shows the RD profiles of two 

representative LC micrographs, one with a bipolar configuration (treated with water) and the 

other with a radial configuration (treated with 1 mM SDS). For the LC droplet with the bipolar 

configuration, the RD profile shows an overall decreasing trend in the color intensity from the 

center to the edge of the droplet; for the LC droplet with the radial configuration, the RD profile 

reveals low intensity near the center of the droplet. Overall, these two different RD profiles 
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reflect large and characteristic differences in the defect patterns of these two LC droplet optical 

configurations that can also be readily discerned by human visual inspection.  

We used statistical analysis to determine whether images of LC droplets were 

representative across different arrays and trials using water and analyte solutions at seven  

 
Figure 2. Examples of LC micrographs and radial distribution (RD) profiles. (A) Examples of LC micrographs after droplet 
extraction and resizing. The micrographs are labeled by surfactant type and concentration, and they are categorized into 13 
classes. (B) The RD profiles of the LC micrograph examples boxed in yellow in (A). Each LC micrograph is first converted to a 
grayscale image, which is used to generate a binary mask for droplet center detection. With the center point coordinate, the LC 
micrograph is then broken down into its composing RGB channels, and the corresponding radial distribution is computed using 
the color intensities of individual pixels. The radius is units of pixels. (C) Statistical summary of the RD profiles for water (0 mM 
SDS) and seven SDS concentration classes. For each SDS quantification class, the mean and standard deviation are calculated 
using all the LC micrographs from different experimental trials for that class. 
 

different SDS concentrations. The SDS concentrations used were selected to encompass a range 

of concentrations that lead to a wide range of different optical appearances of LC droplets, 
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including bipolar and radial configurations and several different intermediate optical textures. 

Figure 2C shows the mean and standard deviation of the RD profiles summarized over individual 

SDS classes. The summary plots smooth out the local peaks that appear in each individual plot 

due to variation in the relative positions of the concentric rings observed in different LC 

micrographs, but the general shape of the RD profile is retained.  At low concentrations of SDS 

(<0.5 mM), all droplets exhibit bipolar-like configurations and hence the color intensities in the 

RD profiles drop as the radius increases. At 0.5 mM and 1 mM SDS, the RD profiles reveal 

unique patterns that were different from those at other concentrations. At 0.5 mM, the 

immobilized LC droplets exhibited optical appearances similar in many ways to so-called ‘pre-

radial’ or ‘escaped radial’ configurations42 reported previously for spherical droplets, for which 

the defect regions start to appear closer to the center of the droplets. Therefore, in the RD 

profiles of these droplets, the intensities at the center of the droplet are smaller and show a 

plateau region. At 1 mM SDS, the LC droplets exhibited a radial configuration and RD profiles 

having a bimodal distribution with declining peak heights (indicative of maximum color 

intensities that move away from the centers of the droplets). In general, the appearance and shift 

of the peaks in these RD profiles consistently and successfully captured the most salient visual 

differences in the defect patterns of LC droplets treated with different concentrations of SDS in 

this range.   

Because changes in LC defect regions reflect different levels of ordering transitions 

triggered by surfactant adsorption, we hypothesized that the RD profiles generated above could 

be used to quantify surfactant concentrations. To test this hypothesis, as shown in Figure 3A, we 

used RD profiles as the input for a simple 1D CNN architecture to predict eight different 

concentrations of SDS (including pure water, which corresponds to zero SDS concentration). We 
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chose this 1D CNN architecture due to its feature extraction power by inspecting the correlations 

between signals at local domains. For 8-class multiclassification of SDS concentration, the 1D 

CNN architecture achieved an overall accuracy of 59% (after 5-fold cross-validation) with an  

 

Figure 3. SDS classification with 1D and 2D CNN architectures. (A) Schematic of 1D CNN using RD profiles as the inputs. (B) 
Schematic of 2D CNN using LC micrographs as the inputs. Both input data representations in (A) and (B) keep the three RGB 
color channels, and each CNN is trained for 8-class classificaiton using cross entropy loss. The categorical-wise accuracies are 
summarized in (C) and (D), respectively. Numerical values are colored in grayscale with different shades of gray corresponding 
to the numerically indicated prediction accuracy with a scale varying from white (for values equal to zero) to black (for values 
equal to 1). (E) Bar plot of the binary classification using RGB and grayscale LC micrgraphs as the inputs. The details of the 
architecture are summarized in Table 1. The dashed line shown at 90% accuracy is included to guide the eye. 
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average F1-score of 0.59, which is much higher than a random guess (12.5% for 8-class 

classification). The categorical-wise accuracy is summarized in the confusion matrix shown in 

Figure 3C. In general, highlighted concentrations, at which droplets adopt configurations with 

topological defects that are readily distinguishable by visual inspection, such as pre-radial, 

escaped radial, and radial, have a relatively high prediction accuracy. These results are consistent 

with the visual observations of the LC micrographs. We note that the “water” category (no SDS) 

also exhibited a relatively high accuracy, which was not initially anticipated, given that bipolar 

configurations at very low SDS concentrations were almost identical to the trained naked eye. 

