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Abstract— Detection of the user’s walking is a critical part of 
exoskeleton technology for the full automation of smooth and 
seamless assistance during movement transitions. Researchers 
have taken several approaches in developing a walk detection 
system by using different kinds of sensors; however, only a few 
solutions currently exist which can detect these transitions using 
only the sensors embedded on a robotic hip exoskeleton (i.e., hip 
encoders and a trunk IMU), which is a critical consideration 
for implementing these systems in-the-loop of a hip exoskeleton 
controller. As a solution, we explored and developed two walk 
detection models that implemented a finite state machine as the 
models switched between walking and standing states using two 
transition conditions: stand-to-walk and walk-to-stand. One of 
our models dynamically detected the user’s gait cycle using two 
hip encoders and an IMU; the other model only used the two hip 
encoders. Our models were developed using a publicly available 
dataset and were validated online using a wearable sensor 
suite that contains sensors commonly embedded on robotic 
hip exoskeletons. The two models were then compared with 
a foot contact estimation method, which served as a baseline 
for evaluating our models. The results of our online experiments 
validated the performance of our models, resulting in 274 
ms and 507 ms delay time when using the HIP+IMU and 
HIP ONLY model, respectively. Therefore, the walk detection 
models established in our study achieve reliable performance 
under multiple locomotive contexts without the need for manual 
tuning or sensors additional to those commonly implemented 
on robotic hip exoskeletons. 

Index Terms— Robotic Hip Exoskeleton, Walk Detection, 
Locomotion, Wearable Sensor 

 
I. INTRODUCTION 

Previously, researchers have taken different approaches in 

developing a walk detection system for lower-limb assistive 

devices. In our daily lives, we commonly walk over short 

bouts with frequent short rests [1]. A walk detection system 

could easily automate the switch of assistance of these 

assistive devices in our daily lives and even help provide 

a smooth transition of assistance between standing and 

walking. One common method is using bio-electrical sensors, 

such as electromyography (EMG) signals [2]–[8]. While this 

approach is efficient in detecting the user’s movement prior 

to any visible kinematic changes, bio-electrical signals are 

often unreliable and hard to calibrate compared to signals 
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from onboard mechanical sensors [9]. To overcome the un- 

reliability of bio-electrical signals, other researchers installed 

Force Sensing Resistors (FSRs) into the shoe to directly 

detect a gait event such as toe-off or heel-strike [10]–[13]. 

This approach, however, is only ideal for devices that assist 

distal joints where the sensor could easily be located (e.g., 

under the user’s foot), and FSRs tend to wear out easily from 

multiple usages. 

An Inertial Measurement Unit (IMU) is another mechan- 

ical sensor that has been widely used for walk detection. 

Atalante (Wandercraft, France), a self-balancing lower-limb 

exoskeleton, employed a machine learning-based user intent 

detector using an upper-body IMU [14]. Brescianini et al. 

used an IMU sensor and FSR mounted hand crutch for 

motion detection when using an exoskeleton [15]. Ding et 

al. developed a portable system using an IMU placed on the 

user’s shoe for detecting different gait events [16]. While 

all these methods are promising, these methods are non- 

ideal when integrating into a hip exoskeleton system as 

the sensors are often required to be positioned at a distal 

location. Additionally, the majority of these methods require 

additional sensors to be utilized with manual tuning proce- 

dures, which greatly hinders deployment to a commercially 

available system. Several researches on hip exoskeletons 

have shown that hip exoskeletons are capable of providing 

meaningful assistance to able-bodied and clinical populations 

by saving their metabolic cost or augmenting their strength 

[17]–[21]. However, there hasn’t been enough research on a 

walk detection system for hip exoskeletons that could provide 

reliable and robust performance. 

For the reliable performance of a walk detection system, 

it is critical to utilize native sensors on the device. For hip 

exoskeletons, such as the Gait Enhancing and Motivating 

System (GEMS) developed by Samsung Electronics [22]– 

[24], a conventional sensor suite includes two joint encoders 

for the hip joint position and velocity bilaterally and a trunk 

IMU for the acceleration and gyroscope data. Previously for 

these types of exoskeletons (e.g., GEMS), a walk detector 

algorithm was developed by estimating the user’s foot contact 

using the trunk IMU with a predetermined threshold [22]. 

