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parameters for a superconducting flux qubit and
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inevitable as the tunnelling barrier is raised towards
the end of a quantum anneal. We also discuss a
method of obtaining a 2n × 2n effective Hamiltonian
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slowly changing circuit control parameters.

This article is part of the theme issue ‘Quantum
annealing and computation: challenges and
perspectives’.

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 2

02
3 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2021.0407&domain=pdf&date_stamp=2022-12-05
https://doi.org/10.1098/rsta/381/2241
mailto:mozgunov@usc.edu
http://orcid.org/0000-0002-1671-1515
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20210407

...............................................................

1. Introduction
The quantum adiabatic theorem is now more than 100 years old, dating back to Einstein [1] and
Ehrenfest [2]. Yet, it still continues to inspire new interest and results, in large part owing to its
central role in adiabatic quantum computation and quantum annealing, where it can be viewed
as providing a sufficient condition for the solution of hard computational problems via adiabatic
quantum evolutions [3–5].

Consider a closed quantum system evolving for a total time tf subject to the Hamiltonian
H(t). Defining the rescaled (dimensionless) time s= t/tf , the evolution is governed by the unitary
operator Utot(s) which is the solution of1

U′
tot(s) = −itf H(s)Utot(s), Utot(0) = I, s ∈ [0, 1]. (1.1)

In this work, we assume that the Hamiltonian H(s) ≡HΛ(s) is defined as an operator on a
finite-dimensional Hilbert space H of dimension Λ, but it is obtained via discretization of an
unbounded Hamiltonian H∞ over an infinite-dimensional Hilbert space. By unbounded we mean
that the energy expectation value 〈ψ |H∞|ψ〉 can be arbitrarily large for an appropriate choice of
|ψ〉 within the domain where H∞ is defined. We will not, however, work with that unbounded
Hamiltonian directly, so all our proofs will use the properties of finite-dimensional Hamiltonians,
e.g. that the solution to the Schrödinger equation exists and the spectrum of HΛ(s) comprises
Λ discrete (possibly degenerate) eigenvalues. In particular, we will not assume that the limit as
Λ → ∞ of any of the quantities appearing in our results exists. The dimension Λ < ∞ is what
throughout this work we call the cutoff. We will outline a path to proving a somewhat weaker
result for unbounded Hamiltonians H∞ themselves, but leave a rigorous proof for future work.

Let P(s) be a finite-rank projection on the low-energy subspace of H(s), i.e. the (continuous-in-s)
subspace spanned by the eigenvectors with the lowest d(s) eigenvalues. A unitary operator Uad(s)
can be constructed that preserves this subspace, i.e.

P(s) =Uad(s)P(0)U†
ad(s). (1.2)

The adiabatic theorem is essentially the statement that there exists Uad such that the following
holds:2 ∥∥[Uad(s) − Utot(s)]P(0)

∥∥≤ θ

tf
≡ b, (1.3)

where θ is a constant that does not depend on the final time tf but typically (though not always
[7,8]) depends on the minimum eigenvalue gap � of H(s) between P(s)H and Q(s)H, where Q=
I − P. Since the right-hand side (r.h.s.) represents the deviation from adiabaticity, henceforth we
refer to b as the ‘diabatic evolution bound’ and to θ as the ‘adiabatic timescale’. The total evolution
time is adiabatic if it satisfies tf 
 θ . Thus, the system evolves adiabatically (diabatically) if the
diabatic evolution bound is small (large).

This version of the adiabatic theorem amounts to finding an expression for Uad that contains
information about the dynamic and geometric phase acquired along the evolution, and can be
found in the book [8] for unbounded operators. Note that typical textbook expressions (e.g. [9])
just bound the overlap between Uad(1)|ψ(0)〉 and the final state Utot(1)|ψ(0)〉, where |ψ(0)〉 is the
lowest eigenstate of H(0). Instead, we consider any initial state |ψ(0)〉 ∈ P(0)H, not just the ground
state, and also compute the total phase. This is also more flexible in that, in fact, the projector P
can single out any subspace of eigenstates of H (not necessarily the lowest), which may or may
not be degenerate.

Techniques exist to improve the bound to γk/tkf for integers k> 1. This is done by requiring the
time-dependent Hamiltonian to have vanishing derivatives up to order k at the initial and final

1We use a prime to denote ∂/∂s in this work.

2The norm we use in this work is the operator norm ‖A‖ = sup|ψ〉 ‖A |ψ〉‖ (‖ |ψ〉 ‖ = 1), which is unitarily invariant [6]:
‖UAV‖ = ‖A‖ for arbitrary A and unitary U and V. Additionally, ‖A‖ = ‖A†‖ and ‖U‖ = 1. Unitarily invariant norms are also
submultiplicative: ‖AB‖ ≤ ‖A‖‖B‖. For Hermitian operators (A† =A), we have ‖A‖ = sup|ψ〉〈ψ |

√
A†A|ψ〉 = sup|ψ〉 |〈ψ |A|ψ〉| ≥

〈ψ |A|ψ〉.
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times [10], or just the final time in the case of an open system [11]. It is even possible to make the
bound exponentially small in tf [12–17]. We will not be concerned with this problem here; instead,
we focus on providing an explicit expression for the constant θ . We are particularly interested in
presenting an expression for θ that is finite even when used beyond the scope of our proof for
some unbounded Hamiltonian H∞(s). A paradigmatic example of such a system is a (perturbed)
harmonic oscillator whose Hamiltonian changes slowly with time. Such systems are common in
quantum computation, e.g. in the context of effective Hamiltonians of superconducting circuits
[18] and in describing the coupling between trapped ions via motional degrees of freedom [19].

A large body of work exists on proofs of equation (1.3), including for unbounded
Hamiltonians, starting with the work of Kato [20], who improved upon the original proof of Born
and Fock for simple discrete spectra [21] (e.g. a one-dimensional harmonic oscillator), allowing
P(s) to be a finite-dimensional spectral projection associated with an isolated eigenvalue (e.g.
the hydrogen atom). Subsequent works, e.g. [22, §5] and [7,8,23–26], explored many possible
generalizations and refinements of this result, but to the best of our knowledge a recipe for
actually computing the number θ for a specific unbounded system has not yet been provided. In
order to keep our results accessible to physicists seeking to estimate θ , we use a somewhat non-
traditional approach to unbounded Hamiltonians such as the harmonic oscillator or the hydrogen
atom. The traditional approach uses abstract mathematical concepts to rigorously and directly
work with an allowed family of unbounded Hamiltonians, and is extensively discussed in the
literature (see in particular [27] for the most general family), but notably lacks calculations for
concrete examples or accessible estimates that can be used in specific cases. We note that often
the Hamiltonians used in physics can be restricted to finite-dimensional Hilbert spaces after
introducing appropriate cutoffs. All our proofs and results concern finite-dimensional bounded
Hamiltonians obtained after such cutoffs. Such truncations are common in numerical simulations
of experimental systems of the type that our results are designed to be applied to, e.g. [28].

The specific way in which the cutoff Λ is introduced depends on how the initially unbounded
Hamiltonian is given to us. If it is provided along with a countable set of basis vectors {|n〉}, n=
0, 1, 2 . . ., and the matrix elements Hnm are given explicitly as functions of n and m, then just
restricting the matrix H to 0 ≤ n≤ Λ − 1 provides a Hamiltonian with a cutoff Λ that will
feature in our results. If the initially unbounded Hamiltonian is instead provided via operators
corresponding to continuous variables, such as momentum and position for a particle on the line,
then one must choose an appropriate countable basis, e.g. the harmonic oscillator basis, for each
of the dimensions. After that, it is straightforward to form a countable basis set and compute
matrix elements Hnm, making the cutoff Λ applicable as in the first case. Alternatively, one may
discretize one of the conjugate variables for each dimension, obtaining a Λ × Λ matrix H where
each matrix element in principle depends on the step of the discretization grid and thus on Λ.

We seek an expression for θ that does not diverge with Λ even when the finite-dimensional
operator norm ‖H′

Λ‖ may diverge with the cutoff. The adiabatic timescales for unbounded
Hamiltonians available in the literature (e.g. [8], eqn (2.2)) achieve this by using a different
norm for H′ that is free of the cutoff divergence. This expression for θ is not readily usable for
analytic estimates, and it requires much work and prior knowledge for evaluation in a numerical
simulation. Here, we resolve this issue by obtaining an analytically tractable expression for θ ,
interpreting the norm of H′ used in [8] in physical terms, and improving upon it by replacing it
with ‖H′P‖ almost everywhere.3 Moreover, our θ remains small even for an exponentially large
dimension d of the subspace PH, and we make the dependence on the gap � explicit.

This same approach will also allow us to address the problem of deriving an error bound on
the evolution generated by effective Hamiltonians Heff that are operators in a smaller Hilbert space
corresponding to the low-energy subspace of the original problem. We identify the isometry V(s)

3Note that our definition of a cutoff is basis-dependent. It is also important to choose the subspace of interest P consistently
for each Λ. Consider the case of a time-dependent harmonic oscillator p2 + ω2(t)x2, with eigenstates of p2 + ω2(0)x2 used as
the basis. While our bound will still technically hold for any choice of P, choosing P to project on the highest energy state
after the cutoff will lead to a diverging adiabatic timescale. Indeed, ‖PH′Q‖, where Q= I − P, will grow with Λ. The general
methodology of the choice of basis and P is beyond the scope of this work.
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into that Hilbert space and the matrix Heff such that the solution of the Schrödinger equation
u′(s) = −itf Heff(s)u(s) with u(0) = I is close to the true evolution due to the same adiabatic theorem
stated above:

‖u(s) − V(s)Utot(s)V†(s)‖ ≤ b. (1.4)

We apply our results to circuits of superconducting flux qubits [29,30], of the type used, for
example, in quantum annealing [31–33]. Quantum annealing (reviewed in [5,34–36]) is a field
that primarily studies heuristic quantum algorithms for optimization, best suited to running on
analogue quantum devices. In the qubit language, the quantum annealer is typically initialized in
a uniform superposition state that is the ground state of a transverse field Hamiltonian. Over
the course of the algorithm, the strength of the transverse field is gradually decreased while
simultaneously the strength of the interactions encoding the optimization problem of interest
is gradually increased, guiding the quantum evolution towards the ground state that encodes
an optimal solution. In the context of superconducting devices, the qubits used for this, with
frequency ωq, are described by a circuit model (which includes capacitors, Josephson junctions
etc.), characterized by the capacitive energy EC and the Josephson junction energy EJ 
 EC. We
express the plasma frequency ωpl(s) and the residual transverse field ωqδ at the end of the anneal
via the circuit parameters EJ and EC and the schedule of the control fluxes. We obtain a bound
for the adiabatic timescale θ in equation (1.3), ωqθ =O(ωq/(ωpl(1)δ))(ln(ωpl(1)/(ωqδ)))−1, while
applying the existing analytically tractable form of the adiabatic theorem [25] yields ωqθ = Θ(Λ),4

which diverges with the cutoff. We also check that for finite ‖H′‖ the existing form [25] gives
a result that is consistent with our bound, namely ωqθ =O(ωq/(ωpl(1)δ)). For these expressions
written in terms of EJ and EC see §5b. Thus, our results include the first non-diverging expression
for the adiabatic timescale in the case of unbounded Hamiltonians, as well as a new practical
application of existing rigorous forms of the adiabatic theorem.

The structure of the rest of this paper is as follows. We provide detailed definitions required
to state our result, as well as compare it with previous work, in §2. The paper is written in a
way that allows the reader to skip the proof that follows this section and move on to applications
in §5. The proof is given in two parts: a short argument for obtaining an O(1/tf ) bound in §3
and a lengthier part in §4 in which we compute the constant θ . The application to flux qubits
can be found in §5, which is also separated into results and a proof that can be skipped. We
give the definition of the effective (qubit) Hamiltonian in §6, along with a discussion of how the
adiabatic theorem bounds we obtained apply in the effective Hamiltonian setting. Sections 5 and
6 are independent of each other. We conclude in §7. Additional calculations in support of the flux
qubit analysis are presented in appendix A, and a proof of the intertwining relation is given in
appendix B.

2. Adiabatic and diabatic evolution

(a) Previous work
To set the stage for our results on the adiabatic theorem, we first briefly review key earlier results.
We note that, unlike these earlier works, we will provide an explicit expression for the adiabatic
timescale, which does not diverge with the cutoff of the Hamiltonian in most relevant examples
and is ready to be used both analytically and numerically. This is an important novel aspect of
our contribution to the topic.

Such a ready-to-use result was obtained for finite-dimensional (bounded) Hamiltonians by
Jansen, Ruskai and Seiler (JRS), and our results closely follow their work. They proved several
bounds, including the following [25, theorem 3]:

Suppose that the spectrum of H(s) restricted to P(s) consists of d(s) eigenvalues (each
possibly degenerate, with crossing permitted) separated by a gap of 2�(s) from the rest

4The big-Θ notation is defined by y= Θ(x) ⇐⇒ (y=O(x) and x=O(y)), which includes proportionality up to a constant.
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of the spectrum of H(s), and suppose that H, H′ and H′′ are bounded operators. Let
Ptf (s) ≡Utot(s)P(0)U†

tot(s). Then

‖Ptf (s
∗) − P(s∗)‖ <

θ (s∗)
tf

(2.1a)

and

θ (s∗) = d‖H′‖
�2

∣∣∣∣
s=0

+ d‖H′‖
�2

∣∣∣∣
s=s∗

+
∫ s∗

0

(
d‖H′′‖

�2 + 7d
√
d
‖H′‖2

�3

)
ds. (2.1b)

The direct dependence on ‖H′‖ and ‖H′′‖ is the crucial one from our perspective, and the one
we avoid in this work. Indeed, these norms diverge with the cutoff for a time-dependent harmonic
oscillator or the hydrogen atom, for example.