This observation is also supported by Figure 2C; the differentiating RD features, although subtle, 

show a unique pattern in the red color channel. Because even trace amounts of surfactant 

adsorption can cause changes in color/light intensity, it is possible for the CNN to distinguish 

droplets with a perfect bipolar configuration (where the defects are always at the edge of the 

droplet) from those with bipolar-like configurations (where the defects are in slightly different 

positions).  

To summarize, RD profiles encode sufficient information for LC pattern classification 

between bipolar, pre-radial/escaped radial, and radial configurations using a 1D CNN, but this 

approach fails to make accurate predictions for low SDS concentrations. Because RD profiles are 

only a high-level summary of the topological features of the LC droplets, it is understandable 

that they could miss subtle pattern differences among bipolar-like configurations at low SDS 

concentrations that are not sufficiently high to trigger substantial topological defect changes. 

Nevertheless, RD profiles have direct physical relevance to the appearance of the LC after 

surfactant adsorption and can be interpreted easily. Moreover, as a simple data representation 
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method that retains only the high-level topological features of a micrograph, RD profiles have 

better overall prediction accuracy than a random guess.  

Quantifying SDS Concentrations Using LC Micrographs: With the baseline established 

by the RD profiles in hand, we further investigated whether it was possible to improve 

classification accuracy using LC micrographs directly as inputs to a 2D CNN (Figure 3B). 

Because the micrographs contain information about the LC droplets that is much richer than that 

captured in the corresponding RD profiles, we reasoned that they would serve as a more effective 

data representation for surfactant quantification with improved sensitivity. The resulting 

confusion matrix (Figure 3D) reveals an increased accuracy across all classes of SDS 

concentrations compared to the baseline, and the overall cross-validation accuracy increased 

from 59% to 78%, with the F1-score being 0.78. The prediction accuracy for water, 0.5 mM, and 

1 mM SDS exceeded 90%, which again confirms the capability of 2D CNNs to discriminate 

between LC droplets with stable topological defects. Another significant improvement lies in the 

successful classification (> 80%) of the LC droplets that are treated with lower concentrations of 

0.1 and 0.25 mM SDS. For droplets treated with 0.25 mM SDS, their configurations fall, by 

visual inspection, into the transition region intermediate to bipolar and pre-radial/escaped radial 

configurations. In this transition region, the defect structures begin to move around the surface of 

the droplets, leading to complex optical responses that do not have any apparent distinctive 

pattern, which adds difficulty to pattern recognition. However, these complex optical responses 

that sometimes resemble both bipolar and pre-radial configurations are still being classified 

successfully by the strong feature extraction power of 2D CNNs. For LC droplets treated with 

even lower 0.1 mM SDS, all the droplets are in bipolar-like configurations, and yet the CNN is 

still able to distinguish these droplets from those treated with water or other lower concentrations 
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of SDS. It is also worth noting that, for LC droplets treated with micro- or nanomolar 

concentrations of SDS, the class-wise accuracy rises by approximately 20% as compared to the 

analysis of the RD profiles, demonstrating that the LC micrographs themselves contain more 

information that is useful for surfactant quantification.  

In summary, our results of these initial studies demonstrate the potential utility of 

combining micrographs of microcontact-printed LCs with ML methods to quantify aqueous 

surfactant concentrations in surrounding media. With the rich information in the LC micrographs 

decoded by a 2D CNN, the classification accuracy was greatly improved. The tuned 2D CNN 

architecture can successfully quantify concentrations of SDS ranging from 0.1 mM to 1 mM, and 

even at concentrations of SDS that are not sufficiently high to lead to any observable pattern 

changes that can be reliably interpreted as distinct by the trained human eye. Such results show 

the power of 2D CNN to extract hidden features and to use such information to differentiate 

between similar bipolar droplets to some extent.  

 

Detecting Trace Amounts of SDS through Binary Classification: The results above demonstrate 

that 2D CNNs can distinguish micrographs of the water-treated LC droplets (no SDS) from the 

remainder of the surfactant concentration categories. Motivated by this observation, we further 

explored whether hidden information in the optical responses could be used to detect trace 

amounts of SDS with high accuracy (thus testing the detection limit of the sensing system using 

this approach). To investigate this, we conducted a binary classification between the control 

group (“water”) and any SDS-treated group. The bar plot in Figure 3E shows the results for the 

binary classification. The cross-validation accuracy exceeded 90% in each task, even for SDS 

concentrations in the nanomolar regime. As SDS concentration decreased, overall, the accuracy 
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decreased. We tested an extreme condition where the labels were randomly assigned to the 

control group (“random water”) to mimic negligible SDS treatment, and the resulting prediction 

accuracy was approximately 50%. This result confirms that there indeed exists a detection limit 

and illustrates that the 2D CNN is not relying on random features but, rather, capturing hidden 

features that are invisible to or difficult to interpret by the trained naked eye.  