While this simple method shows decent performance for 

detecting the user’s intent, its robustness in other locomotor 

contexts, such as varying acceleration, is questionable. Fur- 

thermore, setting a static threshold for detecting the user’s 

movement may only be applicable in a laboratory setting 

where the user’s limb motion is highly constrained before 

walking. 

The main objective of this study was to develop and 

validate a novel, real-time user-independent walk detector 
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that is robust in various acceleration and deceleration settings 

and accommodates natural user postures during standing. 

To quantitatively evaluate the effect of different sensors on 

the model, two different detectors were designed using: 1) 

two hip encoders (referred to as HIP ONLY) and 2) two 

hip encoders and an IMU (referred to as HIP+IMU). The 

performance of these detectors were compared with existing 

method such as foot contact estimation method (referred to 

as IMU ONLY) [22]. The central hypothesis for our study is 

that the HIP+IMU model will further improve the overall 

performance of the walk detector because using multiple 

sensors could make the detector less vulnerable to outlying 

situations. The key contribution of our study is that the 

algorithm is easily deployable to other wearable systems 

without the need for manual tuning and requires a minimal 

number of sensors to robustly detect the user’s movement in 

various locomotion contexts. 

II. METHODS 

A. Offline Model Development 

Our models were initially developed offline, using an 

open-source dataset [25], and their performance were val- 

idated on a wide range of subjects. The dataset included 

22 able-bodied subjects ambulating across five different 

locomotion modes (level-ground, ramp ascent/descent, and 

stair ascent/descent). Each model implemented a finite state 

machine that switched between walking and standing states 

 

 

Fig. 1. (A) Three time series plots of HIP+IMU model during stand-to- 
walk transition (B) A time series plot of HIP+IMU model during walk-to- 
stand transition. The purple dashed vertical line (1) represents the maximum 
hip angle, where the trunk acceleration along the Y axis (vertical axis) is 
already below the threshold. The green dashed vertical line (2) represents hip 
crossing, where the angular velocity of the left and right hip have opposite 
signs. The blue dashed vertical line (3) represents the transition to standing 
state as the angular velocity drops below the threshold. 

 
Fig. 2.  3 dimensional plot of hip angle difference between left and 
right hip joint during heel-strike. The plot illustrates a clear boundary 
between standing state and walking state at 15 degrees, which became the 
predetermined threshold for the HIP ONLY [22]. 

 

 

using 2 transition conditions: stand-to-walk and walk-to- 

stand. 

After the initial offline development, we designed two 

novel walk detector models: HIP+IMU model and HIP 

ONLY model. The stand-to-walk transition condition for 

HIP+IMU model used two hip encoders, one on each hip 

joint, and a trunk-mounted IMU. This transition condition 

focused on detecting the user’s initial heel-strike and the 

following hip joint crossing (Fig. 1). The first heel-strike 

was detected by the conjunction of a maximum in hip 

angle difference and a corresponding vertical acceleration 

from the trunk IMU below a predefined threshold. The 

HIP+IMU model went through the transition if the following 

hip crossing was detected within 800 ms after the first heal- 

strike. The hip crossing will be identified by minimum hip 

angle difference that is around zero along with the opposite 

signs for left and right hip angular velocity. 

The stand-to-walk transition condition for the HIP ONLY 

model used two hip encoders. The transition condition is 

similar to the HIP+IMU model. Instead, the model detected 

the heel-strike if a maximum hip angle difference is above 15 

degrees without using pelvis acceleration data (Fig. 2). The 

walk-to-stand transition condition was identical for both the 

HIP+IMU model and HIP ONLY model. Instead of detecting 

the angle between hip joints, the walk-to-stand transition 

condition only used hip angular velocity data. This was due 

to the nature of standing state being in various postures, 

unlike the walking state which has its own unique motion. 

The angular velocity data was filtered using a moving aver- 

age filter. The window size of a moving average filter was 

determined to be 250 ms which provided a proper balance 

between a delay time and an amplitude of oscillation (Fig. 

3). As soon as the average angular velocity between the two 

hip joints crosses the threshold, our model detected the walk- 
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Fig. 3. Time series plot of hip angular velocity filtered with different 
window sizes of moving average filter. The red line, with a window size of 
100 ms, consistently crosses the threshold during steady-state walking. The 
blue line, with a window size of 400ms, has the largest delay time which 
could negatively affect the overall performance. 

 

 
to-stand transition. 

