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A Geometric Sufficient Condition for Contact
Wrench Feasibility

Shenggao Li1, Hua Chen2, Wei Zhang2, and Patrick M. Wensing1

Abstract—A fundamental problem in legged locomotion is
to verify whether a desired trajectory satisfies all physical
constraints, especially those for maintaining contacts. Although
foot tipping can be avoided via the Zero Moment Point (ZMP)
condition, preventing foot sliding and twisting leads to the more
complex Contact Wrench Cone (CWC) constraints. This paper
proposes an efficient algorithm to certify the inclusion of a net
contact wrench in the CWC on flat ground with uniform friction.
In addition to checking the ZMP criterion, the proposed method
also verifies whether the linear force and the yaw moment are
feasible. The key step in the algorithm is a novel exact geometric
characterization of the yaw moment limits in the case when
the support polygon is approximated by a single supporting
line. We propose two approaches to select this approximating
line, providing an accurate inner approximation of the ground
truth yaw moment limits with only 18.80% (resp. 7.13%) error.
The methods require only 1/150 (resp. 1/139) computation time
compared to the exact CWC based on conic programming. As
a benchmark, approximating the CWC using square friction
pyramids requires similar computation time as the exact CWC,
but has > 19.35% error. Unlike the ZMP condition, our method
provides a sufficient condition for contact wrench feasibility.

Index Terms—Body Balancing, Humanoid and Bipedal Loco-
motion, Whole-Body Motion Planning and Control

I. INTRODUCTION

FOR many legged robots, managing contacts with the
environment is the key to locomotion. Dynamics con-

straints related to contact preservation thus present a physical
feasibility condition for motion (which may be described as
stability conditions in some contexts [1]–[4]). Determining
the feasibility of the desired motion is critical since once
the desired net contact wrench violates contact constraints,
the robot will slide or tip over, potentially leading to a fall,
when attempting the motion. Even though unexpected yaw
sliding was not always considered as a loss of balance [1],
practical experiments and analysis on robots [5] and humans
[6] indicate the importance of considering the yaw moment
limitations during legged locomotion, including in cases where
foot rotation is intended [7].
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Fig. 1. Net contact wrenches at associated ZMP positions for a robot on a
flat ground. Red arrows represent the infeasible wrenches but the dashed ones
satisfy the ZMP condition. Green and blue arrows represent feasible wrenches
and the blue ones satisfy the proposed feasibility condition. The diagram
demonstrates the inclusion relationship within different criteria. The red region
contains infeasible wrenches, with the striped area representing wrenches that
satisfy the ZMP condition. The inclusion implies that the proposed conditions
are sufficient but not necessary for contact wrench feasibility.

A. Related Work

The Zero-Moment-Point (ZMP) condition [8], [9] (i.e.,
requiring the ZMP to be inside the support polygon) is one
of the most widely used feasibility criteria from bipedal robot
walking to human biomechanics studies. Since its introduction
in 1968, many researchers have extended the ZMP for complex
contact scenarios. For example, Harada et al. studied the ZMP
condition with multi-contacts involving hands [10], Hirukawa
et al. introduced a generalized ZMP with non-coplanar con-
tacts [3] and then developed a walking pattern generator on
uneven terrains [11]. All the above work assumed that surface
friction is adequate, such that its limitations can be ignored. As
a result, one can show that the ZMP condition is a necessary
but not sufficient condition of contact feasibility [2], [3], i.e.,
the foot can still slide or rotate tangentially on the ground even
when the ZMP condition is satisfied, as depicted in Fig. 1.

Some researchers have treated wrench feasibility with fric-
tion limitation by restricting the yaw moment to zero: Bretl
and Lall computed the static equilibrium support region over
uneven terrains [12], and Caron et al. constructed the 3D
volume of Center of Mass (CoM) accelerations with multi-
contacts [13]. The limitation of the ZMP condition sometimes
also requires the robot to move its upper body to compensate
for the yaw movement of the lower body. Such yaw compen-
sation behaviors have been studied for actuated robot control
[5], [14], [15], passive walker design [16], and in human
biomechanics [6].

