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Abstract
Critical infrastructure systems derive their importance from the societal needs they help 
meet. Yet the relationship between infrastructure system functioning and societal func-
tioning is not well-understood, nor are the impacts of infrastructure system disruptions on 
consumers. We develop two empirical measures of societal impacts—willingness to pay 
(WTP) to avoid service interruptions and a constructed scale of unhappiness, compare them 
to each other and others from the literature, and use them to examine household impacts of 
service interruptions. Focusing on household-level societal impacts of electric power and 
water service interruptions, we use survey-based data from Los Angeles County, USA, to 
fit a random effects within-between model of WTP and an ordinal logit with mixed effects 
to predict unhappiness, both as a function of infrastructure type, outage duration, and 
household attributes. Results suggest household impact increases nonlinearly with outage 
duration, and the impact of electric power disruptions is greater than water supply disrup-
tions. Unhappiness is better able to distinguish the effects of shorter-duration outages than 
WTP is. Some people experience at least some duration of outage without negative impact. 
Increased household impact was also associated with using electricity for medical devices 
or water for work or business, perceived likelihood of an emergency, worry about an emer-
gency, past negative experiences with emergencies, lower level of preparation, less connec-
tion to the neighborhood, higher income, being married, being younger, having pets, and 
having someone with a medical condition in the house. Financial, time/effort, health, and 
stress concerns all substantially influence the stated level of unhappiness.
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1  Introduction

Civil infrastructure systems, such as electric power and water supply systems, provide 
essential goods and services to meet societal needs. The ultimate goal of these systems—
in fact, what makes them critical—is their role in societal functioning. Recognizing this, 
multiple agencies and researchers have increasingly acknowledged the importance of better 
understanding the relationship between system functioning and societal functioning, where 
the former refers to the provision of the service from a network of pipes or power lines 
(e.g., percentage of customers receiving water or power), and the latter refers more gener-
ally to the ability of industries and businesses to operate; emergency services to perform 
their duties; households to participate in or get to work, school, and leisure activities; indi-
viduals to drink, bathe, and live their daily lives (NEHRP 2014, ATC 2016, NIST 2016, 
Hasan and Foliente 2015; Davis 2019, 2021; Rojahn et al. 2019). Describing this relation-
ship more fully could provide a clear basis for defining infrastructure system performance 
goals expressed in terms of societal functions, assessing the current performance of the 
nation’s infrastructure systems in societal terms, and developing design and operations 
methods to achieve the expressed societal performance goals.

Nevertheless, developing such an understanding is made difficult by the complexity 
of the system-societal functioning relationship. The societal functioning consequences of 
system functioning interruption depend on the characteristics of the user (e.g., available 
resources and social capital to adapt), characteristics of the service interruption (e.g., other 
impacts it caused, geographic area affected), and context (e.g., climate). The relationship 
may not be linear. An hour without power may matter differently if it is the 100th hour than 
if it is the first (e.g., the associated cost function may be convex such that marginal costs 
increase over some time period). The concept of societal functioning is also multidimen-
sional and no widely accepted, natural scale exists to measure it.

Perhaps because of these challenges, the way in which infrastructure system services 
meet societal needs, and the way interruptions of those services impair the ability to meet 
those needs are still not well-understood (Sattar et al. 2021, SFPURA 2009). In particular, 
there has been little empirical or quantitative investigation to understand the magnitude of 
household impacts, how they vary across disruptive events and household types, or what 
considerations govern the level of impact experienced. This paper contributes to the litera-
ture by helping to fill this gap.

In particular, focusing on household-level societal impacts of electric power and water 
service interruptions, and using survey-based data from Los Angeles County, in this paper, 
we develop two empirical measures of societal impacts, compare them to each other and 
others recently proposed in the literature, and use them to examine household impacts of 
service interruptions. In particular, we examine the following research questions:

•	 Research Question 1. How do household impacts vary with infrastructure system type 
and outage duration?

•	 Research Question 2. What household characteristics are associated with greater house-
hold impacts from electric power and water service interruptions?

•	 Research Question 3. What are the concerns that influence an individual’s level of 
unhappiness associated with service interruptions?

Following a summary of literature related to societal impacts of infrastructure system 
disruptions in Sect. 2 and introduction of a conceptual framework to guide the analysis in 
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Sect. 3, we describe the data in Sect. 4 and the statistical models used in Sect. 5. The three 
research questions are examined in turn in Sect. 6, and the paper concludes with a discus-
sion of the implications of the results and limitations of the analysis.

2 � Societal impact literature

There is a relatively small though growing literature addressing societal impacts of infra-
structure system disruptions directly (Petersen et  al. 2020; Chang 2016). Previous work 
can be partitioned into two main approaches—macro and micro. The macro approach aims 
to understand impacts directly for a community or region as a whole; the micro approach 
aims to understand impacts for individual businesses, organizations, or households within a 
community. Both include theoretical and empirical efforts (1) to define metrics to represent 
societal impacts, and (2) to use those metrics to better understand them (e.g., magnitude; 
distribution across geographic areas, population groups, and time; relationship to impact as 
defined in engineering terms).

Davidson et al. (2022) discuss the macro approach and the micro approach more gener-
ally. Here we highlight the relatively few previous studies that share the focus of the cur-
rent study, the effects of infrastructure system disruptions on households. Mostafavi and 
colleagues have explored the issue through a few recent papers using survey data from 
Harris County (home to Houston) in Hurricane Harvey (2017) (Dong et al. 2020, Esmalian 
et al. 2019; Dargin and Mostafavi 2020; Coleman et al. 2020). They introduced the concept 
of the hardship a household experienced as a measure of societal impact and defined it as 
a function of (1) extent of service disruption, and (2) a household’s tolerance to withstand 
the disruption. Two thresholds of tolerance were introduced, the acceptable service level 
(need in daily life) and minimum adequate service level in a disaster setting. The degree 
of hardship was measured by asking survey respondents the degree of hardship experi-
enced on a Likert scale (none at all (1) to a great deal (5)). Tolerance to service disrup-
tions were measured by asking how many days they would be capable of tolerating the 
disruption. Dargin and Mostafavi (2020: 20) found differences in well-being impacts in 
various population groups. For example, low-income groups registered greater impacts. In 
their study, though, infrastructure disruptions in transportation, waste removal, food sup-
plies, and water were of greater impact than electric and communications, possibly because 
these latter outages were of relatively shorter duration. Dong et  al. (2020) examined the 
impact of disrupted access to healthcare facilities and further proposed a disruption toler-
ance index (DTI) to represent the extent to which disruption in a particular infrastructure 
system influences certain populations. Focusing on impacts of power outages, Esmalian 
et al. (2019) used agent-based simulation including a household agent whose tolerance was 
predicted in a negative binomial model as a function of household characteristics. Cole-
man et al. (2020) focused on inequality in exposure and hardship across population groups 
due to infrastructure service disruptions, considering transportation, power, communica-
tion, and water service. Dargin and Mostafavi (2020) extended the ideas to define house-
hold well-being as a function of duration of service disruption and hardship. Well-being, 
derived from the Personal Wellbeing Index (PWI) (IWG 2013), was measured by asking 
for Likert scale assessments (none at all (1) to a great deal (5)) indicating how often or 
how much they experienced seven feelings—helplessness, anxiousness, upsetting thoughts, 
safety, depression, daily life tasks, and feeling distant.
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Yang et al. (2021) focused on individual physiological needs and incorporated adaptive 
capacity to evaluate the societal impact of disrupted water infrastructure, including a case 
study for Osaka, Japan. They define five levels of need satisfaction. In Level 1, for exam-
ple, survival and hygiene needs can be met; drinking, cooking, washing, bathing, and laun-
dry are assured. In Level 2, survival can be met and hygiene can mostly be met; drinking, 
cooking, washing are assured, and bathing and laundry are possible. Societal impact is then 
defined as the percentage of the population in each level. Adaptive capacity is considered 
by examining the availability of tap water, bottled water, and emergency water.