The adiabatic timescale that is harder to use analytically and numerically can be found in
[8, eqn (2.2)]:

θ = ‖F(0)‖ + ‖F(1)‖ +
∫ 1

0
‖F[P′,P]‖ + ‖F′‖ ds, (2.2)

where

F= 1
2π i

∮
Γ

QR(z)R′(z) dz + h.c. with R(z) = (H − z)−1, (2.3)

and Γ is a contour around the part of the spectrum corresponding to PH. In what follows we
give a simplified non-rigorous summary of the arguments used in [8] to prove that θ < ∞. The
boundedness of the norm of F and its derivative can be traced down to an assumption,

∀|φ〉 with ‖φ‖ = 1, ‖H′|φ〉‖2 ≤C2
ε(1 + ‖H|φ〉‖2/ε2), (2.4)

where we have kept an energy scale ε to match the dimensions, but ε = 1 is usually taken in the
mathematical literature. The smallest such constant, Cε = ‖H′‖L(D,H), is actually the definition of
the operator norm for unbounded Hamiltonians with a domain D. The space D is equipped with,
besides the usual state norm ‖ψ‖H inherited from H, a different state norm ‖ψ‖D than H, called
the graph norm:

‖ψ‖D =
√

‖ψ‖2
H + ‖H0ψ‖2

H/ε2 (2.5)

for some Hamiltonian H0 (which we take to be equal to H for a tighter bound) and some arbitrary
energy scale ε. The operator norms are now computed with respect to the spaces they map
between:

‖O‖L(A,B) = sup
ψ∈A, ψ �=0

‖Oψ‖B
‖ψ‖A . (2.6)

Using this definition, ‖H′‖L(D,H) is now a finite number Cε under the assumption (2.4). This
assumption is commonly used to prove that a solution of the time-dependent Schrödinger
equation exists, with the difference that a single Hamiltonian H0 is used on the r.h.s. for all times.
More importantly, since the resolvent is formally defined by (H − z)R(z) = 1H as a map from H to
D, one can prove that the usual operator norm of the combination H′R(z) is bounded as

‖H′R(z)‖ ≤ ‖H′‖L(D,H)‖R(z)‖L(H,D). (2.7)

At the cost of the small increase in norm of the resolvent, we have obtained a finite number Cε in
place of the norm of the unbounded operator. Using this idea, in [8] it is proved that θ < ∞. Note
that for finite-dimensional systems the assumption (2.4) can also be written as5

H′2 ≤C2
ε + C2

εH
2

ε2 = c0 + c1H2. (2.8)

The adiabatic timescale θ of [8] depends on c0 and c1, or equivalently on ‖H′R(z)‖, and the
same quantities for the second derivative H′′ coming from ‖F′‖, though the dependence is never

5Our matrix inequalities have the standard meaning: A≤ B⇐⇒ B − A has non-negative eigenvalues.
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explicitly computed. Here, we will be able to remove the dependence on the constants coming
from H′′ and replace most of the appearances of c0 and c1 by a tighter bound. The physical
meaning of the norm ‖O‖L(D,H) is as follows: given a state |ψ〉 with a bounded expectation value
of energy 〈ψ |H|ψ〉 ≤ E, the norm ‖O‖2

L(D,H) is the maximal value of 〈ψ |O2|ψ〉/(1 + E2/ε2).
The earlier work of Avron & Elgart ([7], §5), while mainly focusing on gapless bounded

Hamiltonians, discussed the adiabatic theorem for unbounded gapless Hamiltonians. They
required that both the resolvent R(z= i, s) and H(s)R′(z= i, s) be bounded. Essentially the same
assumption was made by Abou Salem [37, §2] in the context of non-normal generators.

Recent work [38,39] presents a refinement of the adiabatic theorem for a different case of
diverging ‖H′‖ that comes from the thermodynamic limit of the size of a many-body spin system.
While the authors do not present an explicit form for θ , we believe that their methods provide an
alternative way of removing the dimension d of the subspace PH, and in fact any dependence on
the system size, from the bound on local observables.

(b) Adiabatic intertwiner
Following Kato [20], we define an approximate evolution in the full Hilbert space H:

U′
ad(s) = −iHad(s)Uad(s), Uad(0) = I, s ∈ [0, 1], (2.9)

where Uad is called the adiabatic intertwiner and the (dimensionless) adiabatic Hamiltonian is

Had(s) = tf H(s) + i[P′(s),P(s)]. (2.10)

Note that both Had and Uad are tf -dependent. Here P(s) is a finite-rank projection on the low-
energy subspace of H(s) (i.e. the continuous-in-s subspace spanned by the eigenvectors with the
lowest d(s) eigenvalues6). A property of this approximation is that the low-energy subspace is
preserved:

Uad(s)P0 = P(s)Uad(s), (2.11)

where here and henceforth we denote P(0) by P0 and drop the s time-argument from P(s) where
possible. The proof of this intertwining property is well known and has been given many times
in various forms and subject to various generalizations; see e.g. [22,26,37,40,41] as well as our
appendix B. The idea (due to Kato [20], who presented the original proof; see his eqn (22)) is to
show that both sides solve the same initial value problem, i.e. equality holds at s= 0, and they
satisfy the same differential equation after differentiating by s. The latter can be shown using
equations (2.12) and (2.13) below.

The operator P′ has the following useful properties. Since P2 = P, we have

P′ = P′P + PP′. (2.12)

Multiplying by P on the right and letting Q≡ I − P, we obtain QP′P= P′P, i.e.

PP′P= 0 and QP′Q= 0, (2.13)

where the proof of QP′Q= 0 is similar. Thus P′ is block-off-diagonal:

P′ = PP′Q + QP′P. (2.14)

We also note that for a spatially local system the generator related to i[P′,P] is approximately a
sum of local terms [42]. This approximation is known as a quasi-adiabatic continuation [43], though
we will not discuss locality in this work.

6The number dP of these eigenvectors is thus constant and equal to the dimension of the subspace. Allowing for degeneracy,
dP ≥ d(s), and we use d(s) until §6, at which point we switch to dP.
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(c) Bounds on states and physical observables
We would like to bound certain physical observables via the quantity b defined in equation (1.3).
Since b bounds the difference between the actual and adiabatic evolution, we refer to b as the
‘diabatic evolution bound’.

We note that Kato’s adiabatic theorem [20] established that for bounded Hamiltonians, the
quantity [Uad(s) − Utot(s)]P0 tends to zero as 1/tf , but it will still take us most of the rest of this
paper to arrive at the point where we can state with conviction that the bound in equation (1.3)
does not diverge with the cutoff. This will require extra assumptions; indeed, there are contrived
unbounded Hamiltonians for which Kato’s quantity is arbitrarily large for any finite evolution
time tf .

Note that by using unitary invariance we can rewrite equation (1.3) as ‖x(s)‖ ≤ b, where

x(s) ≡ P0U†
ad(s)Utot(s) − P0. (2.15)

(i) Bound on the final state difference

Consider an initial state |φ〉 in the low-energy subspace (P0|φ〉 = |φ〉). We wish to compare the
evolution generated by Utot with that generated by Uad. Dropping the s time-argument from the
U’s, the difference in the resulting final states is

‖(Uad − Utot)|φ〉‖2 = ‖(Uad − Utot)P0|φ〉‖2 = 〈φ|((Uad − Utot)P0)†(Uad − Utot)P0|φ〉 (2.16a)

≤ ‖((Uad − Utot)P0)†(Uad − Utot)P0‖ ≤ ‖(Uad − Utot)P0‖2 = ‖(U†
totUad − I)P0‖2 (2.16b)

= ‖((U†
totUad − I)P0)†‖2 = ‖P0(U†

adUtot − I)‖2 = ‖x‖2 ≤ b2. (2.16c)

We use this quantity because we would like to describe the error in both the amplitude and the
acquired phase of the wave function.

(ii) Bound on leakage

If we are just interested in the leakage from the low-lying subspace, it can be expressed as

Pleak = 〈φ|U†
totQ0Utot|φ〉 = 〈φ|(Q0UtotP0)†Q0UtotP0|φ〉 ≤ ‖Q0UtotP0‖2. (2.17)

Then

‖Q0UtotP0‖ = ‖Q0(Utot − Uad)P0‖ ≤ ‖(Utot − Uad)P0‖ = ‖(U†
adUtot − I)P0‖ = ‖x‖ ≤ b, (2.18)

so that
Pleak ≤ b2. (2.19)

(iii) Bound on the error in an observable O

The expectation value for an observable O in the evolved state Utot|φ〉 as opposed to the
approximate state Uad|φ〉 differs by

〈φ|U†
totOUtot|φ〉 − 〈φ|U†

adOUad|φ〉 ≤ 2b‖O‖. (2.20)

To prove this, note that

Utot|φ〉 =Uad|φ〉 + �U|φ〉, �U ≡Utot − Uad, �U|φ〉 = −Utotx†|φ〉. (2.21)

Therefore,

〈φ|U†
totOUtot|φ〉 − 〈φ|U†

adOUad|φ〉 = 〈φU†
adO�U|φ〉 + 〈φ�†

UOUtot|φ〉 (2.22a)

≤ ‖U†
adOUtotx†‖ + ‖xU†

totOUtot‖ (2.22b)

≤ ‖O‖(‖x†‖ + ‖x‖), (2.22c)

from which equation (2.20) follows.
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One of the immediate consequences is that measuring Z (or any other unit-norm observable)
on one qubit in an n-qubit system after the evolution can be described by an approximate
evolution Uad to within an error of 2b + b2 in the expectation value.

(iv) Bound on the JRS quantity

The quantity appearing in the JRS bound (2.1) satisfies

‖Ptf − P‖ = ‖UtotP0U†
tot − UadP0U†

ad‖ = ‖U†
adUtotP0 − P0U†

adUtot‖
= ‖Q0U†

adUtotP0 − P0U†
adUtotQ0‖, (2.23)

where in the last equality we used Q0 = I − P0 and added/subtracted P0U†
adUtotP0.

Using the definition of x (equation (2.15)), we can write

P0U†
adUtot = P0 + x and U†

adUtotP0 = P0 − U†
adUtotx†, (2.24)

so that equation (2.23) becomes

‖Ptf − P‖ = ‖Q0U†
adUtotx†P0 + P0xQ0‖ = max(‖U†

adUtotx†‖, ‖x‖) = ‖x‖ ≤ b, (2.25)

where the second equality holds since Q0U†
adUtotx†P0 and P0xQ0 are two opposite off-diagonal

blocks and their eigenvalues do not mix, and the last equality follows from the unitary invariance
of the operator norm.

We proceed to explicitly express the bound b in the next subsection.

(d) Statement of the theorem
Collecting the definitions of the previous sections, we present our main result.

Theorem 2.1 (Adiabatic theorem). Assume that for all s ∈ [0, 1] there exist positive numbers
c0 and c1 such that the Hamiltonian H(s) satisfies

H′2 ≤ c0 + c1H2. (2.26)

Let P(s) denote the projection onto a continuous-in-s eigensubspace of the Hamiltonian H(s) corresponding
to d(s) eigenvalues, which occupies an interval r(s) in energy centred at zero energy and is separated by a
gap of 2�(s) from all other eigenvalues; see figure 1. Assume that the initial state |φ〉 ∈ P(0) ≡ P0. Then
the adiabatic intertwiner Uad (the solution of equation (2.9)) satisfies the following bounds on its difference
from the true evolution Utot:

‖P0U†
adUtot − P0‖ ≤ b, ‖(Uad − Utot)P0‖ ≤ b,

‖(Uad − Utot)|φ〉‖ ≤ b, ‖UtotP0U†
tot − UadP0U†

ad‖ ≤ b, (2.27)

where b= θ/tf with θ given by

θ = τ 2(0)‖P0H′(0)Q0‖ + τ 2(s∗)‖P(s∗)H′(s∗)Q(s∗)‖

+
∫ s∗

0
ds

⎡
⎣τ 3(5‖PH′Q‖ + 3‖PH′P‖)‖PH′Q‖

+τ 2‖PH′′Q‖ + 3τ 3

√√√√ 1∑
k=0

ck‖PH′HkQ‖2

⎤
⎦ , (2.28)
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E, Re z

Q

P

Q

rΓ

>2�

>2�

Im z

Figure 1. An illustration of the integration contour and the various quantities that appear in the statement of theorem 2.1.
(Online version in colour.)

Here tf is the total evolution time, s∗ ∈ [0, 1] is the final value of s and

τ = min

(√
d(s)

�(s)
,

2r(s) + 2π�(s)
2π�2(s)

)
. (2.29)

Another valid θ can be obtained from equation (2.28) by replacement:

τ‖PH′HQ‖ → ‖PH′Q‖
(

1 + min

(√
d(s)

2�(s)
r(s),

2r(s) + 2π�(s)
4π�2(s)

(r(s) + 2�(s))

))
. (2.30)

Note that the first three inequalities stated in equation (2.27) were already established in
equations (2.16), and the last was established in equation (2.23) along with equation (2.25). The
new aspect of theorem 2.1 is the value of the bound θ , which does not involve ‖H′‖ or higher
derivatives that may diverge with the cutoff used to define H(s). Moreover, ‖PH′Q‖ gives a tighter
bound than the ‖H′‖L(D,H) that would have been obtained from direct translation of the adiabatic
theorem for unbounded Hamiltonians given in [8]. Indeed,

‖PH′Q‖ = ‖QH′P‖ ≤ ‖H′P‖

= maxψ∈PH, ‖ψ‖=1‖H′ψ‖ ≤ ‖H′‖L(D,H)

√
1 + ‖Hψ‖2/ε2 (2.31a)

≤ ‖H′‖L(D,H)

√
1 + r(s)2/(4ε2). (2.31b)

In terms of c0 and c1, ‖PH′Q‖ ≤
√
c0 + c1r(s)2/4. When the above inequalities are tight, our

bound would match the one that could in principle be obtained from [8]. However, in many
relevant cases, such as a harmonic oscillator with small time-dependent anharmonicity, ‖PH′Q‖
is parametrically less than the r.h.s. We also find the form of PH′Q to be more insightful than
‖H′‖L(D,H).

Since the constants c0 and c1 depend on the choice of the constant energy offset, we chose zero
energy to lie in the middle of the eigenvalues corresponding to PH. We note that for bounded
H′ the assumption (2.26) is automatically satisfied with c1(s) = 0 and c0(s) = ‖H′‖2, since H′2 −
‖H′‖2I ≤ 0 (a negative operator) by definition of the operator norm. Using this, we can reduce
equation (2.28) to a form that depends on ‖H′‖, which allows direct comparison to equation (2.1)
(from [25]) using τ = √

d/�, as follows.
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Corollary 2.2. The JRS adiabatic timescale θ JRS(s∗) and the weaker version of our new adiabatic
timescale θnew(s∗) are

θ JRS(s∗) = d‖H′‖
�2

∣∣∣∣
s=0

+ d‖H′‖
�2

∣∣∣∣
s=s∗

+
∫ s∗

0

(
d‖H′′‖

�2 + 7d
√
d
‖H′‖2

�3

)
ds (2.32a)

and

θnew(s∗) = d‖PH′Q‖
�2

∣∣∣∣
s=0

+ d‖PH′Q‖
�2

∣∣∣∣
s=s∗

+
∫ s∗

0

(
d‖PH′′Q‖

�2 + d
√
d
‖PH′Q‖(5‖PH′Q‖ + 3‖PH′P‖ + 3‖H′‖)

�3

)
ds. (2.32b)

We see that, though our new adiabatic timescale has slightly larger numerical coefficients, the
projected form of the operators can provide a qualitative improvement over the JRS result.7 Note
that we can also write a bound that is free of the dimension d if the second option for τ in equation
(2.29) is smaller than the first.

3. Diabatic evolution bound
We will calculate a diabatic evolution bound b on the quantity in equation (1.3) for some s∗ ∈ [0, 1]:

‖[Uad(s∗) − Utot(s∗)]P(0)‖ = ‖f (s∗) − P0‖, (3.1)

where
f (s) ≡ P0U†

ad(s)Utot(s) = x(s) + P0. (3.2)

We would like to express f (s∗) via f ′(s) as

f (s∗) = P0 +
∫ s∗

0
f ′(s) ds. (3.3)

Recalling that Utot satisfies equation (1.1) and Uad satisfies equation (2.9), the derivative is

f ′(s) = P0(U†
ad

′
Utot + U†

adU
′
tot) = P0U†

ad(itf H − [P′†,P] − itf H)Utot = −P0U†
ad[P′,P]Utot, (3.4)

where we used P′† = P′. Note how the O(tf ) term cancelled out, so the expression appears to be
O(1). However, it is in fact O(1/tf ), as we show next.