To address the limitations of the ZMP and its generaliza-
tions, the exact Contact Wrench Cone (CWC) can be con-
sidered [17]. For most legged robots (especially humanoids),
due to the full/over actuation condition of the contact surface,
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verifying that a net contact wrench lies within the CWC often
leads to a force distribution problem (FDP), which can be
formulated as a second-order cone program [18], [19]. Even
though such a problem can be solved rapidly (≤ 1ms in our
testing cases), some applications like real-time simulation or
dynamics filtering [20] may benefit from a faster approach.

One widely implemented simplification is to consider poly-
hedral friction cones and an associated polyhedral approxima-
tion of the CWC [21]–[23] in either its span or face form.
While construction of the span form is direct, checking for
wrench feasibility with it requires similar computation time
as with the exact CWC. Conversion from span to face form
enables more rapid checking of the CWC condition, but re-
quires a one-time cost for converting between representations
(e.g., using double description algorithms [24]). This approach
enables Audren et al. [19] and Caron et al. [4] to plan CoM
motions without having to explicitly optimize over all contact
forces. One step further, Orsolino et al. [25] combined the
linearized friction cone with the actuation feasibility polytope
to take actuation limitations into account. Although the double
description only needs to be computed at every touchdown and
lift-off event, it is still computationally expensive (2.4ms for
a humanoid robot in [13]), and in practice, the robot may still
need to solve an FDP to ultimately determine the actuations
for each limb.

For the special case of a rectangular support polygon
with aligned friction pyramids, the CWC admits an explicit
analytical representation [2]. Notably, this representation can
be used to provide analytical limits on the yaw moments as
a function of the ZMP position and contact force. However,
efficient and accurate feasibility limits on the yaw moment
have not been developed under broader situations. As a result,
in practice, people often approximate the upper/lower bound
on the yaw moment as a linear function of the normal force
[26], [27] and norm of tangential force [20]. The yaw moment
limitations, however, are also highly related to the direction of
force, the position of ZMP, and shape of the support polygon.
The lack of treatment for the yaw moment limits within the
ZMP criteria motivates this study to find an efficient and
accurate strategy for verifying the feasibility of a given net
contact wrench on flat ground.

B. Contribution

This paper presents a framework to find an inner approxima-
tion of the CWC on rigid flat ground. The contributions of this
study are as follows: first, we demonstrate that considering a
single supporting line to replace the entire support polygon
leads to a faithful approximation of wrench feasibility for
most practical support polygons. Second, as the primary
contribution, we detail a geometric solution to an optimal
FDP on a line segment for characterizing yaw moment limits
at the ZMP. It provides an exact solution when the support
polygon is a line (e.g., during a quadruped trotting). Third,
we propose two approaches with different speed-accuracy
tradeoffs to approximate the best choice of the supporting line.
As a result, the proposed approaches 1 (resp. 2) experience
only 18.80% (resp. 7.13%) error with roughly 150 (resp.

Fig. 2. The illustration of the wrench feasibility problem on flat ground.

139) times faster computation speed compared to solving the
CWC feasibility problem. As a benchmark, the widely used
polyhedral approximation with square pyramidal friction cones
requires similar computation time as the exact CWC but has
> 19.35% error. The source of the error has been carefully
analyzed to provide a deep understanding of both proposed
approaches.

II. BACKGROUND & PROBLEM FORMULATION

Consider a robot moving in the environment by interacting
with the ground through a supporting area modeled by a con-
vex polygon with N vertices P = Conv({pi | i = 1, . . . , N})
as in Fig. 2. Suppose the ground is flat with uniform friction
coefficient µ and denote the net contact wrench at the CoM
by wCoM. Verifying the feasibility of a net wrench often leads
to a FDP, where the linear force fi = [f ti

⊤ fz
i ]

⊤ applied
at the i-th vertex must satisfy the friction cone constraint
fi ∈ C :=

{
f | ∥f t∥ ≤ µfz} as shown in Fig. 2, where

f t and fz denote the tangential (x-y plane) and the normal
(z-axis) components, respectively.

A. Contact Wrench Cone Problem

A general approach to verify whether a given net wrench is
feasible is to solve the following feasibility problem

find f1, . . . , fN (1a)

s.t.
N∑
i

CoMX∗
i

[
03×1

fi

]
= wCoM (1b)

fi ∈ C (1c)

where 03×1 ∈ R3 is a zero vector, wCoM ∈ R6 is the
net contact wrench, and the CoMX∗

i gives the spatial force
transformation matrix [28] from vertex pi to the CoM.