Petersen et al. (2020) address the related question of what the public (European citizens 
specifically) considers an acceptable level of disruption to critical infrastructure during 
a disaster. The study focused on essential goods, water, and transportation in the empiri-
cal analysis. Four below normal levels of service were defined (e.g., drinking water from 
tanks provided, need to boil before drinking) and respondents were asked for the maxi-
mum amount of time they would be willing to tolerate the disruption (hours, days, weeks, 
months, years, or not at all). Acceptability likely depends on the consequences associated 
with the service disruption, the ease with which someone can adapt to the disruption, and 
the associated costs with reducing it. If costs were not implicitly considered, i.e., there was 
no tradeoff, there would be no reason to tolerate any disruption.

Gardoni and Murphy (2010) and Tabandeh et al. (2018, 2019) offer a capability-based 
approach to describing societal impacts of disasters. Indicators represent the capabilities, 
which capture distinct dimensions of an individual’s well-being, including for example, 
meeting physiological needs, earning income, being mobile, and being socially connected 
(Tabandeh et  al. 2019). Though not directly related to the effects of disruption to infra-
structure systems services, the modified domestic asset index (Bates and Peacock 1992; 
Arlikatti et al. 2010) and well-being losses in Walsh and Hallegatte (2019) offer alternative 
methods of measuring household impacts of disaster events that are more complete than 
repair costs to physical assets.

Together this previous work highlights interest in better understanding the effects of 
infrastructure system disruptions on households and offers a few possible ways to do so. 
The study herein adds to this nascent literature by using survey data from Los Angeles 
County to quantitatively examine household impacts of service interruptions using two 
alternative metrics, unhappiness and willingness to pay. The metrics and findings are com-
pared to those recently proposed in the literature.

3 � Conceptual framework and comparison of measures

Figure 1 provides a conceptual framework to facilitate discussion of possible household 
impact metrics. Service is often defined in binary terms as being provided or not, with a 
service interruption then defined in terms of its duration. To be more precise, normal ser-
vice can also be described in terms of multiple basic service categories or dimensions of 
service that an infrastructure system provides, such as, delivery, collection, quantity, qual-
ity (Davis 2021). The level of service may be reduced then by interrupting one or more of 
those basic service categories for a period of time (e.g., if water is provided but is not pota-
ble or not at the usual pressure, or if electricity is provided but there are rolling blackouts 
or brownouts). The raw reduced level of service is the quantity often described in engineer-
ing studies that indicate outage duration or percentage of normal demand that could be 
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served after a disruptive event, assuming no reaction from consumers (or possibly system 
operators).

In reality, when a reduction in level of service happens, adaptations occur in response 
(e.g., Palm 2009; Abbou et  al. 2022). They may address a reduced level of service by 
reducing, delaying, or relocating consumption (e.g., skipping a shower, postponing laundry 
or doing it at a relative’s house), or by augmenting supply (e.g., buying bottled water or 
using a generator). Adaptations may be implemented by the household or organizations in 
the community, as when a company provides warming/cooling centers. The infrastructure 
system operator implements adaptations as well, such as rerouting around damage or pro-
viding tanked water. Adaptations are often not a perfect replacement or substitute for the 
disrupted service. They may be possible only for a limited duration or may support some 
but not all uses of an infrastructure system service. Candles, for example, can substitute 
for the light provided by electricity, but not home heating or cooking. Thus, the combina-
tion of the raw reduced level of service and adaptations together determine the adjusted 
reduced level of service. While the raw reduced level of service is that provided by the 
networked system, the adjusted reduced level of service includes that provided by auxiliary 
sources and the adjusted demand. This is consistent with a substitution effect in economics, 
in which consumers alter their mix of service sources to the extent possible, to maintain a 
given level of utility.

Finally, that adjusted reduced level of service, described for example, in terms of the 
duration of interruption in one more basic service dimensions, can then be translated into 
the final impact on households, i.e., the effect of that reduced service on the household’s 
ability to live its normal life. The difference between the adjusted reduced level of ser-
vice and the household impact recognizes that an hour without electric power, for example, 
could have almost no noticeable effect for one household but a major life-threatening effect 
for another in other circumstances, for example, if it means an elderly person goes without 
heating or cooling in a severe climate. Both the type and extent of adaptations implemented 
and the relationship between adjusted reduced level of service and final household impact 
depend on attributes, including preferences, of the household (Petersen et  al. 2020), and 
characteristics of the location and the event. They may differ, for example, if the disruptive 
event is widespread, causing many other regional effects, or more localized. They may dif-
fer based on the climate and population density of the location. The household impact may 
reflect both the adjusted reduced level of service and any cost in terms of finances, time, 
effort, or other resources, of implementing adaptations.

No consensus exists for how to measure the impact of service interruptions on house-
holds, but the recent literature suggests a few possibilities, and this paper uses two pos-
sible metrics new for this application (Sect.  2, Table  1). Three of the measures are dis-
aggregated by level of need satisfaction or dimensions of personal well-being (societal 

Fig. 1   Conceptual framework of infrastructure system disruption impact on household well-being
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impact, well-being, capability-based well-being); the rest are summary measures provid-
ing an overall assessment of the impact. They are all self-reported measures and implicitly 
include the effect of both any reduced level of service that exists even after adaptations and 
any negative experience associated with implementing the adaptations (e.g., cost of a gen-
erator, or time spent getting water from a tanker truck) (Fig. 1).

Measures of the ultimate impact on households can be categorized into two groups, (1) 
needs-based and (2) reaction-based (Table 1). In the former, a list of needs the infrastruc-
ture system service helps a household meet are enumerated (e.g., survival, hygiene, earning 
income), and the impact is defined in terms of the extent to which those are met. The needs 
may be defined more specifically or generally, and their definition may depend on the infra-
structure system and location (e.g., country). In the reaction-based measures, the impact of 
the service disruption is captured in terms of the household’s emotional reaction to it, how 
they interpret the severity of the interruption and its implications. Well-being describes that 
reaction in a disaggregated way; the others are summary measures. In the cases of Toler-
ance and Acceptability, it is not clear what happens if a household does not tolerate or 
accept a service disruption. One could say they will not tolerate a disruption, but they may 
just have to if there is no alternative. There is an inherent tradeoff between service level 
and cost in terms of economic or other resources. It may be that an individual is displeased 
with a specified level of service, but if the choice is between that and investing substantial 
resources to improve it, they would rather accept it.

Willingness to pay (WTP) addresses this by framing the impact in terms of the tradeoff. 
However, it muddies the measure of household impact because it reflects both the hard-
ship experienced as a result of a service disruption and the household’s personal access 
to resources rather than only the former. For this reason, WTP is often used in economic 
studies of demand where the consumer must be willing and able to pay for a product or 
service. Unhappiness is most similar to Hardship as a reaction-based summary measure. 
Ultimately, the best metrics will depend on the particular application, which in turn deter-
mine the required ease of assessment, units desired (e.g., time, dollars), and applicability 
across infrastructure system types and locations. This paper aims to move the conversation 
forward by examining two metrics that are new for this application, WTP and unhappiness.

4 � Data

4.1 � Survey overview

The data used in this analysis were collected through a web-based (online) survey con-
ducted May-December 2020. Designed to help understand individuals’ responses to elec-
tric power and water supply service outages, the survey included sections on: (1) typical 
electric power and water use patterns; (2) past experiences with electric power and water 
supply outages; (3) expected responses to hypothetical future electric power and water ser-
vice outages of varying durations; (4) risk perception, emergency preparedness, and social 
network; and (5) socio-demographics. Respondents completed the survey in an average of 
23.5 min.