For any operator X(s) define X̃(s) (‘twiddle-X’) [22] such that

[X(s),P(s)] = [H(s), X̃(s)] (3.5)

and the diagonal of X̃ in the eigenbasis of H(s) is zero. Note that X̃ has units of time relative to X.
For instance, P′∼ is defined by8

[P′(s),P(s)] = [H(s),P′∼(s)]. (3.6)

The details of why X̃ exists and how it is expressed via X are given in §4. Proceeding with
bounding equation (3.4), we can now rewrite it as

f ′(s) = −P0U†
ad[H,P′∼]Utot. (3.7)

Note that using equations (1.1) and (2.9) we have

(U†
adP

′∼Utot)′ =U†
ad(itf HP′∼−[P′,P]P′∼+P′∼′ − P′∼itf H)Utot, (3.8)

7We emphasize that θnew did not appear in the derivation of θ JRS, though some intermediate formulas arrived at in [25] may
seem similar at first glance. The derivation of θ JRS involves bounds on ‖P′‖, whereas in our case P and Q do not involve
derivatives and serve to reduce the norm of H′ or H′′ in between them.
8Our convention is that the tilde takes precedence over derivatives, i.e. X̃′ ≡ (X̃)′. When the derivative is to be taken first, we
write the tilde to the right of the operator, i.e. X′∼ ≡ (X′)∼.
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which we can rearrange as

U†
ad[H,P′∼]Utot = 1

itf
[(U†

adP
′∼Utot)′ + U†

ad([P′,P]P′∼−P′∼′)Utot]. (3.9)

Using this in equation (3.4), we obtain the desired O(1/tf ) scaling:

f ′(s) = iP0

tf
[(U†

adP
′∼Utot)′ − U†

ad(P′P′∼+P′∼′)Utot], (3.10)

where by using equation (2.11) we simplified one term in the commutator as P0U†
adP= P0U†

ad,
and also by using equation (2.13) we have P0U†

adP
′P=U†

adPP
′P= 0, so that the other term with

P′P in the commutator vanishes. Plugging this back into equation (3.3), we get

f (s∗) − P0 = iP0

tf

(
(U†

adP
′∼Utot)

∣∣s∗
0 −

∫ s∗

0
U†

ad(P′P′∼+P′∼′)Utot ds

)
. (3.11)

Using P0U†
ad =U†

adP throughout, this results in the following bound on the quantity in
equation (3.1) we set out to bound:

‖[Uad(s∗) − Utot(s∗)]P(0)‖ = ‖f (s∗) − P0‖ ≤ b= θ

tf
, (3.12a)

where

θ = ‖P0P′∼(0)‖ + ‖P(s∗)P′∼(s∗)‖ +
∫ s∗

0
‖PP′P′∼‖ + ‖PP′∼′‖ ds. (3.12b)

The adiabatic timescale θ given here is not particularly useful in its present form. So we next
set out to find bounds on each of the quantities involved. Our goal will be to bound everything
in terms of block-off-diagonal elements of H and its derivatives, i.e. terms of the form ‖PHQ‖,
‖PH′Q‖ etc.

4. Bounds via the resolvent formalism
Some of the material in this section closely follows Jansen et al. (JRS) [25], adjusted for clarity
for our purposes. We start from the well-known resolvent formula and then develop various
intermediate bounds we need for the final result.

(a) Twiddled operators
If Γ is a positively oriented loop in the complex plane encircling the spectrum associated with an
orthogonal eigenprojection P of a Hermitian operator H, then [44]

P= i
2π

∮
Γ

(H − z)−1 dz, (4.1)

where (H − z)−1 is known as the resolvent.
Using this, it was shown in lemma 2 of [25] that for every operator X there is a solution X̃

to equation (3.5) if the eigenvalues in P are separated by a gap in H. This solution is written as
follows in terms of contour integrals involving the double resolvent:9

X̃= 1
2π i

∮
Γ

(H − z)−1X(H − z)−1dz= −[(X†)∼]†, (4.2)

where the contour Γ again encircles the portion of the spectrum within P. Here X̃ is block-off-
diagonal. The twiddle operation was introduced in [22], where it was defined via equation (4.2).

9Equation (4.2) is (up to a minus sign) how the twiddle operation was originally defined in [22, eqn (2.11)].
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Note that since P and Q both commute with H, we can move both P and Q under the twiddle
sign, i.e. using equation (4.2) we have

PX̃= (PX)∼, QX̃= (QX)∼, X̃P= (XP)∼, X̃Q= (XQ)∼, (4.3a)

PX̃Q= (PXQ)∼ and QX̃P= (QXP)∼. (4.3b)

Also note that X̃ is block-off-diagonal [25], i.e.

PX̃P=QX̃Q= 0, (4.4a)

PX̃= PX̃Q= X̃Q and QX̃=QX̃P= X̃P. (4.4b)

(b) Bound on P′
By definition, [P,H] = 0. Differentiating, we obtain

[H′,P] = [P′,H]. (4.5)

We also know that P′ is block-off-diagonal, so by definition (equation (3.5))

P′ = −H′∼. (4.6)

But the tilde operation depends only on the block-off-diagonal elements of H′, so that

P′ = −(PH′Q + QH′P)∼, (4.7)

which implies that as long as this quantity is bounded, P′ is as well: ‖P′‖ = ‖(PH′Q + QH′P)∼‖.

(c) Bound on X̃
Suppose that the spectrum of H(s) (its eigenvalues {Ei(s)}) restricted to P(s) consists of d(s)
eigenvalues (each possibly degenerate, with crossing permitted) separated by a gap of 2�(s) from
the rest of the spectrum of H(s). That is, d(s) ≤ d, the dimension of the low-energy subspace. Under
these assumptions, JRS proved the following bound in their lemma 7:

‖X̃(s)‖ ≤
√
d(s)

�(s)
‖X‖. (4.8)

We will also use an alternative bound that did not appear in [25]. We start with

‖(H(s) − z)−1‖ = max
i

1
|Ei(s) − z| ≤ 1

�(s)
(4.9)

for z on the contour Γ in equation (4.2), illustrated in figure 1. This contour is of length 2r(s) +
2π�(s) where r is the spectral diameter of PH with respect to H. Since P(s) is a spectrum projector,
PH has a basis of eigenvectors of H(s) with eigenvalues λPi , and we can define

r(s) = max
{|φmin〉,|φmax〉: ‖|φ〉‖=1,P|φ〉=|φ〉}

(〈φmax|H(s)|φmax〉 − 〈φmin|H(s)|φmin〉)
= [max

i
λPi − miniλ

P
i
]
. (4.10)

So, bounding the solution X̃(s) from equation (4.2) directly results in

‖X̃(s)‖ ≤ 2r(s) + 2π�(s)
2π�2(s)

‖X‖. (4.11)

This new bound can be tighter than equation (4.8) because it does not depend on d, though this
can be offset by � and r.
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As stated in theorem 2.1, we define τ via equation (2.29) and combine the bounds (4.8) and
(4.11) to obtain

‖X̃(s)‖ ≤ τ (s)‖X‖. (4.12)

Here, τ roughly means the adiabatic timescale. The bound (4.12) can be seen as one of the main
reasons for introducing the twiddle operation. We will use it repeatedly below. We will omit the
s-dependence of τ and X̃ whenever possible in what follows. Note that if Y is any operator that
commutes with H, then by equation (4.2) we have X̃Y= (XY)∼ and YX̃= (YX)∼. Therefore

‖X̃Y‖ ≤ τ‖XY‖ and ‖YX̃‖ ≤ τ‖YX‖ if [Y,H] = 0. (4.13)

Likewise, using equations (4.3), (4.4) and (4.12) we can remove a twiddle under the operator
norm for the price of a factor of τ while inserting P and Q at will:

‖PX̃‖ = ‖X̃Q‖ = ‖PX̃Q‖ = ‖(PXQ)∼‖ ≤ τ‖PXQ‖. (4.14)

(d) Combining everything into the diabatic evolution bound
We now combine the various intermediate results above to bound the r.h.s. of equation (3.12).

Together with ‖X̃‖ ≤ τ‖X‖ (equation (4.12)), equation (4.3) yields ‖P(s)P′∼(s)‖ ≤ τ‖P(s)P′(s)‖.
Thus, equation (3.12) becomes

‖f (s∗) − P0‖ ≤ 1
tf

(
τ (0)‖P0P′(0)‖ + τ (s∗)‖P(s∗)P′(s∗)‖ +

∫ s∗

0
‖PP′P′∼‖ + ‖PP′∼′‖ ds

)
. (4.15)

Now, using [P,H] = 0 and PP′P= 0, note that

PP′P′∼P= PP′ 1
2π i

∮
Γ

(H − z)−1P′P(H − z)−1 dz

= PP′ 1
2π i

∮
Γ

(H − z)−1(P′ − PP′)(H − z)−1 dz (4.16)

= PP′ 1
2π i

∮
Γ

(H − z)−1P′(H − z)−1 dz= PP′P′∼. (4.17)

Also, ‖PP′‖ = ‖(PP′)†‖ = ‖P′P‖ (since P and P′ are Hermitian), so by using equation (4.3) we obtain

‖PPP′∼P‖ = ‖PP′(P′P)∼‖ ≤ ‖PP‖‖(P′P)∼‖ ≤ ‖PP′‖(τ‖P′P‖) = τ‖PP′‖2. (4.18)

Thus

θ =
(

τ (0)‖P0P′(0)‖ + τ (s∗)‖P(s∗)P′(s∗)‖ +
∫ s∗

0
τ‖PP′‖2 + ‖PP′∼′‖ ds

)
. (4.19)

We multiply equation (4.7) from the left by P to give

PP′ = −P(PH′Q + QH′P)∼=−(PH′Q)∼, (4.20)

where we used equation (4.3). Therefore, using ‖X̃‖ ≤ τ‖X‖ again, we find that

‖f (s∗) − P0‖ ≤ θ

tf
(4.21a)

where

θ = τ 2(0)‖P0H′(0)Q0‖ + τ 2(s∗)‖P(s∗)H′(s∗)Q(s∗)‖ +
∫ s∗

0
(τ 3‖PH′Q‖2 + ‖PP′∼′‖) ds. (4.21b)

We have nearly achieved the goal of expressing the diabatic evolution bound in terms of block-
off-diagonal elements of H and its derivatives. The last term is not yet in this form and will require
the development of additional tools, which we do next.
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(e) Derivative of the resolvent formula
To take derivatives of the twiddled expressions, we need to differentiate the resolvent R(z, s) =
(H(s) − z)−1. By differentiating the identity (H(s) − z))R(z, s) = I we obtain

∂

∂s
R(z, s) = −R(z, s)H′(s)R(z, s). (4.22)

We will apply the derivative formula to our derivation. For example, using equation (4.2) we
obtain

P′∼ = 1
2π i

∮
Γ

(H − z)−1P′(H − z)−1 dz, (4.23)

and hence taking the derivative results in

P′∼′ = 1
2π i

∮
(H − z)−1[−H′(H − z)−1P′ + P′′ − P′(H − z)−1H′](H − z)−1 dz. (4.24)

To bound this expression, we need to prove one more fact.

(f) Fact about a triple resolvent
We will need to analyse expressions of the form

F(A,B) = 1
2π i

∮
(H − z)−1A(H − z)−1B(H − z)−1 dz, (4.25)

which we will use with A,B=H′ for the norm of P′′ and A,B=H′,P′ for the bound on P′∼′ above.
That is,

P′∼′ = −F(H′,P′) + P′′∼−F(P′,H′). (4.26)

JRS proved a bound on F(A,B). Since F(A,B) has both diagonal and off-diagonal blocks, they
found the bound for each block. We review their proof below, starting from a useful expression
for the triple resolvent.

Consider the commutator with the Hamiltonian:

[H, F(A,B)] = 1
2π i

∮
[H − z, (H − z)−1A(H − z)−1B(H − z)−1] dz=AB̃ − ÃB, (4.27)

where we have inserted z since it is not an operator and therefore commutes with the other term,
and where the second equality follows from equation (4.2).

Let us denote the off-diagonal block projection by o(X) = PXQ + QXP= [P, (P − Q)X]. Note
that P and Q commute with H, so when we apply [P, (P − Q) ·] to both sides of the above equation,
we get, after some simple algebra,

[H, o(F(A,B))] = [−(P − Q)(AB̃ − ÃB),P]. (4.28)

Now we can apply the definition of the twiddle operation, [H, X̃] = [X,P] (with X= −(P −
Q)(AB̃ − ÃB)), to equation (4.28). It follows that

o[F(A,B)] = −{(P − Q)(AB̃ − ÃB)}∼. (4.29)

Lemma 4.1. Multiplication by (P − Q) commutes with the twiddle operation, i.e. {(P − Q)X}∼ =
(P − Q)X̃.

Proof. To prove this statement we need to show that Y= {(P − Q)X}∼ and Y′ = (P − Q)X̃ satisfy
the same defining equation and are both block-off-diagonal. The defining equation of the first
is [H,Y] = [(P − Q)X,P] = (P − Q)XP − PX. As for the second, note that if we multiply [H, X̃] =
[X,P] by (P − Q) then, since H commutes with P − Q, we obtain [H,Y′] = (P − Q)[X,P] = (P −
Q)XP − PX= [H,Y]. Thus Y′ satisfies the same defining equation as Y. Moreover, by equation
(3.5), Y= {(P − Q)X}∼ is a block-off-diagonal operator, and so is X̃, so that (P − Q)X̃ is thus also
block-off-diagonal. �
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Thus, by equation (4.29),

o[F(A,B)] = −(P − Q)(AB̃ − ÃB)∼. (4.30)

For the block-diagonal part, we need to apply a different strategy. By pole integrations identical
to those in [25], which only require that there be a finite number of eigenvalues inside the low-
energy subspace, we can prove that

F(A,B) − o[F(A,B)] = (P − Q)ÃB̃. (4.31)

Combining the last two results, we finally obtain (the same as equation (13) in [25])

F(A,B) = (P − Q)[ÃB̃ − (AB̃ − ÃB)∼]. (4.32)

Now, using equations (4.2), (4.6) and (4.22), we can express P′′ as

P′′ = −H′∼′ = 1
π i

∫
(H − z)−1H′(H − z)−1H′(H − z)−1 dz − H′′∼. (4.33)

It then follows from equation (4.32) that

P′′ = 2(P − Q){(H′∼)2 − [H′,H′∼]∼} − H′′∼. (4.34)

(g) Bounding the last term in the diabatic evolution bound
We are interested in bounding the last term in equation (4.21), which by using equation (4.26) we
can write as

‖PP′∼′‖ = ‖P(−F(H′,P′) − F(P′,H′) + P′′∼)‖. (4.35)

We now use F(A,B) = (P − Q)[ÃB̃ − (AB̃ − ÃB)∼] (equation (4.32)) to write

‖PP′∼′‖ = ‖P(−H′∼P′∼+(H′P′∼−H′∼P′)∼−P′∼H′∼+(P′H′∼−P′∼H′)∼+P′′∼)‖. (4.36)

Recall that P′ = −H′∼ (equation (4.6)), so that

‖PP′∼′‖ = ‖P(−H′∼P′∼+(H′P′∼)∼−P′∼H′∼−(P′∼H′)∼+P′′∼)‖. (4.37)

Repeatedly using the fact that twiddled operators are block-off-diagonal and using equation
(4.14), we find that

‖PH′∼P′∼‖ = ‖PH′∼QP′∼‖ = ‖PH′∼QP′∼P‖ ≤ ‖PH′∼Q‖‖P′∼P‖ ≤ τ 2‖PH′Q‖‖PP′‖, (4.38)

where in the last inequality we used equation (4.2) and the fact that both P and P′ are Hermitian
to write ‖P′∼P‖ = ‖(PP′∼)†‖ = ‖PP′∼‖. Similarly,

