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Summary

ome of the most challenging problems in control typically
Sconsist of minimizing an objective function under safety
constraints and physical limitations. These often conflict-
ing requirements render classical stabilization-based con-
trol design tricky, and even modern learning-based alter-
natives rarely provide strict safety guarantees "out-of-the-
box." Safety filters address this limitation through a modular
approach to safety. The first part of this article formalizes an
ideal safety filter to enhance any controller with safety guar-
antees and provides a tutorial-style exposition of invariance-
based methods using Hamilton-Jacobi reachability, control
barrier functions, and predictive control-related techniques.
While the first part assumes perfect knowledge of the system
dynamics, the second part bridges the gap toward real-world
applications through data-driven model corrections. To this
end, deterministic, robust, and probabilistic model learning
techniques are outlined, and a selection of mini-tutorials for
learning-based safety filters is provided. The article con-
cludes with recent applications to demonstrate the capability
of various safety filter formulations when combined with
stabilizing controllers, learning-based controllers, and even
humans.

oday’s control engineering problems exhibit an
unprecedented complexity, with examples includ-
ing the reliable integration of renewable energy
sources into power grids [1], safe collaboration
between humans and robotic systems [2], and
dependable control of medical devices [3] offering per-
sonalized treatment [4]. In addition to compliance with
safety criteria, the corresponding control objective is often
multifaceted. It ranges from relatively simple stabilization
tasks to unknown objective functions, which are, for ex-
ample, only accessible through demonstrations from inter-
actions between robots and humans [5]. Classical control
engineering methods are, however, often based on stability
criteria with respect to set points and reference trajecto-
ries and they can therefore be challenging to apply in
such unstructured tasks with potentially conflicting safety
specifications [6, Section 3 & 6]. While numerous efforts
have started to address these challenges, missing safety
certificates often still prohibit the widespread application
of innovative designs outside research environments. As
described in “Summary,” this article presents safety fil-
ters and advanced data-driven enhancements as a flexible
framework for overcoming these limitations by ensuring
that safety requirements codified as static state constraints
are satisfied under all physical limitations of the system.
To illustrate the fundamental challenges in guarantee-
ing safety in the form of state constraints for dynamic
systems, consider a vehicle driving on a road, as depicted
in Figure 1. The vehicle specifies its control action based



on its current state, including current position, current
velocity, and relative heading to the road. The difficulty
arising in safety-critical dynamical systems is that unsafe
control actions do not instantly cause a violation of state
constraints defining safety requirements, but rather can
cause a system to evolve into states from which it cannot
avoid violating safety in the future. For example, if the
steering angle does not correspond to the road’s curvature
for a fraction of a second, the vehicle does not immediately
leave the track, but it may evolve into states from which
it is unavoidable that the car goes off track, as depicted
by the red trajectory in Figure 1. Safety filters detect such
unsafe control inputs that may lead to constraint violations
in the future, and minimally modify them to ensure safety,
as illustrated by the green trajectory in Figure 1.

In this work, we discuss three research directions that
have evolved over the past two decades to tackle such
safety-critical control problems: reachability-based meth-
ods [7], [8], control barrier functions [9], [10], and pre-
dictive control techniques [11], [12]. These methods are
unified by the common concept of set invariance [13] to
ensure that a system must remain within a desired set
for the entirety of the system’s evolution. Although the
three methodologies all address the same fundamental
problem of ensuring set invariance, they have developed
relatively independently with notable technical differences.
Reachability analysis is based on a set-based propagation
of all possible system trajectories determined by the sys-
tem inputs and disturbances. In contrast, control barrier
functions rely on Lyapunov theory to determine inputs
to a system that ensure set invariance. Lastly, predictive
safety filters (PSFs) are based on a receding horizon, open-
loop optimal control problem, which is guaranteed to
be solvable and ensures constraint satisfaction at every
control sampling time step. In recent years, however, joint
research efforts have demonstrated tremendous potential
by combining the core competencies of each methodology,
enabling high-performance safety-critical applications and
promising perspectives for future research [14]-[19].

Despite the differences and connections between the
methodologies, all methods rely on a mathematical model
that describes the evolution of the dynamic system in order
to ensure safety at all times. The derivation, identification,
and verification of these high-fidelity system models are
among the most time-consuming tasks in the design phase
of safety-critical controllers [20]. To reduce this effort, the
increasing availability of low-cost sensing and connectivity
capabilities and growing computational resources have
triggered research efforts across all three methodologies
toward the use of data-driven models [21]-[23].

This article provides a comprehensive introduction to
the previously described aspects of recent research on
safety filters. We present an idealized safety filter problem
and demonstrate the capabilities of safety filters based

Safety violation —» Safe

Unsafe control Safety filtered

action control action

FIGURE 1 Intuitive illustration of safety problems in control using a
vehicle. Application of an unsafe control input can result in safety
constraint violation at some point in the future. This is depicted
by the red trajectory, where the vehicle ends up leaving the track.
The goal of this article is to present safety filters, which detect and
minimally modify such unsafe inputs to ensure safety for all times.
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on Hamilton-Jacobi reachability, control barrier functions,
and predictive control to provide an approximate solu-
tion. Once the basic principles are in place, more recently
discovered interconnections between the methods are pre-
sented to open new perspectives for future research and
applications. It is then shown how to enhance the core
concepts through data-driven models and how robust and
probabilistic uncertainty bounds can be incorporated to
ensure safety with high confidence. While we present a
selection of successful techniques and state-of-the-art ap-
plications, this direction represents a promising dimension
worth investigating in the future.

Lastly, we wish to note that while we present a variety
of safety filter techniques, it is by no means an exhaustive
list of all the methods that have been developed for filter-
ing inputs to a system in an effort to achieve safety. No-
table methods that we believe are related to the methods
presented in this article include reference and command
governors [24] and non-overshooting control [25], [26]. We
refer readers seeking to augment their knowledge on safety
filters beyond our article to these works.

Outline of the Article

We begin by stating the class of nonlinear dynamical sys-
tems considered in this article and specify constraints on
the states and inputs that commonly arise in safety-critical
applications. Based on this system description, we formal-
ize the desired safety filter module as an optimal control
problem. Using this problem formulation, we introduce
the fundamental concept of set invariance, followed by
techniques for designing and implementing safety filters
via Hamilton-Jacobi reachability, control barrier functions,
and predictive control methods. The similarities and dif-
ferences of these three methods are highlighted through

behavior



a simple illustrative example in “Safety Filter Design
Example,” and a discussion on recent research efforts
integrating aspects of these three methods is provided. In
the second part of the article, we consider the challenge
of safety-critical control in the context of uncertain non-
linear systems. We explore how the preceding methods
for safety filter design can be modified to incorporate
data-driven components, discuss challenges in working
with real-world data in “Learning with Real-World Data,”
consider a popular data-driven model in “Probabilistic
Non-Parametric Model: Gaussian Process Regression,” and
highlight examples of state-of-the-art data-driven safety
filter applications. We conclude with a discussion on open
research directions in the area of safety filters and their
data-driven extensions.

Definitions and Notation

The natural, real, non-negative real, and positive real num-
bers are denoted as N, R, R = [0,00), and R = (0, o),
respectively. The identity matrix of dimension n is denoted
as I,,. Given a set A C IR", we denote its interior as int(A),
its boundary by dA, and its complement A° = R"\ A.
The signed distance function for the set A, s4 : R" — R,
is defined as s4(x) = infyc 4[|y — x| if x € R"\ A and
sa(x) = —infcgm 4 [lx —y[| for x € A, with a vector
norm | -||. Given two sets A;, Ay € R”", the Minkowski
sum of A; and A; is defined as Ay @ Ay = {a1 +a, | 11 €
Aq,ap € Ay}. Given two sets A and B, we denote the space
of continuous functions, piecewise-continuous functions,
and continuously differentiable functions mapping A to
B by C(A,B), PC(A,B), and C'(A,B), respectively. A
continuous function « € C([0,4),R) for some a > 0 is said
to be class K (« € K) if it is strictly increasing and «(0) =0
and is said to be extended class I (v € K€) if it is a class
K function defined on (—a,b), with a,b > 0. More details
on class K functions and extended class K functions can
be found in [27] and [10], respectively.

THE SAFETY FILTER PROBLEM WITH KNOWN
SYSTEM DYNAMICS

This article considers the construction of safety filtering
mechanisms for nonlinear control systems, which can be
described by the differential equation

() = f(x(t),u(t)), t€Rxo ©)
where x(t) € R™ is the system state and u(t) € R™ is the
control input at time t € R>(. For simplicity, we assume
that the function f is continuously differentiable, that is,
f € CY(R™ x R™,R™), and that for any initial condition
xp £ x(0) € R™ and piecewise-continuous control input
signal u(-) € PC(R>p,IR™), there exists a unique solution
x(-) € C(R>p,R™) to (1) for all t € Rx(. While we mainly
focus on continuous-time systems of the form (1), the
majority of concepts introduced in the following possess

System x(t) =

fx(),u(t))
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FIGURE 2 lllustration of the safety filter concept. A desired control
input uqes () is processed by the safety filter to produce a control
input signal u(t) = xp(x(t), uqes(t)) that is applied to the system to
ensure that safety is maintained at all times.

analogs for discrete-time systems, which will be pointed
out through references to corresponding literature.

Safety for the system (1) is encoded via a state constraint
set X C R"™ and an input constraint set { C R"* that must
be respected during the evolution of the system, that is,

x(t) € X and u(t) € U for all t € Rxo. ()

This article is specifically concerned with ensuring that this
safety requirement is met when the system is presented
with a piecewise-continuous desired control input signal,
Uges(-) € PC(Rxp,R™), which does not necessarily en-
force the safety requirement (2). Such desired input signals
often come from stabilizing controllers hand-designed by
domain specialists, learning-based controllers that maxi-
mize a particular reward signal, or human input to the
system.

A safety filter xp : R™ x R™ — U (see Figure 2)
modifies this desired control input signal to produce an
input signal u(t) = xp(x(t), uges(t)) that ensures the sys-
tem respects the safety constraint (2), while minimally
modifying the desired input signal, that is, minimizing

~ 00

[ T (x(0), s () = s ()] ©
with the goal of preserving as much of the desirable behav-
ior achieved by u4es(+) as possible. Throughout this article,
we assume continuous access to direct measurements of
the system state and neglect the problem of discrete-time
state estimation. Thus, for any initial condition xy € X,
an ideal safety filter would return a piecewise-continuous
input signal u(-) that solves the optimization problem

() = argmin [ o(t) ~ual®)] )
st. 0(-) € PC(Rs,U) (4b)
x(0) = xo, (4¢)
for all t € R>q:
(1) = f(x(0) (1), (4d)
x(t) € X. (4e)



TABLE 1 Overview of safety filter literature. This table presents references regarding the historical development,
core results, and recent data-driven research for each of the three safety filter methodologies presented in this
work. While it is not a complete description of all related work on these methodologies, this collection of works
serves to highlight the strengths of each approach and is a natural starting point for forming a deeper technical

understanding of the results presented in this work.

Hamilton-Jacobi Reachability

Control Barrier Functions | Predictive Filters

Historical Development [28]-[35]

[10], [36]-[38] [11], [39], [40]

Core Results [7], [8], [41], [42]

[10], [43]-[47] [12], [48]-[50]

Data-driven Safety Filters [21], [51], [52]

[23], [53]-[61] [62]-[67]

While (4) characterizes an ideal safety filter, it is rarely
possible to tractably implement for the following reasons:
» The desired input signal uqes(-) is typically not
known a priori and can only be accessed at the cur-
rent time t during closed-loop operation. Examples
include when u4es(-) is specified by a feedback con-
troller, learning-based control applications with ran-
dom inputs applied during exploration, and appli-
cations with humans in-the-loop providing desired
control inputs, including the teleoperation of robots,
driver assist systems, and piloted flight control.
The optimization problem (4) is not necessarily fea-
sible for each initial condition xy € X. Thus, initial
conditions will need to be restricted to a subset
S C X of the state constraint set for which (4) is
known to be feasible, and the evolution of the system
must be constrained to remain in the set S.

¥

» Even if there exists a signal v(-) satisfying the con-
straints (4b)-(4e), for a given ges(+), such a signal
v(-) may not return a finite value for the cost (4a),
rendering the optimization problem ill-defined. Re-
solving this issue for arbitrary desired input signals
will often require considering the cost (4a) over a
finite horizon.
We will next tackle these challenges through permissive
approximations of the ideal safety filter formulation (4).

SAFETY FILTER METHODOLOGIES

In this section, we review four approaches for approxi-
mating the idealized safety filter defined in (4). We begin
by reviewing the fundamental notion of set invariance,
which underlies all of the presented approaches. The first
approach we present builds upon the foundational result
of Nagumo’s theorem to build a switching safety filter. The
conservative nature of this approach is then improved by
constructing invariant sets using Hamilton-Jacobi reacha-
bility, which is the method of solving reachability problems
with optimal control theory based on Hamilton-Jacobi
equations [32]. We next review control barrier functions
(CBFs) that rely on a Lyapunov-like derivative condition
to smoothly enforce safety of a system. Lastly, we review
recent advances in PSFs, which utilize a receding-horizon
optimal control problem to effectively balance safety with

using the desired control input. We outline the strengths
and weaknesses of each method and apply them to a
simple example problem for comparison in "Safety Filter
Design Example". We conclude this section by relating
each method back to the ideal safety filter in (4) and
highlighting recent research focused on combining the
aforementioned techniques in an effort to overcome the
limitations facing each method.

Set Invariance

Set invariance [13] is a well-established notion for studying
whether the state of a dynamic system is contained in a
prescribed set for all time and is thereby instrumental in
synthesizing safety filters. While the following concepts
of set invariance and controlled set invariance are defined
for continuous-time systems of the form (1), they similarly
exist for discrete-time systems [68]. Given a feedback con-
troller « :
loop system

(t) = f(x(), 0 (x(t), uges (1))

allowing the following definition:

R™ x R™ — R™, we may construct a closed-

t e R )

Definition 1 (Set Invariance)
A set S C R™ is said to be (forward) invariant for the
system (5) if for any initial condition xy € S, we have
that x(t) € S for all + € Rxo.

If a set S C R™ is forward invariant for the system
(5) and satisfies S C X, then we may conclude that for
any initial condition xg € S, we have x(t) € X for all
t € R>p. Thus, satisfying the state-related part of the safety
constraint (2) can be achieved by constructing a controller
x and a corresponding forward invariant set S contained in
the state constraint set X'. We note that this construction
via invariance requires not only a stronger condition on
the initial condition x(, in that it must lie in S rather than
just X, but it also yields a stronger statement, since x(t) €
S for all t+ € Ry rather than just x(t) € X. Thus, the
particular construction of the feedback controller x and the
forward invariant set S impacts the resulting performance
of the system, because the use of a conservative set S may
unnecessarily limit the behavior of the system.