Because some concentrations of SDS tested here were extremely low, we speculate that, 

in addition to defect patterns, the algorithm is observing other optical features, such as the unique 

color patterns that originate from the long-range directional ordering of the LCs. To provide 

further insight, we performed binary classification using only grayscale images (weighted 

averages of the RGB color channels). Since these grayscale images are only summaries of the 

detailed information contained in the individual color channels, we expected to see a slight 

decrease in prediction accuracy. This was confirmed, as illustrated in Figure 3E, where the 

prediction accuracies for low SDS concentrations using grayscale images dropped by 5% to 

10%, as compared to RGB images. This result indicates that the inclusion of individual color 

channels is necessary for detecting low SDS concentrations.  

Overall, with the addition of the 2D CNN, it is possible to detect SDS concentrations in 

the nanomolar regime with high accuracy. However, the binary classification model has a limited 

number of use cases, as it can only identify the existence of SDS rather than distinguishing 

between various SDS concentrations (which was achieved earlier). Here, we investigated binary 

classification to push the predictive power to the extreme for potential applications of low SDS 

detection. This part of the study was also used to show the existence of a detection limit and 

confirm that the information encoded in individual color channels is useful for surfactant 

quantification. It is worth noting that we picked SDS as a proof-of-concept model surfactant to 
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determine whether CNNs can help improve the sensitivity of this LC-based system. In the 

sections below, we show that this general approach can also be applied to detect and quantify 

trace amounts of other aqueous amphiphiles.   

 
Maximizing Selectivity Through Hierarchical CNNs 

Differentiating various surfactants using LC micrographs: The results above demonstrate that 

CNNs can extract and decode hidden information from LC micrographs to quantify 

concentrations of aqueous SDS with improved sensitivity. We also investigated whether CNNs 

can uncover information that can be used to increase selectivity to this LC sensing system. Past 

studies report that as surfactants adsorb to LC-water interfaces, their hydrophobic regions 

penetrate into the LC surface and that variations in tail branching or tail number can lead to 

differences in optical transitions.52 Such structural differences can lead to different 

concentrations at which bipolar-to-radial transitions are triggered. However, to the human eye, 

micrographs of bipolar or radial LC droplets treated with single-tail surfactants generally look 

identical (or very similar) to those treated with two-tailed surfactants. Past studies have 

determined the hydrophilic head groups of surfactants to play less of a direct role in influencing 

LC alignment.53  However, the structure of surfactant head groups can still affect the assembly of 

surfactants at LC-water interfaces through charge interactions and hydrogen bonding, which 

could lead to changes in the configurations of LC droplets that are less visible or more difficult 

to interpret by the naked eye. 

In this part of the study, we performed experiments to determine whether ML can further 

extract hidden features that are relevant to surfactant chemical structure and thereby introduce 

new degrees of selectivity to this LC sensing platform. To evaluate both the influence of 

hydrophobic tail groups and hydrophilic head groups, we acquired micrographs of LC droplets 
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treated with aqueous solutions containing SDS, DTAB, and rhamnolipid (RL), an amphiphilic 

bacterial toxin that is also used as a commercial biosurfactant. The chemical structures of these  

 
Figure 4. Classification of multiple surfactants using hierarchical CNN. (A)	 Schematic of proposed hierarchical CNN 
architecture. The first level focuses on classifying droplet patterns that have unique visual or RD patterns using grayscale 
micrographs while the second level concentrates on further distinguishing the subtle differences between bipolar-like LC droplets 
and labeling their specific surfactant type and concentration. The details of the CNN architecture are summarized in Table 1. (B) 
The confusion matrix from cross-validation. The surfactant types are color-coded, and the surfactant concentrations are listed. (C) 
Examples of the saliency maps overlayed on top of the original LC micrograph for each class in level 1. 
 
 
amphiphiles are shown in Figure 4. For both SDS (anionic) and DTAB (cationic), the 

hydrophobic region contains a single 12-carbon chain. Rhamnolipid contains a mixture of 

molecules with either one or two fatty acid tails. As shown in Figure 2A, at low concentrations 

for each surfactant system, droplets remain in bipolar configurations. At high concentrations, all 

droplets show a cross pattern representing radial configurations. For the SDS-treated droplets, 
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the patterns remain colorful, while the DTAB-treated droplets appear to be monochromatic, 

which is more commonly observed for flattened radial droplets. For rhamnolipid, both 

monochromatic and colorful radial configurations were observed. Additionally, a surfactant 

mixture system containing an equimolar ratio of SDS and DTAB was prepared as a 

representation of a more complex surfactant system. The concentration of the surfactant mixture 

selected here (6 µM) is low enough not to trigger bipolar-to-radial transitions, and leads to LC 

configurations similar to those of droplets treated with 0.25 mM SDS. 