This problem is a second-order cone problem (SOCP),
and is called the Contact Wrench Cone (CWC) problem.
The conic constraint (1c) is often approximated by friction
pyramids via C :=

{
f | Af ≤ b

}
, resulting in a Linear

Program. For clarity, we call the feasible set of wrenches for
(1) the second-order CWC (2nd-CWC), with the corresponding
pyramid approximation as the first-order CWC (1st-CWC).

While we treat the CWC as representing ground truth
feasible wrenches (similar to other works [2]–[4], [21]), we
openly acknowledge some of its limitations. The vertex force
formulation (1) gives the same feasible wrenches as those
from an arbitrary friction-satisfying pressure distribution [2].
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However, nature does not allow arbitrary pressure distribu-
tions. Discontinuous pressure distributions (e.g., with pressure
concentrated at vertices) are approximations of what could be
provided by true compliant surfaces, and these considerations
are not addressed by the CWC. Please see [29], [30] for other
perspectives that address such limitations.

B. Zero Moment Point Criterion

Well before the advent of broadly available convex opti-
mization tools, Vukobratovic et al. developed the Zero Mo-
ment Point (ZMP) criteria to check wrench feasibility for flat
ground [8], [9]. The ZMP is noted as O and is defined as the
unique point on the ground such that the net wrench at O has
only linear force f and yaw moment nz (i.e., O satisfies the
constraint OX∗

CoMwCoM = [nz ẑ⊤ f⊤]⊤ for some nz and f ,
where ẑ denotes the unit vector along the z-axis). Note that for
readability, all force and moment vectors without subscript are
considered at the ZMP O. The ZMP position can be obtained
via wCoM and the CoM position pCoM as

pO(wCoM) =


pxCoM −

ny
CoM+pz

CoMfy
CoM

fz
CoM

pyCoM +
nx
CoM+pz

CoMfx
CoM

fz
CoM

0

 . (2)

The ZMP feasibility condition of the desired net contact
wrench wCoM is then given by the constraint

pO(wCoM) ∈ P (3)

Despite its success, the ZMP constraint (3) only provides a
necessary condition for wrench feasibility: friction limits are
not considered. As a result, even if the ZMP is inside the
support polygon, the robot’s foot can still slide translationally
on the ground or rotationally about the yaw axis. To construct
a sufficient criterion, extra conditions are needed to address
the gap between the ZMP and CWC.

C. Wrench Feasibility via Constraints Beyond the ZMP

Consider flat ground with uniform friction and a desired
net force at a feasible ZMP. In this case, there exist friction-
satisfying forces at the vertices (all fi ∈ C) that generate the
net force and ZMP if and only if the net force is in the friction
cone (f ∈ C) [2, Prop. 1]. This condition can be considered
as the condition for the foot not to slide translationally. For
this fixed force and ZMP position, an upper (n∗) and a lower
bound (n∗) exist for the feasible net yaw moment as well.
Once these limits are obtained from a given net force at a
certain ZMP and support polygon, rotational sliding can be
prevented by ensuring that the desired yaw moment nz lies
in the interval [n∗, n∗]. Therefore, we can enforce the CWC
condition equivalently via three simpler conditions.

Proposition 1. Consider a support polygon P on flat ground
with uniform friction coefficient µ. A desired net contact
wrench wCoM is feasible if and only if

1) No tipping: The associated ZMP satisfies condition (3).
2) No sliding: The linear force f at the ZMP satisfies the

friction constraint: f ∈ C.

3) No rotating: The yaw moment nz at ZMP is in the
feasible range [n∗, n∗] for the given ZMP and force f .

The interval [n∗, n∗] exists only if the first two conditions
are satisfied. Since the first two conditions can be easily
verified, the remaining question is how to obtain n∗ and n∗.
We note that this proposition is a natural generalization of [2,
Prop. 2] to the case of a general support polygon.