Safety Filter Design Example
his sidebar illustrates and compares the basic safety filter
methodologies by applying each of them to the inverted
pendulum system

d || _| 6 Ay
dt || |9sing # !
~—— e N

x 1(x) g(x)

(1)

where the pendulum angle and angular velocity [6,0] =
[x1,x2] = x define the system state, and u is the input torque
applied at the base of the pendulum. The system parame-
ters consist of the mass m = 2 kg, length £ = 1 m, and
gravitational acceleration g = 10 m/s2. The physical input
limitation is a maximum applicable torque of 3 N-m, that is,

= {u € R | |u] < 3}. The safety constraints are defined
as pendulum angle and angular velocity constraints of the form
X ={xeR?||x] <03, |x| <0.6}.

FIGURE S1 Inverted pendulum control system.

Desired Control Input Signal

To compare the different safety filter designs with respect to
the “ideal” safety filter objective (4), we use the desired control
signal

3, teo,2),

-3, te[2,4),
Udes(t) - (82)

3, te4,6),

me2 (-9 sinx; — [1.5, 1.5]x), else.

By alternating between maximum and minimum torque, the
desired input signal (S2) tries to violate the system constraints,
requiring safety filter intervention. The adversarial input section
is followed by a stabilizing feedback control law of the form
Uges(f) = KgesX(t), which does not consider constraint satis-

faction explicitly.

SWITCHING SAFETY FILTER
This section demonstrates how to construct the switching safety
filter (11) using a linear-quadratic regulator (LQR) of the form

ks(x) = —Kx. The design of ks is based on the linearization of
the system dynamics (S1) around the upward equilibrium point
. 1 0
Ax = |, Ax+ | ] Au. (S3)
g 0 e
7 me2
———
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FIGURE S2 Application of the switching safety filter (S7) to
the inverted pendulum example (S1). (Top) The desired safety
constraints X (solid black line), the switching safety filter safe
set (dashed brown line), and closed-loop trajectory (solid brown
line). (Bottom) Applied input trajectory (brown) and desired
input signal (red). The constraints are indicated with solid black
lines in each plot. While safety is maintained, the switching
safety filter (§7) causes undesirable input chattering, and the
safe set only covers a small portion of X'.

Using the state cost Q = 25k and input cost R = 1, we
obtain the gain K = [40.62, 13.69]. An invariant set for (S3) is
selected as a sublevel set of the LQR Lyapunov function [69,
Chapter 4]

S, = {x € R®ly — x"Px > 0} (S4)
for some > 0 and the positive-definite matrix
282.2 1.2
_ 82.26 81.23 . (S5)
81.23 27.38

To ensure that S, is forward invariant under xs in the
presence of the input constraints U, the level set v must be
selected such that xs(x) € U & |- Kx| < 3forall x € S,
and S, C X. Using the support function of S, [13], we obtain
a maximal value of ¢ = 1.31, for which we denote the safe set
S £ Sy31. To certify forward invariance of S with respect to the
nonlinear system (S1), we verify that

mayx —2xTP(f(x) —g(x)Kx) >0 (S6)

through nonlinear programming [39]. The resulting safe set
is depicted in Figure S2 (top). This construction allow us to
implement the switching safety filter in (11) as

—Kx, X €08 or |Uges(t)| >3

Udes(t)r
The safety controller is used for 0.01 s when it is activated.
The closed-loop simulation of the resulting control structure as
depicted in Figure 2 together with the desired input signal (S2)
are shown in Figure S2.

(S7)
else.

KF(X/ Udes(t)) = {



After significant intervention during the first six seconds, the
desired control input signal meets safety requirements and input
bounds (for t € [6,10]) and is used. Even though safety is
achieved during the entire evolution of the system, limitations
that motivate the advanced techniques presented in this article
may be observed. The derived safe set S and safe controller
ks yield a conservative safety filter, which can be seen by the
overly large safety margin between the safe set and the angular
constraints in Figure S2 (top). To reduce such conservative-
ness, HJ reachability and PSFs integrate optimal control based
approaches as demonstrated in the upcoming sections. Fur-
thermore, the switching-based safety control law (S7), derived
from (11) can result in significant input chattering behavior near
the boundary of the safe set, as seen in Figure S2 (bottom).
Such behavior is not desirable in practice. To this end, CBF
enable a safety filter formulation that yields a smooth control
input signal.

HAMILTON-JACOBI REACHABILITY SAFETY FILTER

This section demonstrates how HJ reachability allows reducing
the conservativeness of the switching safety filter (S7). The
value function V defined in (14), which describes the max-
imal control invariant set in X', is computed by solving the
HJ variational inequality (20) numerically using a sufficiently
large finite time horizon T with the HJ optimal control toolbox
(helperOC) [8] and the level set toolbox [70]. A 101 x 201 grid
is constructed on the set X, and a finite horizon T = 25 s is
used for this computation, which takes roughly a minute on a
standard laptop. The safe set (15) resulting from Theorem 2 is

S ={x e R?|V(x) > €}, (S8)

with e = 0.02 to account for numerical approximation errors.
See Figure S3 (top) for an illustration of S, which represents an
approximation of the maximal control invariant set in X based
on Theorem 2. The HJ safety filter is implemented as in (19) and
shows a larger safe set than the switching safety filter, leading
to fewer interventions (and correspondingly less chatter in the
input signal) when t € [0, 6], as seen in Figure S3.

CONTROL BARRIER FUNCTION SAFETY FILTER

With the goal of reducing the undesirable input chattering of
the previous techniques seen in Figures S2 and S3, we next
construct a safety filter using CBFs. To this end, we follow the
example presented in [71] and select

hs(x) =1 fxT( 1/a 0‘5/ab)x

0.5/ab 1/b? (89)

with parameters a,b > 0 as a candidate CBF, yielding a 0-

superlevel set
S ={x e R™ | hs(x) > 0} (S10)

describing the safe set, similarly to (S4).
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FIGURE S3 Application of the HJ-based safety filter to the
inverted pendulum example (S1). (Top) The HJ-based safe set
(dashed purple line) and closed-loop trajectory (solid purple
line). (Bottom) Applied input trajectory (purple) and desired
input signal (red). The safety filter is significantly less intrusive
compared to the switching safety filter due to the larger safe
set S and displays notably less chattering in the control input
signal. The chattering can be resolved further by replacing
the simple switching mechanism in (19) with formulations that
induce smooth transitions [15].

The quantities a and b must be selected to ensure that hg
satisfies the condition (24) for some a« € K€. We consider a
function « € K¢ of the form a(r) = c,r, with ¢, > 0 to be deter-
mined. The CBF supremum condition (24) can be equivalently
(modulo input constraints) expressed as the implication [71]

Vhs(x)g(x) =0= Vhs(x)f(x) +a(hs(x)) >0 (S11)

which in the inverted pendulum setting appears as
N _ b _
Vhs(X)g(X) =0= X = *ﬁ)ﬁ
for X € R2. For an X such that Vhg(X)g(Xx) = 0,

Vhs (R)F(F) + a(hs(7) = G+ 40z (g - c,x) %2 (S13)

We see that the required implication is satisfied by choosing
Ccy < g. We select the values a = 0.137 and b = 0.274 consid-
ering the state and input constraints X’ and U/, respectively, and
select ¢, = 0.2. The resulting safe set is visualized in Figure S4
(top). The safety filter can be implemented in simulation by
solving (26) numerically using the standard YALMIP solver [S1].
We note that the system is kept safe, and the chattering in the
control input signal is eliminated (with jumps only occurring at
discontinuities in the desired control input signal), as seen Fig-
ure S4. We note that the safe set obtained using this approach is
notably smaller than the one used with the HJ reachability safety
filter. Developing constructive approaches for synthesizing less
conservative CBFs is a topic of ongoing research.

(S12)



0.5
—
. \
S 0 R
NS
-0.5
-0.4 -0.2 0 0.2 0.4
0
4 -
2
&,
€
Iof
3,1
4 . . . . )
0 2 4 6 8 10
time t

FIGURE S4 Application of the CBF-based safety filter to the
inverted pendulum example (S1). (Top) The CBF-based safe
set (dashed green line) and closed-loop trajectory (solid green
line). (Bottom) Applied input trajectory (green) and desired
input signal (red). The safety filter smoothly modifies the desired
control input signal while ensuring that the system remains safe,
though the safe set is smaller than the HJ approach.

PREDICTIVE SAFETY FILTER

We next implement a PSF that uses a receding horizon ap-
proach to enable smooth filtering of control inputs while main-
taining a large control invariant set. The first step to construct
a PSF as in (28) is taking the Euler time discretization of the
dynamics (27). Using a discretization time of AT = 0.05 yields
the discrete dynamics

X(k+1) = x(k)+0.5(f(x(k))+ g(x(k)))u(k). (S14)

We next construct a terminal invariant set S™ c X. Application
of the linearization-based approach described in [72, Section 4]
at the origin yields a terminal invariant set

8™ = {x e R™[1 —x"P™x >0} (S15)
with
ptm _ 12810 41.13 ($16)
4113 1598
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FIGURE S5 Application of the PSF to the inverted pendulum
example (S1). (Top) The implicit predictive safe safe set with
a horizon length of N = 20 (dashed blue line) and closed-
loop trajectory (solid blue line). (Middle) Applied input trajectory
(blue) and desired input signal (red). The safety filter anticipates
jumps in the desired control input signal and changes the input
preemptively, yielding smooth behavior. (Bottom) Implicit safe
set SFF (29) of the predictive safety filter (28) for different
planning horizons N. Longer horizons lengths increase the size
of SFF until it converges to the maximal control invariant set in
X.

We implement (28) with a planning horizon of N = 20 using
IPOPT [S2] and Casadi [S3]. While solve time is not critical
in simulation, real-world applications may require tailored algo-
rithms and software packages, see for example, [40, Section
12] and references therein. Figure S5 illustrates the resulting
safe set and closed-loop trajectories. While the PSF is both
permissive and smoothly filters the desired control input signal,
the required online computations increase by multiple orders
of magnitude. The computational load can be balanced by
reducing the planning horizon, which, however, also reduces the
corresponding implicit safe set as seen in Figure S5 (Bottom).



CONCEPTUAL IDEAL SAFETY FILTER

To compare the quality of the previous safety filter formulations
to the ideal safety filter in (4), we solve (4) approximately
using a modified version of the PSF described above. The
planning horizon is increased to cover the entire task horizon
(N = 200), and the cost functional (28a) is changed to include
the desired control inputs on the whole task horizon, that
is, ZE% Hudes(iAT) - ui\OH2 + 2122(1)21 HKdein\O - Ui\OHZ’ where
we use the squared norm to accelerate convergence of the
underlying optimization algorithm. Note that a requirement for
implementing this controller is that all future desired control
inputs are known in advance, which is typically not feasible
when safety filters are used online. The resulting solution de-
picted in Figure S6 shows a fundamentally different behavior
than the previous approaches. Instead of reactively trying to
correct desired control inputs, the ideal safety filter “invests” by
overriding the desired control inputs for a short period at the
beginning of the evolution, allowing the direct use of the desired
input signal from 1.8 sec until the end of the horizon. This is only
possible because the ideal safety filter can anticipate the effect
of aggressive desired input signals in t =0—6 sec, whereas the
other safety filters make instantaneously optimal decisions, or
consider a much shorter predictive horizon.

COMPARISON OF APPROACHES

We compare the various safety filter implementations in Fig-
ure S7. In the top figure, we compare the different safe sets
(including two for the PSF using different horizons). We see that
the HJ reachability safety filter (purple) contains the safe sets for
the switching safety filter, CBF safety filter, and the PSF using
the shorter horizon length. The PSF using the longer horizon
contains the HJ reachability safe set, which is due to using
e = 0.02 to account for numerical error when finding the HJ
reachability safe set. The bottom figure shows the integral of the
deviation of the input from the desired control input signal (4a).
The switching safety filter and PSF with a short horizon have the
biggest deviation, while the methods resulting in the largest safe
sets modify the desired control input signal the least. Compared
to the ideal safety filter solution (orange), the relative differences
between the individual methods are visible but not significant.
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FIGURE S6 Application of the ideal safety filter (4) to the
inverted pendulum example (S1). (Top) The closed-loop trajec-
tory using the ideal safety filter (solid orange line). (Bottom)
Applied input trajectory (orange) and desired input signal (red).
The ideal safety filter has access to the typically unknown future
desired inputs and provides an optimal filtering behavior by
overriding desired inputs only during the first two seconds, after
which is directly uses the desired input signal.
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FIGURE S7 Comparison of various safety filters methods. (Top)
The safe sets associated with the switching, HJ reachability,
CBF, and PSF-based safety filters, using the color codes in
Figures S2-S5. (Bottom) The value of the safety filter objec-
tive (4a) using the switching, HJ reachability, CBF, PSF, and
ideal safety filters. Lower values of quantity indicate that the
safety filter permits more use of the desired control input signal.
We observe that the PSF-based safety filter with a horizon of
N = 20 achieves the best performance, while the PSF-based
safety filter with a horizon of N = 2 achieves the worst per-
formance. We also see the ideal safety filter vastly outperforms
the presented methodologies, which perform relatively similarly
compared to the ideal safety filter.



The notion of a control invariant set captures the pos-
sibility of controlling the open-loop system (1) in a safe
manner, without being confined to using a predefined
feedback controller ¥ and then determining a forward
invariant set S for the closed-loop system under «:

Definition 2 (Controlled Set Invariance)

A set S C R™ is said to be control invariant for the
system (1) if for any initial condition xy € S, there exists
a piecewise-continuous input signal u(-) € PC(R>o, R™)
such that we have x(t) € S forall t € Ryp. f S C X
contains all initial conditions xy € X such that there exists
a piecewise continuous input signal u(-) € PC(R>o, R™)
yielding x(t) € X for all + € R>g, we say that S is the
maximal control invariant set in X for the system (1).

This definition enables various safety-filter design tech-
niques given a control invariant set S. Conversely, since
finding a control invariant set S is not restricted to any
specific controller, choosing S can also be done in a more
constructive manner. The performance achieved using a
safety filter will directly depend on the size of the control
invariant set. Ideally, the set X would be used, however,
this is typically not a control invariant set for (1) and
merely represents the design goal. We will see in the
following subsections that available safety-filter techniques
produce different feedback controllers and (control) invari-
ant sets that permit varying degrees of performance.

Nagumo’s Theorem and Switching Safety Filters
The first safety filter design that we consider is that of a
switching safety filter. Although this design is relatively
simple and often overly conservative, it highlights key
elements that arise in the three advanced safety filter
approaches presented next.

Consider a feedback controller

kg : R™ — R™ (6)

and a set S C X defined as the O-superlevel set of a
continuously differentiable function hg : R™ — R

S={xeR™ | hg(x) >0} (7a)
int(S) = {x € R™ | hg(x) > 0} (7b)
9S = {x € R™ | hg(x) = 0}. (7¢)

Suppose the set S is forward invariant for the closed-loop
system

(t) = f(x(t), ks (x(£))), Vt€ Rxo ®)
and that xg(x) € U for all x € S. A classic example of
this setting is when g is a locally stabilizing controller
for some equilibrium point x, € int(X) and S is the
sublevel-set of a Lyapunov function. In this setting, xs is
often synthesized based on a linearization of the nonlinear
dynamics (1) at the equilibrium point x,, thus the sublevel-
set of the Lyapunov function must be chosen relatively

State constraints X C R?