The quota-based survey sample was obtained through Qualtrics, a third-party survey vendor. 
Only respondents 18 years old and older living in Los Angeles County were considered eligi-
ble. The participants were recruited through Qualtrics panels, with incentives paid that included 
travel points and other remuneration. A census-representative sample was generated through 
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quota Qualtrics panels; participants were recruited from multiple panels until the appropriate 
census population proportion was achieved based on characteristics usually found to be impor-
tant in relevant studies of risk, preparedness, vulnerability, and resilience—age, gender, race, 
education, and income. Several checks were implemented to ensure high quality data, includ-
ing checks against speeding through the survey, residents being located outside Los Angeles, 
straightlining, and providing gibberish answers. Responses showing these characteristics were 
omitted. A total of 3,129 responses were initiated, and after applying the quality checks and 
filters, the final sample included 1,615 observations for use in the analysis, for a completion rate 
of 51.9%. All elements of the study design and instrumentation were reviewed by our university 
Institutional Review Board and approved as conforming to standards for informed consent.

4.2 � Household societal impact and outage duration variables

Ten questions were asked to solicit information associated with a past outage, five for an 
electric power and five for a water supply outage (Fig.  2). Similarly, six questions were 
asked to solicit information associated with hypothetical future outages, three for electric 
power and three for water supply (Fig.  3). Questions 5 and 8 were based on a scenario 
adapted from Carlsson and Martinsson (2007, p79). Responses to these questions resulted 
in up to ten observations for each respondent (five outage durations each for electric 
power and water). Each observation included the WTP, ywtp, and unhappiness, yun, associ-
ated with a particular outage duration, xdur. Note that the degree of unhappiness and WTP 
are designed to account for impact of the outage together with adaptive actions taken in 
response. Adaptations could provide a substitute for the infrastructure system service, but 
not necessarily at the same level and perhaps at a cost. Using a gas stove during an electric 

Fig. 2   Questions to solicit information associated with a past outage
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power outage could provide a way to cook, for example, but would not replace the lighting 
or heating function that electricity often provides. It also might come at a financial cost 
for the gas and a cost in terms of extra time or inconvenience. Tables 2 and 3 summarize 
the WTP and unhappiness, respectively, for each electric power and water outage of dif-
ferent durations. Note that 34 very high WTP observations (> $10,000) were truncated to 
$10,000. The change had no practical effect on the model coefficients.

Observations from past and hypothetical future outages are combined in the dataset. Eighty-
three percent of observations from past outages are less than one day; whereas hypothetical 
future outages are approximately evenly split among the four durations from 1 day to 1 month. 
Combining the past and future thus provides a larger range of durations than either would alone. 
To check if there were systematic differences between the two types of observations, we looked 
at the 199 electric power observations and 102 water supply observations that had both a past 
and future outage observation for the same duration. For those observations, we compared the 
respondent’s WTP associated with the past outage and the WTP associated with the future out-
age. A two-tail paired two sample t-test for means showed no evidence that they were different 
(p = 0.24 for electric, p = 0.15 for water). Similarly, for the unhappiness values, a two-sided Wil-
cox signed rank test showed no evidence of a difference between past and future assessments for 
water (p = 0.88), although it did for electric. For electric outages, people tended to assess a higher 
unhappiness for past one-day outages than for a future outage of the same duration, but a lower 
unhappiness for past 30-day outages than for a hypothetical future outage of the same duration.

Fig. 3   Questions to solicit information associated with hypothetical future outages
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4.3 � Other explanatory variables

The explanatory variables, selected based on the literature on service interruptions, emergency 
preparedness, and risk perception (Moreno and Shaw 2019, Dargin and Mostafavi 2020, Hei-
denstrøm and Throne-Holst 2020, Klinger et al. 2014, FEMA 2013, Martins et al. 2018, Clay 
et al. 2020), include those related to (1) how the service (electric power or water) is used (xe.heat, 
xe.dev, xe.work, xw.dev, xe.work), (2) risk perception and past experience in emergencies (xl.emer, xw.emer, 
xn.emer, xprep), (3) social cohesion (xneighbor), and (4) socio-demographics (all other variables). 
Tables 4 and 5 summarize the descriptive statistics and hypothesized effects for the categorical 
and continuous variables, respectively. Note that while there were 1,615 respondents as sum-
marized in Tables 4 and 5, since each responded to up to 10 outage scenarios, the number of 
observations in Tables 2 and 3 are approximately nine times that (14,744 for WTP and 14,522 for 
unhappiness).

Respondents were asked “In what ways does your household regularly use electricity at your 
place of residence? (Select all that apply)” Of the ten choices—House heating, house cooling, 
lighting, cooking and food storage, communications, electronics, washing, medical devices, work 
and business, or other—to reduce model size, binary variables were included only for heating, 
medical devices, and work/business (xe.heat, xe.dev, xe.work), as they were hypothesized to be most 
important. The same question was asked with “water” instead of “electricity” and the ten choices 
drinking, bathing, cooking, washing, flushing the toilet, medical devices, work and business, 
swimming pool or hot tub, outdoor uses (lawn, garden), and other. Variables were included only 
for medical devices and work/business (xw.dev, xw.work).

To elicit risk perception and past experience in emergencies, respondents were asked several 
questions. The question “How likely do you think it is that you and your household will be 
impacted by emergencies in the next five years?” included five options (Very unlikely, Unlikely, 
Likely, Very likely, Not sure), but for parsimony was coded as a binary variable (xl.emer). Simi-
larly, although there were four options to the question “How worried are you about the potential 
threat of you and your household being impacted by emergencies in the next five years?” it 
was coded as binary (xw.emer) (Table 4). The negative emergency variable (xn.emer) was obtained 
from the question “Have you ever experienced emergencies that caused some negative impact 
on your life? (Yes or No)”. The Preparation (xprep) variable was coded as the number of prepa-
ration-based activities respondents took out of 12 possible activities—preparing an evacuation 
plan, preparing a household reunion plan, searching for preparation information, storing impor-
tant documents, keeping extra medication, keeping extra cash, gathering emergency numbers, 
storing three days of water per person, storing non-perishable food and snacks, storing first aid 
supplies, storing flashlights, and storing a battery-operated radio. Respondents were asked spe-
cifically “Emergency management agencies have suggested the following ways to prepare for 
emergencies in Los Angeles. For each one, please check if you have done it in order to be pre-
pared for emergencies.”

With a particular interest in how social connectedness plays into the ability to adapt to or 
to prepare for outages/disruptions, respondents were asked: “Thinking about your neighbor-
hood, how much do you agree or disagree with each of the following sentences: (1) “People in 
this neighborhood are willing to help neighbors” (Sampson et al. 1997: 920), (2) People in this 
neighborhood know each other well, (3) “People in this neighborhood can be trusted” (Sampson 
et al. 1997: 920), (4) People in this neighborhood participate in neighborhood organizations, and 
(5) “My neighborhood is a safe place” (Merrin et al. 2015: 527).” The response choices were 
Strongly disagree, Disagree, Agree, and Strongly agree. To create the composite neighbor con-
nectedness variable, values 1 to 4 were assigned to each response choice respectively, answers 
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for the five statements were averaged, and xneighbor was coded as 0 for Does not feel connected 
(≤ 2.5), and 1 for Feels connected (> 2.5).

Respondents were asked to list how many children (< 18 years), elders (65 + years), and 
pets lived in their household, and those responses were coded as binary variables, xchild, xelder, 
and xpets. Employment status (xemploy) was coded as binary with Unemployed, Student, Home-
maker, Retired, Unable to work combined into Not traditionally employed. To capture possible 
medical reliance on infrastructure services, respondents were asked “Do you have any people 
in your household who have at least one of the following conditions? (Select all that apply),” 
with six choices—seriously impaired hearing, seriously impaired vision, serious difficulty 
concentrating, remembering, or making decisions, serious difficulty walking/climbing stairs, 
serious difficulty dressing or bathing, and serious difficulty doing errands alone (adapted from 
American Community Survey 2020). Respondents were also asked “ Do you have any peo-
ple living regularly in your household who rely on medical equipment in the home (such as, 
but not limited to, respirators, ventilators, suction, home dialysis, etc.)?” Both xmed.c and xmed.e 
were coded as binary variables.