Other results discussed above demonstrate that color-rich images are important for 

differentiating micrographs that have similar optical responses, whereas grayscale images are 

sufficient to classify distinguishable defect patterns. Hence, to increase model interpretability 

and potentially lower computational burden without sacrificing accuracy, we used a hierarchical 

CNN approach. As illustrated in Figure 4A, grayscale images were submitted to the first level of 

the CNN to classify the images into five major droplet configurations, all of which have unique 

visual or RD patterns. At this level, all of the bipolar-like droplets were grouped into a single 

class. After that, a second-level CNN was trained using the colored LC micrographs to label each 

bipolar-like droplet with a specific surfactant type and concentration. In general, the LC 

micrographs were classified into 13 classes (Figure 2A), addressing both the sensitivity and 

selectivity of surfactant detection.  

The results of the hierarchical CNN approach are summarized in the confusion matrix 

shown in Figure 4B. The CNN in the first hierarchical level achieved a cross-validation accuracy 

of around 98.9%. This is not surprising based on the RD profiles of the LC micrographs. Despite 

the presence of some overlapping optical features across radial droplets treated with different 

surfactants, the RD profiles have already shown some distinctive peaks. We also created saliency 
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maps, a gradient-based calculation to highlight the key regions in an image used to make a 

classification, to decipher what information the CNN was capturing. Figure 4C shows a few 

examples of the original grayscale images with their corresponding saliency maps overlayed on 

top. The highlighted regions in the saliency map resemble the overall optical patterns of the 

original images, indicating that the first level of the CNN is classifying the images based on what 

a trained human eye would consider to be obvious optical features. For the second hierarchical 

level, the overall classification accuracy was around 77.4%. The categorical-wise prediction 

accuracy for 0.1 mM SDS and 0.25 µM DTAB were 88% and 77%, respectively. Despite 

showing no apparent reliable visible differences in the LC micrographs all at bipolar 

configurations, the prediction accuracy was relatively high. A closer examination of the 

confusion matrix revealed that low DTAB concentrations were more likely to be misclassified as 

water (19%) than low SDS concentrations (3%). This indicates that the trained CNN might be 

picking out hidden features that are not visually apparent, but are unique to DTAB adsorption. 

As mentioned above, for droplets treated with 0.25 mM SDS, an equimolar mixture of SDS and 

DTAB, or 5 µg/mL rhamnolipid, micrographs share a substantial number of common optical 

features. These droplets are within the transition spectrum between bipolar and pre-radial 

configurations and thus cover many complex patterns that either look alike or are difficult to 

distinguish reliably using visual inspection. Despite that, they were all classified here with 

relatively high accuracies; for 0.25 mM SDS, the SDS+DTAB mixture, and 5 µg/mL 

rhamnolipid, the F1 scores were 84%, 96%, and 93%, respectively.  

Understanding Hierarchical CNN Predictions Using Saliency Maps: To further 

understand the results discussed above, we statistically analyzed the saliency maps using RD 

profiles of the saliency maps themselves (rather than the LC micrographs, which was performed 
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to generate the results in Figure 2) as topological descriptors. Figure 5 shows the summarized 

RD profiles of the saliency maps for each class in the second level of the hierarchical CNN  

 
Figure 5. Examples of the saliency maps overlayed on top of the original LC micrograph for each class in level 2. We performed 
the same RD analysis on the saliency map (instead of the original micrographs) and visualized the summary statistics for all the 
samples in each class. Most of SDS treated droplets show an overall decreasing trend with the highest intensity point located 
around the origin of the RD profiles, suggesting that the model is mostly relying on information around the center of the droplets 
for classification. Most interestingly, we see a unique RD pattern in the green channel for cases where DTAB is present. Unlike 
SDS or RL, DTAB contains a positively charged head group, which might be the reason for this peak although the micrographs 
are visually similar.  
 

(referred to as level 2 and corresponding to visually indistinguishable droplets with low 

surfactant concentrations). As shown in Figure 5, most SDS-treated droplets showed an overall 

decreasing trend in the sum (grey) channel, with the highest intensity point located around the 

origin of the RD profiles. This suggests that the algorithm is mostly relying on information 
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around the center of the droplets to classify them. There are no characteristic peaks that can set 

different SDS concentrations apart, which is consistent with the relatively low accuracy for low 

concentrations of SDS. However, closer inspection of the individual color channels revealed that 

there are some differences in these three channels that facilitate SDS classification. For both 0.1 

mM and 0.25 mM SDS-treated droplets, we see a relatively smaller standard deviation, 

suggesting that the observed highlighted regions are more consistent across all the images as 

compared to other classes. The relatively low variations in information extracted from the 

original images might be the reason for their higher prediction accuracy.  

