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Real-Time Walk Detection for Robotic Hip Exoskeleton Applications

Hang Man Cho', Inseung Kang'?, Dongho Park'?, Dean D. Molinaro"3, and Aaron J. Young'?

Abstract— Detection of the user’s walking is a critical part of
exoskeleton technology for the full automation of smooth and
seamless assistance during movement transitions. Researchers
have taken several approaches in developing a walk detection
system by using different kinds of sensors; however, only a few
solutions currently exist which can detect these transitions using
only the sensors embedded on a robotic hip exoskeleton (i.e., hip
encoders and a trunk IMU), which is a critical consideration
for implementing these systems in-the-loop of a hip exoskeleton
controller. As a solution, we explored and developed two walk
detection models that implemented a finite state machine as the
models switched between walking and standing states using two
transition conditions: stand-to-walk and walk-to-stand. One of
our models dynamically detected the user’s gait cycle using two
hip encoders and an IMU; the other model only used the two hip
encoders. Our models were developed using a publicly available
dataset and were validated online using a wearable sensor
suite that contains sensors commonly embedded on robotic
hip exoskeletons. The two models were then compared with
a foot contact estimation method, which served as a baseline
for evaluating our models. The results of our online experiments
validated the performance of our models, resulting in 274
ms and 507 ms delay time when using the HIP+IMU and
HIP ONLY model, respectively. Therefore, the walk detection
models established in our study achieve reliable performance
under multiple locomotive contexts without the need for manual
tuning or sensors additional to those commonly implemented
on robotic hip exoskeletons.

Index Terms— Robotic Hip Exoskeleton, Walk Detection,
Locomotion, Wearable Sensor

1. INTRODUCTION

Previously, researchers have taken different approaches in
developing a walk detection system for lower-limb assistive
devices. In our daily lives, we commonly walk over short
bouts with frequent short rests [1]. A walk detection system
could easily automate the switch of assistance of these
assistive devices in our daily lives and even help provide
a smooth transition of assistance between standing and
walking. One common method is using bio-electrical sensors,
such as electromyography (EMG) signals [2]-[8]. While this
approach is efficient in detecting the user’s movement prior
to any visible kinematic changes, bio-electrical signals are
often unreliable and hard to calibrate compared to signals
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from onboard mechanical sensors [9]. To overcome the un-
reliability of bio-electrical signals, other researchers installed
Force Sensing Resistors (FSRs) into the shoe to directly
detect a gait event such as toe-off or heel-strike [10]-[13].
This approach, however, is only ideal for devices that assist
distal joints where the sensor could easily be located (e.g.,
under the user’s foot), and FSRs tend to wear out easily from
multiple usages.

An Inertial Measurement Unit (IMU) is another mechan-
ical sensor that has been widely used for walk detection.
Atalante (Wandercraft, France), a self-balancing lower-limb
exoskeleton, employed a machine learning-based user intent
detector using an upper-body IMU [14]. Brescianini et al.
used an IMU sensor and FSR mounted hand crutch for
motion detection when using an exoskeleton [15]. Ding et
al. developed a portable system using an IMU placed on the
user’s shoe for detecting different gait events [16]. While
all these methods are promising, these methods are non-
ideal when integrating into a hip exoskeleton system as
the sensors are often required to be positioned at a distal
location. Additionally, the majority of these methods require
additional sensors to be utilized with manual tuning proce-
dures, which greatly hinders deployment to a commercially
available system. Several researches on hip exoskeletons
have shown that hip exoskeletons are capable of providing
meaningful assistance to able-bodied and clinical populations
by saving their metabolic cost or augmenting their strength
[17]-[21]. However, there hasn’t been enough research on a
walk detection system for hip exoskeletons that could provide
reliable and robust performance.

For the reliable performance of a walk detection system,
it is critical to utilize native sensors on the device. For hip
exoskeletons, such as the Gait Enhancing and Motivating
System (GEMS) developed by Samsung Electronics [22]—
[24], a conventional sensor suite includes two joint encoders
for the hip joint position and velocity bilaterally and a trunk
IMU for the acceleration and gyroscope data. Previously for
these types of exoskeletons (e.g., GEMS), a walk detector
algorithm was developed by estimating the user’s foot contact
using the trunk IMU with a predetermined threshold [22].
While this simple method shows decent performance for
detecting the user’s intent, its robustness in other locomotor
contexts, such as varying acceleration, is questionable. Fur-
thermore, setting a static threshold for detecting the user’s
movement may only be applicable in a laboratory setting
where the user’s limb motion is highly constrained before
walking.