Ref. [2] gives closed-form expressions for n∗ and n∗ in the
special case of rectangular support with friction pyramids. To
address more general cases, we consider the following pair of
optimization problems

n∗/n∗(f) = max/min
f1,...,fN ,nz

nz (4a)

s.t.
N∑
i=1

pi × fi = nz ẑ (4b)

N∑
i=1

fi = f , fi ∈ C (4c)

where the differences from (1) are the cost function (4a) and
the added optimization variable nz . Overall, (4) remains an
SOCP similar to before. We focus herein on developing a more
efficient method to find an inner approximation (denoted as
[n, n]) of the ground truth interval.

In what follows, we focus on the maximization (upper
bound) to simplify the exposition, as the minimization (lower
bound) can be done in a similar way. For the same purpose,
without loss of generality, we will set our coordinate system
origin at the ZMP O for simplicity.

III. PROPOSED GEOMETRIC APPROACH

The most challenging part of the CWC problem is the
relatively high computational cost with multiple vertices.
Meanwhile, a problem with only a single supporting line
(namely ←→AB) can be used to generate an inner approximation
to the moment limits via solving

V (pa,pb, f) = max
fa,fb,nz

nz (5a)

s.t. pa × fa + pb × fb = nz ẑ (5b)
fa + fb = f , fa/b ∈ C (5c)

where fa (fb) and pa (pb) denote the linear force and the
position vector −→OA (−−→OB) for point A (B), respectively. Note
that we shall only consider lines that pass through the ZMP
point, which is implicitly embedded in the constraint (5b).

Since we still have the freedom in choosing the location of
points A and B, we can further maximize nz over all possible
supporting lines

nline(f) = max
pa,pb

V (pa,pb, f) (6a)

s.t. pa/b ∈ P (6b)

Note that, at least one pair of points A and B on the polygon
edge is an optimal choice since any line segment ←→AB can
be extended to touch two edges, and such extensions only
increase the feasible moments for the line. Thus, we can
replace (6b) with a boundary constraint pa/b ∈ ∂P , where
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Fig. 3. Geometric structure for solving the optimal force distribution problem
on a line. The feasible region (green) for point F (representing f ta) is
constrained by circles Ca and Cb. Filling with plus signs (resp. minus signs)
represents positive (resp. negative) yaw moment contributions.

∂P is the boundary of the support polygon. Section III-A first
gives an exact solution to (5), and Section III-B then builds
upon this solution to approximately solve (6).

A. Solving (5): Force Distribution on a Supporting Line

This section solves (5) via a geometric construction that
determines the exact max yaw moment for a given constant
net force and a given supporting line with a fixed ZMP on it.
We again consider the endpoints A and B, and without loss of
generality, assume that ray −→BA is aligned with the x-axis. We
proceed to optimize the forces fa and fb at these endpoints.

Since the tangential moment at the ZMP must be zero, we
can formulate the following equality

∥pt
a∥fz

a − ∥pt
b∥fz

b = 0 (7)

where pt
a =

−→
OA, pt

b =
−−→
OB are the tangential position vectors

of the points A and B, respectively. Substituting this equation
to the last row of constraint (5c) gives the following relation:

fz
a/b = fz

∥pt
b/a∥

∥pt
a∥+ ∥pt

b∥
(8)

Consequently, we can simplify (5) into a quadratically
constrained linear program posed only over the tangential
portion of the forces as

V (pa,pb, f) = max
f ta,f

t
b

pt
a × f ta + pt

b × f tb (9a)

s.t. f ta + f tb = f t, ∥f ta/b∥ ≤ µfz
a/b. (9b)

We proceed to solve this simplified problem geometrically.
We start by representing (9b) geometrically. As shown in

Fig. 3, we draw the net tangential force f t as −−→OC at the
application ZMP O and duplicate the supporting line ←−−→AOB to
←−−−→
A′CB′ for convenience. Since f ta + f tb = f t, we can draw the
vector f ta as −−→OF and vector f tb as −→FC. Due to the friction limit
(9b), point F must lie within the circle Ca of radius µfz

a at
point O. Similarly, point F must be within the circle Cb with
radius µfz

b at point C as well. Combining the above together,
we now have the constraint for the point F as F ∈ Ca ∩ Cb.
As shown in Fig. 3, the green region Ca ∩ Cb is bounded by
two arcs D̃E (upper side) and ẼD (lower side)1.

1Note: we distinguish arcs by notating them in counterclockwise order and
define the point right to the tangential force as D.