Safe set S = {x € R?|hg > 0}

FIGURE 3 Geometric interpretation of Nagumo’s Theorem. The
switching safety filter (11) builds directly off the condition (10) in
Nagumo’s Theorem to enforce safety. At the state x(t), the desired
input uges(t) will cause the system to leave the safe set S, since
the vector f(x(t), uges(t)) points outward with respect to the set S.
Switching to the safe control law (6) as dictated by (11) leads to the
system remaining inside the set, since the vector f(x(t), ks (x(t)))
points inward with respect to the set S.

small. A small sublevel-set leads to conservative behavior
of the safety filter, and will motivate later constructions
with Hamilton-Jacobi (HJ) reachability and PSFs.

Expressing S as the 0-superlevel set of the continuously
differentiable function hg allows us to consider a funda-
mental result in studying set invariance established in 1942
and known as Nagumo’s Theorem [73](see [13, Section 4.2.1]
for a modern proof):

Theorem 1

Consider the closed-loop system (8) and a set S C &
defined as the O-superlevel set of a continuously differ-
entiable function hg : R™ — R with int(S) # @ and

ohs

Vhs(x) = =

(x) #0 ©)

for all x € dS. Then, the set S is forward invariant for (8)
if and only if

hs(x) £ Vhs(0)f (x,x5(x)) > 0

for all x € 9S.

(10)

The requirement (10) of Nagumo’s Theorem has a
simple geometric interpretation, as seen in Figure 3. In
particular, the vector given by the closed-loop dynamics
(8) must point into the set S at each point on its boundary.
Moreover, it is a necessary and sufficient condition for
the forward invariance of the set S, implying that the
inequality in (10) is satisfied for all x € 9S, since S is
forward invariant for the closed-loop dynamics (8). We
note that an analog of Nagumo’s Theorem for discrete-
time systems does not exist in general [68, Section 3.2].

This property on the boundary of the set S allows
the construction of a simple safety filter that switches
between using the desired control input signal u4e4(-) and
the controller xg. Recalling that xg(x) € U for all x € S,



we construct a safety filter xp : R™ x R™ — U as

ee(eu) = {Ks(x), xcdSorugi

(11)
u, else.

Such a switching-based safety mechanism was originally
proposed in [74]. It is straightforward to see that

Vhs (x)f (x,xp(x,u)) > 0 (12)

for all x € 0S and u € R™ by virtue of kg satisfying
(10) for all x € 9S. Thus, we may conclude by Nagumo’s
Theorem that S is forward invariant for the closed-loop
system (5) using the proposed safety filter with #geg()-

We note that the form of the safety filter (11) is not rigor-
ous, because instantaneous switches at the boundary of the
system may not yield a piecewise-continuous input signal
if the switches occur infinitely often in a finite period of
time (commonly known as Zeno behavior). This issue can
be resolved both theoretically and practically by requiring
the controller ks to be used for a short time interval when
activated. The choice of this time interval has practical
consequences, since short intervals can yield undesirable
chattering behavior, while large intervals can lead to the
safety filter rarely using the desired control input signal
Udes(-). The main benefit of constructing the switching-
based safety filter (11) is its simplicity of implementation
whenever a controller ks and a corresponding forward
invariant set S is available.

Hamilton-Jacobi Reachability Analysis for Safe
Set Synthesis

In this section, we seek to reduce the conservativeness of
the preceding switching safety filter design by construc-
tively synthesizing the maximal control invariant set S in
X. We will achieve this through the method of HJ reach-
ability [8]. HJ reachability is a constructive framework
for solving reachability problems through optimal control
theory based on Hamilton-Jacobi equations. A reachability
problem in control generally seeks to determine the set
of states that can be encountered by a trajectory of a dy-
namical system like (1). This captures a broad collection of
problems useful for system verification; for instance, reach-
avoid problems are concerned with trajectories reaching a
goal region while avoiding an unsafe region at the same
time [42]. A comprehensive characterization of the various
types of reachability problems is beyond the scope of
this article. Instead, readers are referred to “Hamilton-
Jacobi Reachability Safety Filter Applications” for specific
examples of their application to safety verification of au-
tonomous aerial and mobile vehicles and [8] for an in-
depth technical description.

We now focus on the category of reachability problems
that find the maximal control invariant set contained in
the state constraint set A. We study state trajectories
inevitably reaching the unsafe region, X (the complement
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of X), regardless of the control effort. The collection of
such trajectories constitutes the region where violating
state constraints is inevitable. The complement of this set,
on the other hand, consists of states from which such
failure can be avoided by an appropriate choice of control.
Thus, this set becomes the maximal control invariant set
contained in X'. The formal discussion of this complemen-
tary relationship is presented in [29]. Additionally, in [29],
[35], this relationship is generalized to finite-horizon safety
problems where the safe set does not necessarily have
to be control invariant, as analyzed more in-depth in the
viability theory literature [31], [35], [75].

Taking the HJ approach to this reachability problem
allows the computation of the maximal control invariant
set to be posed as an infinite-horizon optimal control
problem [21], [35]. To see this, let sy : R™ — R denote
the signed-distance function for the set X’ (see Notation
at the beginning of this article). The satisfaction of state
constraints requires that sy (x(t)) < 0 for all + € Rx.
Equivalently, we may consider a cost functional | : R™ X
PC(R>p,U) — R defined as

Jou()) = inf —sx(x(t) (13)

where the state constraints are satisfied if and only if
J(xp,u(-)) > 0. This cost functional enables us to define
a value function V : R — R as

V(xo) = J(xo,u(-))-

sup
u(-)€PC(Rxo,U)

(14)

The value function defines an optimal control problem
to maximize (13) across all feasible control input signals
(piecewise-continuous and satisfying input constraints),
ultimately to ensure it is non-negative and thereby imply-
ing the satisfaction of state constraints. This value function
is core concept in reachability-based safety filter design.
It serves as a metric for quantifying safety margins, with
negative values indicating violation of safety at some point
in the future and with larger positive values reflecting
more margin (because it is possible to keep the system’s
state further from the boundary of X’ through control), as
captured in the following result [21, Proposition 4]:

Theorem 2
For any € € IR, the e-superlevel set of the value function
V :R™ — R defined in (14), denoted as

Se={xeX|V(x)>e€} (15)

is a control invariant set for (1), and Sy is the maximal
control invariant set in X for (1). Moreover, if U is compact,
for all x € Sy where the gradient of V exists,

max VV(x)f(x,u) > 0. (16)

The preceding theorem establishes that we can con-
struct the maximal control invariant set in X for (1), Sy,



through the value function V. The complement of this
set captures all the states from which the system will
inevitably reach X, thereby violating state constraints.
Thus, the boundary of the maximal control invariant set
Sp, which is characterized by the O-level set of V, dis-
criminates the region of the state space in which violating
safety is inevitable from the region in which satisfying the
safety constraints is feasible. In practice, using a control
invariant set for (1) which is smaller than Sy, which can be
produced by considering e-superlevel sets of V as noted in
Theorem 2, provides a tunable buffer for accommodating
errors when V is numerically approximated.

The value function (14) can also be used to synthesize
a control policy that can be directly incorporated into a
safety filter. If the value function V is differentiable, we can
construct an optimal safe policy x{; : R™ — U/ satisfying

VV(@)f (x, 1y (x)) = max VV (x)f (x, u). 17)
for all x € Sy. By construction,
V(x) = VV(x)f (x,x3(x)) > 0 (18)

from (16). We note that if for some € € R>¢ we have
that VV(x) # 0 for all x € 9Se, this condition coincides
with the necessary and sufficient condition of Nagumo’s
Theorem for the set S¢ to be forward invariant under the
control law 7.

Similar to the switching safety filter in (11), given a
desired € € R>p we can design a switching safety filter
based on the value of V(x(t)),

K (x,u) = {wa), V() <corud Ul

(19)
u, else.

If e = 0, this safety filter is least restrictive [34], [79] in
the sense that the filter only intervenes at the boundary
of the (approximate) maximal control invariant set in A
As before, it is necessary to use the controller xj, for a
short period of time when it is activated to avoid rapid
switching, though this controller often practically displays
less chattering than the naive switching safety filter (11).

Computing the value function V is the main task in
verifying the maximal control invariant set Sp and con-
structing the safety filter (19), since it determines the e-
superlevel sets Se and the optimal safe policy «j,. The
value function can be characterized as a solution of a HJ
partial differential equation (HJ-PDE)

0= min { ~sx(x) - V),

that can be derived from the dynamic programming prin-
ciple [42]. The HJ-PDE (20) does not necessarily admit
unique solutions. In practice the existence of a unique
solution can be ensured by using a discounted formulation
of the HJ-PDE [80], [81], or using a finite-horizon value
function (replacing the time horizon in (13) with [0, T])
that approximates V for sufficiently large T € Ry [21].

max VV (x)f (x, u)} (20)

ueld

Furthermore, if V defined as in (14) is not differentiable,
it is still the viscosity solution of (20), which is a standard
type of weak solution for partial differential equations
not necessarily possessing a differentiable solution [82].
In the presence of such non-differentiability, the optimal
safe policy xj, can be constructed using the notion of sub-
and super-differentials [32, Ch. II1.3.4]. We note that under
Lipschitz continuity of the dynamics (1) and the signed
distance function sy, the discounted and finite-horizon
value function used to approximate the infinite-time value
function are almost everywhere differentiable, implying
the applicability of xj, satisfying (17).

Algorithms for numerically computing the value func-
tion have been well-developed [70], primarily through
the notion of viscosity solutions [32], [82] and level-set
methods for solving partial differential equations [83].
These algorithms typically rely upon forming a grid on
the set X and evaluating the value function, its gradient,
and the Hamiltonian (the left-hand side of (16)) at each
grid point. Consequently, these approaches face challenges
with problems possessing high-dimensional state spaces,
a traditional challenge in dynamic programming known
as the “curse of dimensionality” [28]. Recent research
efforts have attempted to alleviate this challenge by us-
ing state decompositions [84], warm starting [85], or ap-
proximating solutions with neural networks [86]. Other
works attempt to compute the maximal control invariant
set approximately without relying on solving the HJ-PDE
by using sums-of-squares programming [87], [88] or set
operations based on polytopes [89], ellipsoids [29], [90],
and zonotopes [91], [92]. Other approaches build upon a
Bellman equation that captures the dynamic programming
principle of reachability problems for discrete-time systems
[29], [30], similar to the HJ-PDE (20) for continuous-time
systems. This provides a foundation for many discrete-
time-based dynamic programming algorithms like value
iteration, Q-learning, or deep reinforcement learning (RL)
as methods of finding approximate solutions of reachabil-
ity [93]-[95].

Similar to the switching safety filter in (11), the
reachability-based safety filter in (19) relies on instan-
taneously switching the control input from uges(t) to
K (x(t)) when the system encounters the boundary of S.
The instantaneous jumps in the control input can produce
chattering, which may be infeasible in real-world systems.
As a common practice to alleviate the chattering, the transi-
tion from uqes(t) to i, (x(t)) in (19) as V(x(t)) approaches
€ can be moderated in a smooth manner by blending
the two control input values. More sophisticated filtering
mechanisms that induce more desirable closed-loop sys-
tem behavior while preserving safety are an area for future
investigation in the practical deployment of reachability-
based safety filters. For instance, the design principle of
control barrier functions that will be presented next, which
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Hamilton-Jacobi Reachability Safety Filter Applications

amilton-Jacobi (HJ) reachability provides an effective tool

for guaranteeing and verifying performance and safety
properties of a system. The notion of a reachable set can
be used to describe regions in the state space from which
achieving performance goals or satisfying safety constraints
is feasible. Such sets are often characterized as level sets
of a value function of an optimal control or differential game
problem, for instance, as in Theorem 2. Moreover, when a
controller is not pre specified, reachability formulations can be
used to synthesize controllers that achieve safety in an optimal
manner as in (17). Finally, model uncertainty and exogenous
disturbances can be directly incorporated into reachability for-
mulations, permitting the construction of robust control invariant
sets. The availability of tools for computing value functions [70]
establishes HJ reachability as a framework for constructive ver-
ification and safe control synthesis. This has led to the applica-
tion of HJ reachability in safety-critical real-world settings, such
as aircraft traffic management [7], real-time motion planning
[76], and flight envelope verification for new generation electric
vertical take-off and landing (eVTOL) aircraft [77]. Figures S8
and S9 show other applications of HJ reachability for verification
of robotic aerial vehicles [S5], [S6], while Figure S10 introduces
its use in autonomous vehicle navigation [78].
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FIGURE S8 ©2010 IEEE. A mosaic of an autonomous back-
flip for the STARMAC quadrotor [S4]. The controller takes the
system through a sequence of mode transition from initiating
the impulse mode (a), in which the vehicle rotation is induced
from strong motor thrust, entering the drift mode (b), where it
turn offs the motors and continues free-falling in (b)—(f), and
entering the recovery mode (f), in which quadrotor returns to
hovering in (f)—(j) [S5].
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FIGURE S9 ©2010 IEEE. Reachable sets in the pitch angle ¢
and pitch rate ¢ of the drone back-flip maneuver seen in Figure
S8. A pitching thrust is applied in the light red region, and the
drone transitions from a pitch thrust to drifting in the dark red
region. The drone transitions from drifting to recovering in the
dark blue region, after which it arrives at a hovering equilibrium
configuration. The ability to perform the back-flip while ensuring
a safety constraint on the minimum altitude of the vehicle are
verified by analyzing reachable sets for the full system during
the impulse, drift, and recovery stages of the vehicle [S5], [S6].
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FIGURE S10 ©2019 IEEE. Safe autonomous navigation frame-
work for an a priori unknown environment based on HJ reach-
ability. The framework treats unexplored portions of the envi-
ronment as an obstacle and uses HJ reachability to compute
the safe region and the safe controller for the vehicle, which is
updated in real time as the vehicle explores the environment. A
vision-based, learning-based planner is deployed to reach the
navigation goal, while the HJ reachability-based safety filter (19)
keeps the robot safe when it is at risk of colliding with obstacles
[78]. POV; point of view.




induces a smooth transition, can also be employed in the
HJ reachability-based safety filter design [15]. However,
we note that the HJ reachability framework was originally
developed to build constructive tools for verifying the
subset of the state space from which the safety specification
(2) can be achieved. The switching safety filter in (19) is
the elementary presentation of the usage of the computed
maximal control invariant set through the HJ reachability.