B. Real-time Wearable Sensor Suite 

Our real-time wearable sensor suite was developed to 

validate our pre-designed models in various accelera- 

tion/deceleration settings in real-time (Fig. 4). Additionally, 

the sensor suite was used to verify whether several param- 

eters from the offline model development were applicable 

during online validation. The sensor suite consisted of two 

electro-goniometers (PASPORT Goniometer Probe, PASCO 

Scientific) and an IMU (MPU 9250, InvenSense) mounted on 

the trunk. The two goniometers were mounted on each hip 

joint with hip and waist straps, and the IMU was integrated 

into our custom-made PCB that is mounted in an electronic 

backpack. Each LED on the PCB lit up when walking was 

detected for each walk detector model. The switch was used 

for simple static calibration to zero the data during the 

standing state. 

C. Online Human Subject Validation 

We recruited four able-bodied subjects with an average 

age of 23.25 ± 4.27 years, a height of 174.31 ± 6.25 

cm, and a body mass of 66.02 ± 14.05 kg to online 

validate our model in real-time. The study was approved 

by the Georgia Institute of Technology Institutional Review 

Board and informed written consent was obtained for all 

Fig. 4. (A) Real-time wearable sensor suite for online human subject 
validation (B) The custom-made main circuit board houses the connector 
for two electro-goniometers and the trunk mounted IMU. 

 

 
subjects. Subjects were asked to wear the sensor suite and 

walk on a treadmill (Bertec, Columbus) in four different 

acceleration/deceleration settings (0.2, 0.4, 0.6, 0.8 m/s ) 
and five incline settings (level-ground, ramp ascent/descent 

at 5◦ and 10◦). The sensor suite was synchronized with the 

treadmill using TCP/IP communication. There were three 

trials for each acceleration/deceleration and incline/decline 

setting. The speed of the treadmill was accelerated up to 1.2 

m/s from 0 m/s, maintained 1.2 m/s for five seconds, and 

then decelerated back to 0 m/s. For every trial, the subject’s 

motion was not constrained before walking. As the subject 

walked on the treadmill, the mean and standard deviation of 

the delay time for our two walk detector models and the foot 

contact estimation method (as the baseline) using the trunk 

IMU (referred to as IMU ONLY) [22] were validated and 

compared. The delay time of our two models for the stand- 

to-walk transition was measured from the first hip crossing, 

which took place after the first heel-strike detection (Fig. 5), 

to the actual time the models detected the transition. The 

delay time of IMU ONLY model was measured from the 

time the treadmill started running to the actual time when the 

transition was detected in the model. The delay time of all 

three models for the walk-to-stand transition was measured 

from the actual time the models detected the transition to the 

time when the speed of the treadmill returned back to zero 

after deceleration. 

 

III. RESULTS 

Overall delay time for the stand-to-walk transition of 

HIP+IMU model remained highly consistent across all the 

different settings with an average delay time of 274 ms. The 

stand-to-walk transition of HIP ONLY model also remained 

consistent with a similar average delay time except for a few 

settings. For instance, the mean delay time for trials with 0.2 

m/s of acceleration at 10◦ decline was 2015 ms. For IMU 
ONLY model, its average delay time was 1115.7 ms. Also, its 

delay time had tendency to increase with slower acceleration 

and higher incline settings. Unlike HIP+IMU model and HIP 

ONLY model, the delay time of IMU ONLY model for the 

stand-to-walk transition was much less consistent, leading to 

an average standard deviation of around 440 ms for each 

setting. 
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Fig. 5. (A) Surface plot showing the delay time for stand-to-walk transition 
(B) Surface plot showing the delay time for walk-to-stand transitions with 
respect to different acceleration/deceleration and incline/decline settings. 
Black vertical lines on the surface along the z-axis show the value of 
standard deviations for each setting. A negative slope means that the subject 
went through decline trials corresponding to that angle. 

 

 
During the walk-to-stand transition, HIP+IMU model and 

HIP ONLY model had an average delay time of 498.7 ms, 

which was a higher delay time than their delay time for the 

stand-to-walk transition. For IMU ONLY model, compared 

to its delay time for stand-to-walk transition, it was notable 

that the average delay time was 313.3 ms. 

For HIP+IMU model and HIP ONLY model, the false 

positive rate was zero during the steady-state. IMU ONLY 

model also had almost zero false positive rate (0.26%) 

during steady-state. All the methods accurately detected the 

walking state during steady-state walking at 1.2 m/s without 

unintentionally going through the walk-to-stand transition. 