(14a)

(14b)

(14c)

(14d)

Fig. 4. Four cases for the maximum yaw moment function (14). The cases
depict how the optimal vertex forces (blue and red) change as the total
horizontal force f t (orange) rotates with angle α (shown in Fig. 3). As
α changes, the supporting line (

←−−→
AOB in Fig. 3) stays fixed, while the

construction line (
←−−−→
B′CA′ in Fig. 3) translates with the endpoint of f t.

With the constraints characterized, we proceed to give a
geometric interpretation of the objective (9a). The moment
created by f ta takes the cross product between the force vector
and the position vector. In geometry, the absolute value of the
cross product represents the area of the parallelogram that the
vectors span. Such an area is twice the red triangle △OAF .
Similarly, we can draw the blue triangle △CB′F to represent
the moment caused by f tb . In Fig. 3, a triangle filled with plus
(minus) signs represents a positive (negative) yaw moment
contribution. We introduce two variables for readability, H =
fy for the height of point C and h = fy

a for the height of
point F , and reformulate the yaw moment (9a) as

nz = ∥pa∥h+ ∥pb∥(h−H) (10)

Therefore maximizing the yaw moment is equivalent to max-
imizing the variable h, i.e.,

max
h

(∥pa∥+ ∥pb∥)︸ ︷︷ ︸
given constant

h− ∥pb∥H︸ ︷︷ ︸
given constant

(11)

The implication is then that, for line ←→AB in a horizontal
orientation, the yaw moment is maximized when point F is
placed at the “highest” point in the green region.

To find this highest point explicitly, we consider how the
angle of the force f t will influence the orientation of the green
region Ca ∩ Cb. Let us denote the angle ∠COE as αa and
∠OCD as αb and define the angle between ZMP force f t and
the line OA as α (Fig. 3). We can compute α, αa, and αb via

α = atan2 (fy, fx) (12)

αa/b = arccos

(
∥f t∥2 + (µfz

a/b)
2 − (µfz

b/a)
2

2µfz
a/b∥f t∥

)
(13)

The geometric structure shows that there are four different
scenarios for the maximum when Ca ∩ Cb is a combination
of two arcs, as in Fig. 4:

f ta =


pt
e α ∈ ( 3π2 + αb,

π
2 − αa] (14a)

µfz
ap

⊥
a α ∈ (π2 − αa,

π
2 + αa] (14b)

pt
d α ∈ (π2 + αa,

3π
2 − αb] (14c)

f t + µfz
b p

⊥
a α ∈ ( 3π2 − αb,

3π
2 + αb] (14d)
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Algorithm 1 Max Yaw Moment
Input: pt

a,p
t
b, f

t, fz

1: α← (12), αa/b ← (13)
2: Compute pt

e and pt
d

3: f ta ← (14)
4: f tb = f t − f ta
5: n← pt

a × f ta + pt
b × f tb

Output: n

(a) (b)

Fig. 5. The illustration of approach 1: find the longest centered line. The
blue and orange polygons give the original support polygon P and its centro-
symmetric −P . The green region is the intersection of P and −P . The
red solid line represents the longest line inside the green region. (a) The
intersection of boundaries forms the longest line. (b) The original vertex forms
the longest centered line, extension needed. Line AB is the selected support
line.

where p⊥
a is the normalized vector perpendicular to ←→AB and

pointing up. Please see the supplementary video for a visual
explanation. Transitions between cases occur when points D
or E are directly above O or directly below C (Fig. 4). Also,
note that there are some special cases when Ca ∩ Cb is not
two arcs but a single point or an entire circle. In those special
cases, the four scenarios would degenerate into one.

Above all, we find a purely geometric solution for the FDP
on a supporting line (5). The analytical solution is summarized
by the pseudocode in Alg. 1. Returning to the big picture
(Prop. 1), we emphasize that this algorithm and its resulting
moment limits depend on the linear force f .

B. Line Selection

Since the optimal solution nline(f) of (6) is particularly hard
to compute, an alternative way to find a sub-optimal value n(f)
is needed. Two approaches are considered.