Safety Filters using Control Barrier Functions
Control barrier functions (CBFs) provide an alternative
framework for constructing safety filters. While the rela-
tionship between CBFs and set invariance can be under-
stood through the perspective of Nagumo’s Theorem, it
can also be understood through the comparison principle,
a fundamental idea in the study of nonlinear systems [69].
Through this approach, it is possible to construct safety
filters that smoothly modify a desired input control signal
as the boundary of a set is approached, rather than switch-
ing to a safe controller only at the boundary. Moreover,
the use of the comparison principle establishes connections
between CBFs and Lyapunov functions, allowing a large
set of tools developed in the context of stabilization to be
adapted for the task of set invariance.

Historically, barrier methods were first developed in
the context of constrained optimization [96], wherein con-
straint satisfaction could be achieved through increasingly
large penalties on constraint violation. The idea to use
barrier certificates in the context of nonlinear dynamical
systems was first proposed in [36] for certifying the for-
ward invariance of a set for a closed-loop system. This
result was further developed in [37], yielding the first
definition of CBFs as a tool for simultaneously synthe-
sizing a safety-critical controller and a barrier certificate
for the corresponding closed-loop system. The controller
presented in this work was based on a structured design
developed with control Lyapunov functions for stabiliza-
tion in [97]. A consequence of this structured design was
that the controller could not accommodate a desired con-
trol input signal that focused on performance instead of
safety, making it unamenable for use as a safety filter.

A change to the formulation of CBFs that increased their
potential for use as safety filters was proposed in [38].
The first component of this change was incorporating an
extended class K function into the CBF time derivative
condition required for safety. This change allowed the
system state to approach the boundary of the safe set as
long as it displayed a safe degree of "braking," reducing
the conservative nature of the original definition of CBFs.
The second component of this change was realizing that
for control-affine systems, the CBF time derivative was
affine in the control input, and thus could be directly
incorporated as a constraint in a convex optimization

problem. This resulted in a way to optimally filter a desired
control input signal while meeting safety constraints.

We now review CBFs, as first introduced in [10]. We
study a broad subset of the class of systems described by
(1) in the form of a control-affine nonlinear system

x(t) = f(x(t)) + g(x(t))u(t),
making similar assumptions on differentiability and the
existence and uniqueness of solutions as made for (1).
Given a feedback controller x : R x R™ — R™, we may
construct a closed-loop system

x(£) = f(x(t) +g(x(£))x(x(), uges (£)),

With this definition in mind, we may define the following:

t € Rxg 1)

teRso. (22)

Definition 3 (Barrier Function)

Let S C X be the O-superlevel set of a continuously
differentiable function hg : R — IR. The function hg is
a barrier function (BF) for (22) on S if there exists « € K¢
such that for any x € R™ and u € R™,

hs(x,u) £ Vhs (x)(f(x) + g(x)x(x,u)) > —a(hs(x)). (23)

The following theorem is proven through comparison
principles [44, Theorem 1] (and may also be proven using
Nagumo’s theorem [10, Proposition 1]) and shows how a
barrier function serves as a certificate of set invariance.

Theorem 3

Let S C & be defined as the 0-superlevel set of a contin-
uously differentiable function hg : R™ — R. If hg is a BF
for (22) on S, then the set S is forward invariant for the
system (22).

This theorem states that if the closed-loop dynamics
(22) satisfy the inequality in (23) at each point in the state
space, the set S is forward invariant for (22). We observe
two notable properties of the requirement in (23). The first
property is that the time derivative of hg must be lower
bounded by a quantity that increases as hs gets smaller.
This induces a “braking" effect on the system, where it may
not approach the boundary of S too quickly. The second
property is that the time derivative of s must be positive
outside of the set S. This induces a type of asymptotic
stability of the set S and plays a role in CBF safety filters’
robustness to disturbances and model uncertainty [45].

As previously discussed, it is often easier to synthesize
a safety filter given a control invariant set, rather than con-
struct a forward invariant set given a feedback controller.
To this end, we define CBFs as in [10]:

Definition 4 (Control Barrier Function)

Let S C X be the 0O-superlevel set of a continuously
differentiable function hg : R™ — R. The function hg is
a control barrier function (CBF) for (21) on S if there exists



« € K€ such that for any x € R,

sup Vhs(x)(f(x) +g(x)u) > —a(hs(x)).

(24)

Given a CBF for (21) on S, we define the pointwise set

Kepr(x) = {u e U | Vhs(x)(f(x) +g(x)u) > —a(hs(x))}.

(25)
We note that the inequality in (24) is strict, while the in-
equality in (25) is non-strict. The strictness of the inequality
in (24) is critical for proving regularity properties such as
Lipschitz continuity of controllers synthesized using the
set Kcpp [46], which we will see an example of below.
We first state the following result regarding the connection
between a CBF and a BF [46, Theorem 1]:

Theorem 4

Let S C X be the O-superlevel set of a continuously
R — R. If hg is a CBF
for (22) on S, then the set Kcpgp(x) is non-empty for all

differentiable function hg :

x € R™, and for any locally Lipschitz continuous controller
x: R™ x R™ — R™ with «(x, u) € Kcpp(x) for all x € R™
and u € R™, the function hg is a BF for (22) on S.

We use a CBF to synthesize a safety filter as in [47]
through the convex optimization problem

1
xkr(x,v) = argmin = ||u — 9|3 (26)

ucld 2
s.t. Vhg(x)(f(x) +g(x)u) > —a(hg(x)).

This controller is a convex quadratic program that
may be efficiently solved. By construction, it satisfies
K (X, tges(t)) € Kepp(x) for all x € R™ and t € Ry,
such that the conditions of Theorem 4 are met, and thus by
Theorem 3, we can conclude the set S is forward invariant
for (22). Moreover, it allows the desired input signal ges(-)
to be minimally modified, such that uges(#) is not used only
when it is unsafe, and the input u(t) actually used is as
close as possible to uges(f).

The preceding controller has been deployed in several
experimental contexts, including mobile robots [98],
robotic swarms [99], aerial vehicles [100], robotic
arms [101], robotic manipulators [102], quadrupedal
robots [103], bipedal robots [57], and automotive
systems [71]. A more detailed overview of some of
these applications can be found in "Control Barrier
Function Safety Filter Applications." This collection of
successful practical applications indicate that CBFs are
a powerful tool for safety filter design for complex,
high-dimensional nonlinear systems. Additionally, we
note that CBF-based safety filters have been formulated
for discrete-time systems [104] and sampled-data systems
[102], [105] that fuse continuous-time dynamics with
discrete-time controller implementations.
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Despite these successes, there remain challenges and
limitations facing CBF-based safety filters. A key challenge
lies in constructively synthesizing CBFs and verifying that
the condition in (24) can be met over the state space (or
over some limited part of the state space), especially with
bounded inputs. For relatively simple systems, it is often
possible to check this condition analytically, but it can
be difficult to verify for more complex high-dimensional
systems. Recent attempts to solve this challenge have con-
sidered numerical optimization-based approaches through
sums-of-squares programming [106]-[108] using reduced-
order models coupled with approaches for handling the
full-order system dynamics [109], [110] or learning CBFs
from data [111]-[115]. Still, well-established and principled
methodologies for finding CBFs, especially in the presence
of input constraints, remains an open research question.

Predictive Safety Filters

The previously discussed safety filter methods rely on an
explicit characterization of the safe set. The underlying
computations to produce this characterization are typically
limited in scalability, as in the case of HJ reachability, or can
be potentially conservative approximations, as with CBF-
based methods. Recent concepts such as active set meth-
ods [48], Safety Handling Exploration with Risk Perception
Algorithm (SHERPA) [49], model predictive safety certifi-
cation (MPSC) [12], PSFs [62], and predictive shielding [50]
aim at addressing this challenge and provide a trade-
off between scalability and performance by a just-in-time
computation of predictive backup plans. We specifically
focus on PSFs [12], [62] in the following, due to their
close relation with (data-driven) model predictive control
(MPC) literature [22], [67], [116]. This connection provides
PSFs with an extensive theoretical background covering a
variety of system model classes with uncertainties, data-
driven estimates, and efficient computational toolsets for
their implementation [11].

Despite these similarities, safety filters solve a funda-
mentally different task than standard MPC formulations.
Instead of minimizing an objective function, the optimum
of which commonly describes a desired system behavior, a
PSF provides a modular framework that alleviates limiting
assumptions on the objective, such as stabilization or
reference tracking conditions. At the same time, the PSF
can build on the large body of available theories ensuring
recursive feasibility and constraint satisfaction from the
literature.

Once a PSF is implemented for a system, it can be used
to enable safe operation in various scenarios, for example,
application of excitation signals, minimizing black-box ob-
jectives functions (only available as numerical values) via
learning-based approaches, or minimization of discontinu-
ous reward functions using RL techniques. See [22, Section
5] for a detailed discussion.



Control Barrier Function Safety Filter Applications

ontrol barrier function-based safety filters have seen ex-
C tensive use in real-world applications, including mo-
bile robots [98], robotic swarms [99], aerial vehicles [100],
robotic arms [101], robotic manipulators [102], quadrupedal
robots [103], bipedal robots [57], and automotive systems [71].
Practical safety tasks can often be encoded using the no-
tion of forward invariance, such safe foot placement on vi-
able footholds, maintaining a safe following distance, avoiding
obstacles in a complex dynamic environment, or respecting
positioning constraints, as seen in the various examples in
Figures S11-S14.

-
.

FIGURE S11 ©2021 IEEE. CBF safety filter on a quadruped. A
multilayered safety filter design is used that integrates predictive
safety filters with CBFs to ensure safe foot placement on viable
footholds while maintaining system stability. CBF constraints are
integrated into both a mid-level predictive filter and a low-level
CBF based filter given by (26), ensuring a consistent safety
specification across planning and control layers [103].
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FIGURE S12 CBF safety filter on a connected automated semi-
trailer truck. The desired control input signal vy is derived from
an expert-designed controller that balances speed tracking with
passenger comfort but does not keep the system safe. A CBF-
based safety filter constructed using the input-to-state safety
notion of robustness ensures safety of the truck in the presence
of complex unmodeled braking system dynamics [71].

In each of these dynamic applications safe control com-
putations must be performed quickly. The formulation of CBF-
based safety filters via convex optimization programs such as
in (26) permits a reliable and efficient means to quickly filter
desired control input signals. Several of these examples incor-
porate horizon-based elements seen in Hamilton Jacobi and
predictive filter methods, either in the use of low-rate predictive
filters (Figure S11), offline reference trajectories (Figure S13) or
backup set CBFs (Figure S14) to achieve both strong closed-
loop performance in addition to safety.

FIGURE S13 ©2022 IEEE. CBF safety filter on a robotic arm
in an industrial kitchen. Maintaining safety in a dynamic work
environment shared with human personnel requires online mod-
ification of arm reference trajectories, but directly recomputing
trajectories online is computationally intractable for real-time
operation. CBF-based safety filters are used to efficiently modify
trajectories given ongoing changes in the environment. [101].

FIGURE S14 ©2022 IEEE. CBF safety filter for geofencing of a
high-speed drone. A backup-set CBF safety filter is designed to
safely filter pilot inputs for a racing drone flying at high speeds
(100 [km/h]), enabling acrobatic maneuvers while maintain-
ing safety. The lightweight nature of CBF-based safety filters
permits using only onboard sensing and computation, enabling
beyond line-of-sight operation and robustness to ground com-
munication failures [117].
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PSFs are based on the idea of extending a potentially
conservative control invariant terminal safe set S™ us-
ing predictive backup plans. More precisely, for a time
to € R>p, consider the system state x(¢p) and the desired
input uges(to)- Letting T € R+ be a prediction horizon, the
safety of the desired input uges(fo) is certified by searching
for a state trajectory x(-) € C([to, to + T], X) and an input
signal u(-) € PC([to,to + T],U) satisfying the system
dynamics (1) and the boundary conditions x(ty) = x(tg),
x(tg+T) € S™, and u(ty) = uges(to). If such a state
trajectory and input signal exist, then it is possible to use
the desired control input and bring the system from the
state x(ty) into the set S™™ within the finite prediction
horizon T, while respecting state and input constraints. If
the desired input uges(t) is not safe, a safe control input is
chosen such that the system can be brought to the terminal
safe set SY™ within the prediction horizon.

We note that because the PSF is implemented with a
receding horizon, the actual evolution of the system is
not required to follow the backup plan into the terminal
safe set S'™. Instead, the system will evolve using the
input at the beginning of the predictive horizon (which
must be consistent with a backup plan that returns to S™
further in the horizon), after which it will compute a new
backup plan. In this way, the system is allowed to freely
evolve according to uges(-) and does not need to return
to S, as long as it remains possible to return to S'™™
in the future (see Figure 4 for an illustration). Note that
this mechanism contrasts with standard stabilizing and
reference-tracking MPC formulations [11] in which open-
loop predictions ideally match the resulting closed-loop
behavior to optimize performance rather than serving as
an optional backup trajectory for safety. In particular, a PSF
does not have to fulfill the task at hand, and in particular,
the terminal safe set and backup plan can be based on
a more straightforward set of system behaviors than ugeg
tries to achieve.

Implementing a PSF requires solving a predictive con-
trol problem online. While efficient solvers are avail-
able [11], they require a non-negligible evaluation time
period, compared with CBF or HJ reachability-based
safety filters. During an evaluation time period AT €
R+, the previous input is typically held constant, re-
sulting in zero-order-hold input signals, that is, u(t) =
ke (x(KAT), uges (kAT)) for all t € [kAT, (k + 1)AT), where
k € IN denotes the corresponding sampling time step.
A common approximation in predictive control is to in-
tegrate the dynamics (1) within t € [kAT, (k + 1)AT)
using explicit integration methods. For example, applying
a simple standard Euler discretization to (1) yields an
approximate discrete-time, zero-order hold formulation of
the continuous-time system model (1)

x(k+1) = x(k) + ATf (x(k), u(k)) = f(x(k), u(k)). (27)
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FIGURE 4 Mechanism of PSFs. The current system state x(k) is
shown with a safe backup plan (brown) from the solution at time
k — 1. A desired input signal uges(k) is passed through unfiltered
if a feasible backup trajectory (green) can be obtained from the
resulting f(x(k), uges (k)) via optimization problem (28).

A comprehensive introduction to different numerical inte-
gration methods used in predictive control can be found
in [11, Section 8.2], and a detailed theoretical analysis is
provided in [40, Chapter 2], [118].