‖P(H′P′∼)∼‖ = ‖P(H′P′∼)∼Q‖ ≤ τ‖PH′(P′∼Q)‖ = τ‖PH′P(PP′∼)‖ ≤ τ‖PH′P‖‖PP′∼‖
≤ τ 2‖PH′P‖‖PP′‖, (4.39)

where in the second equality we used PX̃= X̃Q (equation (4.4b)). The remaining terms in equation
(4.37) are similarly bounded:

‖PP′∼H′∼‖ = ‖PP′∼QH′∼‖ = ‖PP′∼QH′∼P‖
≤ ‖PP′∼‖‖PH′∼Q‖ ≤ τ 2‖PH′Q‖‖PP′‖, (4.40a)

‖P(P′∼H′)∼‖ ≤ τ‖PP′∼H′‖ (4.40b)

and ‖PP′′∼‖ ≤ τ‖PP′′‖. (4.40c)

Combining these bounds yields

‖PP′∼′‖ ≤ τ 2(2‖PH′Q‖ + ‖PH′P‖)‖PP′‖ + τ (‖PP′∼H′‖ + ‖PP′′‖) (4.41a)

≤ τ 3(2‖PH′Q‖ + ‖PH′P‖)‖PH′Q‖ + τ (‖PP′∼H′‖ + ‖PP′′‖), (4.41b)

where in the second line we used ‖PP′‖ = ‖PH′∼‖ = ‖PH′∼Q‖ ≤ τ‖PH′Q‖.
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Finally, we use equation (4.34) for P′′ to obtain

‖PP′′‖ = ‖2P(H′∼)2 − 2P[H′,H′∼]∼−PH′′∼‖ (4.42a)

= 2‖PH′∼QH′∼P‖ + 2‖P(H′H′∼)∼Q‖ + 2‖P(H′∼H′)∼‖ + ‖PH′′∼‖ (4.42b)

≤ 2‖PH′∼Q‖‖QH′∼P‖ + 2τ‖PH′H′∼Q‖ + 2τ‖PH′∼H′‖ + ‖PH′′∼‖ (4.42c)

≤ 2τ 2(‖PH′Q‖ + ‖PH′P‖)‖PH′Q‖ + 2τ‖PH′∼H′‖ + τ‖PH′′Q‖. (4.42d)

To deal with the two terms that still contain ∼(‖PP′∼H′‖ and ‖PH′∼H′‖), we have no choice
but to use the constants c0 and c1 introduced in §2:

H′2 ≤ c0 + c1H2. (4.43)

We use this assumption as follows. First, it implies that PH′∼H′2H′∼P≤∑1
k=0 ckPH

′∼H2kH′∼P.
Hence, upon taking norms of both sides,

‖PH′∼H′‖2 = ‖PH′∼H′2H′∼P‖ ≤
1∑

k=0

ck‖PH′∼H2kH′∼P‖

=
1∑

k=0

ck‖PH′∼Hk‖2 =
1∑

k=0

ck‖P(H′Hk)∼‖2

≤
1∑

k=0

ckτ
2‖PH′HkQ‖2, (4.44)

where in the first equality we used ‖A‖2 = ‖AA†‖ and in the last equality we made use of X̃Y=
(XY)∼ when [Y,H] = 0 and then applied equation (4.14).

Similarly, using P′ = −H′∼,

‖PP′∼H′‖2 = ‖PH′∼∼H′‖2 = ‖PH′∼∼H′2H′∼∼P‖ ≤
1∑

k=0

ck‖PH′∼∼H2kH′∼∼P‖

=
1∑

k=0

ck‖PH′∼∼Hk‖2 ≤
1∑

k=0

ckτ
4‖PH′HkQ‖2. (4.45)

The quantity ‖PH′HQ‖ appearing for k= 1 is usually well behaved with Λ, as we will see in
examples in §5. In case it is not, we need to take a step back and recall that we obtained it via the
bound ‖P(H′H)∼Q‖ ≤ τ‖PH′HQ‖, which follows from equation (4.14). We thus consider undoing
this bound and replacing τ‖PH′HQ‖ with ‖P(H′H)∼Q‖. Using the definition of the ∼ operation
(equation (4.2)),

P(H′H)∼Q= P
1

2π i

∮
Γ

(H − z)−1H′(H − z + z)(H − z)−1Qdz (4.46a)

= PH′Q + P
1

2π i

∮
Γ

z(H − z)−1H′(H − z)−1Qdz, (4.46b)

where to obtain the second equality we used (P/(2π i))
∮

Γ (H − z)−1 dzH′Q= PPH′Q.
The choice of zero energy right in the middle of the eigenvalues corresponding to PH ensures

that |z| ≤ r/2 + � for z ∈ Γ (figure 1). Using this fact along with equation (4.11) then results in the
bound

‖P(H′H)∼Q‖ ≤ ‖PH′Q‖
(

1 + τnew

( r
2

+ �
))

, where τnew ≡ 2r + 2π�

2π�2 . (4.47)

Alternatively, a slight adjustment to the derivation in [25] gives

‖P(H′H)∼Q‖ ≤ ‖PH′Q‖
(

1 + τJRSr
2

)
, where τJRS ≡

√
d(s)

�(s)
. (4.48)
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Combining equations (4.47) and (4.48), we obtain an alternative form for our bound:

τ‖PH′HQ‖ → ‖PH′Q‖
(

1 + min
(
τnew

( r
2

+ �
)

, τJRS
r
2

))
. (4.49)

Collecting all these bounds into equations (4.41) and (4.42), we obtain

‖PP′∼′‖ ≤ τ 3
(

(2‖PH′Q‖ + ‖PH′P‖)‖PH′Q‖ +
√∑

k

ck‖PH′HkQ‖2 + 2‖PH′Q‖2
)

(4.50a)

+ 2τ 3
(

‖PH′P‖‖PH′Q‖ +
√∑

k

ck‖PH′HkQ‖2
)

+ τ 2‖PH′′Q‖ (4.50b)

= τ 3(4‖PH′Q‖ + 3‖PH′P‖)‖PH′Q‖ + τ 2‖PH′′Q‖ + 3τ 3
√∑

k

ck‖PH′HkQ‖2. (4.50c)

We are now ready to write down the diabatic evolution bound in its final form, by combining
equations (1.3), (3.1), (4.21) and (4.50):

‖[Uad(s∗) − Utot(s∗)]P0‖ ≤ θ

tf
(4.51a)

with θ = τ 2(0)‖P0H′(0)Q0‖ + τ 2(s∗)‖P(s∗)H′(s∗)Q(s∗)‖

+
∫ s∗

0
ds
[
τ 3(5‖PH′Q‖ + 3‖PH′P‖)‖PH′Q‖

+ τ 2‖PH′′Q‖ + 3τ 3
√∑

k

ck‖PH′HkQ‖2
]

, (4.51b)

where the expression for θ coincides with the one in equation (2.28) and hence serves as the end
of the proof of theorem 2.1. It is worth recalling here also that τ contains a gap dependence via
equation (2.29).

Note that despite appearances due to the block-off-diagonal form of this bound, all of the terms
involved can be bounded by norms of some dP × dP matrices (where dP = rank(P)):

‖PH′Q‖ ≤
√

‖PH′2P‖ and ‖PH′HQ‖ ≤
√

‖PH′H2H′P‖, (4.52)

where the inequalities follow by writing (for any Hermitian operator A) ‖PAQ‖ =
max|v〉,|w〉〈v|PAQ|w〉 ≤ max|v〉,|w〉〈v|PA|w〉 = ‖PA‖ and ‖PA‖2 = ‖PA(PA)†‖ ≤ ‖PA2P‖, so that ‖PAQ‖2 ≤
‖PA2P‖.

Before we proceed, let us comment briefly on a physical consequence of the bound ‖[Uad(s∗) −
Utot(s∗)]P0‖ ≤ θ/tf that we have just proven (equation (4.51)). In §2c(iii), we gave a bound on the
difference in expectation value of an observable O between the exact and the adiabatic evolution.
Suppose that O is a unit-norm observable such as the Pauli matrix σ z ≡Z or σ x ≡X; measuring Z
on a single qubit in an n-qubit system is a standard ‘computational basis’ measurement. For this
example, equation (2.20) then becomes

〈φ|U†
totZUtot|φ〉 − 〈φ|U†

adZUad|φ〉 ≤ 2θ

tf
. (4.53)

This means that a measurement of Z at tf has an expectation value that—provided θ/tf � 1—is
well described by an expectation value computed from the evolution Uad that never leaves the
low-energy subspace, which is the qubit subspace. The error between the two is given by the
bound above. In §6, we discuss the effective Hamiltonian (a qubit Hamiltonian for this example)
generating this approximate evolution in more detail, with the aim of providing a recipe for
numerical simulations of qubit Hamiltonians that can predict the outcomes of superconducting
circuit experiments.
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M: mutual inductance matrix

p1

x1 x2 x3

p2 p3

Figure 2. The circuit corresponding to equation (5.1). The horizontal line above the inductors indicates that each pair is coupled
via a mutual inductanceMij , and the self-inductance is the diagonalMii . (Online version in colour.)

5. Examples
We consider examples motivated by adiabatic quantum computing and quantum annealing with
flux qubits [33,45–48]. We first discuss inductively coupled flux qubits in terms of generic circuit
Hamiltonians. We use theorem 2.1 to derive general bounds on the deviation between the actual
evolution described by these circuit Hamiltonians and the evolution in the desired low-energy
subspace defined by P. Next we discuss specific models of single flux qubits, for which we can
explicitly exhibit the dependence of our bounds on the circuit parameters.

(a) Application to coupled flux qubits
An interesting example is the circuit Hamiltonian describing inductively coupled superconducting
flux qubits [49]:

Hflux(s) =
∑
i

p̂2
i + Bi(s) cos(x̂i + ϕi(s)) +

∑
ij

Mij(s)x̂ix̂j, (5.1)

where p̂i and x̂i are canonically conjugate momentum and position operators, respectively. The
remaining quantities are scalar control parameters: the ϕi are control fluxes, the Mij are matrix
elements of the mutual inductance matrix, and the Bi are barrier heights depending on more
control fluxes [30]. A simplified circuit described by this equation is shown in figure 2. For
notational simplicity, we drop the hat (operator) notation below.

The Hamiltonian Hflux(s) is defined over an infinite-dimensional Hilbert space and is
unbounded: ‖Hflux(s)‖ = max|v〉〈v|Hflux(s)|v〉 is infinite for |v〉 maximized over a typical Hilbert
space. One such space can be defined by choosing

H0 =
∑
i

p2
i + Mii(0)x2

i (5.2)

and considering eigenvectors |v〉 =⊗i |ni〉 of this collection of harmonic oscillators. Clearly, in
some contexts in physics, arbitrarily high ni will appear as a physical state, which would lead
to arbitrarily large 〈v|p2

i |v〉, 〈v|x2
i |v〉, 〈v|H0|v〉 and 〈v|Hflux(s)|v〉. Indeed, the operators involved

would normally be referred to as unbounded. We note that in the definition of the norm ‖ · ‖L(D,H)
[8] discussed in §2a, these operators are bounded with respect to the Hamiltonian. We choose
instead to impose a cutoff on the Hamiltonian directly. This allows us to make comparisons
with the JRS result, which requires a finite-dimensional Hamiltonian. Consider a projector PΛ

on states with all ni ≤ Λ, and for any operator O on the original infinite-dimensional Hilbert
space define OΛ as the finite-dimensional matrix that is the PΛ block of PΛOΛPΛ. Now,
using the standard definition of the norm for finite-dimensional matrices, we can get ‖pΛ

i ‖ =
Θ(

√
Λ), ‖xΛ

i ‖ = Θ(
√

Λ), ‖HΛ
0 ‖ = Θ(Λ) and ‖HΛ

flux(s)‖ = Θ(Λ). Below we will omit the superscript
Λ, but all the expressions that follow are understood to hold in this finite-dimensional space.
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(i) Constant mutual inductance matrix

We first consider the case where Mij(s) =Mij. As we shall see, in this case ‖H′‖ does not grow
with the cutoff, H′2 ≤ c0 is sufficient, and previously developed bounds such as that of JRS will
not depend on the cutoff either, although recall that by corollary 2.2 we can obtain a tighter bound.

The derivative is

H′
flux(s) =

∑
i

B′
i(s) cos(xi + ϕi(s)) − Bi(s)ϕ

′
i(s) sin(xi + ϕi(s)), (5.3)

and we note that

‖H′
flux(s)‖ ≤

∑
i

|B′
i(s)| + Bi(s)|ϕ′

i(s)| =
√
c0(s), (5.4)

where as long as Bi(s) and ϕi(s) are smooth functions of s, then c0(s) is finite, does not depend on
the cutoff Λ and has dimensions of energy,

c0(s) =
(∑

i

|B′
i(s)| + Bi(s)|ϕ′

i(s)|
)2

. (5.5)

The final error upper bound (equation (2.28)) simplifies to

θ = τ 2(0)‖P0H′(0)Q0‖ + τ 2(s∗)‖P(s∗)H′(s∗)Q(s∗)‖

+
∫ s∗

0
ds
[
τ 3(5‖PH′Q‖ + 3‖PH′P‖)‖PH′Q‖ (5.6a)

+ τ 2‖PH′′Q‖ + 3τ 3√c0 ‖PH′Q‖
]
. (5.6b)

Now, since in this example ‖H′(s)‖ is finite and Λ-independent for all s, in fact the projection P
is not necessary and known bounds are already Λ-independent. Indeed, the JRS bound for θ (s∗)
quoted in equation (2.1) is clearly Λ-independent for the present example (recall corollary 2.2)).
Thus, in the next subsection, we consider an example where ‖H′(s)‖ diverges with Λ.