The main objective of this study was to develop and
validate a novel, real-time user-independent walk detector
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that is robust in various acceleration and deceleration settings
and accommodates natural user postures during standing.
To quantitatively evaluate the effect of different sensors on
the model, two different detectors were designed using: 1)
two hip encoders (referred to as HIP ONLY) and 2) two
hip encoders and an IMU (referred to as HIP+IMU). The
performance of these detectors were compared with existing
method such as foot contact estimation method (referred to
as IMU ONLY) [22]. The central hypothesis for our study is
that the HIP+IMU model will further improve the overall
performance of the walk detector because using multiple
sensors could make the detector less vulnerable to outlying
situations. The key contribution of our study is that the
algorithm is easily deployable to other wearable systems
without the need for manual tuning and requires a minimal
number of sensors to robustly detect the user’s movement in
various locomotion contexts.

II. METHODS
A. Offline Model Development

Our models were initially developed offline, using an
open-source dataset [25], and their performance were val-
idated on a wide range of subjects. The dataset included
22 able-bodied subjects ambulating across five different
locomotion modes (level-ground, ramp ascent/descent, and
stair ascent/descent). Each model implemented a finite state
machine that switched between walking and standing states
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Fig. 1. (A) Three time series plots of HIP+IMU model during stand-to-
walk transition (B) A time series plot of HIPA-IMU model during walk-to-
stand transition. The purple dashed vertical line (1) represents the maximum
hip angle, where the trunk acceleration along the Y axis (vertical axis) is
already below the threshold. The green dashed vertical line (2) represents hip
crossing, where the angular velocity of the left and right hip have opposite
signs. The blue dashed vertical line (3) represents the transition to standing
state as the angular velocity drops below the threshold.
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Fig. 2. 3 dimensional plot of hip angle difference between left and

right hip joint during heel-strike. The plot illustrates a clear boundary
between standing state and walking state at 15 degrees, which became the
predetermined threshold for the HIP ONLY [22].

using 2 transition conditions: stand-to-walk and walk-to-
stand.

After the initial offline development, we designed two
novel walk detector models: HIP+IMU model and HIP
ONLY model. The stand-to-walk transition condition for
HIP+IMU model used two hip encoders, one on each hip
joint, and a trunk-mounted IMU. This transition condition
focused on detecting the user’s initial heel-strike and the
following hip joint crossing (Fig. 1). The first heel-strike
was detected by the conjunction of a maximum in hip
angle difference and a corresponding vertical acceleration
from the trunk IMU below a predefined threshold. The
HIP+IMU model went through the transition if the following
hip crossing was detected within 800 ms after the first heal-
strike. The hip crossing will be identified by minimum hip
angle difference that is around zero along with the opposite
signs for left and right hip angular velocity.

The stand-to-walk transition condition for the HIP ONLY
model used two hip encoders. The transition condition is
similar to the HIP+IMU model. Instead, the model detected
the heel-strike if a maximum hip angle difference is above 15
degrees without using pelvis acceleration data (Fig. 2). The
walk-to-stand transition condition was identical for both the
HIP+IMU model and HIP ONLY model. Instead of detecting
the angle between hip joints, the walk-to-stand transition
condition only used hip angular velocity data. This was due
to the nature of standing state being in various postures,
unlike the walking state which has its own unique motion.
The angular velocity data was filtered using a moving aver-
age filter. The window size of a moving average filter was
determined to be 250 ms which provided a proper balance
between a delay time and an amplitude of oscillation (Fig.
3). As soon as the average angular velocity between the two
hip joints crosses the threshold, our model detected the walk-
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Fig. 3. Time series plot of hip angular velocity filtered with different
window sizes of moving average filter. The red line, with a window size of
100 ms, consistently crosses the threshold during steady-state walking. The
blue line, with a window size of 400ms, has the largest delay time which
could negatively affect the overall performance.

to-stand transition.