1) Line Selection Approach 1: Longest Centered Line:
One heuristic insight is that a longer supporting line generally
enables creating a larger yaw moment, due to the increased
moment arm length. In practice, we found the following
strategy works reasonably well: finding the longest centered
line

←−−−→
A′OB′ (namely ∥B′O∥ = ∥OA′∥) crossing the ZMP

inside the polygon, then extending it to the original boundary.
To construct such a line, we find the intersection P̃ of the

original polygon P and its symmetric polygon −P about the
ZMP O. We then enumerate all vertices of P̃ to find the point
P̃j furthest from the ZMP. We then extend the line

←−→
OP̃j back

to the support polygon P if necessary (as in Fig. 5(b)) since
extensions only increase the feasible moments for a line. This
procedure is summarized in Alg. 2.

2) Line Selection Approach 2: Vertex Enumeration: An-
other approach with more accuracy but slightly more compu-

Algorithm 2 Find the Longest Centered Line
Input: P: support polygon as a convex hull in vertex form
P = Conv({pi | i = 1, . . . , N})

1: −P = Conv({−pi | i = 1, . . . , N})
2: P̃ ← P ∩ −P
3: P̃ = {P̃i|i = 1, 2, . . . ,M} ← vertices(P̃)
4: j ← argmaxi ∥P̃i∥
5: pt

a,p
t
b ← intersection between line

←−→
OP̃j and ∂P

Output: pt
a, pt

b: end points of the chosen supporting line

tational cost is powered by the incredible speed of explicit
solution in Section III-A, and inspired by the same heuristic
that the longer supporting lines generally provide an opportu-
nity to provide additional yaw moment.

Proposition 2. The longest segment crossing a ZMP O in a
convex polygon P has at least one endpoint on a vertex.

Proof. Suppose a line segment ←→OA where point A is on an
edge but not the vertex. The length of this segment is convex in
the segment angle θ. We consider another line segment ←→OB on
the edge that is colinear with ←→OA but in the opposite direction.
Similarly, the length of ←→OB is convex in the segment angle.
As a sum of two convex functions, the entire length function
of ←→AB is convex as well. Therefore, such a line ←→AB can have
a local minimum length but no local maximum length if both
end-points are not on the vertex, i.e., such a situation cannot
result in the longest line.

Therefore, we are only interested in the lines that cross the
origin (i.e., ZMP) and a vertex. Rather than finding a sub-
optimal line and then computing the yaw moment, we can
check the max yaw moment for all such supporting lines,
and then pick the one with the maximum result. Due to
the efficiency of the analytical solution from the previous
subsection, this approach presents as a good candidate, despite
requiring more computation than Approach 1.

IV. RESULT AND ANALYSIS

In this section, we use numerical examples to analyze the
error source for the proposed approximation approaches. We
quantify the accuracy and computation speed over a set of
randomly generated test samples to compare the ground truth
CWC problem (2nd-CWC), polytopic CWC (1st-CWC) prob-
lem with different numbers of edges, and against a baseline
grid search for the optimal supporting line in (6). Example
code can be located online [31].

A. Testing Samples

For the convenience of the later discussion, we introduce
four different support polygons as the test examples (Fig. 6):

1) Typical case with two planar feet (SP-1) Fig. 6(a)
2) Another case with two planar feet (SP-2) Fig. 6(b)
3) Triangle (SP-3) Fig. 6(c)
4) N -gon (15 edges) inscribed in a circle (SP-4) Fig. 6(d)
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Fig. 6. Comparison between ground truth, optimal line supporting approximation, approach 1, and approach 2 with 4 example cases: (a) SP-1 (see Fig. 7
for additional analysis), (b) SP-2, (c) SP-3, (d) SP-4. The polar plot shows the maximum yaw moment (in Nm) from different algorithms with linear force
f = [0.84 cos(ϕ) 0.84 sin(ϕ) 1]⊤ N at the ZMP for ϕ ∈ [0, 2π] and µ = 1. ZMP positions were randomly chosen within the support polygon.

We test a pure linear force f applied at a fixed ZMP within
the polygon, which is set as the coordinate origin. Note that
for any f and friction coefficient µ, we have

∥f t∥ ≤ fzµ ⇐⇒
∥∥f t/(fzµ)

∥∥ ≤ 1 (15)

where fz > 0 and µ > 0, unless the robot is lifting
off. Therefore, we can always use a normalized combination
f = [f t⊤ 1]⊤ with µ = 1 to represent all different forces and
friction coefficients. Since the max/min yaw moment is highly
related to the direction and magnitude of the horizontal force,
the tangent force f t is parameterized by an angle ϕ in the
tangent plane (measure relative to to the x-axis) and norm f t,
giving f(ϕ, f t) =

[
f t cos(ϕ) f t sin(ϕ) 1

]⊤
. We present

analysis using a horizontal force magnitude of f t = 0.84 at
the ZMP positions shown in Fig. 6. The force magnitude of
0.84 is motivated by later analysis in Fig. 7, which shows a
relative spike in error at this magnitude.