(ii) Time-dependent mutual inductance matrix

Generally, to implement a standard adiabatic quantum computing or quantum annealing
protocol, the mutual inductance matrix Mij cannot be constant (e.g. see [46]). Thus we
consider a second example of a circuit Hamiltonian of superconducting flux qubits, which
is more appropriate for both quantum annealing and our purpose of demonstrating the case
of unbounded Hamiltonians with cutoff. Consider the Hamiltonian in equation (5.1) and its
derivative

H′
flux(s) =

∑
i

B′
i(s) cos(xi + ϕi(s)) − Bi(s)ϕ

′
i(s) sin(xi + ϕi(s)) +

∑
ij

M′
ij(s)xixj. (5.7)

The term M′
ij(s)xixj, containing the derivative of the time-dependent mutual inductance matrix,

now grows arbitrarily large in norm with Λ because of the xixj terms (recall that the xi are
operators), so that the JRS version of the adiabatic theorem (equation (2.1)) has an adiabatic
timescale that is arbitrarily large in Λ and we need to resort to theorem 2.1. Note that Mij(s) is
always a positive matrix. Denote its lowest eigenvalue by l= min λM. Then we can bound

M≥ lI �⇒
∑
ij

Mij(s)xixj ≥ l
∑
i

x2
i . (5.8)

Note also that

‖M′‖I ≥M′ �⇒ ‖M′‖
∑
i

x2
i ≥
∑
ij

M′
ij(s)xixj, (5.9)
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so that we obtain
‖M′‖
l

∑
ij

Mij(s)xixj ≥
∑
ij

M′
ij(s)xixj. (5.10)

Substituting this inequality into equation (5.7), we have

H′
flux(s) ≤

∑
i

|B′
i(s)| + Bi(s)|ϕ′

i(s)| + ‖M′‖
l

∑
ij

Mij(s)xixj. (5.11)

We now add a (positive) p2 term and add and subtract the cos term to complete the Hamiltonian:

H′
flux(s) ≤

∑
i

(|B′
i(s)| + Bi(s)|ϕ′

i(s)|) + ‖M′‖
l

Hflux(s) − ‖M′‖
l

Bi(s) cos(xi + ϕi(s)). (5.12)

Bounding the last term in the same way as the first two, we obtain

H′
flux(s) ≤

∑
i

(|B′
i(s)| + Bi(s)|ϕ′

i(s)|) + ‖M′‖
l

Hflux(s) + ‖M′‖
l

∑
i

|Bi(s)|. (5.13)

Let a0 =∑i(|B′
i(s)| + Bi(s)|ϕ′

i(s)|) + (‖M′‖/l)|Bi(s)| and a1 = ‖M′‖/l; then H′
flux ≤ a0 + a1Hflux. For

the square of the derivative, we obtain

H′2
flux ≤ (a0 + a1Hflux)2 ≤ (a0 + a1Hflux)2 + (a0 − a1Hflux)2 ≤ 2a2

0 + 2a2
1H

2
flux. (5.14)

Thus the constants we defined in the general notation of equation (2.26) are
√
c0 = √

2a0 and
√
c1 =√

2a1 or, explicitly,

√
c0 =

√
2
∑
i

(|B′
i(s)| + Bi(s)|ϕ′

i(s)|) + ‖M′‖
l

|Bi(s)| and
√
c1 =

√
2
‖M′‖
l

. (5.15)

The final numerator in the diabatic evolution bound (equation (2.28)) becomes

θ = τ 2(0)‖P0H′(0)Q0‖ + τ 2(s∗)‖P(s∗)H′(s∗)Q(s∗)‖

+
∫ s∗

0
ds
[
τ 3(5‖PH′Q‖ + 3‖PH′P‖)‖PH′Q‖

+ τ 2‖PH′′Q‖ + 3τ 3
√
c0‖PH′Q‖2 + c1‖PH′HQ‖2

]
. (5.16)

Contrasting this with equation (5.6) for the case of a constant mutual inductance matrix, we
see that the only differences are the appearance of the new term c1‖PH′HQ‖2 and an extra
contribution from M′

ij to every H′.

(b) Adiabatic timescale via superconducting qubit circuit parameters
The bounds above are stated in terms of the circuit parameters Bi and Mij but are too abstract to
be practically useful. In this subsection we consider more specific models and arrive at practically
useful bounds which also illustrate the utility of our approach for dealing with unbounded
operators with a cutoff.

We consider two types of flux qubit circuit Hamiltonians:

HCJJ = ECn̂2 + EJb cos φ̂ + EL(φ̂ − f )2 for φ ∈ [−∞, ∞] (5.17a)

and

HCSFQ = ECn̂2 + EJb cos φ̂ − Eα cos
1
2

(φ̂ − f ) for φ ∈ [−2π , 2π ]. (5.17b)

As we explain below, HCJJ describes a compound Josephson junction (CJJ) rf SQUID qubit
[31], while HCSFQ describes a capacitively shunted flux qubit (CSFQ) [32]; HCSFQ can be obtained
by analysing the circuit displayed in figure 3. Note that in the notation of equation (5.1), the
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ϕ1

ϕ2

φζωpl

–2π 2π

C

circuit
Hamiltonian

left well
harmonic
oscillator

right well
harmonic
oscillator

n

Figure 3. The circuit loosely corresponding to equation (5.17b), along with the potential for the phase variable φ. The lowest
two wells are approximated as harmonic oscillators, with bias ζ and tunnelling ξ between the ground states of the wells. The
relationship between ϕ1,ϕ2 and φ is discussed in [32, supplementary material, p. 17], which also explains how HCSFQ can be
obtained by analysing the circuit shown here. (Online version in colour.)

canonically conjugate operators n̂ (charge stored in the capacitor C) and φ̂ (flux threading the
circuit) are identified with p̂ and x̂, respectively, and that in the transmon case EL = Eα = 0 [50].10

The quadratic self-inductance term EL(φ̂ − f )2 is responsible for the divergence of ‖H′
CJJ‖ with

the cutoff Λ, just like the time-dependent mutual inductance in equation (5.1). Thus, the JRS
adiabatic theorem once again provides an unphysical dependence on the cutoff and the bound
we derived in equation (5.16) can be used instead. The adiabatic timescale depends on the choice
of schedules for the controls b and f . To illustrate what enters this choice, we first explain how HCJJ
can be reduced to an effective qubit Hamiltonian. We would like to stress that we only need the
qubit approximation for the schedule choice; the adiabatic timescale we find is a property beyond
the qubit approximation, and the approximation itself is not used any more after the schedule
is set. Before presenting the result for CJJ qubits, we borrow the same set of tools to find the
effective qubit Hamiltonian and explicitly compute our bounds for the capacitively shunted flux
qubit described by a simpler Hamiltonian HCSFQ, sin where we retain just one of the trigonometric
terms:

HCSFQ, sin = ECn̂2 + EJb cos φ̂ − Eα sin
φ̂

2
sin

f
2

for φ ∈ [−2π , 2π ]. (5.18)

Note that the derivatives of HCSFQ and HCSFQ, sin do not grow in norm with the cutoff Λ, so in this
case the JRS adiabatic theorem provides a useful baseline, but as explained below we will obtain
a somewhat tighter bound.

The quantities b≥ 1 and f ≥ 0 are time-dependent controls that can be chosen at will. Ideally,
we would like the effective qubit Hamiltonian (§6) to match a desired quantum annealing
‘schedule’ ωq((1 − s)X + sZ) where s= t/tf is the dimensionless time. However, in practice, for
calibration of the annealing schedule an approximate method for choosing b(s) and f (s) is used
instead. Here we will also follow this approximate method for simplicity; thus we will not know
the true effective qubit Hamiltonian Heff the schedule is implementing, but we will be able to
accurately bound the error of that qubit description. This is in line with our goal of providing
a useful theoretical result to guide current experiments with superconducting circuits: the error
would characterize, for instance, the leakage to the non-qubit states for fast anneals. The true
effective Hamiltonian Heff, and correspondingly a precise method for choosing b(s) and f (s), can
be found straightforwardly in a numerical simulation, which we leave for future work.

The approximate method is as follows.

10Note a factor of 4 difference in the definition of EC between the latter and our equation (5.17): our definition is EC =
(2e)2/(2C), and H = ECn2 + · · · , while the definition in [50] is EC = e2/(2C) and H = 4ECn2 + · · · .

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 2

02
3 



22

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20210407

...............................................................

b(s�) b

f

ωs=0
pl

ωs=s*
pl

ωq(1 – s� + �)

s�ωq

0

1

ωq

our toy model

Figure 4. For various target Hamiltonians between+ωqZ and−ωqZ, the anneal paths in the parameter space (b(s), f (s))
occupy the white triangle. The yellow triangle indicates the range of applicability of the qubit approximation for anneals with
tf 
 θ (s∗). The splittings ωq and ωqδ are obtained at zero bias at the beginning and the end of the anneal, respectively.
Maximum bias also yieldsωq at the end of the anneal. The plasma frequencyωpl is the frequency of each well, and it increases
throughout the anneal towards the valueωpl(s∗) that enters θ (s∗) in equation (5.20). (Online version in colour.)

Definition 5.1. Using the exact circuit description, we compute a 2 × 2 operator Hq defined as
follows: Hq acts on a two-dimensional Hilbert space corresponding to the low-energy subspace of
the circuit Hamiltonian. The basis for Hq in that subspace is chosen to diagonalize the low-energy
projection of φ̂. The energy levels of Hq are chosen to exactly match the two levels of the circuit
Hamiltonians, up to a constant shift. Once we obtain the relationship between b(s), f (s) and Hq,
we find b(s) and f (s) by requiring that

Hq = ωq((1 − s + δ)X + sZ), (5.19)

where δ > 0 is a certain precision parameter we discuss below (ideally δ = 0).

Note that the true effective Hamiltonian Heff is isospectral to Hq and is a rotation of Hq to the
basis determined by Ueff, as will be prescribed in §6. In this section we only obtain explicit values
of θ (the timescale in the error bounds (2.32)) for an evolution up to s= s∗, and we demonstrate an
improvement (small for CSFQ qubits and diverging as Θ(Λ) for CJJ qubits) over the JRS version,
which yields

θ
JRS
CSFQ(s∗) =O

(
1

ωpl(s∗)(1 − s∗ + δ)

)
and θ

JRS
CJJ (s∗) = Θ(Λ), (5.20)

while our new bound yields

θnew =O

(
1

ωpl(s∗)(1 − s∗ + δ)ln[ωpl(s∗)/ωq(1 − s∗ + δ)]

)
. (5.21)

Here the qubit approximation starts at b(0) = 1 and ends at b(s∗) > 1. In the introduction (below
equation (1.4)) these results were reported for the special case of s∗ = 1 and b(1) =B > 1. The
gap 2�(s) separating the qubit subspace from the rest of the Hilbert space (recall figure 1) will
turn out to be well approximated by the plasma frequency ωpl(s) = 2

√
ECEJb(s). To leading order

only the final value of that gap ωpl(s∗) = 2
√
ECEJb(s∗) enters our bound. These results hold in

the relevant regime EJ/EC 
 1 and 1 − s∗ + δ � 1. The quantities appearing in our result for the
adiabatic timescale are illustrated in figure 4.

For notational simplicity, we again drop the hat (operator) symbols from now on. The goal
of the rather lengthy calculations that follow in the remainder of this section is to assign
physical significance to the various quantities that appear in equations (2.32a,b), expressed in
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ϕ Φ

ϕζωpl

C

L
circuit
Hamiltonian

left well
harmonic
oscillator

right well
harmonic
oscillator

n

Figure 5. The circuit corresponding to equation (5.17a), alongwith the potential for the phase variableφ. The lowest twowells
are approximated as harmonic oscillators, with bias ζ and tunnelling ξ between the ground states of the wells. (Online version
in colour.)

terms of the parameters of CJJ and CSFQ circuits, so as to eventually derive equations (5.20)
and (5.21).

(i) Compound Josephson junction rf SQUID

Consider a D-wave (CJJ rf SQUID) qubit [31]. It consists of a large (main) loop and a small (CJJ)
loop subjected to external flux biases Φ

q
x and Φ

CJJ
x , respectively. The CJJ loop is interrupted by

two identical Josephson junctions connected in parallel with total capacitance C. For illustration
purposes, we represent this loop as a single junction with some external phase control in a circuit
diagram in figures 2 and 5. The two counter-circulating persistent current states along the main
loop comprise the qubit |0〉 and |1〉 states, and can be understood as the states localized in the two
wells of a double-well potential, described below.

The circuit Hamiltonian of this qubit can be written as in equation (5.17a), where n=
Q/(2e) denotes the (normalized) quantized charge stored in the capacitance, φ = 2πΦ/Φ0
is the (normalized) quantized total flux threading the main loop, f = 2πΦ

q
x/Φ0 and EJb=

−Econventional
J cos(πΦ

CJJ
x /Φ0) depend on the fluxes threading the main and small loops,

respectively, Φ0 = h/(2e) is the flux quantum (we use units of h= 1 throughout), and EC =
(2e)2/(2C), EL = (Φ0/(2π ))2/(2L) and EJ are the charging, (normalized) inductive and Josephson
energies, respectively. Note that the conventional notation for the Josephson energy translates
to ours as Econventional

J = EJB. The fluxes Φ
CJJ
x and Φ

q
x (and hence the parameters b and f ) are

time-dependent and controllable, while the rest are fixed parameters set by the hardware.
While HCJJ describes the physical circuit, we wish to implement the low-energy Hamiltonian

of a qubit with frequency ωq, as defined by equation (5.19), using the approximate method given
in definition 5.1. We now discuss how to make this transition. Treating the term EJb cos φ +
EL(φ − f )2 as a classical potential in the variable φ, it represents a cosine potential superimposed
on a parabolic well. The two lowest states in this potential are the qubit states, separated by ωq.
These two states need to be separated from non-qubit states, and the corresponding gap � is
given by half the plasma frequency ωpl.

For a transmon, where EL = 0, one has ωq = ωpl − EC [50], where the plasma frequency is given
by

ωpl(s) = 2
√
ECEJb(s). (5.22)

Note that b= 1 corresponds to when the cosine potential is shallowest, i.e. when the tunnelling
barrier is lowest, which is the initial point of the anneal with s= 0. At the other extreme, when
b=B, the tunnelling barrier is at its maximum and this corresponds to the end of the anneal with
s= 1.
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In the presence of the parabolic well, there are additional levels in local minima of the raised
cosine potential. For f = 0, the two degenerate global minima appear at φ = ±π and the lowest
local minima at φ = ±3π . Thus, to ensure that the additional levels in the local minima are higher
than the qubit frequency, we can set min ωpl(s) = ωpl(0) ≈ (±3π )2EL − (±π )2EL = 8ELπ2. Next,
using b(0) = 1, if EC � EJ (as it must, to ensure ωq � ωpl) then EL =O(

√
ECEJ) � EJ , which we

will assume:
EC,EL � EJ . (5.23)

We now wish to choose the controls of HCJJ so that Hq in definition 5.1 takes the form

Hq(s) = ξ (s)X + ζ (s)Z, (5.24)

so that ζ (s) = ωqs (compare to equation (5.19)). Focusing just on the minima at φ = ±π but now
allowing f > 0, we have ζ (s) = EL(−π − f (s))2 − EL(π − f (s))2, so that, upon neglecting the f 2 term,

f (s) = ζ (s)
4ELπ

= s
ωq

4ELπ
, (5.25)

subject to f (1) < π , i.e. we have the additional constraint ωq < 4ELπ2.
Following [50], we can identify the bandwidth (peak-to-peak value for the charge dispersion

of the energy levels in the periodic potential) of the EL = 0 Hamiltonian with the coefficient ξ (s) in
the effective qubit Hamiltonian. Under the assumed inequality (5.23), equation (2.5) of [50] with
m= 0 yields

ξ (s) = 8EC

√
2
π

(
2EJb(s)
EC

)3/4
e−√

32b(s)EJ/EC . (5.26)

Thus, a sufficiently large b(1) =B ensures an exponentially small ξ (1), which shows that we can
operate the system in the annealing regime, i.e. the regime where Hq(s) interpolates smoothly
from X to Z. Recall that b(0) = 1, so ξ (0) = ωq serves as a definition of ωq. Let ξ (1)/ωq = δ be
the desired precision. Then we can choose the remaining time-dependent control b(s) by solving
equation (5.26) for b(s) and setting ξ (s) = ωq(1 − s + δ) (again compare equation (5.24) to equation
(5.19)). This, together with equation (5.25), fully defines the schedule.