For droplets treated with only water (no surfactant), both the sum, the red, and the green 

channels have a much longer plateau as compared to other treatments. This indicates that the 

algorithm is using information collected from not only the center but also the near edge of the 

droplets to classify water. Since defect regions of the bipolar configurations are present around 

the near edge of the droplets, the presence or positions of the defects are potentially the 

distinctive feature the algorithm is relying on for classifying water.  

We also observed a unique peak in the green channel for the 0.25 µM DTAB condition. 

This peak was also present in the surfactant mixture condition, and so might be caused by some 

hidden but distinctive optical response resulting from adsorption of DTAB. Since both 

rhamnolipid and SDS are anionic surfactants and their RD profiles lack this peak, the positively 

charged head group of DTAB might be the reason for the difference in adsorption. We also 

observed a plateau in the red channel of the 0.25 µM DTAB condition; this potentially explains 

the tendency for this condition to be misclassified as water. Finally, we note that the blue channel 

of the surfactant mixture system also has a unique peak. This peak can also be found in some of 

the low concentrations of SDS, but it becomes much more prominent in the mixture. This could 
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be diagnostic of some unique optical features triggered by synergetic effects of the mixed 

surfactants. We did not see many distinctive patterns in the RD profiles for low concentrations of 

rhamnolipid, however we note that the highest intensity point in the red and the sum channel is 

no longer at the center, suggesting that the distinctive features for rhamnolipid are not at the 

center of the droplet. Overall, on the basis of the results above, we conclude that ML algorithms 

can be used in combination with this LC droplet array platform to distinguish the presence of 

different types of aqueous surfactants. 

 

Summary and Conclusions 

We have developed a surfactant sensing method using arrays of LC droplets prepared by 

microcontact printing; the surfactant-induced optical responses of LC droplets were captured by 

cross-polarized microscopy and analyzed by feature extraction with CNN-based architectures. 

This experimental system allows for consistent optical responses from uniformly sized LC 

droplets, and the two-level hierarchical CNN (where the first level classifies defect patterns using 

grayscale images and the second level classifies color patterns using RGB images) enables the 

classification of surfactant type and concentration with enhanced selectivity and sensitivity. 

Delegating different focuses of feature extraction into separate levels also helps model 

interpretation to obtain physical insights via statistical analysis of the saliency maps, such as RD 

profiles, which serve as a physically intuitive descriptor for LC micrographs. Overall, these 

findings demonstrate the potential of the proposed method for on-site and high-throughput 

sensing of surfactants. 

 The experimental, materials, and computational components of this study could be 

expanded in a number of ways to develop new array-based platforms for the rapid detection 
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and/or identification of many different classes of natural and synthetic amphiphiles with 

increased accuracy and sensitivity. This array-based approach could also lead to new insights 

useful for the design and iterative improvement of sensing platforms based on LC-in-water 

emulsions reported in past studies. The computational framework and analysis methods could 

also be extended to other image-based models. For instance, separating training tasks into 

multiple CNN levels and analyzing saliency maps with RD descriptors may be applied to similar 

LC systems to obtain meaningful insights. Moreover, the droplet detection algorithm could be 

directly applied to micrographs of LC-in-water emulsions to extract micrographs of individual 

LC droplets and bypass the need for complex object segmentation algorithms such as YOLO.27 

Future studies will also explore the use of different data representations, such as Euler 

characteristics54 (a topological descriptor as an alternative to RD) to decode optical responses of 

LC micrographs.   

 

Acknowledgments. Financial support for this work was provided, in part, by the NSF through 

grants provided to the Wisconsin-Puerto Rico Partnership for Research and Education in 

Materials [Wi(PR)2EM] at the University of Puerto Rico—Mayaguez and the University of 

Wisconsin—Madison (PREM; DMR-1827894), the BIGDATA grant IIE-1837812 to V. Z. and 

R. C. V., and the UW-Madison Materials Research Science and Engineering Center (MRSEC; 

DMR-1720415). The authors acknowledge the use of instrumentation supported by the NSF 

through the UW MRSEC (DMR-1720415). The authors gratefully acknowledge Oscar H. 

Piñeres-Quiñones (UPR-Mayagüez) for helpful discussions.  

 



35 
	

Supporting Information. All data and scripts needed to reproduce the results can be found at 

https://github.com/zavalab/ML/tree/master/LC_CNN_Micrograph. 

 

ORCID 

Fengrui Wang: 0000-0002-2054-2160 
Shiyi Qin: 0000-0002-2045-0995 
Claribel Acevedo-Vélez: 0000-0001-6297-7747 
Reid C. Van Lehn: 0000-0003-4885-6599 
Victor M. Zavala: 0000-0002-5744-7378 
David M. Lynn: 0000-0002-3140-8637 
 
 
References 
 

(1)  Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena: Fourth Edition; John 
Wiley and Sons, 2012. 