B. Real-time Wearable Sensor Suite

Our real-time wearable sensor suite was developed to
validate our pre-designed models in various accelera-
tion/deceleration settings in real-time (Fig. 4). Additionally,
the sensor suite was used to verify whether several param-
eters from the offline model development were applicable
during online validation. The sensor suite consisted of two
electro-goniometers (PASPORT Goniometer Probe, PASCO
Scientific) and an IMU (MPU 9250, InvenSense) mounted on
the trunk. The two goniometers were mounted on each hip
joint with hip and waist straps, and the IMU was integrated
into our custom-made PCB that is mounted in an electronic
backpack. Each LED on the PCB lit up when walking was
detected for each walk detector model. The switch was used
for simple static calibration to zero the data during the
standing state.

C. Online Human Subject Validation

We recruited four able-bodied subjects with an average
age of 23.25 £ 4.27 years, a height of 174.31 £ 6.25
cm, and a body mass of 66.02 * 14.05 kg to online
validate our model in real-time. The study was approved
by the Georgia Institute of Technology Institutional Review
Board and informed written consent was obtained for all
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Fig. 4. (A) Real-time wearable sensor suite for online human subject
validation (B) The custom-made main circuit board houses the connector
for two electro-goniometers and the trunk mounted IMU.

subjects. Subjects were asked to wear the sensor suite and
walk on a treadmill (Bertec, Columbus) in four different
acceleration/deceleration settings (0.2, 0.4, 0.6, 0.8 m/s?)
and five incline settings (level-ground, ramp ascent/descent
at 5° and 10°). The sensor suite was synchronized with the
treadmill using TCP/IP communication. There were three
trials for each acceleration/deceleration and incline/decline
setting. The speed of the treadmill was accelerated up to 1.2
my/s from 0 m/s, maintained 1.2 m/s for five seconds, and
then decelerated back to 0 m/s. For every trial, the subject’s
motion was not constrained before walking. As the subject
walked on the treadmill, the mean and standard deviation of
the delay time for our two walk detector models and the foot
contact estimation method (as the baseline) using the trunk
IMU (referred to as IMU ONLY) [22] were validated and
compared. The delay time of our two models for the stand-
to-walk transition was measured from the first hip crossing,
which took place after the first heel-strike detection (Fig. 5),
to the actual time the models detected the transition. The
delay time of IMU ONLY model was measured from the
time the treadmill started running to the actual time when the
transition was detected in the model. The delay time of all
three models for the walk-to-stand transition was measured
from the actual time the models detected the transition to the
time when the speed of the treadmill returned back to zero
after deceleration.

III. RESULTS

Overall delay time for the stand-to-walk transition of
HIP+IMU model remained highly consistent across all the
different settings with an average delay time of 274 ms. The
stand-to-walk transition of HIP ONLY model also remained
consistent with a similar average delay time except for a few
settings. For instance, the mean delay time for trials with 0.2
m/s* of acceleration at 10° decline was 2015 ms. For IMU
ONLY model, its average delay time was 1115.7 ms. Also, its
delay time had tendency to increase with slower acceleration
and higher incline settings. Unlike HIP+IMU model and HIP
ONLY model, the delay time of IMU ONLY model for the
stand-to-walk transition was much less consistent, leading to
an average standard deviation of around 440 ms for each
setting.
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Fig. 5. (A) Surface plot showing the delay time for stand-to-walk transition

(B) Surface plot showing the delay time for walk-to-stand transitions with
respect to different acceleration/deceleration and incline/decline settings.
Black vertical lines on the surface along the z-axis show the value of
standard deviations for each setting. A negative slope means that the subject
went through decline trials corresponding to that angle.

During the walk-to-stand transition, HIP+IMU model and
HIP ONLY model had an average delay time of 498.7 ms,
which was a higher delay time than their delay time for the
stand-to-walk transition. For IMU ONLY model, compared
to its delay time for stand-to-walk transition, it was notable
that the average delay time was 313.3 ms.

For HIP+IMU model and HIP ONLY model, the false
positive rate was zero during the steady-state. IMU ONLY
model also had almost zero false positive rate (0.26%)
during steady-state. All the methods accurately detected the
walking state during steady-state walking at 1.2 m1/s without
unintentionally going through the walk-to-stand transition.