5 � Models

5.1 � Willingness to pay (WTP) model

The data used in the willingness to pay (WTP) analysis are structured as repeated meas-
ures data in that within one survey each respondent is asked multiple WTP questions 
that vary by condition (i.e., outage type/duration). In particular, there are up to ten 
choice occasions (and WTP responses) for each respondent, one past experience with an 
associated outage duration, and four hypothetical future experiences with outage dura-
tions of one day, three days, one week, and one month for electric power, and the same 
for water supply. In the terminology of Bell et  al. (2019), the observations have two 
levels. Level 1 is the choice occasion t (i.e., the question distinguished by the outage 
type and duration referenced); Level 2 is the individual respondent associated with a 
group of level 1 observations. We use a random effects within-between (REWB) regres-
sion model to capture the heterogeneity at both levels (Bell et al. 2019; Dieleman and 
Templin 2014). “Within” effects occur at level 1 and “between” effects occur at level 2. 

Table 5   Descriptive statistics for continuous variables

a Positive means increase in variable is associated with an increase in WTP or unhappiness
b Income was asked as an interval variable but was coded as a continuous variable with the values in paren-
theses for each interval: less than $15 k ($7.5 k), $15 k–$35 k ($25 k), $35 k–$50 k ($42.5 k), $50 k–$75 k 
($62.5 k), $75 k–$100 k ($87.5 k), $100 k–$150 k ($125 k), $150 k–$250 k ($200 k), and more than $250 k 
($300 k)
c Preparation is a continuous value from 0 to 12

Variable Description (unit) Hypothesized
effecta

Num. responses Mean Standard
deviation

xage Age (years) Negative 1615 40.96 16.40
xinc Incomeb ($1000 s) Positive 1615 77.47 65.33
xprep Preparationc Unclear 1615 7.01 3.38
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In this analysis, we are most interested in within-effects, i.e., the effect of outage dura-
tion, on WTP. This general structure allows the possibility that a response variable can 
be related to predictors at different levels and the relationships are not always the same, 
as in the case in which higher-income U.S. states tend to elect more Democratic politi-
cians, but within states, higher-income individuals tend to support Republication politi-
cians more (Gelman 2008).

Equation  1 presents the REWB model specification (Bell et  al. 2019; Lüdecke et  al. 
2021), where yit is ln (WTP + 1), with the log transform included to ensure WTP remains 
nonnegative, and one is added to ensure it is defined at WTP = 0.

On the right side, � is a constant; xit is the level 1 explanatory variable (outage duration) 
for individual i in choice occasion t; and z⃗i is a vector of level 2 explanatory variables 
that vary by individual i but not choice occasion t (e.g., respondent income). The coeffi-
cients �1W and �2B represent the average within- and between-effects of outage duration, xit , 
respectively; �⃗𝛽3 represents the vector of effects of the individual-specific variables z⃗i.

There are three random components in the model as well. The vi0 and vi1 are level 2 
random effects representing randomness in the intercept and within slope, respectively. 
Together they allow heterogeneity in the within-effect of xit across individuals. That is, 
it allows the intercept and slope defining the relationship between ln (WTP + 1) and out-
age duration to vary with individual. We assume they are drawn from a bivariate Normal 
distribution (Eq. 2). The �it0 are the level 1 residuals, assumed to be Normally distributed. 
The models were all fitted in R (R Core Team 2021) using the {lme4} package (Bates et al. 
2015).

5.2 � Unhappiness model

Unhappiness, yun, is measured on an ordinal scale, meaning the order of the levels is impor-
tant but the difference between levels is not necessarily constant. Thus, we use a type of 
ordered logit model to represent its relationship to the explanatory variables. The structure 
of the data is otherwise the same as that used in the WTP model, and therefore we retain 
the random effects within-between (REWB) representation here. Specifically, the ordinal 
response Yit, takes on a value of k when individual i (level 2 units) in choice occasion t 
(level 1 units) falls into the kth ordered category, where k = 1,… ,K . The probability that 
individual i in choice occasion t is in category k is pitk , and the cumulative probability is 
P
�

Yit ≤ k
�

=
∑k

l=1
pitl . The function that links the probability to the linear predictor is the 

logit link (Eq. 3) and the cumulative probability is as in Eq. 4:

(1)yit = 𝜇 + 𝛽1W
(

xit − xi
)

+ 𝛽2Bxi + z⃗
T

i
�⃗𝛽
3
+ vi0 + vi1

(

xit − xi
)

+ 𝜖it0

(2)
[

vi0
vi1

]

∼ N

(

0,

[

�2

v0

�v01 �2

v1

])

(3)log

(

P
(

Yit ≤ k
)

1 − P
(

Yit ≤ k
)

)

= 𝛼k −
(

�⃗x
T

it
�⃗𝛽 + ��⃗w

T

it
�⃗𝜃i

)
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where the thresholds separating the k categories are −∞ = 𝛼0 < 𝛼1 < ⋯ < 𝛼K−1 < 𝛼K = +∞ ; 
�⃗xit is the covariate vector; �⃗𝛽 is the vector of regression parameters; ��⃗wit is the design vector 
for the r random effects; and �⃗𝜃i is the vector of unknown random effects for individual 
i. The distribution of random effects is assumed to be multivariate normal. In particular, 
�⃗x
T

it
�⃗𝛽 + ��⃗w

T

it
�⃗𝜃i = 𝛽1W

(

xit − xi
)

+ 𝛽2Bxi + z⃗
T

i
�⃗𝛽
3
+ vi0 + vi1

(

xit − xi
)

 . The models were fitted in 
R (R Core Team 2021) using the {mixor} package (Archer et al. 2015; Hedeker and Gib-
bons 1996).

6 � Results

6.1 � Final models

The WTP and unhappiness models were both fitted using all the explanatory variables in 
Tables 4 and 5, as well as outage duration in days (xdur,w, xdur,b) (Models W1 and U1, Appen-
dix). Using stepwise elimination, variables that were not statistically significant at � = 0.1 were 
removed (Models W2 and U2, Table 6). Since this data is repeated measures data with repeated 
observations for one individual, the between-effect is meaningless and the REWB formulation 
is more informative (Ludecke et al. 2021). The marginal and conditional R2 values for the WTP 
models describe the proportion of total variance explained through fixed effects and through both 
fixed and random effects, respectively (Nakagawa and Shielzeth 2013). They suggest that a lot of 
the variability is in the random effects (0.63 is almost six times 0.11). Comparing the two WTP 
models and the two unhappiness models suggests that removing the variables that are not statisti-
cally significant ( � = 0.1 ) had almost no effect on the overall fit. Thus, for simplicity, in the fol-
lowing discussions we focus on results from the reduced models, W2 and U2.

The average marginal effects (AME) were computed for each explanatory variable since 
they are more easily interpreted than coefficients. The marginal effect is defined as the change 
in the WTP (or probability of being at least moderately unhappy) given a unit increase in the 
variable, keeping all other variable values constant. The marginal effects vary by observation, 
so we compute them for each observation, keeping all other variables at their original values 
and including random effects at their means, then take the average (Hensher et al. 2015).

To test if the more complex models that include within and between separation and 
with random slopes are necessary, we fitted versions of W2 and U2 (1) without the within-
between separation (i.e., a random effects model as in Bell et  al. 2019, Eq.  4), and (2) 
with the within-between separation but without the random slope (as in Bell et al. 2019, 
Eq.  2). Likelihood ratio tests confirmed that the REWB models with random slopes are 
most appropriate (p < 0.01 for all tests). Combining the electric power and water data into 
a single WTP model and a single Unhappiness model streamlines the analysis and allows 
more efficient use of the data; however, it assumes that the effects of the explanatory vari-
ables are the same for both infrastructure system types. To check that assumption, models 
were fitted separately for electric power and water supply. The model R2 values, and coef-
ficient estimates, signs, and p-values were similar in both cases, and would not change the 
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conclusions herein. Plotting the coefficients for electric power vs. those for water indicated 
high correlation (R2 = 0.96 for WTP, R2 = 0.99 for Unhappiness).