This mathematical model in fact describes a family of qubits, different by ωq, ωpl(1) and δ.
The family is spanned by varying the ratio EJ/EC and B, in the region where both are 
1 to
ensure the applicability of equation (5.26) and the smallness of the precision parameter δ. Note
that in the EJ/EC 
 1 and B 
 1 regime the aforementioned conditions ωq < ωpl and ωq < 4ELπ2

are automatically satisfied. Among the qubits in the family, a smaller ωq/ωpl(1) will allow a
(relatively) faster anneal while the qubit approximation is maintained, but exactly how EJ/EC
and B (or equivalently ωq/ωpl(1) and δ) enter needs to be investigated via the adiabatic theorem,
which we will delay until we analyse a simpler CSFQ case below.

We have thus shown how to reduce the circuit Hamiltonian HCJJ to an effective qubit
Hamiltonian Hq, and how the circuit control functions b(s) and f (s) relate to the effective qubit
annealing schedule functions ξ (s) and ζ (s).

(ii) Capacitively shunted flux qubit

We now repeat the analysis for a periodic φ, i.e. for HCSFQ (equation (5.17b)). In this case, the
potential EJb cos φ − Eα cos((φ − f )/2) exhibits only two wells. For simplicity of the analysis, we
instead choose to work with the Hamiltonian HCSFQ, sin given in equation (5.18). Recall that this
Hamiltonian omits one of the terms in the trigonometric decomposition of cos((φ − f )/2) and has
the benefit that the wells are centred exactly at φ = ±π for all f . Thus, it ignores the diabatic
effects from the wells shifting along the φ-axis in the complete CSFQ Hamiltonian (5.17b). That
effect can be included in the calculation straightforwardly, but for our example we choose the
simplest non-trivial case. Each well independently experiences narrowing as b grows, leading to
diabatic transitions out of the well’s ground state. The physical meaning of the adiabatic timescale
is to characterize the dynamics associated with this deformation of the harmonic oscillator, but
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by using the general machinery of our and the JRS bounds, we can obtain the result via algebra
alone, without having to rely on physical intuition.

To apply the different versions of the adiabatic theorem expressed in corollary 2.2, we will
need bounds on the derivatives of the simplified CSFQ Hamiltonian (5.18) (we drop the subscript
and hat symbols for simplicity),

H′ = EJb′ cos φ − Eα

2
f ′ sin

φ

2
cos

f
2

(5.27a)

and

H′′ = EJb′′ cos φ − Eα

2
sin

φ

2

(
f ′′ cos

f
2

− f ′2

2
sin

f
2

)
. (5.27b)

In the JRS case, one directly bounds the operator norm:

‖H′‖ ≤ EJ|b′| + Eα

2
|f ′| (5.28a)

and

‖H′′‖ ≤ EJ|b′′| + Eα

2

(
|f ′′| + 1

2
|f ′|2

)
. (5.28b)

In the case of our new version of the adiabatic theorem, we will need bounds on the projected
quantities. In any case, it is clear that we need to find bounds on the derivatives of b and f , which
we now proceed to derive.

The effective Hamiltonian. Define the well basis as the low-energy basis diagonalizing φ

projected into the low-energy subspace. The qubit Hamiltonian in the well basis (see definition
5.1) is

Hq(s) = ξ (s)X + ζ (s)Z. (5.29)

In the limit Eα � EJ , we can approximate the width of the wells as equal, which leads to

ζ (s) ≈ Eα sin
π

2
sin

f
2

− Eα sin
−π

2
sin

f
2

= 2Eα sin
1
2
f (s) (5.30)

(in this case the same result is obtained with the complete potential Eα cos((φ − f )/2)). We can
also neglect the adjustment to the tunnelling amplitude through the barrier of height bEJ coming
from the bias ζ (s) ≤ 2Eα between wells. This again uses Eα � EJ . Repeating the argument leading
to equation (5.26), the zero-bias expression (eqn (2.5) of Koch et al. [50] with m= 0) holds for
the tunnelling amplitude, so we can reuse equation (5.26). This expression also uses EC � EJ .
The more rigorous statement of the approximate equality in equation (5.26) is postulated in the
conjecture below. In figure 6, we contrast the special regime of these approximations, which we
call the well approximation, with the traditional schedule for quantum annealing.

Reducing the number of parameters. We choose the following notation for the ranges of b and f :

b : [0, 1] → [1,B] and f : [0, 1] → [0,F ]. (5.31)

In total, our CSFQ Hamiltonian has five parameters, EC, EJ , Eα , B and F , i.e. four dimensionless
parameters since B and F are already dimensionless. We take EC to represent an overall energy
scale and define the dimensionless parameter A as the ratio appearing in ξ (s),

A=
√

32EJ

EC
, (5.32)

rewriting equation (5.26) as

ξ (s) ≈ EC

√
2
π

(A√b(s)
)3/2 e−A

√
b(s). (5.33)

The parameter space can be reduced by setting F = π/3. Note that the maximum allowed F is
π , at which f ′|s=1 required to fit the schedules will diverge. Making F really small just makes
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our toy model
conventional quantum anneal path

f

b

ωq

ωq

well approximation

Figure 6. The region in the space of control parameters (b(s), f (s)) where quantum annealing of a flux qubit is analytically
tractable within the well approximation. (Online version in colour.)

the qubit worse by adding additional constraints on other parameters, which justifies our choice.
Then f (1) = π/3, so by equation (5.30) we have Eα = ζ (1).

We now make use of ωq = ξ (0) = ζ (1). This means that the annealing schedule is such that the
start and end energy approximately coincide, as is traditional for the idealized qubit model of
annealing (1 − s)X + sZ. This allows us to write

ωq = Eα = ζ (1) = ξ (0) = EC

√
2
π
A3/2 e−A, (5.34)

i.e. the ratio Eα/EC is also determined by A. Having fixed the dimensionless parameters EJ/EC
and Eα/EC in terms of the single parameter A, and having fixed F at a numerical value, we are
left only with A and B, i.e. we have reduced the original four dimensionless parameters to two.
Let us now state the conjecture that replaces equation (5.26) by a rigorous statement.

Conjecture 5.2. For a desired multiplicative precision ε, there exists a minimum A0(ε) such
that for all A≥A0,

ξ (s) = EC

√
2
π

(A√b(s)
)3/2 e−A

√
b(s)(1 + ε′) for |ε′| ≤ ε. (5.35)

The two derivatives ξ ′ and ξ ′′ are also given by the derivatives of equation (5.33) to the same
multiplicative precision ε.

The final transverse field needs to be negligible in quantum annealing. If our tolerance to a
finite transverse field is δ, then let

δ = ξ (1)
ξ (0)

= (B0)3/4 e−A(
√B0−1). (5.36)

This implicitly defines B0(δ,A) > 1. So our two dimensionless parameters live in a range A ∈
[A0(ε), ∞] and B ∈ [B0(δ,A), ∞]. Their physical meaning is that A is the (root of the) area under
the barrier in appropriate dimensionless units at the beginning of the anneal, and B is how much
the barrier has been raised at the end relative to the beginning. We note that both B0 and A0
are rather large numbers for reasonable ε and δ,11 so we intend to investigate the scaling of the
adiabatic timescale θ in the limit A,B → ∞. The relationship between A and B as they approach
that limit may be arbitrary; we do not make any additional assumptions about this.

11For ε = 10−1 and δ = 10−9, we are free to choose A0 satisfying equation (5.35). For b= 1, if we assume ε ∼ 1/A0 as well as
subleading exponential terms, this would lead to an estimate A0 = 10. Now solving equation (5.36) for B0, we find B0 ≈ 10.6.
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The gap to the non-qubit states is, to leading order, determined by the plasma frequency

ωpl(b) = 2
√
ECEJb= ECA

√
b(s)

8
, (5.37)

which is the same as equation (5.22) for the D-wave qubit. Even though ωpl(b) attains its minimum
value at b(1) = 1, we will find that the terms in the numerator of the adiabatic theorem overwhelm
it in such a way that only ωpl(B) at the end of the anneal matters.

Repeating the reasoning of the CJJ qubit case above, ξ (0) = ωq serves as the definition of ωq,
and the time-dependent controls f (s) and b(s) should be (approximately, using equation (5.33))
chosen as

ζ (s)
ζ (1)

= 2 sin
1
2
f (s) = s (5.38a)

and
ξ (s)
ξ (0)

= b(s)3/4 e−A
√

b(s)+A = 1 − s + δB. (5.38b)

Here δB ≤ δ is the precision12 we get for this choice of B. The quantity δB and the ratio of the
qubit frequency ωq = ξ (0) = Eα (equation (5.34)) to the plasma frequency at the end of the anneal
ωpl(B) = ECA

√B/8 are the two independent parameters we will use to present the final answer
for θnew. The relationship of these two parameters with A and B is given by

δB =B3/4 e−A(
√B−1) and

ωq

ωpl(B)
= 4√

π

√
A
B e−A. (5.39)

The derivatives b′, b′′, f ′ and f ′′. First, from equation (5.38a) we have

f ′(s) = 1
cos(f/2)

= 1√
1 − (s/2)2

≤ 2√
3

(5.40a)

and

f ′′(s) = s/4
(1 − (s/2)2)3/2 ≤ 2

3
√

3
. (5.40b)

Second, from equation (5.38b),

b′
(

3
4b

− A
2
√
b

)
b(s)3/4 e−A

√
b(s)+A = −1 �⇒ b′

(
3

4
√
b

− A
2

)
= −b(s)−1/4 eA

√
b(s)−A. (5.41)

Since A
 1 and b≥ 1, we can neglect the subleading term 3/4
√
b, i.e.

b′ ≈ 2
Ab1/4(s)

eA
√

b(s)−A. (5.42)

We do the same in the calculation of the second derivative:

b′′ ≈ b′

b(s)3/4 eA(
√

b(s)−1) ≈ 2
Ab(s)

e2A(
√

b(s)−1). (5.43)

We will use a change of integration variable

ds= Ab1/4(s)
2

e
−A

(√
b(s)−1

)
db. (5.44)

We also note that b′ and b′′ are exponentially large in A(
√
b(s) − 1), so they have the potential of

becoming the leading terms in our estimate for the adiabatic timescale.
Completing the proof of the result claimed in equation (5.20). We show below that ‖H′‖ does not

grow with the cutoff Λ, so we apply corollary 2.2. Using the JRS formula (2.32a) with d= 2 and

12This inequality holds since δ = δB0 and B >B0 > 1, and the function δB is monotonically decreasing in B for B > Θ(1/A2).
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� ≈ ωpl/2, we have

θ JRS(s∗) ≈ 8‖H′(0)‖
ω2

pl(b(0))
+ 8‖H′(s∗)‖

ω2
pl(b(s∗))

+ I, where I ≡
∫ s∗

0

⎛
⎝8‖H′′(s)‖

ω2
pl(b(s))

+ 7 · 24
√

2
‖H′(s)‖2

ω3
pl(b(s))

⎞
⎠ds. (5.45)

Returning to equation (5.28a), we now substitute the derivatives of b and f we found in terms
of A and b, using equations (5.32), (5.34), (5.40a) and (5.42):

‖H′(s)‖ ≤ EC
32

A2
(

2
Ab1/4(s)

eA(
√

b(s)−1)
)

(1 + o(1)) + EC

√
2
π
A3/2 e−A 2√

3
, (5.46)

where the o(1) accounts for the term we neglected in approximating b′ to arrive at equation
(5.42). The second term in equation (5.46) (arising from f ′) is subleading, and since we only kept
the leading term in the derivatives of b, we should omit it. The same happens for the second
derivative, for which we use equations (5.28b) and (5.43). Thus,

‖H′(s)‖ ≤ EC
32

A 2
b1/4(s)

eA(
√

b(s)−1)(1 + o(1)) (5.47a)

and

‖H′′(s)‖ ≤ EC
32

A 2
b(s)

e2A(
√

b(s)−1)(1 + o(1)). (5.47b)

Here o(1) means going to zero in the limit A→ ∞, or b→ ∞. We will omit the (1 + o(1)) clause
below when working with leading-order expressions.

Let us substitute the expressions obtained so far into the integral I (equation (5.45)) and change
variables to db using equation (5.44):

I ≤
∫ b(s∗)

1

(
8(EC/32)A · (2/b) e2A(

√
b−1)

E2
CA2b/8

+ 7 · 24
√

2
(E2

C/322)A2 · (4/
√
b) e2A(

√
b−1)

E3
CA3(b/8)3/2

)
Ab1/4

2
e−A(

√
b−1) db, (5.48)

where we also used equation (5.37). The two terms depend on A and b in exactly the same way:

ECI ≤ 9
∫ b(s∗)

1
b−7/4 eA(

√
b−1) db= 18A3/2 e−A

∫A
√

b(s∗)

A
w−5/2 ew dw. (5.49)

The integral can be computed analytically in terms of the exponential integral function, but
it is more insightful to observe that it is dominated by the upper integration limit, under the
assumption that b(s∗) 
 1. Indeed, since B
 1, there is a range of s∗ close to 1 for which equation
(5.38b) gives b(s∗) 
 1. In that regime,

∫A
√

b(s∗)

A
w−5/2 ew dw≈

∫A
√

b(s∗)

−∞
1

(A√b(s∗))5/2
ew dw= eA

√
b(s∗)

(A√b(s∗))5/2
. (5.50)

Hence

I ≤ 18
eA(

√
b(s∗)−1)

ECAb(s∗)5/4 . (5.51)

The full bound for θ is therefore, using equations (5.37), (5.45), (5.47) and (5.51),

θ JRS(s∗) ≤ 4
ECA

(
1 + eA(

√
b(s∗)−1)

b(s∗)5/4 + 9
2

eA(
√

b(s∗)−1)

b(s∗)5/4

)
(5.52)

≈ 22
eA(

√
b(s∗)−1)

ECAb(s∗)5/4 = 22
1

(1 − s∗ + δB)ECA
√
b(s∗)

, (5.53)

where neglecting the subleading first term (arising from s= 0) means that only the end of the
anneal matters, and we used equation (5.39) to obtain the last equality. Reintroducing ωpl(b(s∗)) =

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 2

02
3 



29

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20210407

...............................................................

ECA
√
b(s∗)/8 (equation (5.37)), we obtain

ωqθ JRS(s∗) ≤ 11√
2

1
(1 − s∗ + δB)

ωq

ωpl(b(s∗))
. (5.54)

The ratio of the qubit frequency to the gap is what one would intuitively expect from the adiabatic
theorem, but the other factors can only be obtained after a detailed calculation such as the one
performed here.

Completing the proof of the result claimed in equation (5.21). Since we have already shown that H′
does not grow with the cutoff Λ (equation (5.47a)), we now use equation (2.32b) (corollary 2.2) for
the CSFQ Hamiltonian.