B. Error Source Analysis

There are two main steps that introduce errors in our strat-
egy. First, we considered restriction to line support situations
to approximate the entire support polygon. That means we
lose the potential contributions of yaw moments from points
off the line (i.e., force distribution on any line will produce less
normal moment than force distribution over the full support
polygon). Second, none of the heuristic algorithms has a
guarantee of finding the optimal line (6), which provides
the max/min yaw moment (i.e., the force distribution on the
chosen line will produce less normal moments than if the
optimal line was chosen).

1) Error from restriction to line support: We evaluate the
error introduced by restricting the force distribution to a line
by using a dense grid search over line angles (orange triangles
in Fig. 6) to find the optimal support line in (6). The gap
between this result and the ground truth (blue circles in Fig. 6)

gives the theoretical upper bound of any heuristic line finding
approach that one could come up with under our framework.
It is observed that this approximation works surprisingly well,
except when the supporting polygon is a triangle (case (c)).
The triangle is the worst case in four examples because all
three vertices contribute moments and there is no single line
that can accomplish a similar effect. Fig. 6(d) shows that the
circle region is an ideal supporting shape for line restriction,
which implies that no points off the chosen supporting line
offer a significant benefit for generating normal moment.

2) Error from suboptimal line selection: The error caused
by heuristically selecting a sub-optimal line leads to the
gap between each approach and the optimal line in Fig. 6.
Since approach 1 generates new points during the intersection
P ∩ −P , it could provide a better result than approach 2 in
theory. In practice, the error from approach 2 is smaller in
almost all instances, as shown in Fig. 6, second row. The major
reason is that the first stage of approach 1 only considers the
shape of the support polygon without any information on the
linear force, unlike the other. Meanwhile, approach 2 checks
the optimal normal moment for all lines crossing the vertices
while approach 1 only uses one.

Most importantly, we can find how accurate approach 2
is compared to the theoretical upper bound. Such a result
supports the intuition of finding the longest line to approximate
the maximum yaw moment. The triangle case becomes the
worst case again since there are too few vertices for approach
2 to enumerate. In practice, for polygons with vertices less
than a threshold (for example, 4), we can interpolate extra
points in-between neighbor vertices to increase the accuracy.

3) Total error vs. force magnitude: The Fig. 7 shows the
error of approach 2 compared to the ground truth over different
horizontal force magnitudes f t for the supporting scenario 1
(SP-1, two feet). One can find that the error is consistent
across horizontal force magnitudes. As f t goes to 1, the
remaining frictional force at the contact surface goes to 0,
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Fig. 7. Error on upper bound (n/n∗) versus magnitude (∥f t∥) and angle (ϕ)
of horizontal force (f t) applied at the ZMP. The average error rate is 6.94%
with standard deviation 6.20%. The green slice represents the conditions
considered in Fig. 6(a). The green dot indicates the peak point.

and the approximation error tends to 0 as well. Such a feature
is ideal since the accuracy nearby the contacts’ limitation is
more critical than others.

C. Quantifying the Performance of Different Approaches

1) Random sample generation: To quantify how accurate
and fast the proposed approaches are, we randomly generate
test samples with random support polygons and a random
force. We quantify the approximation error by computing the
fraction of coverage between the approximated yaw moment
interval and the ground truth from the CWC as

e = 1− n− n

n∗ − n∗ . (16)

In the support polygon sampling part, we randomly pick the
points in the rectangular region {(−1,−1), (1, 1)} to form a
polygon (i.e., pi,x, pi,y ∼ U(−1, 1)). To make the comparison
fair and ensure the polygon’s convexity, we repetitively pick
new points until the convex hull of the given points has 6
vertices (as the most common case in humanoid walking).
Then we randomize the polar coordinates of the horizontal
force as ϕ ∼ U(0, 2π), f t ∼ U(0, 1).