6.2 � Effect of infrastructure type and outage duration

The first Research Question asks: How do household impacts vary with infrastructure system 
type and outage duration? The Infrastructure type, xtype, variable is highly significant (p < 0.001) 
and negative in both W2 and U2, suggesting that all things being equal, electric power interrup-
tions cause more severe household impacts than water supply interruptions. The WTP would be 
$17 more and the probability of at least moderate unhappiness would be 0.014 higher if a service 
interruption was electric power instead of water.

Table 6   Final WTP and unhappiness models

a AME is average marginal effect
b Beta values in the unhappiness model, U2, are those from Eq. 3 that computes log-odds

Variable WTP, W2 Unhappiness, U2

β p-value AMEa βb p-value AMEa

Intercept 0.36 0.278 3.56  < 0.001
Outage duration within, xdur,w 0.059  < 0.001 7.06 0.37  < 0.001 0.0518
Outage duration between, xdur,b 0.12  < 0.001 8.72 0.14   0.0054 0.0198
Infrastructure type, xtype − 0.25  < 0.001 − 16.74 − 0.09  < 0.001 − 0.0138
Use electricity for med. devices, xe.dev 0.30 0.029 22.33
Use water for work, xw.work 0.43 0.005 0.0611
Likelihood of emergency, xl.emer 0.20 0.017 12.67
Worry of emergency, xw.emer 0.67  < 0.001 0.0984
Negative emerg. experience, xn_emer 0.38  < 0.001 26.99
Preparation, xprep − 0.022 0.108 − 0.0032
Neighborhood connection, xneigh 0.19 0.023 11.67
Elders in household, xelders − 0.29 0.013 − 0.0423
Pets in household, xpets 0.23 0.004 14.64
Has medical condition, xmed.c 0.43  < 0.001 0.0622
Marital status, xmarital 0.39  < 0.001 25.92 0.21 0.034 0.0302
Age, xage − 0.0081 0.001 − 0.53
Income ($1000 s), xinc 0.0015 0.011 0.10 0.002 0.009 0.0003
Intercept,�2

v0
2.499 10.298

Outage duration within,�2

v1
0.0032 0.103

Intercept-Outage duration within,�
v01 0.510 0.884

Threshold 1,�1 − 3.558  < 0.001
Threshold 2,�2 − 1.342 0.006
Threshold 3,�3 0.715 0.145
Threshold 4,�4 3.256  < 0.001
Conditional R2 0.63
Marginal R2 0.11
AIC 57,193.5 − 17,664.2
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The within-effect of outage duration, xdur,w, is also highly significant (p < 0.001) and posi-
tive in both W2 and U2, indicating that outage duration is important in determining household 
impacts, with longer durations leading to greater impacts. The marginal effects suggest that on 
average, for each individual, increasing the outage duration by a day results in a willingness to 
pay $7.06 larger and the probability of at least moderate unhappiness is 0.05 higher. This find-
ing is consistent with the hypothesized effect and with Dargin and Mostafavi (2020), which 
concluded that as households experienced more days of power outage, they experience more 
hardship.

Figures 4 and 5 offer another way to examine the effect of outage duration on household 
impacts of service interruption. To generate a point on the electric power curve in Fig. 4 using 
all electric power observations in the sample data, we set the outage duration to have a specified 
value leaving all other variables at their original values, computed the WTP (including random 
effects at their means), and took the average over all observations. We generated the curve by 
repeating the process for multiple specified outage duration values xdur. A similar process was 
followed to develop Fig. 5 but instead of computing WTP we computed the probability of each 
unhappiness level k. The water supply curves were computed similarly.

As expected, the WTP and unhappiness increase as outage durations increase. The aver-
age WTP ranges from $15 ($12) to avoid a one-hour outage to $252 ($199) to avoid a 
30-day electric (water) outage. The probability of being at least moderately unhappy is 
0.43 (0.40) for a 1-hour electric (water) outage to 1.0 for a 30-day outage. It is important to 
remember, however that there is quite a bit of variability across the population.

Fig. 4   WTP vs. outage duration 
for electric power and water 
supply

Fig. 5   Probability of at least each unhappiness level k versus outage duration for a electric power and b 
water supply
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As noted in Petersen et al. (2020), some people are willing to accept at least some service 
interruption. Considering an outage of one day or less, for electric power and water supply, 
respectively, 73% and 77% of respondents said they would not be willing to pay anything to 
avoid it (WTP = $0), and 21% and 25% would not be unhappy (Tables 2 and 3). For a 7-day 
outage, for electric power and water supply, respectively, 44% and 47% indicated a WTP of 
$0, and 5% indicated they would not be unhappy. The large differences between WTP = 0 
and not unhappy highlight the difference between these two measures of household impact. 
While only one in four would not be unhappy with a 1-day outage, another two in four would 
be at least slightly unhappy but not be willing to pay to avoid the unhappiness. In general, 
the WTP measure seems less able to distinguish differences at the low end of impact. The 
empirical cumulative distribution functions for the two measures indicate the percentage of 
respondents indicating less than or equal to a specified value of WTP (unhappiness), across all 
outage scenarios for both electric power and water supply (Fig. 6). They indicate that 53% of 
responses for WTP were $0. The ratings were more evenly distributed across the five levels of 
unhappiness.

Note that since 29% of respondents indicated WTP = 0 for all choice situations they 
faced, we tried a two-part model in which a logit regression is first used to identify who 
always chose WTP = 0 and who did not; and then a REWB predicts the WTP value for 
those in the latter group. The model conclusions were very similar, so for simplicity we 
used the single WTP model in Table 6.

The effect of outage duration is nonlinear with the marginal impact of each day of out-
age increasing over time. These nonlinear relationships reflect the assumed model formula-
tions and other relationships could be examined in the future. The goodness-of-fit infor-
mation for the models suggest, however, the assumptions are reasonable. The WTP and 
unhappiness are slightly higher for electric power than water, but as assumed in the formu-
lation, the effect of outage duration is the same for both. (Note an interaction between xdur,w 
and xtype was not statistically significant when tested (p > 0.10) and thus it was excluded.)

The random effects in the models mean that for each individual, there is a different line 
representing their relationship between ln (WTP + 1) and outage duration. The model W2 
has a positive covariance, �v01 , between the intercept and outage duration within-effect ran-
dom effects. This means that when the intercept is higher (WTP is higher at very small 
outage duration), then the slope of the outage duration is higher as well. In other words, the 
marginal increase in WTP per day is higher for those people who have a higher WTP for 
very small outages.

Fig. 6   Empirical cumulative dis-
tribution functions for WTP and 
Unhappiness, considering all past 
and future hypothetical outage 
scenarios and both infrastructure 
system types
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6.3 � Effects of household characteristics on household impacts

Using the coefficient estimates and marginal effects, we can investigate Research Ques-
tion 2: What household characteristics are associated with greater household impacts from 
electric power and water service interruptions? Examining the results in Table 6, we con-
sider characteristics related to (1) use of the service, (2) risk perception and past experi-
ence in emergencies, (3) social cohesion, and (4) socio-demographics.

The results provide evidence (p = 0.029) that WTP is on average $22 higher when a house-
hold regularly uses electricity on their property for medical devices (e.g., respirators, ventila-
tors, home dialysis), xe.dev. Similarly, unhappiness is higher when an individual regularly uses 
water on their property for work or business, xw.work. The analysis did not provide evidence 
that use of electric power for heat or work/business, or water for medical devices were associ-
ated with greater household impacts (Appendix). These explanatory variables describing use 
of the service provide a way to examine household impacts that is similar to the concept of the 
needs-based measures described in Sect. 3. Rather than consider broad categories of needs the 
infrastructure system service helps a household meet (e.g., survival, hygiene, earning income), 
however, these are defined to possibly vary by household. This analysis is also using the data 
to empirically test which needs are important in determining household’s perceived level of 
impact in terms of unhappiness.