IV. DISCUSSION 

The key contribution of our study is that the algorithm is 

easily deployable to other wearable systems without a need 

for manual tuning and requires a small number of sensors 

to robustly detect the user’s movement for standing and 

walking. Overall, our models were able to detect walking 

during steady-state with an accuracy of 100%. Furthermore, 

our models proved that using hip encoders for detecting 

stand-to-walk transition is highly recommended. Not only did 

our two models outperform IMU ONLY model with a shorter 

delay time, but they also had better consistency overall 

in acceleration/deceleration and incline/decline settings. In 

comparing HIP+IMU model and HIP ONLY model, both 

models had similar performance in most of the settings. 

This similarity might potentially make HIP ONLY model 

a preferable option as it utilized fewer numbers of sensors. 

Fig. 6. The time series plot of HIP ONLY model during one of 0.2 m/s2 

deceleration and 10◦ decline trials. The first three maximum hip angles did 
not cross the threshold, causing a much longer delay time for this method 

for 0.2 m/s2 deceleration and 10◦ decline. 

 

 
However, some trials with 0.2 and 0.4 m/s , and 10° decline 
settings revealed some drawbacks of setting a simple angle 

threshold for stand-to-walk detection. During ramp descent 

walking, subjects tended to show less peak hip angle, making 

it harder to cross our predetermined threshold (Fig. 6). 

In this case, lowering the threshold could be a possible 

solution. However, lowering the angle threshold would more 

likely cause false peak detection. With a lower threshold, 

subjects would much more likely to stand with a hip angle 

that is already larger than the threshold, causing our model 

to detect stand-to-walk transition even when the subject is 

simply standing. HIP+IMU model would prevent the above 

problems because the IMU threshold for this model won’t 

be triggered when the subject is simply in standing state. 

In other words, HIP+IMU model as their data would more 

accurately detect heel-strike using maximum hip angle data 

along with trunk vertical acceleration data. 

For walk-to-stand transition, it should be mentioned that, 

for trials with higher deceleration, subjects are more likely 

to take one more step after the treadmill stopped. Since the 

delay time was measured with respect to the time when 

the treadmill stopped, this extra step caused a much higher 

delay time for trials with higher deceleration settings. Also, 

the performance of our models during lower deceleration 

is worth noting. The average delay time for trials with 0.2 

m/s deceleration at the level ground was only 273 ms. This 
brings upon the potential for its outstanding performance 

even for people with limited mobility like stroke patients, 

whom typically walk at a slower pace. For IMU ONLY 

model, the average delay time for the same setting was - 

461 ms. While a lower value of delay time generally leads 

to better performance, detection of walk-to-stand transition 

much before the actual transition might cause the device to 

stop its assistance in real-world scenarios regardless of the 

user’s intent to stop walking. 

One limitation of the study is that the delay time for 
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our models (HIP+IMU and HIP ONLY) and foot contact 

estimation method (IMU ONLY) had different starting points 

for stand-to-walk transition. Despite the seemingly higher 

delay time for IMU ONLY model across all settings, there 

were some trials in which IMU ONLY model had a shorter 

delay in real-time. Another limitation is that our model 

performed poorly during walk-to-stand transition for 0.2 

m/s deceleration and 10° decline trials with an average 
delay time of -353 ms. This limitation brings upon our future 

goal to integrate hip encoder and IMU in our model for 

walk-to-stand transitions. Also, our model should be tested 

on more subjects among various ranges of heights, weights, 

and ages for more accurate validation. The last limitation 

that should be noted is that the models were only tested on 

a single sensor suite, not an actuated device. This brings upon 

a possibility that our model could perform differently on a 

robotic hip exoskeleton where sensor signals are affected by 

actuation. 

V. CONCLUSION 

Our model based on a finite state machine proved that 

integrating hip encoders with an IMU effectively detects 

stand-to-walk and walk-to-stand transitions. Also, our model 

showed promising performance in being easily deployable 

to other wearable systems without a need for manual tuning 

and in requiring a menial number of sensors to robustly 

detect the user’s movement in various locomotion contexts. 

Our results reveal that our model developed exoskeleton 

technology into more realistic settings where the users have 

much robust detection of walking in various settings and have 

fewer constraints in movement before walking. Future goals 

for this study include integrating our model with a robotic 

hip exoskeleton to test the performance of our models in 

the device and possibly applying this model for people with 

limited mobility. 
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