It turns out that there is no benefit from the projection in ‖PH′P‖, so we just use ‖PH′P‖ ≤ ‖H′‖
and focus on the off-diagonal terms ‖PH′′Q‖ and ‖PH′Q‖ to obtain an improvement over the JRS
bound (5.54). Starting from equation (5.27), we have

PH′Q= EJb′P cos φ̂Q − Eα

2
f ′P sin

φ̂

2
Q cos

f
2

(5.55a)

and

PH′′Q= EJb′′P cos φ̂Q − Eα

2
P sin

φ̂

2
Q

(
f ′′ cos

f
2

− f ′2

2
sin

f
2

)
. (5.55b)

Thus we need to estimate the leading order of the bound on ‖P cos φ̂Q‖ and ‖P sin φ̂Q/2‖. For this
estimate, we make use of the well approximation: the eigenstates are approximately the states of
a harmonic oscillator centred at each well (figure 6). Indeed, recall that HCSFQ, sin (equation (5.18))
is a Hamiltonian representing a double-well potential centred exactly at φ = ±π for all f . We thus
approximate HCSFQ, sin as the sum of

HL = ECn̂2 + 1
2
EJb(φ̂ + π )2 and HR = ECn̂2 + 1

2
EJb(φ̂ − π )2. (5.56)

Now P projects onto the span of the ground states of these two Hamiltonians, while Q projects
onto the span of the first and higher excited states. Write δφ̂L,R ≡ φ̂ ± π ; then the expression for the
position operators δφ in terms of the corresponding harmonic oscillator creation and annihilation
operators is13

δφ̂L,R =O
(
EC

EJb

)1/4
(aL,R + a†

L,R). (5.57)

We can now estimate

‖P cos φ̂Q‖ ≈ ‖|gL〉〈gL| cos δφ̂L(1 − |gL〉〈gL|) + |gR〉〈gR| cos δφ̂R(1 − |gR〉〈gR|)‖, (5.58)

where |gL,R〉 are the ground states in the corresponding wells and we neglected the matrix
elements of cos φ that mix the wells. We proceed as follows:

‖P cos φ̂Q‖ ≈
∥∥∥∥|gL〉〈gL|

(
1 − 1

2
δφ̂2

L

)
(1 − |gL〉〈gL|)

+ |gR〉〈gR|
(

1 − 1
2
δφ̂2

R

)
(1 − |gR〉〈gR|)

∥∥∥∥ (5.59a)

= 1
2

∥∥|gL〉〈gL|δφ̂2
L(1 − |gL〉〈gL|) + |gR〉〈gR|δφ̂2

R(1 − |gR〉〈gR|)∥∥ (5.59b)

≤ 1
2

(‖|gL〉〈gL|δφ̂2
L(1 − |gL〉〈gL|)‖ + ‖|gR〉〈gR|δφ̂2

R(1 − |gR〉〈gR|)‖). (5.59c)

13To see this, consider the standard one-dimensional quantum harmonic oscillator Hamiltonian H = αp̂2 + βx̂2, where α =
1/(2m) and β =mω2/2, which after the introduction of the standard creation and annihilation operators gives x̂= γ (â + â†),
where γ = (h̄2

α/(4β))1/4 =√h̄/(2mω); in our case α = EC and β = EJb/2, so that γ = Θ(EC/(EJb))1/4.
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Substituting equation (5.57)14 and repeating the same calculation for ‖P cos δφ̂Q/2‖, we get

‖P cos φ̂Q‖ =O
(
EC
EJb

)1/2
(5.60a)

and ∥∥∥∥P sin
φ̂

2
Q
∥∥∥∥≈

∥∥∥∥P cos
δφ̂

2
Q
∥∥∥∥=O

(
EC
EJb

)1/2
. (5.60b)

Thus the expressions (5.28) and (5.47) get multiplied by the same factor O(EC/EJb)1/2:

‖PH′(s)Q‖ ≈ ‖H′(s)‖O
(

EC
EJb(s)

)1/2
(5.61a)

and

‖PH′′(s)Q‖ ≈ ‖H′′(s)‖O
(

EC
EJb(s)

)1/2
. (5.61b)

Note that since
√
EC/EJ = √

32/A (equation (5.32)) and b(s) ∈ [1,B], we have(
EC

EJb(s)

)1/2
� 1 ∀s. (5.62)

We can carry the O(EC/EJb)1/2 factor through the calculations all the way until the integration,
as in equation (5.45), except that now the integral is the one appearing in equation (2.32b). Thus,
again using d= 2 and � ≈ ωpl/2 and absorbing all numerical factors into O(1) when convenient,
we obtain

I ≈
∫ s∗

0

⎛
⎝8‖PH′′(s)Q‖

ω2
pl(b(s))

+ 24
√

2
‖PH′(s)Q‖(5‖PH′(s)Q‖ + 3‖PH′(s)P‖ + 3‖H′(s)‖)

ω3
pl(b(s))

⎞
⎠ ds (5.63a)

≤O(1)
∫ s∗

0

⎛
⎝‖PH′′(s)Q‖

ω2
pl(b(s))

+ ‖PH′(s)Q‖(‖PH′(s)Q‖ + ‖H′(s)‖)

ω3
pl(b(s))

⎞
⎠ ds. (5.63b)

It follows from equations (5.61a) and (5.62) that we may neglect ‖PH′(s)Q‖ relative to ‖H′(s)‖. We
may thus proceed from equation (5.49) but multiply the right-hand side by O(EC/(EJb(s)))1/2 =
O(1)(1/(A√b(s))):

ECI ≤O(1)
(
EC
EJ

)1/2 ∫ b(s∗)

1
b−9/4 eA(

√
b−1) db (5.64)

=O(1)A3/2 e−A
∫A

√
b(s∗)

A
w−7/2 ew dw≈O(1)

eA(
√

b(s∗)−1)

A2b(s∗)7/4 , (5.65)

where in the last approximate equality we applied the same reasoning as in equation (5.50).
Comparing to the latter, we see that the expression has gained an overall factor of 1/(A√b(s∗)).

The same happens with the leading boundary term. Using equation (5.47a), we have

d‖PH′Q‖
�2

∣∣∣∣
s=0

+ d‖PH′Q‖
�2

∣∣∣∣
s=s∗

� O(1)

⎡
⎣( EC

EJb(0)

)1/2 ‖H′(0)‖
ω2

pl(b(0))
+
(

EC
EJb(1)

)1/2 ‖H′(s∗)‖
ω2

pl(b(s∗))

⎤
⎦ (5.66a)

=O(1)
1

ECA2

(
1 + eA(

√
b(s∗)−1)

b(s∗)7/4

)
≈O(1)

eA(
√

b(s∗)−1)

ECA2b(s∗)7/4 , (5.66b)

14In the number basis, we have |g〉〈g|(a + a†)2(1 − |g〉〈g|) = |0〉〈0|(a + a†)2∑∞
n=1 |n〉〈n| = √

2 |0〉〈2|, and ‖ |0〉〈2| ‖ = 1 (largest
eigenvalue of |2〉〈2).
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which is of the same order as the integral term. Thus,

θnew(s∗) = d‖PH′Q‖
�2

∣∣∣∣
s=0

+ d‖PH′Q‖
�2

∣∣∣∣
s=s∗

+ I � O(1)
eA(

√
b(s∗)−1)

ECA2b(s∗)7/4 (5.67a)

=O(1)
1

A√b(s∗)
θ JRS(s∗) (5.67b)

=O(1)
1

(1 − s∗ + δB)ECA2b(s∗)
=O(1)

1
(1 − s∗ + δB)

EC
ω2

pl(b(s∗))
, (5.67c)

where in the second line we used equation (5.53) and ωpl(b(s∗)) = Θ(1)ECA
√
b(s∗) (equation

(5.37)).
Now, using ωpl(b(0)) = ECA

√
1/8 we have EC = Θ(1)ωpl(b(0))/A. Also, from equations (5.34)

and (5.37) we have A1/2e−A = Θ(ωq/ωpl(b(0))), which we can solve approximately to find A=
Θ(ln(ωpl(b(0))/ωq)). Combining this with equation (5.67c), we get

θnew(s∗) � O(1)
1

(1 − s∗ + δB)
EC

ω2
pl(b(s∗))

=O(1)
1

(1 − s∗ + δB)

ωpl(b(0))

ω2
pl(b(s∗))ln(ωpl(b(0))/ωq)

(5.68a)

=O(1)θ JRS(s∗)
ωpl(b(0))

ωpl(b(s∗))ln(ωpl(b(0))/ωq)
, (5.68b)

where the JRS result is given in equation (5.54).

(iii) Comparison of the two bounds for the CSFQ

To compare the two bounds, it is useful to express everything in terms of two parameters at s∗
only: 1 − s∗ + δB and ωq/ωpl(b(s∗)). Note that combining equations (5.34), (5.37) and (5.38b) gives

(1 − s∗ + δB)
ωq

ωpl(b(s∗))
= 4√

π
(A
√
b(s∗))1/2 e−A

√
b(s∗) (5.69)

�⇒ A
√
b(s∗) = −(1 + o(1)) ln

[
(1 − s∗ + δB)

ωq

ωpl(b(s∗))
.

]
(5.70)

Thus, since equation (5.67b) shows that the new bound is related to the JRS bound by the factor
1/(A√b(s∗)), using the new bound leads to a logarithmic correction of the original adiabatic
timescale:

θnew(s∗) = θ JRS(s∗)
O(1)

− ln[(1 − s∗ + δB)(ωq/ωpl(b(s∗)))]
. (5.71)

We conclude that there are two competing small numbers, 1 − s∗ + δB and ωq/ωpl(b(s∗)). The gap
to the third state should be much larger than the qubit frequency, i.e. ωpl(b(s)) 
 ωq for all s. The
expression 1 − s∗ + δB (recall its definition in equation (5.38b)) times ωq can be interpreted as a
residual transverse field hx at s= s∗. This residual transverse field should satisfy hx/ωq = 1 − s∗ +
δB � 1 in the regime where the expression θ (s∗) for the adiabatic timescale over the interval [0, s∗]
is valid. Using equations (5.54) and (5.71) we may rewrite the two bounds as

ωqθ JRS(s∗) =O(1)
ω2

q

ωplhx

∣∣∣∣∣
s=s∗

and ωqθnew(s∗) =O(1)
ω2

q

ωplhxln(ωpl/hx)

∣∣∣∣∣
s=s∗

. (5.72)

Thus, if the geometric mean
√
hxωpl 
 ωq, then the effective dynamics stays within the qubit

approximation well. Our new bound adds a logarithmic correction to this estimate and is tighter
than the JRS bound since ωpl(b(s∗)) > hx. Finally, we note that a brute-force calculation we present
in appendix A yields an equivalent bound.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 2

02
3 



32

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20210407

...............................................................

Since the adiabatic timescale increases as s∗ approaches 1, there is a regime of intermediate
anneal times tf such that

θ (0) ≤ tf ≤ θ (1) �⇒ 11/
√

2
ωpl(0)

≤ tf ≤ 11/
√

2
δBωpl(1)

, (5.73)

where we dropped the logarithmic corrections and also, for the purposes of estimation, used θ (0)
even though this is outside the range of applicability of our expression for θ . In this regime, there
is s∗ such that tf = θ (s∗), and the physical intuition is that the anneal over the interval [0, s∗] stays
within the qubit approximation, while the anneal beyond that in the interval [s∗, 1] leaves the
qubit subspace. We do not know if there is still an effective qubit description of this dynamics,
but we note that it is not likely to be given by the dynamics of the lowest levels alone. Indeed,
although there will still be tunnelling between the wells in [s∗, 1], there is no clear way to define a
phase of the state in each well, since that state involves several energy levels of that well. Thus, the
pattern of interference that emerges when the populations of two wells meet after tunnelling will
no longer be governed by a single phase parameter. This intuition suggests that either a full multi-
level description should be used instead of a qubit description, or possibly there is an effective
stochastic description that arises after we neglect any interference effects but keep the dimension
of the qubit model. The development of such a theory is beyond the scope of this work.

(iv) Bound for the CJJ

To obtain a meaningful expression for the adiabatic timescale θ for the CSFQ qubit case above, we
had to use a ‘well approximation’: the two wells of the φ-potential of the Hamiltonian

HCSFQ, sin = ECn̂2 + EJb cos φ̂ − Eα sin
φ̂

2
sin

f
2

for φ ∈ [−2π , 2π ] (5.74)

are separated by a large enough barrier ∼bEJ throughout the anneal, so that the low-energy
subspace is approximately given by the ground states of the harmonic approximation of the left
and right wells:

HCSFQ, L = ECn̂2 + EJb
(φ̂ + π )2

2
for φ ∈ [−∞, ∞] (5.75a)

and

HCSFQ, R = ECn̂2 + EJb
(φ̂ − π )2

2
for φ ∈ [−∞, ∞]. (5.75b)

Note that we neglected the adjustment of the harmonic potential by the last term, and made a
constant energy shift of ±Eα sin f

2 . If we choose b(s) and f (s) in the same way as in equation (5.38),
the derivatives H′

CSFQ, L and H′
CSFQ, R become arbitrarily large with the cutoff Λ, so the JRS bound

will no longer be cutoff-independent. We will need to use the relation

(H′
CSFQ, L)2 ≤ b′2

b2 H2
CSFQ, L. (5.76)

Applying our adiabatic theorem (equation (2.28)) to staying in the ground state of HCSFQ, L and
HCSFQ, R, we will find that a term with this extra factor b′/b turns out to be subleading. We do not
present the entire calculation here, since it follows that of §5b(ii) almost identically. One obtains
exactly the same estimate as for ωqθnew in equation (5.72):

ωqθL = ωqθR =O(1)
ω2

q

ωplhxln(ωpl/hx)

∣∣∣∣∣
s=1

and ωqθnew =O(1)
ω2

q

ωplhxln(ωpl/hx)

∣∣∣∣∣
s=1

. (5.77)

Indeed, the derivatives of f turned out to be subleading in the derivation, and Hamiltonians with
the same b-dependence will lead to the same bound.
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Now recall that
HCJJ = ECn̂2 + EJb cos φ̂ + EL(φ̂ − f )2. (5.78)

Applying the well approximation, we again obtain

HCJJ, L = ECn̂2 + EJb
(φ̂ + π )2

2
for φ ∈ [−∞, ∞] (5.79a)

and

HCJJ, R = ECn̂2 + EJb
(φ̂ − π )2

2
for φ ∈ [−∞, ∞], (5.79b)

now with energy shifts of EL(±π − f )2. The schedule for f for CJJ is chosen in a way that results
in the same energy shift. The derivative −2ELφ̂f ′ of the term EL(φ̂ − f )2 contains an operator
diverging with the cutoff ‖φ‖ = Θ(

√
Λ). Since θ JRS contains ‖H′‖2 = Θ(Λ), it diverges while

θnew ∼ θL = θR focusing on the behaviour of the low-lying states in the well approximation is
the same as for CSFQ:

θ
JRS
CJJ = Θ(Λ) and ωqθnew

CJJ =O(1)
ω2

q

ωplhxln(ωpl/hx)

∣∣∣∣∣
s=1

. (5.80)

6. Effective Hamiltonian
In this section, we will show that the effective evolution in a dP-dimensional low-energy subspace
that is an image of P(s) is best described by a dP × dP effective Hamiltonian:

Heff(s) =V(s)H(s)V†(s) with V(s) =V0U†
eff(s),

∂

∂s
Ueff(s) = [P′,P]Ueff(s) and Ueff(0) = I, (6.1)

where the isometry V0 describes a freedom of choice of basis in the low-energy subspace at s= 0.
Consider the equation of the approximate evolution Uad(s)|φ0〉 = |φ(s)〉 generated by Had(s)

(equation (2.10)):
∂

∂s
|φ(s)〉 = −iHad(s)|φ(s)〉. (6.2)

This is written in the full Hilbert space even though we know that for all s> 0, P(s)|φ(s)〉 = |φ(s)〉
as long as the same holds for the initial state |φ0〉.