The risk perception and emergency experience variables were statistically significant. The 
W2 model suggests that WTP increases with both the perceived likelihood of emergency in 
the next five years, xl.emer, (p = 0.017) and having experienced a negative emergency, xn.emer, 
(p < 0.001). The U2 model indicates that unhappiness increases with worry about an emergency 
in the next five years, xw.emer, (p < 0.001) and possibly decreases with level of preparation, xprep 
(p = 0.108). Previous research on the effect of risk perception and emergency experience shows 
mixed results. Petersen et al. (2020) suggest people with previous disaster experience are more 
willing to tolerate service reductions, in contrast to the WTP results here. Esmalian et al. (2019) 
indicates that it is important although the direction of the effect is not specified.

Feeling of connectedness to the neighborhood, xneigh, was statistically significant in the WTP 
only (p = 0.023). The model indicates that an individual who feels connected would spend on 
average $11.67 more to avoid an outage. Social capital is identified as a predictor of tolerance of 
service outages in Esmalian et al. (2019), but again, the direction of the effect is not specified.

Of the socio-demographic variables tested, there is evidence that higher WTP is associ-
ated with higher income, xinc (p = 0.011), being married, xmar (p < 0.001), being younger, 
xage (p = 0.001), and having pets in the household, xpets (p = 0.004). For unhappiness, there 
is similar evidence that increased level of unhappiness is associated with higher income 
(p = 0.0069) and being married (p = 0.034). While there is no evidence that age or presence 
of pets is statistically significant for unhappiness, having someone with a medical condi-
tion in the household, xmed (p < 0.001) is. There was no evidence of a relationship between 
household impacts and gender, race, education, having children in the household, employ-
ment status, homeownership, house type, or having someone in the household who relies 
on medical equipment (Appendix).

The literature offers somewhat mixed findings related to demographic variables as well. 
Petersen et al. (2020) indicate that being younger and more educated is associated with increased 
willingness to tolerate service reductions, but no gender effect was identified. Esmalian et al. 
(2019) suggests that those with higher income and not a racial minority tolerate longer outages. 
Coleman et  al. (2020) and Dargin and Mostafavi (2020) focus on disparities across popula-
tions. The former indicates correlations between tolerance of service interruptions and income, 
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education, race, children, elderly, home type, ownership, and years of residence. The latter finds 
that race, income, age, and health status are related to well-being impact; however, the conclu-
sions are derived mostly from other infrastructure systems, not electric power or water.

The previous studies vary in the location, infrastructure system type, and emergency 
type investigated, and specific measures used, possibly leading to differing conclusions. It 
is also possible that correlations among demographic and other variables account for dif-
ferences. For example, Petersen et al. (2020) identified education level as important, but it 
is possible that was actually representing the effect of income, which was not considered.

6.4 � Concerns influencing level of unhappiness

To address Research Question 3—What are the concerns that influence an individual’s level 
of unhappiness associated with service interruptions?—we asked respondents to identify the 
extent to which each of four concerns influenced their assessment of their level of unhappiness 
(Q4 and Q7 described in Sect. 4.2). Note that in asking the questions this way, we obtained 
responses for past outages and hypothetical future outages, for electric power and for water. 
Due to survey length limitations and the potential difficulty separating them, no attempt was 
made to separately identify concerns related to implementing adaptations versus those related 
to any residual loss of service. The questions also did not require the individual to rank con-
cerns relative to other concerns. As many or as few as desired could be identified.

The results suggest that all four concerns influence level of unhappiness (Fig. 7). Over-
all, considering both electric power and water, 37%, 59%, 45%, and 63% considered finan-
cial, time/effort, health, and stress concerns to at least a moderate extent, respectively. The 
results indicate, however, that time/effort and stress influenced the level of unhappiness 
more frequently than financial and health concerns (Fig. 7). This suggests that it is impor-
tant to consider these harder-to-measure concerns in addition to financial and health effects 
of service interruptions.

The results also suggest that the extent to which each of the four concerns is considered 
increases with outage duration. Figure 8 shows the percentage of respondents who said a 
concern influenced their unhappiness to at least a moderate extent, by outage duration. It 
indicates that about twice as many respondents identify these concerns as influencing their 
unhappiness when the outage lasts at least one day.

Comparing the results for electric power vs. water supply suggest little difference in 
how much each concern was considered. Finally, a key concern is individuals who require 
electric power and/or water service for medical conditions. Based on chi-squared tests, the 

Fig. 7   Extent to which differ-
ent concerns are considered in 
assessing level of unhappiness
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three variables intended to identify these consumers—Medical conditions xmed,c, Medical 
equipment xmed,e, and Use electricity for medical device, xe,dev, all had statistically signifi-
cant relationships with the extent to which health effects were considered (with p-values of 
0.003, 0.012, and 0.002, respectively).

7 � Conclusions

This paper adds to the small but growing literature that aims to understand the implications of 
infrastructure system disruptions on households. The commonly used willingness to pay and 
newly introduced unhappiness metrics both offer ways to measure household impact. The results 
suggest that household impact as captured by both measures increases nonlinearly with outage 
duration, and the impact of disruptions in electric power are greater than those in water supply. 
As outage duration is a typical measure of system interruption, while WTP and unhappiness 
are measures of societal impact, this suggests a possible nonlinear relationship between system 
and societal functioning. As a measure, WTP captures the fact that reducing service interrup-
tions involves a cost of some sort and therefore there is an implicit tradeoff (i.e., an inverse rela-
tionship) between improved service and expense. As a result, however, it is not a measure only 
of displeasure caused by a service interruption, but of ability to pay to avoid it as well. To this 
extent, households view a reduction in service interruption as a normal good and the results show 
how much a given reduction in service interruption is worth, or its value. Unhappiness is a purer 
measure of displeasure and provides insight into customer satisfaction. Perhaps for that reason, 
while WTP is unable to distinguish the effects of outages with shorter durations (all have WTP of 
$0), unhappiness is better able to capture those effects. While there are outliers up to $10,000 s, 
most WTP responses are in the range of $100 or less. Unhappiness ratings were distributed rela-
tively evenly across the range from not at all unhappy to extremely unhappy.

Several household characteristics were identified as having a relationship with household 
impact as measured by WTP and/or unhappiness. These included some related to the way the 
service is used, in particular if electricity is used for medical devices or water is used for work or 
business. Perceived likelihood of an emergency, worry about an emergency, past negative expe-
riences with emergencies, lower level of preparation, and less connection to the neighborhood 
were also associated with increased household impact. Among socio-demographic variables, 

Fig. 8   Percentage of respondents who considered each concern to at least a moderate extent, by outage 
duration, for each service type and concern
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there was evidence that increased household impact is associated with higher income, being mar-
ried, being younger, having pets, and having someone with a medical condition in the house. 
Multiple reasons were reported as contributing substantially to the stated level of unhappiness, 
including financial, time/effort, health, and stress. All should be considered in future work.

These findings can help infrastructure system operators, emergency managers, and community 
officials gain more insight into the degree of impact caused by service interruptions, how they 
depend on outage duration, and how they vary across types of infrastructure systems and residen-
tial consumers. This type of information should help guide development of mitigation, response, 
and restoration activities that can minimize not just service interruption, but household impact.

Naturally the broad outlines are known. Households depend on electricity for heat, light, com-
munications, cooking, and medical appliances, among numerous other functions for work, rec-
reation, and daily living. They depend on water for drinking, hygiene, and cooking. Industries of 
every description need these services in the conduct of the modern economy. But the impacts 
of infrastructure service interruptions are not known with any precision, and not to the degree 
needed to support the development of knowledge about recovery that has been identified by sci-
entists and policymakers as a critical recovery need. While it could generally be supposed that 
infrastructure service outages would yield negative consequences, an important element needed 
for theoretical advancement is in establishing the qualitative and quantitative assessments of 
social impacts.