Let N be the discrete-time prediction horizon. At the
sampling time step k, the construction of a safe backup
trajectory {x,-‘ k) fori =1,...,N toward the terminal safe
set S™™ is formulated as

min s () = s (25a)
st xop = x(k), (28b)
Xy € ST (28c¢)

Xk = f(xp ug), fori=0,.,N—1, (28d)

Xk € X, fori=0,.,N—1, (28e)

Wi €U, fori=0,.,N—1, (28f)

where ik denotes planned states and inputs computed
at time step k predicted i time steps into the future that
satisfy the dynamic constraint (28d). An illustration of
this planned sequence of states can be seen in Figure 4.
The remaining constraints (28b)-(28f) ensure that backup
plans lead the system into a safe terminal control in-
variant set S™™ ((28c) is referred to as the terminal con-
straint in model predictive control [11]), while satisfying
the state and input constraints. While the objective (28a)
aligns with the primary formulation of PSFs found in
literature, additional terms can be included, for example,
Zfifjl lltges (k +17) — uji|| to better approximate (4) in the
case that ugeg(k) is available for future time steps k > k.
The following assumption on the terminal safe set St™
ensures this optimization problem yields a safe input:

Assumption 1 (Terminal Control Invariant Set)
Consider the system (27). There exists a terminal set
St C X such that for all x € S™™, there exists an input
u € U such that f(x,u) € St™,

Assumption 1 states that the terminal set Stm g

a discrete-time control invariant set, similar to the



continuous-time version in Definition 2, and thus can
be kept safe for all time. A trivial choice for S"™™ is
any equilibrium point x, = f(x., u.) satisfying x, € X
and u, € U. Since such terminal equality constraints
can be rather conservative, control Lyapunov techniques
are commonly used to provide the existence of a locally
stabilizing controller for the equilibrium (x,u.), which
allows constructing less restrictive invariant terminal set
constraints satisfying Assumption 1, see, for example, [11,
Section 2.5.3.2], [72]. In addition, various research efforts
provide alternative methods for the terminal set design,
such as terminal sets based on safe periodic system or-
bits [119], [120], discrete-time control barrier functions [17],
[18], [104], and adaptive enlargements of the terminal set
using previous solutions of (28) [12], [121] or closed-loop
system trajectories [122].

The resulting PSF for the discrete-time system (27) is
then given by xp(x(k),uges(k)) = ”S\k with ”S\k being
the first element of the optimal backup control sequence
obtained from (28). The formal closed-loop safety guaran-
tee under application of u(k) = xp(x(k),uges(k)) follows
from an induction argument. In particular, assume that (28)
was feasible at time k — 1 with the corresponding optimal
input sequence {u;*‘ «_17)- Under application of u(k —1) =
kp(x(k—1),uqes(k—1)) = ”8|k—1' the system evolves to the
state x(k) = xﬁ 41+ Because the terminal set is a control in-
variant set, we can construct a feasible candidate sequence
at time step k given by {”T\kfl'”akfl' .., u;‘vil‘kil,ﬂ} with
i € U such that f(x;,_l‘k_l,ﬂ) € St thereby satisfying
all constraints in (28). By induction, we may conclude
feasibility of (28), and consequently, satisfaction of state
and input constraints due to (28e) and (28f), if (28) is
initially feasible at k = 0. This result also implies that the
set of feasible initial conditions

SFOF = {x(k) € R™|(28d) — (28f)} (29)

implicitly defines a control invariant set. This eliminates
the need for an explicit safe set representation as, for
example, a superlevel set of a function, which is often
difficult to compute for high-dimensional systems.

While PSFs provide a flexible framework for approx-
imately optimal safety filtering and approximate optimal
control, the central challenge is to solve (28) reliably in real-
time. This is addressed theoretically and through software
tools [11, Section 8] and is a central part of ongoing model
predictive control research. Another practical challenge
when implementing a PSF arises if disturbances drive the
plant into a state for which the problem (28) is infeasible
and no safe control input can be computed. A systematic
method for dealing with infeasibility is to “soften” the
constraints by including slack variables into the problem,
as commonly done in model predictive control [123]. For
instance, when the state and terminal constraints can be
described by X = {x € R™[a%(x) < 0} and S™ = {x €

R"|a5™ (x) < 0} for some functions a¥,a5"™ respectively,
the soft constrained PSF problem (28) is

zﬁ,}lﬂk l[t4ges (k) — uopill + ﬁé I (Eie)
s.t. (28d),(28b), (28f),
ik =0,
”X(xi|k) < Gilks
as" (xnik) < SNk

The non-negative slack variables {Z;;} ensure feasibility

(30)

fori=0,...,N,
fori=0,..,.N—1,

for any x(k) and any input sequence u;; € U. The
corresponding penalty function lg can, for example, be
selected as I:(§) = [|¢]|? + p¢l|g]|, where pg is a positive
constant. The goal is to select pz large enough such that
the second term in (30) admits an exact penalty function,
implying that the slack variables are only non-zero if
constraint satisfaction of the corresponding constraints is
not possible. If the original, hard-constrained problem (28)
is feasible, the soft-constrained problem should produce
the same control input [123]. It should be noted that the
slack variables are, however, not guaranteed to vanish
in closed-loop, that is, the system may not return to the
implicit safe set defined by (28). Current research efforts
in model predictive control [124], [125] and PSFs [18]
investigate such cases, for example, by connecting PSF and
CBF theory [18] (see also the discussion in the “CBFs +
PSFs” section).

Discussion on Basic Safety Filters

In this section, we first discuss in what ways HJ reachabil-
ity, CBF, and PSF safety filters approximate the ideal safety
filter defined in (4). Next, we provide a brief overview of
the relationship between the three methods, with a focus
on recent work at the intersection of the approaches.

Approximation of Ideal Safety Filter

As discussed in the introduction of the ideal safety filter
(4), it is often infeasible to directly solve (4), either due to
computation limits or because the entirety of the desired
input signal uges(-) is unavailable in advance. All three
previously described methods can be seen as approximat-
ing various features of the ideal safety filter in (4).

The key approximation of (4) that all methodologies
follow is through the use of a control invariant set. While
it is desired for the ideal safety filter to work for any
initial condition xy € X, it will only be feasible for
initial conditions xy in the maximal control invariant set
in X. Each of the methodologies considers a subset of
X that may be rendered forward invariant, ensuring the
constraint (4e) is satisfied. H] reachability finds an explicit
representation of the maximal control invariant set and
can return & itself if X itself is control invariant. CBFs
often use an inner-approximation of the set X that the CBF
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* Maximal safe set
* Safety certification of systems

* Curse of dimensionality
* Indirect synthesis of filter

CBF—H]J: Smooth filtering [15]
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» Predictive decision making

» Complexity of robust design
* Heavy online computation
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FIGURE 5 Key advantages and drawbacks of Hamilton-Jacobi reachability, control barrier functions, and PSFs. The relationship between
them is outlined (++), and how techniques enhance each other, for example, CBF techniques can be used to improve HJ safety filters

(CBF—HJ).

condition (24) can be verified over but does not necessarily
seek a maximal control invariant set. Lastly, PSFs return an
implicit representation of a control invariant set contained
in X, with the set being implicitly defined by the feasibility
of the optimization problem in (28). In practice, this control
invariant set can closely approximate the maximal control
invariant set in X’ with a sufficiently large time horizon.

The second major way in which the three methodolo-
gies approximate (4) is the minimization of the cost (4a). HJ
reachability does not explicitly consider the minimization
of this cost. However, if from a given initial condition
xo, the desired input signal uqes(-) keeps the system in
the maximal control invariant set, then a cost of 0 can be
obtained. If instead u4es(+) would cause the system to leave
the maximal control invariant set, the filter switches to the
optimal safe policy for a period of time according to (19).
These switches lead to accruing of some cost according to
(4a) and is generally not ensured to be minimal.

In contrast, the CBF safety filter specified in (26) seeks
to minimize an instantaneous deviation from the desired
input signal at each time t € R>, given by u4es(t), subject
to the CBF inequality in (24). There are two consequences
of this with respect to minimizing the cost (4a). First, even
if from a given initial condition xg, the desired input signal
Uges(+) would keep the state inside the O-superlevel set of
the CBF (and hence inside X), it may be modified to ensure
the stricter requirement specified by the CBF inequality
in (24) is satisfied. Second, the CBF safety filter does not
explicitly consider the behavior of the system along a
horizon (it does so implicitly through the time derivative
requirement on the CBF /). Hence, the CBF safety filter
may choose to return an instantaneously optimal input,
but accrue more cost along the evolution of the system.

With respect to optimality, the finite horizon formula-
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tion of PSFs make them an intermediate between the infi-
nite horizon used in HJ reachability and the instantaneous
optimization used with CBFs. The cost of the PSF in (28a) is
an instantaneous optimization in that it considers uges (k).
Despite this instantaneous nature, the PSF will not need to
modify uges (k) if there exists a subsequent input sequence
that keeps the system within the set X'. Practically, this can
lead to a significant improvement in minimizing the cost
(4a) over purely instantaneous approaches not considering
a horizon. Moreover, suppose the input signal uges(-) is
known in advance. In that case, future values of the desired
input signal (such as ugeg(k + 1)) can be incorporated into
the cost function of the PSF, yielding more optimal behav-
ior. Examples of such inputs include open-loop excitation
signals, or if they can be parameterized in terms of the
current system state, such as with a feedback controller.
Lastly, there are two additional, but minor, ways in
which the ideal safety filter in (4) is being approximated.
First, the PSF does not use the exact, continuous-time
nonlinear dynamics in (4d), but rather uses a discrete-time
approximation. The accuracy of this approximation can
play a role in both the safety guarantees and optimality
of the resulting filter. Secondly, the switching nature of the
HJ reachability safety filter and the discrete-time nature
of the PSF limit the possible piecewise-continuous input
signals the system can take. As noted when discussing
the switching safety-filter, it is necessary for the switch
to the safe controller to be held for a minimum period of
time in order to prevent Zeno behavior. This restricts the
piecewise-continuous input signals of the HJ reachability
safety filter to correct a minimum amount of time between
their discontinuities. The discrete-time formulation used
for the PSF also enforces a minimum amount of time
between the discontinuities of the piecewise-continuous



signals achievable by the filter. In contrast, the continuity
properties of the CBF and the system dynamics permit
the full class of piecewise-continuous input signals given
by the constraint (4b), with the only discontinuities in the
input signal arising from discontinuities in #ges(-).

Hamilton-Jacobi Reachability + Control Barrier Functions
Both the methods of HJ reachability and CBFs are built
on determining an explicit representation of a control
invariant set, typically through the superlevel sets of a
continuous scalar function (Figure 5). This similarity leads
to connections between the two approaches, both theoreti-
cally and in practical behavior. Moreover, the combination
of these approaches is complementary, since HJ reachabil-
ity can increase the size of a control invariant set used in
a safety filter, while CBFs provide a succinct approach for
smoothly filtering a desired input signal.

The use of HJ reachability for the construction of
CBFs was first explored in [47], in which a piecewise
polynomial function whose zero-superlevel set smoothly
approximates the maximal control invariant set computed
from HJ reachability was constructed by sums-of-squares
programming and used as a CBF. This approach enabled a
large control invariant set while preserving the smoothness
properties needed by CBFs. The work in [14] conducts a
comparative study of the control invariant sets found using
H]J reachability and backup CBF methods (discussed below
in the paragraph on CBFs and PSFs). This work found
that given an adequately designed backup controller and
backup set, the control invariant sets found with backup
CBF approaches closely approximate the maximal control
invariant sets found through HJ reachability.

Other recent work has looked at how elements from
CBF-based safety filters can be directly incorporated into
Hamilton-Jacobi reachability computations. The work in
[15] integrates the comparison function seen in CBF-based
safety filters into the HJ-PDE (20) that is solved numeri-
cally, allowing for the synthesis of CBFs through the tool
sets typically used in HJ reachability. In this new reachabil-
ity formulation, the safety filter (26) based on the resulting
value function is verified to be the optimal policy of the
value function. This allows the reachability community to
expand their choice of the safety filters from the primary
switching safety filter (19) to those in the CBF community,
which have better practical behaviors. The work in [126]
integrates with this previous work by making use of the
ability to warm-start the process of numerically solving the
HJ-PDE (20) to use dynamic programming to iteratively
update a CBF candidate until it converges to a valid CBFE.
Though these approaches benefit from the strengths of
both HJ reachability and CBFs, their numerical approach
still faces challenges with high-dimensional systems.

Beyond finding efficient approaches for tackling the
curse of dimensionality in this context, an open research

direction at this intersection focuses on rigorously study-
ing the regularity properties of CBFs constructed through
reachability frameworks. Such an effort would rigorously
codify the regularity properties achieved by weak viscosity
solutions to the HJ-PDE and develop similarly rigorous
results connecting the resulting CBFs and safety in the face
of these regularity limitations, similarly to those in [127].

Hamilton-Jacobi Reachability + Predictive Safety Filters

While both HJ reachability and PSFs aim to ensure safety
through an optimal control problem formulation, there
are differences in their respective problem structures and
corresponding algorithms. First, HJ reachability incor-
porates safety constraints through an appropriate value
function (14), whereas PSFs consider them as part of a
constrained optimization problem (28e). As a result, HJ
reachability-based safety filters decouple safe set synthesis
and filter design, while PSFs implicitly capture a safe set
and filter inputs through a single optimization problem.

Second, HJ reachability uses the machinery of dynamic
programming [128] to find an optimal solution offline
for all states. Typically, the value function (14) is explic-
itly computed as the solution of a HJ partial differential
equation, which is feasible for a class of optimal control
problems [32], including both reachability formulations
and state-constrained general-cost problems [129]. The
computation of the value function globally for all states
faces the curse of dimensionality. In return, it explicitly
characterizes the maximal control invariant set in X’ before
deploying the controller, which makes it attractive for the
verification of safety-critical systems [7].

In contrast, PSFs leverage online optimization to ap-
proximately solve a state-constrained optimal control prob-
lem (28) using only the current state and a receding
horizon principle [11]. The online computation concept
of PSFs avoids an explicit pre-computation of an optimal
control policy, thereby enabling scalability of the approach.
Instead, PSFs require efficient nonlinear programming
solvers working in real time with significant system pro-
cessing power. If sufficient computation power is available
online, PSFs can provide a near-ideal safety filter even for
high-dimensional systems. However, evaluating whether
the system will be safe given an initial state can only
be verified by evaluating feasibility of the optimization
problem (28), as an explicit representation of the safe set
is not available.

Despite these differences between the two approaches,
there are similarities between the approaches that suggest
the potential for integrating them. In particular, the implicit
safe set defined by a PSF using a sufficiently long planning
horizon coincides with the explicit safe set from HJ reach-
ability. This effect is demonstrated in “Safety Filter Design
Example.” Finally, recent approaches are exploring various
ways of exploiting the benefits of both methods, see for



example, [16], where condition (18) from HJ reachability is
incorporated as a constraint in a predictive controller.