(2)  Myers, D. Surfactant Science and Technology: Third Edition; John Wiley and Sons, 2005. 

(3)  Gallou, F.; Isley, N. A.; Ganic, A.; Onken, U.; Parmentier, M. Surfactant Technology 
Applied Toward an Active Pharmaceutical Ingredient: More than a Simple Green 
Chemistry Advance. Green Chemistry 2015, 18, 14-19. 

(4)  Torchilin, V. P. Structure and Design of Polymeric Surfactant-Based Drug Delivery 
Systems. J. Control. Release 2001, 73, 137-172. 

(5)  Kubicek-Sutherland, J. Z.; Vu, D. M.; Mendez, H. M.; Jakhar, S.; Mukundan, H. Detection 
of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. Biosensors 2017, 7 (3), 25. 

(6)  Occhipinti, A.; Eyassu, F.; Rahman, T. J.; Rahman, P. K. S. M.; Angione, C. In silico 
Engineering of Pseudomonas Metabolism Reveals New Biomarkers for Increased 
Biosurfactant Production. PeerJ 2018, 6, e6046. 

(7)  Chiu, C.-F.; Tsai, H.-P.; Chen, Y.-C.; He, Y.-X.; Lin, K.-Y. A.; Yang, H. Self-Assembled 
Curved Macroporous Photonic Crystal-Based Surfactant Detectors. ACS Applied Materials 
& Interfaces 2017, 9 (31), 26333-26340. 

(8)  Smith, B. C.; Curran, C. A.; Brown, K. W.; Cabarrus, J. L.; Gown, J. B.; McIntyre, J. K.; 
Moreland, E. E.; Wong, V. L.; Grassley, J. M.; Grue, C. E. Toxicity of Four Surfactants to 
Juvenile Rainbow Trout: Implications for Use Over Water. Bull Environ Contam Toxicol 
2004, 72 (3), 647-654. 



36 
	

(9)  Arora, J.; Ranjan, A.; Chauhan, A.; Biswas, R.; Rajput, V. D.; Sushkova, S.; Mandzhieva, 
S.; Minkina, T.; Jindal, T. Surfactant Pollution, an Emerging Threat to Ecosystem: 
Approaches for Effective Bacterial Degradation. J Appl Microbiol 2022, 133 (3), 1229-
1244. 

(10)  Behrens, B.; Helmer, P. O.; Tiso, T.; Blank, L. M.; Hayen, H. Rhamnolipid Biosurfactant 
Analysis Using Online Turbulent Flow Chromatography-Liquid Chromatography-Tandem 
Mass Spectrometry. J Chromatogr A 2016, 1465, 90-97. 

(11)  Cohen, L.; Moreno, A.; Berna, J. L. Two Phase Titration of Anionic Surfactants - A New 
Approach. Tenside Surfact Det 1997, 34 (3), 183-185. 

(12)  Gasiorowska, M.; Wroblewska, E. K. Two-Phase Titration Method for Cationic Surface 
Active Agents Determination with Use of 5-(3-Bromo-4-hydroxy-5-methoxyphenyl)-7,7-
dimethyl-7H-indolo[1,2-a]quinolinium Perchlorate Dye. Tenside Surfact Det 2012, 49 (1), 
23-25. 

(13)  Sakač, N.; Jozanović, M.; Karnaš, M.; Sak-Bosnar, M. A New Sensor for Determination of 
Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact. 
Journal of Surfactants and Detergents 2017, 20 (4), 881-889. 

(14)  Jiang, S.; Noh, J.; Park, C.; Smith, A. D.; Abbott, N. L.; Zavala, V. M. Using Machine 
Learning and Liquid Crystal Droplets to Identify and Quantify Endotoxins from Different 
Bacterial Species. The Analyst 2021, 146 (4), 1224-1233. 

(15)  Su, W.; Ding, X. Methods of Endotoxin Detection. J Lab Autom 2015, 20 (4), 354-364. 

(16)  Chen, Y.-T.; Yang, J.-T. Detection of an Amphiphilic Biosample in a Paper Microchannel 
Based on Length. Biomedical Microdevices 2015, 17 (3), 52. 

(17)  Lin, I. H.; Miller, D. S.; Bertics, P. J.; Murphy, C. J.; de Pablo, J. J.; Abbott, N. L. 
Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets. Science 
2011, 332 (6035), 1297-1300. 

(18)  Carlton, R. J.; Hunter, J. T.; Miller, D. S.; Abbasi, R.; Mushenheim, P. C.; Tan, L. N.; 
Abbott, N. L. Chemical and Biological Sensing Using Liquid Crystals. Liq Cryst Rev 2013, 
1 (1), 29-51. 