This paper is founded on a recognition that many systems of critical infrastructure are in need 
of modernization or are vulnerable to failure in disaster events. Growing scholarship looks at the 
societal function that infrastructure supports, while other researchers have looked at how peo-
ple adapt to outages (e.g., Palm 2009). Knowing the “value” of societal function is important in 
guiding scientists and policymakers in repair or retrofit priorities. Part of that value is the value 
that people place on reliability, and their level of unhappiness when they cannot meet their accus-
tomed needs. This paper provides both a method for pursuing this knowledge, and a range of 
values in a large heavily urbanized area. In considering the costs of infrastructure failures, will-
ingness to pay and levels of unhappiness can provide benchmarks to which to relate the costs of 
needed improvements. The last few years have seen repeated failures in large, well-developed 
systems. A more complete and nuanced assessment of the costs of those outages is critical for 
informed investments in future capacity.

There are a number of limitations of the work presented that point the way towards future 
research and development. Specific model formulations were adopted in this paper, but others 
could be tested. In particular, it would be valuable to continue to explore the nonlinear form of 
the relationship between household impacts and outage duration, perhaps using machine learn-
ing techniques. The reasons behind unhappiness ratings were only examined in aggregate form, 
considering four types of considerations—financial, time/effort, health, and stress. Future work 
could examine the reasons in more depth by defining them more specifically, investigating the 
circumstances under which each are most important, and examining their specific causes (e.g., 
what specifically causes stress). Similar studies that consider more types of infrastructure sys-
tems, types of events (e.g., hurricanes), geographic locations, and possible measures of house-
hold impact, will be important to develop the relationship between infrastructure system inter-
ruptions and household impacts.

Appendix

See Table 7.
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Table 7   WTP and unhappiness models with all variables included

a The beta values in the unhappiness model, U1, are those from Eq. 3 that computes log-odds

Variable WTP, W1 Unhappiness, U1

β p-value AME βa p-value AME

Intercept 0.41  0.268 – 3.569  < 0.001 –
Outage duration within, xdur,w 0.059  < 0.001 7.02 0.369  < 0.001 0.0515
Outage duration between, xdur,w 0.13  < 0.001 9.05 0.164   0.003 0.0234
Infrastructure type, xtype − 0.25  < 0.001 − 16.73 − 0.091  < 0.001 − 0.0133
Use electricity for heat, xe.heat 0.018 0.816 1.21 0.032 0.742 0.0047
Use electricity for med. devices, xe.dev 0.26 0.113 18.81 0.290 0.140 0.0411
Use electricity for work, xe.work 0.101 0.304 6.78 0.034 0.785 0.0050
Use water for med. devices, xw.dev − 0.16 0.415 − 9.66 0.213 0.352 0.0304
Use water for work, xw.work 0.09 0.586 5.89 0.286 0.122 0.0406
Likelihood of emergency, xl.emer 0.19 0.034 11.89 − 0.076 0.493 − 0.0110
Worry of emergency, xw.emer 0.034 0.678 2.28 0.675  < 0.001 0.0986
Negative emerg. experience, xn_emer 0.35  < 0.001 24.95 0.208 0.064 0.0300
Preparation, xprep 0.0048 0.686 0.32 − 0.024 0.093 − 0.0035
Neighborhood connection, xneigh 0.15 0.075 9.49 − 0.021 0.842 − 0.0030
Male, xgen1 − 0.077 0.344 − 5.07 0.005 0.958 0.0008
Other gender, xgen2 − 0.109 0.842 − 7.09 0.201 0.777 0.0287
Hispanic, xrace1 − 0.12 0.228 − 8.17 − 0.191 0.140 − 0.0281
Black, xrace2 0.26 0.096 20.80 0.341 0.065 0.0473
Asian, xrace3 − 0.09 0.473 − 6.21 0.171 0.294 0.0243
Other, xrace4 − 0.48 0.100 − 26.52 − 0.136 0.721 − 0.0199
Education, xedu 0.16 0.087 10.67 0.085 0.482 0.0123
Children in household, xchild 0.11 0.219 7.15 0.034 0.761 0.0049
Elders in household, xelders 0.021 0.833 1.38 − 0.274 0.032 − 0.0403
Pets in household, xpets 0.23 0.007 14.32 0.117 0.253 0.0170
Has medical condition, xmed.c 0.16 0.093 10.82 0.466  < 0.001 0.0664
Rely on medical equipment, xmed.e 0.034 0.803 2.27 0.217 0.22  0.0318
Homeownership, xown − 0.17 0.082 − 11.40 0.080 0.498 0.0116
Apartment, xhouse1 − 0.17 0.074 − 10.90 0.024 0.844 0.0035
Other home type, xhouse2 − 0.44 0.034 − 24.21 − 0.151 0.53 − 0.0222
Employment status, xemploy − 0.065 0.441 − 4.31 0.081 0.451 0.0118
Marital status, xmarital 0.36  < 0.001 23.98 0.206 0.062 0.0299
Age, xage − 0.0071 0.024 − 0.47 -0.003 0.424 − 0.0005
Income ($1000 s), xinc 0.0014 0.046 0.093 0.001 0.339 0.0001
Intercept,�2

v0
2.481 10.10

Outage duration within,�2

v1
0.0032 0.103

Intercept-Outage duration within,�
v01 0.510 0.877

Threshold 1,�1 − 3.569  < 0.001
Threshold 2,�2 − 1.350 0.025
Threshold 3,�3 0.705 0.243
Threshold 4,�4 3.242  < 0.001
Conditional R2 0.627
Marginal R2 0.113
AIC 56,955.7 − 17,582.7



	 Natural Hazards

1 3

Funding  The authors thank the National Science Foundation for financial support of this research under 
award CMMI-1735483. The views presented in this paper are those of the authors.

Declarations 

Conflict of interest  The authors have no conflicts of interest to declare that are relevant to the content of this 
article.

Data availability  Some or all data that support the findings of this study are available from the corresponding 
author upon reasonable request.

Code availability  R was used for analysis of the data in this article (R Core Team 2021).

References

Abbou A, Davidson R, Kendra J, Martins V, Ewing B, Nozick L, Cox Z, Leon-Corwin M (2022) Household 
adaptations to infrastructure system service interruptions. J Infrastruct Syst. https://​doi.​org/​10.​2139/​
ssrn.​41728​58

Applied Technology Council (ATC) (2016) Critical assessment of lifeline system performance: understand-
ing societal needs in disaster recovery. NIST GCR 16-917-39, Prepared for U.S. Department of com-
merce, national institute of standards and technology, Redwood City, CA

Archer KJ, Hedeker D, Nordgren R, Gibbons RD (2015) Mixor: an R package for longitudinal and clustered 
ordinal response modeling

Arlikatti S, Peacock WG, Prater CS, Grover H, Sekar ASG (2010) Assessing the impact of the Indian Ocean 
tsunami on households: a modified domestic assets index approach. Disasters 34(3):705–731

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat 
Softw 67(1):1–48

Bates FL, Peacock WG (1992) Measuring disaster impact on household living conditions. Int J Mass Emerg 
Disasters 9(1):133–160

Bell A, Fairbrother M, Jones K (2019) Fixed and random effects models: making an informed choice. Qual 
Quant 53(2):1051–1074

Carlsson F, Martinsson P (2007) Willingness to pay among Swedish households to avoid power outages: a 
random parameter Tobit model approach. Energy J 28(1):75–89

Chang SE (2016) Socioeconomic Impacts of infrastructure disruptions. Oxford research encyclopedia of 
natural hazard science, Oxford university press

Clay LA, Goetschius JB, Papas MA, Trainor J, Martins N, Kendra JM (2020) Does preparedness matter? 
The influence of household preparedness on disaster outcomes during superstorm sandy. Disaster Med 
Public Health Prep 14(1):71–79

Coleman N, Esmalian A, Mostafavi A (2020) Equitable resilience in infrastructure systems: empirical 
assessment of disparities in hardship experiences of vulnerable populations during service disrup-
tions. Nat Hazard Rev 21(4):04020034

Dargin JS, Mostafavi A (2020) Human-centric infrastructure resilience: uncovering well-being risk dis-
parity due to infrastructure disruptions in disasters. PloS One 15(6):e0234381