IV. DISCUSSION

The key contribution of our study is that the algorithm is
easily deployable to other wearable systems without a need
for manual tuning and requires a small number of sensors
to robustly detect the user’s movement for standing and
walking. Overall, our models were able to detect walking
during steady-state with an accuracy of 100%. Furthermore,
our models proved that using hip encoders for detecting
stand-to-walk transition is highly recommended. Not only did
our two models outperform IMU ONLY model with a shorter
delay time, but they also had better consistency overall
in acceleration/deceleration and incline/decline settings. In
comparing HIP+IMU model and HIP ONLY model, both
models had similar performance in most of the settings.
This similarity might potentially make HIP ONLY model
a preferable option as it utilized fewer numbers of sensors.
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Fig. 6. The time series plot of HIP ONLY model during one of 0.2 m/s2

deceleration and 10° decline trials. The first three maximum hip angles did
not cross the threshold, causing a much longer delay time for this method
for 0.2 m/s? deceleration and 10° decline.

However, some trials with 0.2 and 0.4 m/s2, and 10° decline
settings revealed some drawbacks of setting a simple angle
threshold for stand-to-walk detection. During ramp descent
walking, subjects tended to show less peak hip angle, making
it harder to cross our predetermined threshold (Fig. 6).
In this case, lowering the threshold could be a possible
solution. However, lowering the angle threshold would more
likely cause false peak detection. With a lower threshold,
subjects would much more likely to stand with a hip angle
that is already larger than the threshold, causing our model
to detect stand-to-walk transition even when the subject is
simply standing. HIP+IMU model would prevent the above
problems because the IMU threshold for this model won’t
be triggered when the subject is simply in standing state.
In other words, HIP+IMU model as their data would more
accurately detect heel-strike using maximum hip angle data
along with trunk vertical acceleration data.

For walk-to-stand transition, it should be mentioned that,
for trials with higher deceleration, subjects are more likely
to take one more step after the treadmill stopped. Since the
delay time was measured with respect to the time when
the treadmill stopped, this extra step caused a much higher
delay time for trials with higher deceleration settings. Also,
the performance of our models during lower deceleration
is worth noting. The average delay time for trials with 0.2
m/s? deceleration at the level ground was only 273 ms. This
brings upon the potential for its outstanding performance
even for people with limited mobility like stroke patients,
whom typically walk at a slower pace. For IMU ONLY
model, the average delay time for the same setting was -
461 ms. While a lower value of delay time generally leads
to better performance, detection of walk-to-stand transition
much before the actual transition might cause the device to
stop its assistance in real-world scenarios regardless of the
user’s intent to stop walking.

One limitation of the study is that the delay time for
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our models (HIP+IMU and HIP ONLY) and foot contact
estimation method (IMU ONLY)) had different starting points
for stand-to-walk transition. Despite the seemingly higher
delay time for IMU ONLY model across all settings, there
were some trials in which IMU ONLY model had a shorter
delay in real-time. Another limitation is that our model
performed poorly during walk-to-stand transition for 0.2
m/s? deceleration and 10° decline trials with an average
delay time of -353 ms. This limitation brings upon our future
goal to integrate hip encoder and IMU in our model for
walk-to-stand transitions. Also, our model should be tested
on more subjects among various ranges of heights, weights,
and ages for more accurate validation. The last limitation
that should be noted is that the models were only tested on
a single sensor suite, not an actuated device. This brings upon
a possibility that our model could perform differently on a
robotic hip exoskeleton where sensor signals are affected by
actuation.

V. CONCLUSION

Our model based on a finite state machine proved that
integrating hip encoders with an IMU effectively detects
stand-to-walk and walk-to-stand transitions. Also, our model
showed promising performance in being easily deployable
to other wearable systems without a need for manual tuning
and in requiring a menial number of sensors to robustly
detect the user’s movement in various locomotion contexts.
Our results reveal that our model developed exoskeleton
technology into more realistic settings where the users have
much robust detection of walking in various settings and have
fewer constraints in movement before walking. Future goals
for this study include integrating our model with a robotic
hip exoskeleton to test the performance of our models in
the device and possibly applying this model for people with
limited mobility.
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