(19)  Agarwal, H.; Nyffeler, K. E.; Manna, U.; Blackwell, H. E.; Lynn, D. M. Liquid Crystal-
Infused Porous Polymer Surfaces: A "Slippery" Soft Material Platform for the Naked-Eye 
Detection and Discrimination of Amphiphilic Species. ACS Appl Mater Interfaces 2021, 13 
(28), 33652-33663. 

(20)  Guo, X.; Manna, U.; Abbott, N. L.; Lynn, D. M. Covalent Immobilization of Caged Liquid 
Crystal Microdroplets on Surfaces. ACS Appl Mater Interfaces 2015, 7 (48), 26892-26903. 



37 
	

(21)  Manna, U.; Zayas-Gonzalez, Y. M.; Carlton, R. J.; Caruso, F.; Abbott, N. L.; Lynn, D. M. 
Liquid Crystal Chemical Sensors That Cells Can Wear. Angew Chem Int Ed Engl 2013, 52 
(52), 14011-14015. 

(22)  Ortiz, B. J.; Boursier, M. E.; Barrett, K. L.; Manson, D. E.; Amador-Noguez, D.; Abbott, 
N. L.; Blackwell, H. E.; Lynn, D. M. Liquid Crystal Emulsions That Intercept and Report 
on Bacterial Quorum Sensing. ACS Appl Mater Interfaces 2020, 12 (26), 29056-29065. 

(23)  Cao, Y.; Yu, H.; Abbott, N. L.; Zavala, V. M. Machine Learning Algorithms for Liquid 
Crystal-Based Sensors. ACS Sensors 2018, 3 (11), 2237-2245. 

(24)  Xu, Y.; Rather, A. M.; Song, S.; Fang, J. C.; Dupont, R. L.; Kara, U. I.; Chang, Y.; 
Paulson, J. A.; Qin, R. J.; Bao, X. P.; Wang, X. G. Ultrasensitive and Selective Detection 
of SARS-CoV-2 Using Thermotropic Liquid Crystals and Image-Based Machine Learning. 
Cell Rep Phys Sci 2020, 1 (12), 100276. 

(25)  Bao, N.; Jiang, S.; Smith, A.; Schauer, J. J.; Mavrikakis, M.; Van Lehn, R. C.; Zavala, V. 
M.; Abbott, N. L. Sensing Gas Mixtures by Analyzing the Spatiotemporal Optical 
Responses of Liquid Crystals Using 3D Convolutional Neural Networks. ACS Sens 2022, 7 
(9), 2545-2555. 

(26)  Smith, A. D.; Abbott, N.; Zavala, V. M. Convolutional Network Analysis of Optical 
Micrographs for Liquid Crystal Sensors. The Journal of Physical Chemistry C 2020, 124 
(28), 15152-15161. 

(27)  Frazão, J.; Palma, S. I. C. J.; Costa, H. M. A.; Alves, C.; Roque, A. C. A.; Silveira, M. 
Optical Gas Sensing with Liquid Crystal Droplets and Convolutional Neural Networks. 
Sensors 2021, 21 (8), 2854. 

(28)  Broderick, A. H.; Azarin, S. M.; Buck, M. E.; Palecek, S. P.; Lynn, D. M. Fabrication and 
Selective Functionalization of Amine-Reactive Polymer Multilayers on Topographically 
Patterned Microwell Cell Culture Arryas. Biomacromolecules 2011, 12 (6), 1998-2007. 

(29)  Canny, J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 1986, PAMI-8 (6), 679-698. 

(30)  Suzuki, S. Topological Structural Analysis of Digitized Binary Images by Border 
Following. Computer vision, graphics, and image processing 1985, 30 (1), 32-46. 

(31)  Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. 2018. 

(32)  Tkalcic, M.; Tasic, J. F. Colour Spaces: Perceptual, Historical and Applicational 
Background. In The IEEE Region 8 EUROCON 2003. Computer as a Tool., IEEE. DOI: 
10.1109/eurcon.2003.1248032. 

(33)  Levit, S. L.; Nguyen, J.; Hattrup, N. P.; Rabatin, B. E.; Stwodah, R.; Vasey, C. L.; Zeevi, 
M. P.; Gillard, M.; D’Angelo, P. A.; Swana, K. W.; Tang, C. Color Space Transformation-



38 
	

Based Algorithm for Evaluation of Thermochromic Behavior of Cholesteric Liquid 
Crystals Using Polarized Light Microscopy. ACS Omega 2020, 5 (13), 7149-7157. 

(34)  Nair, V.; Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. In 
Icml, 2010. 

(35) Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How Does Batch Normalization Help 
Optimization? In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 
2018; https://arxiv.org/abs/1805.11604. 

(36)  Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT Press, Cambridge, MA, 
2016; pp. 339-344. 