Davidson RA, Kendra JM, Starbird K, Nozick LK, Ewing B (2022) Managing disaster risk associated 
with critical infrastructure systems: a system-level conceptual framework for research and policy 
guidance. Civ Eng Environ Syst. https://​doi.​org/​10.​1080/​10286​60820​67848

Davis C (2019) Performance-based seismic design for LADWP water system. Los Angeles Dep Water 
Power

Davis CA (2021) Understanding functionality and operability for infrastructure system resilience. Nat 
Hazard Rev 22(1):06020005

Dieleman JL, Templin T (2014) Random-effects, fixed-effects and the within-between specification for 
clustered data in observational health studies: a simulation study. PloS One 9(10):e110257

Dong S, Esmalian A, Farahmand H, Mostafavi A (2020) An integrated physical-social analysis of dis-
rupted access to critical facilities and community service-loss tolerance in urban flooding. Comput 
Environ Urban Syst 80:101443

Esmalian A, Ramaswamy M, Rasoulkhani K, Mostafavi A (2019) Agent-based modeling framework for 
simulation of societal impacts of infrastructure service disruptions during disasters. Computing in 

https://doi.org/10.2139/ssrn.4172858
https://doi.org/10.2139/ssrn.4172858
https://doi.org/10.1080/102866082067848


Natural Hazards	

1 3

civil engineering 2019: smart cities, sustainability, and resilience,  16–23. Reston, VA: American 
society civil engineers

Federal Emergency Management Agency (FEMA) (2013) "Build A Kit." http://​www.​ready.​gov/​build-a-​
kit (Aug 30, 2013). Updated 2021. Last accessed 28 July 2021

Gardoni P, Murphy C (2010) Gauging the societal impacts of natural disasters using a capability 
approach. Disasters 34(3):619–636

Gelman A (2008) Red State, Blue State, Rich State, Poor State: Why Americans vote the way they do. 
Princeton University Press, Princeton

Hasan S, Foliente G (2015) Modeling infrastructure system interdependencies and socioeconomic 
impacts of failure in extreme events: emerging R&D challenges. Nat Hazards 78(3):2143–2168

Hedeker D, Gibbons RD (1996) MIXOR: a computer program for mixed-effects ordinal regression anal-
ysis. Comput Methods Progr Biomed 49:157–176

Heidenstrøm N, Throne-Holst H (2020) Someone will take care of it. Households understanding of their 
responsibility to prepare for and cope with electricity and ICT infrastructure breakdowns. Energy 
Policy 144:111676

Hensher DA, Rose JM, Greene WH (2015) Applied choice analysis, 2nd edn. Cambridge University 
Press, Cambridge, UK

International Wellbeing Group (IWG) (2013) Personal wellbeing index manual 5th ed. http://​www.​
deakin.​edu.​au/​resea​rch/​acqol/​instr​uments/​wellb​eing-​index/​pwi-a-​engli​sh.​pdf

Klinger C, Owen Landeg VM (2014) Power outages, extreme events and health: a systematic review 
of the literature from 2011–2012. PloS curr. https://​doi.​org/​10.​1371/​curre​nts.​dis.​04eb1​dc5e7​3dd13​
77e05​a10e9​edde6​73

Lüdecke D, Makowski D, Ben-Shachar M, Patil I, Hojsgaard S, Wiernik B (2021) Analysing longitudi-
nal or panel data, vignette for parameters package. https://​easys​tats.​github.​io/​param​eters/​artic​les/​
demean.​html. Accessed 30 Apr 2021

Martins VN, Louis-Charles HM, Nigg J, Kendra J, Sisco S (2018) Household disaster preparedness in 
New York City before superstorm sandy: findings and recommendations. J Homel Secur Emerg 
Manag 15(4):20170002

Merrin GJ, Hong JS, Espelage DL (2015) Are the risk and protective factors similar for gang-involved, 
pressured-to-join, and non-gang-involved youth? A social-ecological analysis. Am J Orthopsychiatr 
85(6):522

Moreno J, Shaw D (2019) Community resilience to power outages after disaster: a case study of the 
2010 Chile earthquake and tsunami. Int J Disaster Risk Reduct 34:448–458

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear 
mixed-effects models. Methods Ecol Evol 4(2):133–142

NEHRP Consultants Joint Venture (2014) Earthquake-resilient lifelines: NEHRP research, development 
and implementation roadmap. Redwood City, CA: NIST GCR 14-917-33

National Institute of Standards and Technology (NIST) (2016) Community resilience planning guide for 
buildings and infrastructure systems, Vols. I and II. Gaithersburg, MD: NIST. http://​www.​nist.​gov/​
el/​build​ing_​mater​ials/​resil​ience/​guide.​cfm

Palm J (2009) Emergency management in the Swedish electricity grid from a household perspective. J Cont-
ing Crisis Manag 17(1):55–63

Petersen L, Fallou L, Reilly P, Serafinelli E (2020) Public expectations of critical infrastructure operators in 
times of crisis. Sustain Resil Infrastruct 5(1–2):62–77

R Core Team (2021) R: A language and environment for statistical computing. R foundation for statistical 
computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/

Rojahn C, Johnson L, Cedillos V, O’Rourke T, McAllister TP, McCabe SL (2019) Increasing community 
resilience through improved lifeline infrastructure performance

Sampson RJ, Raudenbush SW, Earls F (1997) Neighborhoods and violent crime: a multilevel study of col-
lective efficacy. Science 277:918–924

San Francisco Planning and Urban Research Association (SFPURA) (2009) Defining resilience: what 
San Francisco needs from its seismic mitigation policies 12

Sattar S, Ryan K, Arendt L, Bonowitz D, Comerio M, Davis C, Deierlein G and Johnson K (2021) Recom-
mended options for improving the built environment for post-earthquake reoccupancy and functional 
recovery time, special publication (NIST SP), National Institute of Standards and Technology, Gaith-
ersburg, MD, https://​doi.​org/​10.​6028/​NIST.​SP.​1254 (Accessed 2 Aug 2021)

Tabandeh A, Gardoni P, Murphy C (2018) A reliability-based capability approach. Risk Anal 38(2):410–424
Tabandeh A, Gardoni P, Murphy C, Myers N (2019) Societal risk and resilience analysis: dynamic Bayesian 

network formulation of a capability approach. ASCE-ASME J Risk Uncertain Eng Syst Part A Civil 
Eng 5(1):04018046

http://www.ready.gov/build-a-kit
http://www.ready.gov/build-a-kit
http://www.deakin.edu.au/research/acqol/instruments/wellbeing-index/pwi-a-english.pdf
http://www.deakin.edu.au/research/acqol/instruments/wellbeing-index/pwi-a-english.pdf
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html
http://www.nist.gov/el/building_materials/resilience/guide.cfm
http://www.nist.gov/el/building_materials/resilience/guide.cfm
https://www.R-project.org/
https://doi.org/10.6028/NIST.SP.1254


	 Natural Hazards

1 3

Walsh B, Hallegatte S (2019) Measuring natural risks in the philippines: socioeconomic resilience and well-
being losses, policy research working paper, world bank

Yang Y, Tatano H, Huang Q, Liu H, Yoshizawa G, Wang K (2021) Evaluating the societal impact of dis-
aster-driven infrastructure disruptions: a water analysis perspective. Intern J Disaster Risk Reduct 
52:101988

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.


	Household impacts of interruption to electric power and water services
	Abstract
	1 Introduction
	2 Societal impact literature
	3 Conceptual framework and comparison of measures
	4 Data
	4.1 Survey overview
	4.2 Household societal impact and outage duration variables
	4.3 Other explanatory variables

	5 Models
	5.1 Willingness to pay (WTP) model
	5.2 Unhappiness model

	6 Results
	6.1 Final models
	6.2 Effect of infrastructure type and outage duration
	6.3 Effects of household characteristics on household impacts
	6.4 Concerns influencing level of unhappiness

	7 Conclusions
	References