Control Barrier Functions + Predictive Safety Filters
CBFs and PSFs naturally complement each other in a way
that reduces the weakness of each individual method. The
predictive horizon present in PSFs can help to reduce
poor closed-loop behavior induced by the instantaneous
optimization of CBF-based safety filters by incorporating
future desired control inputs into (28a) and by increasing
the planning horizon. This improvement comes with the
burden of solving a nonlinear optimization problem in
real-time, which substantially increases the complexity of
the safety filter design and implementation compared to
CBF-based filters. Furthermore, PSFs do not provide intrin-
sic robustness properties, which often result in complicated
design procedures to ensure safety with disturbances.
This complementary relationship has yielded several
recent results integrating the two methods. Integrating
CBF constraints directly into the optimization problem
specifying the predictive filter, either as a instantaneous
derivative condition [103] or a decrement condition [17],
[130]-[132] leads to the dynamic “braking" typical of CBFs
and often yields robust behavior. In addition, the use of
CBFs as a terminal constraint can formally render the sum
of slack variables in the predictive safety filter problem (30)
into a “predictive” CBF [18]. Further approaches include
multirate architectures, in which a high-level predictive
controller provides a desired input signal that is filtered
using a CBF-based safety filter [19], [103], [133]. These ap-
proaches allow for the complex nonlinear predictive opti-
mization problem to be solved at slower frequencies, since
the CBF-based filter keeps the system close to the planned
trajectory at a high frequency. Other approaches have
introduced predictive elements to consider safety along
solution trajectories [134] or used predictive elements for
trajectory tracking and CBFs for obstacle avoidance [135].
The thread of work in [48], [136], [137] focuses on
the notion of backup set methods using CBF-based safety
filters. This approach shares conceptual elements with
predictive safety filters by using a backup set that can
be kept forward invariant with a backup controller to
implicitly define a larger control invariant set. The backup
set methods consider a predictive horizon over which a
CBF constraint must be enforced, ensuring the system
can always reach the backup set. Structural differences
between these backup set approaches and predictive fil-
ters often lead to different approximations for tractably
handling the use of a predictive horizon, suggesting a
distinction between the two methods.

DATA-DRIVEN SAFETY FILTERS
The safety filter techniques summarized in the first half of
this article were presented assuming perfect knowledge of
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the system dynamics (1). However, in most practical set-
tings, high-fidelity system models are difficult to construct
and systems are subject to external disturbances, which can
lead to loss of safety guarantees. This challenge has been a
topic of significant research interest from the perspective of
data-driven control, in which empirical information about
the unknown system is integrated into various elements
of the safety filter synthesis process. We now present
this problem setting and a selection of data-driven results
related to HJ reachability, CBFs, and PSFs.
Consider the nonlinear control system

x(t) :ftrue(x(t)r ”(t))r

where firge : R™ x R™ — R™, which for simplicity, we
assume to be continuously differentiable in its arguments.
For many systems in engineering, first principles, such
as Lagrangian mechanics or the laws of thermodynamics,
allow for the derivation of simplified model structures to
construct the function f in (1). In many real-world appli-
cations, generating a sufficiently accurate first-principles
model can, however, require significant engineering effort,
leading to a discrepancy between the model f and the
actual dynamics of the system, given by firue.

We note that the mathematical formulation in (31) can
describe the frequent setting of parametric uncertainty.
Even for systems for which the structure of f accurately
characterizes firye, there may be errors between parameters
of the model and parameters of the actual system. For in-
stance, different cars of the same vehicle type may have the
same model structure, but may differ in the model parame-
ters due to manufacturing tolerances, wear of components,
or replacement parts. Manually identifying parameters
through laboratory testing is often difficult and costly, and
designs that are robust to large parameter uncertainties
are often conservative. Data-driven techniques specialized
for addressing safety in the face of parametric uncertainty
have been proposed, including adaptive control [138], [139]
and Bayesian estimation [140], [141].

This section discusses how to leverage data-driven tech-
niques to improve a model obtained from first principles,
given by (1), to more accurately reflect (31) and presents
selected techniques for using these concepts in the context
of safety filters. To this end, we consider a sequence of
measured states, inputs, and state time derivatives

t € R, (31)

np A&

D = {(xg, ug, x%) 1 (x(kTs), u(kTs), % (kTs) 111D (32)

at sampling time steps kT;. Collecting data of the form (32)
assumes prior physical knowledge about the system dy-
namics to determine a suitable selection of system state
measurements. “Learning with Real-World Data" outlines
some preprocessing steps to obtain (32) from state mea-
surements. If the true system provides only limited access
to system states through noisy sensor measurements of the
form y, = g(x(kTs)), yx € R™ with n, < ny, more advanced



Learning with Real-World Data
ata-driven safety filters provide a promising approach for
D infusing information collected from experiments on a real-
world system into the control design process to improve the
safety of a system. Achieving this goal requires overcoming
challenges that often arise when data is produced by real-world
dynamic systems. In this sidebar, we discuss some of the trade
offs faced when solving these challenges in the context of an

example using real-world data.

Consider a scalar nonlinear dynamical system given by

X(t) = firue (x (1), u(t)),

t € Rso (S17)

with state x(f) € R and input u(t) € R at time t € Rxo.
Though this is a continuous-time system, data collected during
its evolution is typically discrete-time in nature, with states xj
and inputs u, measured at sample times kTs, as in the data
set (32). An example of such a state sequence is given by
the black line in Figures S15 and S16 (top), produced by the
Segway system in [23]. Typically absent from this collected data
are direct measurements of the state derivative, x. To build the
data set D in (32) and characterize the function e” that arises in
the model-based decomposition of the system dynamics in (33),
information about x is, however, required.

In this example we assume that we have true measurements
of Xk, given by the black line in Figures S15 and S16 (bottom). A
naive approach for approximating X is to take a finite difference
of sequential x, measurements. The approximation is seen by
the red line in Figures S15 and S16 (bottom). As expected,
when taking numerical derivatives of dynamic system data,
noise in the x, data is amplified, leading to large oscillations
and error in approximating the true value of xj.

An alternative is to fit a smooth function to approximate x
and differentiate this signal. In this example we will use the
smoothing spline approximation captured by the MATLAB func-
tion spaps and based on [S7]. Approximations of the sequence
Xy using various tolerances (smaller tolerance requires less
error in the approximation at the expense of smoothness) can
be seen in Figures S15 and S16 (top), with their derivatives
shown in Figures S15 and S16 (bottom). We see that using
a tolerance of 1e — 6 (blue) leads to a spline that captures
the sequence xy accurately, and also captures some of the
undesirable oscillations in the derivative. In contrast, using
tolerances of 1e — 4 (green) and 5e — 4 (magenta) leads a
to worse approximation of the sequence xi, but smooths out
the signal such that the derivative does not feature the same
oscillations.
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FIGURE S15 Real-world system state and state derivative tra-
jectory data. (Top) State trajectory and smoothing splines using
various accuracy tolerances. (Bottom) State derivative trajec-
tory, numerical derivative of raw state trajectory, and derivatives
of state trajectory smoothing splines.
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FIGURE S16 Enhanced view of real-world system state and
state derivative trajectory data. (Top) The spline with a tolerance
of 1e-6 (blue) accurately captures fine features in the true
state trajectory (black), while the splines with tolerances of 1e-
4 (green) and 5e-4 (magenta) capture the general trend of the
true state trajectory while ignoring fine features. (Bottom) The
numerical derivative of the true state trajectory (red) and the
derivative of the spline with a tolerance of 1e-6 (blue) display
large oscillations and fail to accurately track the true state
derivative trajectory (black). The derivatives of the smoother
splines using tolerances of 1e-4 (green) and 5e-4 (magenta)
do not display these oscillations and follow the general trend of
the true state derivative trajectory.
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To highlight the importance of smoothing a state trajectory in an
effort to more accurately capture the state derivative trajectory,
consider the following regression problem,

min Y~ X — Xk, ug)|?
fer i

(S18)

where f is a model from a class of models denoted by #. We
note that we have dropped any prior model knowledge from
this problem for the sake of simplicity. As we do not have direct
access to the measurements x,, we must use an approximate
value, which we denote by x,{ yielding the regression problem:

min Y [xf — 7 (xc, ux) 2 (S19)
feH i
We may rewrite the cost function in (S18) as
[ — X[+ X[ — FOxe, ug) 2. (S20)

Solving the regression problem in (S19) to a high degree of
accuracy, such that F(x, uy) =~ x{, implies with (S20) that the
cost function in (S18) attains an approximate value of:

3 — [ 2.
k
Thus, our ability to minimize the cost of the ideal regression
problem in (S18) is limited by how accurately x,f captures X.
Let us denote x,ﬁ as the value of the smoothing spline at
time kTs and x,{ as the value of the smoothing spline derivative
at time kTs. Let us also denote the errors e, = |x — x[|?
and & = |X — x[|?. We can see the cumulative sums of
these errors for the various smoothing splines in Figure S17. In
Figure S17 (top), we observe that the spline using a tolerance of
1e — 6 (blue) approximates the true signal with low error, while
the error increases for 1e — 4 (green) and 5e — 4 (magenta). In
contrast, in Figure S17 (bottom), we observe that the numerical
derivative (red) and derivative of the spline using a tolerance of
1e — 6 (blue) accrue nearly double the error of that achieved by
the derivative of the spline using tolerances of 1e — 4 (green)
and 5e — 4 (magenta). It is this error that appears in (S21) and
thus determines the accuracy of our learning algorithm. Hence,
we see that there is a balance that must be met when smoothing
real-world data to make it well conditioned for learning, and that

(S21)

methodologies from the field of system identification [142],
[143] may be used. We note that data of the form (32) can
equally handle episodic measurements, including multiple
resets of the system state, enabling iterative model refine-
ment. While this article focuses on learning the dynamics
model (31), such a data set could be used other ways in
the safety filter design process, such as learning control
invariant sets [111]-[113].

Model Uncertainty Decomposition

System modeling by domain experts using physical prin-
ciples is typically the first step of safety filter design and
yields an imperfect nominal model f, as in (1). Using this

22 »

it may be desirable to accrue more error in our smooth models
in an effort to reduce error in the derivative approximation.

This example further highlights an important aspect when
designing data-driven safety filters. In particular, in most real-
world settings, it will be impossible to completely learn a system
or make the function e’ in (34) uniformly equal to zero. This is
due not only to filtering of the data removing content from the
signal, but also due to the fact that data collected by sampling
a system can not accurately capture high-frequency content.
Therefore, it is necessary to develop data-driven safety filters
that are robust to learning error, as we explore in this article.
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FIGURE S17 Cumulative error of smoothing splines. (Top)
Cumulative error in the smoothing splines used to approximate
the sequence of state measurements xi. (Bottom) Cumulative
error in the approximation of the state derivatives xx. The
numerical differentiation of the state measurement signal xy
(red) occurs the highest loss, while the lowest tolerance spline
(blue) accrues similar error. The splines that prioritize smooth-
ness over approximation accuracy of x,x (green, magenta) have
derivatives that accrue less error.
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model, we can rewrite the actual system dynamics (31) as

() = f(x(t),u(t)) + forue (x(8), u(t)) —f (x(£), u(t)), (33)
=e" (x(t) (1))

where the function ¢” : R™ x R™ — R™ captures all
errors between the system model and the actual system.
While assumptions on the uncertainty of the system may
be used to construct a state and input dependent set
E™(x,u) such that e"(x,u) € E"(x,u) for all x € X and
u € U, this set often significantly over approximates the
model error, yielding robust designs that are excessively
conservative. Data-driven techniques tackle this challenge




by reducing the model error ¢” to a smaller learning error
e i R™ x R™ — R™ using a learning-based correction
term f I R" x R™ — R", that is,
x(8) = f(x(t),u()) +f (x(t),u(b)
+ e (x(t), u(t) = f(x(t), u(b)).
=el (x(t)u(t))
Learning f! from the data (32) to mitigate ¢/ can be
posed as a classical regression problem, which can be
divided into parametric approaches with a fixed number of
parameters independent of the number of measurements
np, and non-parametric approaches that have a variable
number of parameters that grows with np. Parametric
approaches are particularly suitable when the structure
firue in (31) is well understood and when fast predictions
are required. In contrast, non-parametric approaches can
compensate for both parametric and structural uncertainty
but can be computationally more expensive to use for
prediction. In addition to reducing the model error e”,
some learning techniques bound the residual learning
error ¢! with a state and input dependent set, such that
el(x,u) € E'(x,u) for all x € X and u € U. The structure of
such a set yields a collection of distinct data-driven safety
filter approaches as follows [22], [67], [116, Section II].

(34)

Deterministic Models

The first class of approaches consider the integration of
deterministic data-driven models into safety filter design,
without any specific quantification of the residual learning
error ¢!. Such approaches can provide good predictive
performance and are commonly employed in practical
applications. Examples include parametric models with
simple least-squares regression or (recurrent) artificial neu-
ral networks and non-parametric techniques based on k-
nearest-neighbors techniques [144]. Since these approaches
typically do not provide an explicit bound on the resid-
ual learning error, safety according to (2) is practically
achieved using tightened constraints of the form aX, al{
with a € (0,1) in safety filter design. The resulting safety
margin (1 — ) is then hand-tuned to achieve constraint
satisfaction. Examples include the use of deterministic
models with CBFs [23], [54], [57] (see the examples "Data-
Driven Control Barrier Function Safety Filter Applica-
tions") and soft constrained PSFs [145] (see the miniature
race car example in "Predictive Safety Filter Applications:
Experimental Race Cars and Simulated Quadrotors").

Robust Models

The second class of approaches directly incorporate an
explicit bound on the residual learning error el into the
safety filter design, yielding robust safety filters. As previ-
ously noted, certain data-driven models bound the resid-
ual learning error through a state and input dependent
set, such that e/ (x,u) € &(x,u) for all x € X and u € U.
Safety filter design is done such that the system in (34) is

safe for all possible residual learning error values in the set
&' (x,u). Error quantification for parametric methods often
uses regularity properties of a class of parametric learning
models, such as the use of spectral normalization and
Lipschitz constants with recurrent neural networks [146],
[147]. Non-parametric methods often use assumptions on
the actual dynamics of the system (such as Lipschitz
continuity) in conjunction with data to synthesize robust
safety filters [148], [22, Section 3.1.2]. Such approaches have
been taken using HJ reachability through a differential
game formulation [149], using CBFs through robust op-
timization [58], [150], and using PSFs by determining an
appropriate constraint tightening mechanism [63].

Probabilistic Models

The preceding robust approaches guarantee safety of a
system, but they can often be unnecessarily conservative
because they must capture all possible residual learning
errors. Moreover, they tend to neglect the fact that the
measurements composing D are noisy, and resulting guar-
antees on learning accuracy are inherently probabilistic.
The third class of approaches uses distributional infor-
mation about the residual learning error in the safety
filter design process, permitting practical designs that
can balance the need for safety with strong performance.
The corresponding data-driven models typically provide
a data-driven description of the residual learning error
el in the form of a probability distribution, p(¢/|D). An
overview of parametric and non-parametric probabilistic
regression techniques often used in control can be found
in [116, Section II], [22], [67] and references therein. A
common learning technique to estimate the model error "
with a function f! and error set £'(x,u) constructed from
data is based on Gaussian process regression [66], [152]-
[154] explored in “Probabilistic Non-Parametric Model:
Gaussian Process Regression.”