This suggests that we could write the evolution as generated by a dP × dP matrix in the low-
energy subspace—the effective Hamiltonian. Of course, one can trivially do this by first undoing
the evolution generated by Uad, i.e. by first changing the basis in a time-dependent manner via

|ζ (s)〉 =U†
ad|φ(s)〉 �⇒ ∂

∂s
|ζ (s)〉 = ∂

∂s
|φ0〉 = 0. (6.3)

Let the eigenvectors of H(0) in the low-energy subspace be {|λi〉}dPi=1, and let the basis vectors

defining the new dP-dimensional Hilbert space we map into be {|ei〉}dPi=1. Then the isometry V0
corresponding to the projection P0 ≡ P(0) can be chosen as

V0 =
dP∑
i=1

|ei〉〈λi|. (6.4)

We use V0 to form a dP-dimensional Schrödinger equation:

|ψ(s)〉 =V0|ζ (s)〉 �⇒ ∂

∂s
|ψ(s)〉 = 0. (6.5)

Thus, the effective dP × dP Hamiltonian governing the dynamics of |ψ(s)〉 is zero in this basis. The
observables O of the original system have to be transformed accordingly:

OV(s) =V0U†
ad(s)OUad(s)V†

0, (6.6)

which is tf -dependent.
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We would now like to present another time-dependent basis in which this tf -dependence
disappears. There are some additional reasons to consider a different effective Hamiltonian, to
be discussed below. Define UG

eff(s) by

∂

∂s
UG

eff(s) = (G + [P′,P])UG
eff(s), (6.7)

where G=G(s) is a gauge (geometric connection) term in the generator for the basis change, which
we assume to be block-diagonal (G= PGP + QGQ). We prove in appendix B that any such UG

eff
will satisfy the intertwining property much like equation (2.11) for Uad:

UG
eff(s)P0 = P(s)UG

eff(s). (6.8)

We then let UG
eff be our time-dependent change-of-basis transformation:

|ζ (s)〉 =UG†
eff (s)|φ(s)〉 =UG†

eff (s)Uad(s)|φ0〉. (6.9)

Now, (∂/∂s)UG†
eff =UG†

eff (G† + [P,P′]) so that, using equation (6.2), we have

∂

∂s
|ζ 〉 =UG†

eff (G† + [P,P′] − iHad)|φ〉 (6.10)

=UG†
eff (G† + [P,P′] − i(tf H + i[P′,P]))UG

eff|ζ 〉 =UG†
eff (G† − itf H)UG

eff|ζ 〉, (6.11)

where H(s) is the full Hamiltonian in equation (2.10). Note that upon combining equations (2.11)
and (6.8), we see that |ζ (s)〉 remains in the s= 0 low-energy subspace: |ζ (s)〉 = P0|ζ (s)〉 for all s.
Thus the isometry V0 defined as before completes the mapping into the effective (e.g. qubit) dP-
dimensional Hilbert space:

|ψ(s)〉 =V0|ζ (s)〉 (6.12)

Therefore
∂

∂s
|ψ(s)〉 = −itf H

G
eff(s)|ψ(s)〉, (6.13)

where

HG
eff(s) =VG(s)

(
H(s) + i

tf
G†

)
VG†(s) (6.14)

and we defined the time-dependent isometry

VG(s) =V0UG†
eff (s) (6.15)

into the effective basis at any s. Note that, by combining our notation, we can write

|ψ(s)〉 =VG|φ(s)〉 and |φ(s)〉 =VG†|ψ(s)〉. (6.16)

The adiabatic theorem (theorem 2.1) we have proven gives the bound (recall equation (2.27))

‖ |φ(s)〉 − |φtot(s)〉 ‖ ≤ b= θ

tf
, (6.17)

where |φ(s)〉 is the approximate evolution from equation (6.2), while |φtot(s)〉 =Utot(s)|φ0〉 is the
true evolution generated by the Hamiltonian H(s) in the full Hilbert space. Using the expression
for |φ(s)〉 in terms of |ψ(s)〉, we get

‖VG†|ψ(s)〉 − |φtot(s)〉‖ ≤ b= θ

tf
. (6.18)

This inequality means that |ψ(s)〉, the state evolving according to the effective Hamiltonian,
after an isometry back to the total Hilbert space is close to the true state |φtot(s)〉. Since V0V†

0 = I
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and since V0 is an isometry (hence norm reducing), we have∥∥ |ψ(s)〉 − VG(s)|φtot(s)〉
∥∥= ∥∥VG(s)

(
VG†(s)|ψ(s)〉 − |φtot(s)〉

)∥∥ (6.19)

≤ ‖VG†(s)|ψ(s)〉 − |φtot(s)〉‖ ≤ b= θ

tf
. (6.20)

Let u(s) be generated by tf Heff(s), i.e. |ψ(s)〉 = u(s)|ψ(0)〉 (equation (6.13)). Note that |φ(0)〉 =
VG†|ψ(0)〉. We can rewrite equation (6.20) as

∀ |ψ(0)〉, ‖(u(s) − VG(s)Utot(s)VG†(s)|ψ(0)〉‖ ≤ b= θ

tf
. (6.21)

It follows immediately that the same bound holds for the evolution operators, as stated in the
introduction (recall equation (1.4)):

‖u(s) − VG(s)Utot(s)VG†(s)‖ ≤ b. (6.22)

The observables of the original system transform as

OG
eff(s) =VG(s)OVG†(s). (6.23)

In practice, Heff and Oeff can be found by truncation of the total Hilbert space to some
large cutoff and working with truncated finite-dimensional matrices O,H,U and V. The error
introduced by the cutoff may be estimated by trying several cutoffs and extrapolating. We defer
a more rigorous treatment of this error to future work.

Let us now discuss the gauge G. There are two natural reasons for choosing G= 0. The first
is that if we wish to keep the basis change (and thus the operators OG

eff =VG(s)OVG†(s)) tf -
independent, then G itself must be tf -independent. Thus, by equation (6.14), the only choice that
leads to tf -independent HG

eff(s) is G= 0.
The second is that the choice G= 0 is the one that minimizes the norm of the derivative of any

observable. This can be interpreted as the desirable consequence of not imparting any additional
geometric phases that artificially speed up the evolution of observables in the given observation
frame. To show this explicitly, note first that since we assumed that G is block-diagonal, we cannot
choose the block-off-diagonal form G= −[P′,P] to cancel the time-dependence of the operators.
Now, by equation (6.7),

∂

∂s
OG

eff =VG[O,G + [P′,P]]VG†. (6.24)

When an operator X is block-diagonal so that in particular PXP= 0, then also VGXVG† = 0 since
VG just maps onto the space the projector selects. With this, it is clear that since P[P,P′]P= 0, we
have ∥∥∥∥ ∂

∂s
OG

eff

∥∥∥∥= ‖VG[O,G]VG†‖ ≥ 0, (6.25)

with the norm vanishing in general only when G= 0.

7. Conclusion
Starting with Kato’s work in the 1950s, work on the adiabatic theorem of quantum mechanics
has resulted in rigorous bounds on the convergence between the actual evolution and the
approximate, adiabatic evolution. These bounds were initially derived for Hamiltonians with
bounded-norm derivatives and then conjectured without presenting the explicit form for
the unbounded case, subject to assumptions restricting the class of Hamiltonians to being
‘admissible’, which essentially meant that norms of certain functions of H and its derivatives
were not allowed to diverge. In this work, we have obtained new bounds which are presented in
explicit form and can be applied after the introduction of an appropriate cutoff to Hamiltonians
whose derivatives are unbounded. After the cutoff all the derivatives are bounded by a function
of the cutoff scale, but our bounds capture the physically relevant cases where the adiabatic
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timescale is independent of the cutoff. To achieve this, we introduced a different assumption,
relating H′ to a power of H via a simple-to-check positivity condition (equation (2.26)). With
this assumption, we derived a new form of the adiabatic theorem. We expect that this adiabatic
theorem will prove to be useful in a variety of situations, e.g. in the context of adiabatic quantum
computing using superconducting qubits or trapped ions, where the physical degrees of freedom
correspond to (perturbed) harmonic oscillators.

To demonstrate and illustrate the latter, we performed a calculation of the adiabatic timescale
characterizing the accuracy of the qubit approximation of the circuit Hamiltonian of a capacitively
shunted flux qubit. Specifically, we considered a time evolution fashioned after quantum
annealing that attempts to reduce the qubit transverse field X linearly as (1 − s)X. The result
shows that after some s∗ close to 1 the state generally escapes from the qubit approximation.
Specifically, higher oscillator states become populated in each well. We do not expect this leakage
effect to introduce a significant change in the outcome of a single-qubit quantum anneal, since the
end-measurement is just a binary measurement of which well the flux is in, not the projection onto
the lowest eigenstates. Thus, the non-qubit eigenstates become categorized as 0 or 1 depending
on the sign of the flux. It remains an open question what the effect of this type of leakage is in
the case of multi-qubit quantum dynamics, and whether it impacts the prospects of a quantum
speed-up.
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Appendix A. Time-dependent harmonic oscillator: a brute-force estimate
versus the bound of §5b

The well approximation of equation (5.75) at every point s along the anneal contains just harmonic
potentials of different widths, so the leading order of leakage can be well described by changing
the width of the harmonic potential by a dilation to 1/

√
b(s) of the s= 0 width. We illustrate

the leakage due to this effect in figure 7. The diabatic evolution subject to the corresponding
Hamiltonian

H0 = ECn̂2 + EJb
φ̂2

2
, φ ∈ [−∞, ∞], (A 1)

where we shifted the minimum to φ = 0, can be investigated in a brute-force manner, since we
know the eigenstates |m〉 at every s, as well as their derivatives |m′〉. Indeed, if we use the dilation
operator

Ud = e((−i ln b)/4)(n̂φ̂+φ̂n̂) such that Udψ(φ) = b−1/4ψ

(
φ√
b

)
, (A 2)

we can write
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populated well, s = s1
harmonic
oscillator

harmonic
oscillator

n = 3

n = 2

n = 0
0

ϕ
ϕ

1
population

n = 0
0 P1

population

n = 1ωs=s2

s = s2

pl

ω s=s1pl

Figure 7. For this figure, we assume that up to s1 the evolution was fully adiabatic, but then the instantaneous approximation
is applied to go from s1 to s2. The wave function is preserved, but since the eigenstates change, it gets projected into the excited
states. In the text, a more careful calculation of the leakage is carried out. (Online version in colour.)

|ms〉 =Ud|ms=0〉 and |m′
s〉 =Ud

−ib′

4b
(n̂φ̂ + φ̂n̂)|ms=0〉. (A 3)

We now write the time-dependent Schrödinger equation in the time-dependent eigenbasis, thus
acquiring a geometric term:

|ψ ′(s)〉 = −itf H|ψ(s)〉, |ψ(s)〉 =
∑
m

cm(s)|ms〉, (A 4)

∑
m

c′m(s)|ms〉 + cm(s)|ms
′〉 = −

∑
m

itf Hcm(s)|ms〉, (A 5)

c′k(s) +
∑
m

cm(s)〈ks|ms
′〉 = −

∑
m

itf cm(s)〈ks|H|ms〉 (A 6)

and |c′(s)〉 − ib′

4b
(n̂s=0φ̂s=0 + φ̂s=0n̂s=0)|c(s)〉 = −itfω

s
plm̂|c(s)〉, (A 7)

where m̂ is just a diagonal matrix with 0, 1, 2 . . . on the diagonal, and

φ̂s=0 ∼
(
EC
EJ

)1/4
(a + a†) and n̂s=0 ∼

(
EJ

EC

)1/4
i(a − a†), (A 8)

with a and a† being the usual bosonic annihilation and creation operators. With this, we can
estimate the leakage. Let

V(s) = −b′

4tf b
(n̂s=0φ̂s=0 + φ̂s=0n̂s=0) (A 9)

be a perturbation to the Hamiltonian. We split the interval [0, tf ] into periods 2π/ωs
pl. Over one

period, we consider ωs
pl to be approximately constant. We transform into the interaction picture:

V(t) = iO(1)b′

tf b
(a2ei2ωs

plt − a†2 e−i2ωs
plt). (A 10)

We do not keep track of the numerical factors at this point. The leakage over one period is given
by

|δcs〉 ≈ i
∫ 2π/ωs

pl

0
V(t) dt |0〉, with ‖δcs‖ =O(1)

∣∣∣∣∣
(

∂

∂t
b′

2tf b

)∫ 2π/ωs
pl

0
e−i2ωs

plttdt

∣∣∣∣∣=O(1)
1

t2f
(lnb)′′

1

ωs2
pl

,

(A 11)
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where the constant-in-t term cancels in the rotating integral. Now what remains is to add
contributions of all s from intervals 2π/ωs

pltf :

‖δc‖ =
∫ 1

0
ds (2π/(ωs

pltf ))
−1‖δcs‖ = O(1)

tf

∫ 1

0
ds (lnb)′′

1
ωs

pl
= O(1)

tfωpl(0)

∫ 1

0
ds (lnb)′′

1√
b

. (A 12)

Taking the integral using equations (5.42) and (5.44), we obtain

∫ 1

0
ds (lnb)′′

1√
b

= (lnb)′
1√
b

∣∣∣∣1
0

−
∫ 1

0
ds

b′

b

(
1√
b

)′
= b′

b3/2

∣∣∣∣
1

0
+

∫ 1

0
ds

b′2

2b5/2 (A 13)

= 2
A(b)7/4 eA(

√
b−1)

∣∣∣∣1
0

+
∫B

1

2
A2b3 e2A(

√
b−1) A(b)1/4

2
e−A(

√
b−1) db (A 14)

= 2 + o(1)
AB7/4 eA(

√B−1) + 1 + o(1)
A2B9/4 eA(

√B−1). (A 15)

The second term is subleading, so

ECθ =O(1)
1

A2B7/4 eA(
√B−1), (A 16)

which exactly matches equation (5.67) for s∗ = 1 and b(s∗) =B. In other words, our brute-force
calculation produces the same result as our bound.

Appendix B. Proof of the intertwining relation, equations (2.11) and (6.8)
Proof. It suffices to prove that J(s) defined via

J(s) ≡UG
eff(s)P0 − P(s)UG

eff(s) (B 1)

vanishes for all s. Thus J(s) is the ‘integral of motion’ of the differential equation satisfied by
Uad(s).

We can find the derivative using equation (6.7):

J′ =UG
eff

′
P0 − P′UG

eff − PUG
eff

′
(B 2a)

=GJ + [P′,P]UG
effP0 − P′UG

eff − P[P′,P]UG
eff, (B 2b)

where in the second equality we used [P,G] = 0, which follows from G being block-diagonal (G=
PGP + QGQ). Using the fact that P′ is block-off-diagonal (equations (2.13) and (2.14)), we simplify
the last two terms as

P′ + P[P′,P] = P′ − PP′ =QP′ =QP′Q + QP′P= P′P, (B 3)

where in the last equality we used P′P= (PP′Q + QP′P)P=QP′P. Thus,

J′ − GJ = [P′,P]UG
effP0 − P′PUG

eff (B 4a)

= [P′,P]UG
effP0 − (P′P − PP′)PUG

eff = [P′,P]J, (B 4b)

i.e.

J′ = (G + [P′,P])J. (B 5)

Since J(s) = 0 satisfies this equation and by the definition of J(s) (equation (B 1)) we have J(0) = 0,
by uniqueness of the solution of a linear differential equation we obtain that J(s) = 0 is the unique
solution. This proves the desired property of UG

eff.
In the special case of G(s) = −itf H(s) we have UG

eff =Uad; thus proving equation (6.8) also
proves equation (2.11). �
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