Table I2,3 shows the average compute time per sample and
accuracy of approaches 1 and 2 compared to the ground truth
and all different methods, under 10000 random samples with
6 vertices each. At each point on the horizontal axis of Fig. 8,
the cumulative possibility gives the fraction of samples with
moment errors (16) below that threshold.

2) Rapid and accurate result of proposed approaches:
The most outstanding result in Table I is that while the
2nd-CWC spends 562.28µs to compute, the two proposed
approaches achieve 18.80% (approach 1) or 7.13% (approach
2) relative error within 3.74µs or 4.04µs. They are ∼ 150
or ∼ 139 times faster than the ground truth method. While
approach 2 is only 11.67% more accurate than approach 1, the

2The 1st-CWC and 2nd-CWC were solved on a commodity laptop (2.5
GHz Intel Core i7) by the state-of-the-art interior point solver MOSEK [32]
with its C++ API.

3The optimal supporting line is solved by a brute force search algorithm
with 5000 grid points to ensure accuracy.

TABLE I
PERFORMANCE COMPARISON WITH 6 VERTICES, 10000 SAMPLES

Method Error Std. Dev. Time (µs)

2nd-CWC 0% 0% 562.28
1st-CWC (4 edges) 19.35% 15.02% 676.35
1st-CWC (8 edges) 8.37% 9.94% 951.06

Approach 1 18.80% 16.63% 3.74
Approach 2 7.13% 5.54% 4.04

Grid Search (81 lines) 7.13% 5.56% 51.11
Optimal Supporting Line 6.49% 4.88% 2873.0
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Fig. 8. Cumulative possibility versus moment error (16) for different
approaches over 1000 random samples. The 1st-CWC methods do not reach
100% since some feasible forces are outside the friction pyramid.

cumulative possibility plot shows that it more frequently gives
a low moment error (16). Therefore, approach 2 is generally
more promising with only 8.0% more computation time. It is
worth emphasizing that even with a 70% error under some
rare (< 1.4%) samples, approach 1 still provides a sufficient
condition for feasibility. That means all the error implies the
loss of yaw motion ability but not stability.

3) Comparison to the widely used linear CWC: In most of
the literature (e.g., [21]–[23]) friction cones are considered as
friction pyramids with 4 edges (occasionally 8) to replace the
second-order cone constraint with a set of linear constraints.
Our result demonstrates that both two proposed approaches
are more accurate than the 4 edges 1st-CWC, and approach 2
is even more accurate than the 8 edges version. Note that the
1st-CWC also approximates the feasible region of linear force
while the proposed approaches would give an exact region.
As a result, there are some (20.65% for 4 edges, 5.14% for
8 edges) feasible testing samples that the 1st-CWC would
consider as infeasible as illustrated in Fig. 8. Those samples
were removed from the statistical data of 1st-CWC in Table I.
Therefore the cumulative possibility of them is never going to
1. The average error reported for the 1st-CWC only considers
the remaining samples, and so should be considered as an
under approximation of the true error.

Fig. 9 shows the case of a rectangular support polygon,
wherein the 1st-CWC admits an analytical solution [2]. Even
in this simple case, compared to the average 34.52% error of
1st-CWC, our approach gives a tighter (12.75% error) bound
on the true yaw limits due to its consideration of the full
friction cone, and despite the approximations of line support
considered. Additionally, in Fig. 10, we simulate the worst
force magnitude and angle combination for each ZMP in the
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triangle case, the worst scenario considered previously. Even
in this situation, our approach 2 still performs strictly better
than the 1st-CWC at each ZMP position.

V. CONCLUSION

This paper presented two geometric approaches to find an
inner approximation of the contact wrench cone on flat ground
with uniform friction coefficient. The preferred approach 2
can find the sufficient condition of contact wrench feasibility
in only 4.04µs (139 times faster than CWC). It would only
sacrifice < 7.13% on the yaw motion ability. A new geometric
construction powered the rapid computation of exact yaw
moment limits when the support polygon is a line. This study
also provided insights on the error source and the reason
of success of proposed approaches. In the future, we are
interested in the potential application of this method on a
legged robot as a low-level dynamics filter [20] and in rigid-
body simulation as a loss of contact criteria.
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