Though it may be possible to construct probabilistic
descriptions of structural uncertainties, parametric uncer-
tainties, and external disturbances, it can be challenging to
translate these descriptions into a safety filter formulation.
A common simplification is to consider overall safety
guarantees from a probabilistic perspective by considering
robustness at a certain probability level [22, Section 3.2], [65],
[66], [152], [155]-[157]. To this end, we construct a state and
input dependent uncertainty set £!(x, ) based on available
data D (32) similar to the robust case, which is, however,
only valid in probability, such that

Pr | e'(x,u) € E'(x,u) for all x € X and u € U

*

> Ps

(35)

at some desired probability level ps. We note that compared
to the robust approach, we do not require el(x,u) € E(x,u)
with certainty, but rather only at the specified probability
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Probabilistic Non-Parametric Model: Gaussian Process Regression

aussian Process regression is a non-parametric learning
G method that can serve as an effective framework for
learning the model correction term f! in (34). A GP is a random
process, of which every finite sample has a joint Gaussian
distribution. Taking a Bayesian approach with an assumption
that the function we want to learn is sampled from a GP, we
are able to obtain the regression model of the function and its
uncertainty bound at any desired probability level by inferring
the posterior distribution of the GP with respect to the data. In
this sidebar, we apply this approach for each dimension of the
uncertainty e/ to obtain regression models f,’, and uncertainty
bounds, £/(x, u), where i =1,- -, ny.

We first assume prior knowledge of e/ in the form of a
mean function p; : R"™™ — R and a covariance kernel
Ki(-,-) : R7TM x R™M — R+, such that the GP prior of /()
is given by

&'(-) ~ GP(ui(-), ki(, ). (S22)
We assume that we have the measurements yx; =
e (xk, ux) +€; k, given a state xx and input uy pair sample in the
dataset D, where the measurement noise ¢; x is i.i.d. and sam-
pled from a normal distribution, A (0, ;). The choice of the
class of prior mean and covariance function is typically based
on prior knowledge of the system. When the prior knowledge
is already incorporated in the nominal term f in (34), the prior
mean is typically set to u; = 0. For the covariance function, a
frequent choice is the squared exponential kernel, given by

ki(zp, 2q) = of; exp <*%(Zp ~2q) 'L (20~ Zq)'> (823)
with L; a positive-definite diagonal length scale matrix and
Ulek the signal variance. z denotes the state and input pair,
[xT uT]T. The parameters oy ;, and L; are called hyperparame-
ters, and their appropriate values can be selected automatically
by inferring from the measurements (32) [151, Chapter 5]. See
Section [151, Section 4.2] for an overview of the effect of these
values on the GP prior distribution. Let

D; = (Z =120,1280)", Yi = Wojisws Yol ")
denote the data for each state dimension i = 1,.., nx. Based
on the prior distribution (S22), we can state the joint distribution
of Y; together with the observation distribution y; at a desired
prediction point z = (x, u) as
vi| _ N( wi(2)| [Ki(2,2)+los; K(Z,2) > (525)

(S24)

’

Yi mi(z) Ki(z,2) Ki(z,2)
with Gram matrix [Ki(Z,2)lpg = ki(2p,2q), [Ki(Z,2)]p =
ki(zp,2), Ki(z2,Z) = Ki(Z,2)", and K;(z,z) = ki(z,z). The
conditional distribution of y; is then obtained using Gaussian
distribution identities [151] as

p(YE1Yi) = N (uip, (2),0ip,(2))

(S26)
with
Hi|p;(2)

= 1i(2) + Ki(2,2)(Ki{(Z,Z) + 07,i1) " (Vi — pi(2)),
ojip, (2) = Ki(z,z) -

Ki(z,2)(Ki{(Z,2Z) + 01,i1) ' Ki(Z, 2).
(S27)
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FIGURE S18 Noisy measurements (crosses) of the model error
e"(x) (black), with a Gaussian process regression mean esti-
mate f/(x) (red) using a squared exponential kernel function,
with the 2-¢ confidence bound shown in gray.

The overall GP regression model of e” is then obtained
by stacking (S27), that is, e"(x,u) ~ N (up(x,u),Zp(x,u))
with pp(x,u) = [p1yp,(2), - kny Dy, (2)], Zp(x,u) =
diag([o1|p, (2), -, Oy, (2)]), Where z = (x,u). The mean
estimate up(x,u) is used to represent the regression model
f(x, u), while the variance Xp(x, u) can be used to construct
the desired uncertainty set (35) in the form of a hypercube

&l(x, u) = [~Bojip, (2), Boiip, (2)]

for each dimension i. The common choice of the quantile
constant B for the ease of implementation is a constant value
B = +2erf '(pl/™) [21]. While this choice implies that
Pr(e!(x,u) € &'(x,u)) > ps for each x and u, it does not
necessarily provide the desired bound on the entire function,
as required by (35). Computation of § that strictly satisfies the
condition (35) is further discussed in [152] and [21]. This usually
requires some prior knowledge of the uncertainty terms, for
instance, their Lipschitz constants, and the resulting value can
sometimes be too overly conservative to be used in practice.

One important property of the set-valued map (S28) is
its Lipschitz continuity under the Hausdorff metric for any
Lipschitz continuous prior mean and kernel functions p;(-)
and k;(-,-) [21, Proposition 10], including the important spe-
cial cases of zero prior mean and squared exponential ker-
nels [151]. The Hausdorff metric between any two sets A
and B in a metric space (M, dy) is defined as dy(A, B) =
Max{supaca infpep du(a, b), suppep infaca du(a, b)}.

Finally, the computational complexity of evaluating the mean
and variance in (S27) is O(npnyn2) and O(n3n,nZ) respec-
tively, which scales unfavorably with the number of data points.
This can be problematic for the application of GP regression
to large data sets for real-time safety filter applications. Various
approximation techniques have been proposed to resolve this
problem, see [151, Chapter 8] and [S8] for an overview.

(S28)
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level ps. In practice, this can eliminate the need to address
extremely unlikely scenarios that lead to conservative be-
havior of robust approaches. Recalling the safety specifi-
cation given in (2), any robust design that is safe for all
possible residual learning error values in £'(x,u) yields
that Pr((2) | x) = 1, where x is defined in (35), implying
Pr((2)) = Pr((2),%) = Pr((2) [ %) Pr(x) = ps  (36)
with Pr((2), x) denoting the joint probability of the random
event that (2) and * both happen, and Pr((2) | x) denoting

the probability of (2) happening conditioned on x happen-
ing. From relation (36), it follows

Pr(x(t) € X and u(t) € U for all t € R>g) > ps.  (37)

The relation between the probabilistic error bound (35)
and constraint satisfaction in probability (37) provide an
intuitive way for trading-off safety and permissiveness,
since lower probability levels ps typically lead to a smaller
learning error bound &' (x,u) and less conservative robust
safety filter designs. The type of probabilistic condition in
(36) has been utilized in the design of probabilistic safety
filters through HJ reachability [21], CBFs [56], [60], [157]
and PSFs [62], [65].

In theory, any of the advanced safety filter techniques
presented can be combined with the preceding model
classes. In practice, some safety filter techniques naturally
lend themselves to being used with a specific type of
model class, as we highlight in the following sections.
We also note that systems are often subject to unmodeled
external disturbances caused by environmental perturba-
tions, such as wind acting on an airplane or changing road
friction coefficients for a ground vehicle. In contrast to
uncertainty in the model, these disturbances often do not
have an underlying structure that can be discovered by
data. Rather, data is often used to quantify the magnitude
of disturbances, which is then used for a robust design.
For simplicity, the following formulation is presented in
the absence of such disturbances, but we note that the
following methods for developing safety filters that are
robust to learning error can be used for (and in fact,
originated from) robustness to disturbances.

Data-driven Hamilton-Jacobi Reachability

Due to the inherent separation of safety from performance
in HJ reachability, reachability-based safety filter designs
can be used together with any type of controller emitting
the desired control input signal. In particular, reachability-
based safety filters are suitable for filtering learning-
enabled systems like autonomous vehicles throughout the
process of training the learning-based components in the
system. We describe such a HJ reachability-based safety
framework for uncertain systems as proposed in [21]. Sev-
eral extensions and variants of this framework have been
proposed to demonstrate the applicability of the frame-
work to high-dimensional systems [52], [158]. We highlight

simulation and experimental results utilizing this frame-
work in “Reachability-based Safe Learning Framework:
Experimental Results” to demonstrate the effectiveness of
reachability-based frameworks in real-world applications.

Hamilton-Jacobi Reachability With Learning Error

First, we describe the HJ reachability analysis that is ex-
tended to account for learning errors by using a differential
game-based formulation [159], resulting in a characteriza-
tion of the maximal control invariant set and an associated
optimal safe policy that are robust to bounded learning er-
ror. For the sake of simplified exposition, consider a setting
where the model error " in (33) does not depend on the
input u. Consequently, a learning model fl : R — R™,
a learning error d R — R™, and a pointwise set
E'(x) € R™ such that ¢/(x) € &!(x) for all x € X' can be
considered. As the value of the learning error is unknown,
it is desirable for a safety filter design to be robust to
all possible learning errors permitted by the pointwise set
E'(x). To this end, consider the dynamics

x(t) = f(x(8), u(t)) +f'(x(1) +4d(t) t € Rxo,

where d(-) € PC(R>p,R"™) is a disturbance signal mod-
eling the possible effects of the unknown learning error

(38)

el (x(t)) on the dynamics. To construct the maximal control
invariant set contained in & in this setting, we consider a
cost functional J; : R™ X PC(Rx>o,U) x PC(R>p, R"™) —
R similar to (13)

Ja(xo,u(-),d(+)) = inf —sx(x(t))

(39)
where x(+) is the solution to (38) with initial condition x,
input signal u(-), and disturbance signal d(-).

The set of non-anticipative disturbance strategies, de-
noted by D is defined as the set of all mappings ¢ :

PC(Rx>,U) = PC(R>p, R™) that satisfy

o[u](t) € E(x(t)) for all u(-) € PC(Rsq,U) and t € Rxg
(40)
and
Oluq](t) = 8up](t) for almost all t € R>g
for all u1(-),uz(-) € PC(R>o,U) s.t.
up(t) = up(t) for almost all t € Rx.

(41)

Intuitively, the disturbance signal d(-) resulting from the
strategy & reacting to the control signal u(-), that is,
d(t) = 6[u](t), should satisfy the learning error bound
d(t) € EYx(t)) for all time, and the non-anticipative
restriction prohibits d(-) from depending on the future
information of the control signal u(-) [159].

A value function V; : R™ — R that accounts for
disturbances can be constructed similarly to (14) through
a zero-sum differential game

Vi(xg) = inf sup

SluleD u(-)ePC(Rxo,UU)

Ja(xo,u(-),0ul(-)).  (42)
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Reachability-Based Safe Learning Framework: Experimental Results

he HJ reachability-based safe learning framework proposed
T in [21] has been demonstrated on a quadrotor subjected to
unknown dynamics due to wind effects. The quadrotor attempts
to track a reference trajectory using either a linear quadratic
regulator or a tracking policy learned online. The HJ reachability
safety filter is utilized to prevent the quadrotor from colliding
with its environment. However, a safety filter that is overly
conservative may hinder not only the tracking performance, but
also the training of the learning-based policy by preventing it
from adequate exploration. To reduce conservativeness, the
safety filter must address the unknown dynamics by learning
from the actual system data, revealing a balance between safety
and learning that must be achieved.

Figure S19 shows a phase portrait of the vertical position
and velocity coordinates of the quadrotor as it learns a tracking
policy. The conservativeness of the safe set is reduced over
time as the learning model improves, eventually allowing the
learning-based policy to successfully perform the tracking task
while avoiding collisions. In Figure S20, a strong wind is intro-
duced near the ground, which the system has not encountered
before. Reliance on the previously learned policy that is un-
aware of this disturbance leads to a deterioration of safety, as
seen in scenario (a). However, when the accuracy of the learned
model is validated online using data that captures the new
unknown dynamics, the system is kept away from the region
where the model is unreliable until a new model can be trained,
thus leading to safety as seen in scenario (b).

———— Reference
Executed
3r S |

stos?2 st oSt

Velocity(m/s)

-0.5 0 0.5 1 1.5 2 2.5 3
Altitude(m)

FIGURE S19 ©2019 IEEE. Quadrotor altitude HJ reachability
safe sets being updated online through learning. The sets
progress from S to S* as the system gathers data and suc-
cessively improve the learned dynamics model [21].

Finally, the experiment is extended to simulation with the
quadrotor tracking a figure-eight reference trajectory in 3D
space. While in the previous scenarios the HJ safe set computa-
tion is done only for the vertical dynamics, to ensure safety con-
straints in the full 3D environment, the HJ safe set computation

»

is done online for the 10 dimensional full quadrotor dynamics.
The computation is facilitated by incorporating modern reach-
ability computational techniques including state-decomposition
[84], warm-starting [85], and adaptive gridding [52], which took
an average of 206.6 s to update the safe set online.

(a) w/o online guarantee validation

(b) with online guarantee validation

FIGURE S20 ©2019 IEEE. Quadrotor learning a vertical flight
policy while avoiding collisions with the ground. When the fan
is turned on, the system experiences unknown dynamics that
have not appeared in previous data, which can lead to a ground
collision using the previous learned policy. An online validation
method detects that the previously learned model fails to de-
scribe the new unknown dynamics and utilizes a safe controller
that avoids regions of the state space (close to the fan) where
the new unknown dynamics are present [21].
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FIGURE S21 ©2021 IEEE. Trajectories of the quadrotor track-
ing a reference trajectory using a linear quadratic regulator in 3D
space. The quadrotor begins in yellow, and then experiences
a sudden change in wind (blue arrows). While the safe set
is updated to account for the new unknown dynamics, online
validation of the learned model prevents the trajectory from
passing the uncertain wind area (orange trajectory) until the
safe set update is complete (pink trajectory) [52].



Computation of V; is done by solving the HJ-PDE [42]

0 =min{ —sy(x) — Vy(x), (43)

max  min, VVa(x)(f(x,u) +4d)},

which has a viscosity solution that characterizes V;. Sim-
ilar to Theorem 2, the value function V; (42) can be used
to characterize control invariant sets in X’ that are robust
to learning errors. More precisely, for any € € R>q, the
set Se = {x € X | Vy(x) > €} is a control invariant
set that is robust to learning errors, and Sy characterizes
the maximal control invariant set contained in X’ that is
robust to learning errors [21]. Finally, the robust optimal
safe policy xy, : R™ — U can be constructed as

Ky, (x) = argmax min VVy(x)(f(x,u) +4d), (44)
uel A€ (x)

which ensures the set S is forward invariant in the

presence of learning errors. Compared to the optimal safe

policy defined in (17), this controller introduces the term

mingc¢i(y), which considers the worst-case effect of the

learning error d at the current state when synthesizing the

safe control input.

Reachability-based Safe Learning Framework

The safe set Se and the safe policy «y, (x) in the above
formulation can be overly conservative when the set £'(x)
is over-approximated. Moreover, under-approximating the
set £/(x) in the construction of the value function V,
can lead to the failure of the system to remain safe in
the presence of learning errors that exceed the underes-
timated error bound. This motivates incorporating data-
driven techniques that accurately characterize & (x) into
the differential game formulation.