(37)  Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; 
Gimelshein, N.; Antiga, L. PyTorch: An Imperative Style, High-Performance Deep 
Learning Library. Advances in neural information processing systems 2019, 32, 8024-
8035. 

(38)  Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In 
International conference on machine learning, 2017; PMLR: pp 3319-3328. 

(39)  Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for 
Saliency Maps. Advances in Neural Information Processing Systems 2018, 2018-
December, 9505-9515. 

(40)  Kokhlikyan, N.; Miglani, V.; Martin, M.; Wang, E.; Alsallakh, B.; Reynolds, J.; Melnikov, 
A.; Kliushkina, N.; Araya, C.; Yan, S. Captum: A Unified and Generic Model 
Interpretability Library for PyTorch. arXiv preprint arXiv:2009.07896 2020. 

(41)  Gupta, J. K.; Sivakumar, S.; Caruso, F.; Abbott, N. L. Size-Dependent Ordering of Liquid 
Crystals Observed in Polymeric Capsules with Micrometer and Smaller Diameters. Angew 
Chem Int Ed Engl 2009, 48 (9), 1652-1655. 

(42)  Gupta, J. K.; Zimmerman, J. S.; de Pablo, J. J.; Caruso, F.; Abbott, N. L. Characterization 
of Adsorbate-Induced Ordering Transitions of Liquid Crystals Within Monodisperse 
Droplets. Langmuir 2009, 25 (16), 9016-9024. 

(43)  Miller, D. S.; Abbott, N. L. Influence of Droplet Size, pH and Ionic Strength on Endotoxin-
Triggered Ordering Transitions in Liquid Crystalline Droplets. Soft Matter 2013, 9 (2), 
374-382. 

(44)  Kim, J.; Khan, M.; Park, S. Y. Glucose Sensor Using Liquid-Crystal Droplets Made by 
Microfluidics. ACS Appl Mater Interfaces 2013, 5 (24), 13135-13139. 

(45)  Kolacz, J.; Wei, Q. H. Self-Localized Liquid Crystal Micro-Droplet Arrays on Chemically 
Patterned Surfaces. Crystals 2022, 12 (1), 13. 



39 
	

(46)  Alino, V. J.; Tay, K. X.; Khan, S. A.; Yang, K. L. Inkjet Printing and Release of 
Monodisperse Liquid Crystal Droplets From Solid Surfaces. Langmuir 2012, 28 (41), 
14540-14546. 

(47)  Lockwood, N. A.; Gupta, J. K.; Abbott, N. L. Self-Assembly of Amphiphiles, Polymers 
and Proteins at Interfaces Between Thermotropic Liquid Crystals and Aqueous Phases. 
Surface Science Reports 2008, 63 (6), 255-293. 

(48)  Pineres-Quinones, O. H.; Lynn, D. M.; Acevedo-Velez, C. Environmentally Responsive 
Emulsions of Thermotropic Liquid Crystals with Exceptional Long-Term Stability and 
Enhanced Sensitivity to Aqueous Amphiphiles. Langmuir 2022, 38 (3), 957-967. 

(49)  Ramou, E.; Rebordão, G.; Palma, S. I. C. J.; Roque, A. C. A. Stable and Oriented Liquid 
Crystal Droplets Stabilized by Imidazolium Ionic Liquids. Molecules 2021, 26 (19), 6044. 

(50)  Carlton, R. J.; Zayas-Gonzalez, Y. M.; Manna, U.; Lynn, D. M.; Abbott, N. L. Surfactant-
Induced Ordering and Wetting Transitions of Droplets of Thermotropic Liquid Crystals 
"Caged" Inside Partially Filled Polymeric Capsules. Langmuir 2014, 30 (49), 14944-14953. 

(51)  Alino, V. J.; Sim, P. H.; Choy, W. T.; Fraser, A.; Yang, K. L. Detecting Proteins in 
Microfluidic Channels Decorated with Liquid Crystal Sensing Dots. Langmuir 2012, 28 
(50), 17571-17577. 

(52)  Lockwood, N. A.; de Pablo, J. J.; Abbott, N. L. Influence of Surfactant Tail Branching and 
Organization on the Orientation of Liquid Crystals at Aqueous−Liquid Crystal Interfaces. 
Langmuir 2005, 21 (15), 6805-6814. 

(53)  Brake, J. M.; Mezera, A. D.; Abbott, N. L. Effect of Surfactant Structure on the Orientation 
of Liquid Crystals at Aqueous−Liquid Crystal Interfaces. Langmuir 2003, 19 (16), 6436-
6442. 

(54)  Smith, A.; Zavala, V. M. The Euler Characteristic: A General Topological Descriptor for 
Complex Data. Computers & Chemical Engineering 2021, 154, 107463. 

  

  



40 
	

For Table of Contents Use Only: 
 
  
 
 