The framework in [21] employs Gaussian process (GP)
regression for this purpose. However, it is worth noting
that any robust or probabilistic data-driven models that
provide an accurate characterization of model uncertainty
can function well in this reachability framework. The con-
structed GP regression model f' approximates the model
error ¢ with its mean prediction and captures the residual
learning error el with its posterior variance. For more
details, see “Probabilistic Non-Parametric Model: Gaussian
Process Regression.”

While a conservative estimate of the possible learn-
ing errors £'(x) may satisfy (35) with a high probability
ps, reducing the conservativeness of an estimate of the
possible learning errors can permit better performance.
The following result on the differential game form of HJ
reachability establishes a property of HJ reachability-based
safety filter designs relating two estimates of possible
learning errors [21, Proposition 5]:

Theorem 5
Consider two learning models, fll, le : R"™ — R", and
corresponding pointwise error sets Ei, Sé. Suppose that for

all x € R™, we have fl(x) @ & (x) C fl(x) ® &l (x). If a set
S C R™ is control invariant for (38) for all disturbance
signals satisfying d(t) € & (x(t)) for all t € Rxq, then S
is also a control invariant set for (38) for all disturbance
signals satisfying d(t) € £} (x(t)) for all t € Rxy.

In plain words, Theorem 5 states that a control invariant
set for the dynamics (38) that is robust against larger
error bounds is also robust against the smaller subset error
bounds. Thus, alleviating the conservativeness of the error
bound not only can permit better performance but also
still preserves safety. This serves as the central principle
underlying the safe learning framework.

Based on this principle, the safe learning framework
conducts the following steps. When it is initiated, the
learning model has little to no data, and the estimate
of possible learning errors £/(x) is typically quite large.
The resulting control invariant set constructed through
HJ reachability that is robust to these learning errors is
conservative and limits the performance of the system.
As the learning proceeds, new data is incorporated into
the learning model, and the control invariant set that
requires robustness to smaller error estimates £/(x) is
updated accordingly by re-computing the value function
V4(x) based on the updated learning model. The value
function that was being used previously can be recycled
to make the computation more efficient, for instance, by
using it as a warm-starting solution [52] or by updating
only locally for the region where the learning model is
updated [78]. Ideally, learning the smallest set of possible
errors results in a control invariant set that is the maximal
control invariant set in X that can be made robust to the
presence of minimal learning error. “Reachability-based
Safe Learning Framework: Experimental Results” displays
this safe learning framework working in practice.

Data-driven Control Barrier Functions
The use of data-driven techniques with CBFs has been
an active area of research interest, with a wide range of
approaches including using models that are deterministic
[23], [54], [55], [57], [162], robust [58], and probabilistic [53],
[56], [59]-[61], [99], [156], [157]. An underlying robustness
property of CBF-based safety filter design known as input-
to-state safety (ISSf) [45], [162] manifests in each of these
approaches. We now present this property in a general
context.

Consider the control-affine model (21) with a learning
model f! and a corresponding learning error el given by

x(t) = f(x(t)) + g (x(t))u(t) (45)
+F (x(8),u(t)) + ¢ (x(t),u(t)) t € Rso.
Let S be defined as the O-superlevel set of a continuously

differentiable function hs : R™ — R, and suppose that
using the learned model f/, we design a safety filter « :
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Data-Driven Control Barrier Function Safety Filter Applications

hile the application of CBF-based safety filters does not
W require data-driven methods to deal with imperfect sys-
tem models, there have been several applications where the
incorporation of data has led to improvements in the safety
of a systems. In this sidebar, we highlight successful experi-
mental implementations of data-driven CBF-based safety filters.
In Figures S22 and S23, we see applications where learning
models are used to mitigate the error between a system model
and the physical system. In both examples, a baseline CBF-
based safety filter given by (26) is modified with learning mod-
els, yielding safe behavior. Figure S24 shows an example of
preference-based learning [160] being used to tune parameters
of a robust CBF-based safety filter. By iteratively incorporating
designer preferences on closed-loop system behavior, a CBF-
based safety filter that balances performance with safety can be
synthesized. These results demonstrate the potential of data-
driven CBF-based safety-critical control design methodologies.

T T

FIGURE S22 Learning CBF time derivatives on the AMBER-3M
bipedal robot. Walking robots often possess model uncertainty,
making it difficult to satisfy precise foot placement constraints.
By learning the impact of this model uncertainty on the dynam-
ics of the CBF defining foot placement constraints, a CBF-based
safety filter using learning models can be synthesized that
reduces constraint violation. The two colored curves correspond
to CBF values for constraints on each foot across multiple steps,
with the constraint corresponding to the blue curves improving
(remaining above zero) after incorporating learning models [57].
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FIGURE S23 Learning CBF time derivatives on a Segway robot.
The baseline CBF-based safety filter (green curves) does not
respect safety constraints on the pitch and pitch rate of the
Segway, due to error between the system model and the phys-
ical system. By integrating data-driven learning models into the
CBF-based safety filter, safety of the system is achieved (blue
curves). We note that although the baseline CBF-based safety
filter does not respect safety constraints, the system remains
close to the safe set, indicating input-to-state safe behavior
with respect to model uncertainty inherent in CBF-based safety
filters [23].
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FIGURE S24 Preference-based learning for human-in-the-loop
CBF safety filter tuning. Facing uncertainty, the design of CBF-
based safety filters must balance robustness and performance.
Preference-based learning can translate a designer’s evalua-
tion of closed-loop behavior into controller parameter updates
that achieve this balance. The initial CBF-based safety filter
design overestimates uncertainties and yields conservative be-
havior with the quadruped remaining stationary. Incorporating
user preferences to modify safety filter parameters allows the
quadruped to navigate safely navigate obstacles, thus balancing
safety and performance [161].



hs(x) = a~' (21)

hs(x) = a~!(@)

[El < (_?2]

FIGURE 6 Schematic of input-to-state safety. In the presence of
residual learning error, a controller that satisfies the CBF constraint
using the learning model (46) may not render the set S forward
invariant. Rather, a larger set that scales with the magnitude of the
learning error is kept forward invariant, reflected by the two nested
sets for the progressively larger learning error bounds ¢; and e,.

R™ x R"™ — U such that there exists an a € K€ satisfying

Vhs(x) (f (x) + g(x)x(x, u) (46)
+f(x,x(x,1))) > —a(hs(x))

for all x € R™ and u € R". This safety filter is designed
to meet the original safety specification encoded by the
barrier function hg and the function a, but does so incor-
porating the learned model f. Let us further suppose that
there exists an € € R>q such that

|Vhs (x)e (x, x(x,u))| <& 47)

for all x € R™ and u € IR". This inequality implies that the
effect of the residual learning error on the time derivative
of the barrier function hg is bounded by a constant e.
Intuitively, this bound can be made smaller through more
accurate learning models.

Combining (46) and (47), we have that

hs(x,u) > —a(hs(x)) —e (48)

for all x € R™ and u € R™. Noting that « € K¢ implies it
has an inverse a~1 € K¢, we have the implication that

hs(x) < a~(—e) = hs(x,u) > 0. (49)

This preceding implication states that the time derivative
of the barrier function kg is non-negative on the boundary
of the a~1(¢)-superlevel set of hg

Se={xeR™ | hg(x) > tx_l(—E)} (50)

and thus we can conclude via Nagumo’s Theorem
(Vhs(x) # 0 when hg(x) < 0 [163]) that Sz is forward in-
variant. This analysis highlights a fundamental robustness
property of CBF-based safety filter designs, since the set
kept forward invariant does not increase dramatically with
small amounts of residual learning error, but rather scales
proportionally. Moreover, this expansion can be controlled
by reducing residual learning error through more data and
better learning models that serve to reduce e.

This notion of a safe set that scales with residual
learning error is captured by the idea of ISSf [45]. We note
that not only can ISSf describe the impact of model error in
(83) (without introducing learning models) but can enable
a simplified design procedure [71], [163]. This property can
allow one to utilize margin built into a system’s design
to simplify the design of a data-driven safety filter. In
particular, if the safety requirement (that x(¢t) € X for all
t € Ryp) is specified with some amount of margin, such
that it is practically acceptable if sy (x(t)) < € for some
€ € Ry (Where sy is the signed distance function for the
set X, see Definitions and Notation at the beginning of the
article), then the ISSf property can be used to synthesize
a controller that meets this practical safety requirement
without complicating the controller design to explicitly
address learning error.

Data-driven Predictive Safety Filters

The close relation between the nominal predictive safety
filter formulation (28) and common model predictive con-
trollers using a terminal set [39] allows to take advantage
of existing advances in the field of robust [11, Section
3], [40, Section 7] and learning-based model predictive
control [22], [66], [116, Section 5]. As the focus in the case of
PSFs is to provide formal guarantees regarding constraint
satisfaction, most of the underlying mechanisms applied
originate from robust model predictive control literature.
Data-driven PSFs have been developed for linear robust
(distributed) models [63], [64] and linear (distributed)
stochastic models with unbounded process noise [65],
[165, Remark 5]. The support of nonlinear system dy-
namics and exploration beyond available data has been
enabled through leveraging probabilistic state- and input-
[62], [66]. While the precise
details of each these methods vary, they all operate using

dependent system models

the idea that instead of directly working with the original
safety specifications along predictions (28e), the constraints
are enforced with an additional safety margin. This margin
is designed to compensate for residual learning errors and
disturbances in closed-loop without violating the original
safety constraints of the system. The rigorous computation
of these margins is at the core of robust-, stochastic-
and learning-based model predictive control methods. In
the following, we focus on the computationally efficient
technique for combining PSFs with robust and probabilistic
learning models in [62].

Similar to the nominal PSF formulation and consis-
tent with learning-based model predictive control litera-
ture [22], [116], we work with a discrete-time version of
the learning-based model (34)

x(k+1) = f(x(k), u(k)) + £ (x(k), u(k)) + €' (k)

where we use e/ (k) to denote e/ (x(k),u(k)). The learning-
based model in (51) and an uncertainty bound of the

(1)
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Predictive Safety Filter Applications: Experimental Race Cars and Simulated Quadrotors
TABLE S1 States, Inputs, and Parameters of Vehicle

n the following, we demonstrate two applications of PSFs. The

first example considers an experimental miniature race car
application as in [145], which implements the soft constrained
PSF (30) to enhance either a human driver or an imitation
learning-based policy with safety guarantees. Parameters used
in the drive-train dynamics and the Pacejka [S10, Section 13.5]
tire model are identified from measurements. The second exam-
ple demonstrates a probabilistic PSF formulation for a quadrotor
as in [62]. The constraints in (54) are implemented using a
Bayesian regression model to ensure safety in probability during
online controller tuning, during which ground crashes would
occur without the filter in place.

SAFE MINIATURE RACE CAR OPERATION AND IMITATION
LEARNING

We consider a dynamic bicycle model [S9, Section 2] with states
X = [px,Py, ¥, Vx, vy, r] and inputs u = [4, 7| as described in
Table S1 and dynamics given by

Vx cos(1p) — vy sin(y)
Vx sin(y) + vy cos ()
r

(Fx — Fyrsin(6) + mvyr)
(Fyr + Fyr cos(8) — mvyr)
T (Fyrl cos(8) — Fyrlr)
where the lateral forces are modeled according to a Pacejka
tire model [S10, Section 13.5] as

ler — I
af = arctan (%) — 6, ar = arctan (Vyvi'> , (830)
X

X =

; (529)

1

m
1
m

X
and

Fyt/yr = Dtsr sin(Cyyr arctan(Bsrarsr)), (831)

and a drive-train model is used for the longitudinal force

Fx = CiT + Co12 + Cavy + C4v2 + CsTVy. (S32)

All parameters are described in Table S1, which have been
identified using least-squares regression.

The input is limited by the maximum steering angle and
maximum drive-train authority, and the safety constraints re-
quire the vehicle to stay within track boundaries as depicted
in Figure S25. The constraint set X is formulated in track-
relative error states, which also simplifies the computation of the
terminal invariant set, according to Assumption 1 using convex
approximations techniques [145]. The PSF is implemented in
a nominal fashion using soft constraints (30) to ensure practi-
cal feasibility. We consider a driver-assistance scenario as an
experiment, with the desired input signal uges(k) provided by a
human driver that is potentially unsafe with respect to the track
boundary safety requirements. The PSF provides necessary
interventions online to keep the vehicle safe in a minimally
invasive fashion, yielding control of the vehicle to the driver as
long as the driver’s actions remain safe.

»

State symbol Quantity

Px/y x-y coordinates of the car
b4 Heading angle

Vx/y Velocity in car frame

r Yaw rate in car frame
Input symbol Quantity

3 Steering angle

T Drive-train command
Parameter symbol  Quantity

m Mass

I
lt/r

Dt/r. Ctyr. Biyr
Cy, Gz, C3,C4, Cs

Yaw moment of intertia

Distance between center of gravitiy
and front/rear axles

Pacejka tire model parameters
Drive-train model parameters

0.0

0.2

Safety Deviation Norm
0.4 0.6

1 4 mmmm Trajectory
0 -
El
> —1 4
.
I I I I I I I
-3 —2 -1 0 1 2 3
x [m]
1
0.3
T
= 0.0 1 !
w i - da
—0.3 1 i - ds
I : I I I
0 2 4 8 10
Time [s]
0.5 r\
=
0.0 - Td
— 75
I I I I
0 2 10

Time [s]

FIGURE S25 ©2021 |IEEE. Miniature race car example. (Top)
Vehicle trajectory with the magnitude of safety filter intervention.
(Middle, Bottom) Human driver control inputs providing the
desired control signal by a joystick, as well as control inputs
resulting from the PSF. The dashed blue line indicates the
transition from safe driver inputs to unsafe inputs.



Figure S25 illustrates a corresponding experiment with safety
intervention magnitudes along a closed-loop trajectory. The
input comparison plot shows the proposed desired input signals
and the filtered, applied input signals. The human performs
safe driving during the first four seconds, which can be seen
by the unfiltered application of the proposed input signals. In
contrast, after this initial time period, the driver purposefully
applies unsafe actions, which do not pass the PSF and get
modified to ensure safety as desired. As shown in the plot, the
PSF keeps the vehicle within track boundaries at all times.

In addition to the driver assistance scenario, [145, Section
VI.B] demonstrates the combination of the same PSF with an
imitation learning algorithm that reproduces a carefully selected
expert policy using a deep neural network approximation. The
PSF successfully keeps the system safe during so-called DAg-
ger learning episodes [164] and shows minimal intervention
after convergence to an approximately optimal control policy.

PREDICTIVE SAFETY FILTERS USING BAYESIAN MODEL
ESTIMATES FOR SAFE QUADROTOR TUNING

3.5
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FIGURE S26 Safe quadrotor gain tuning. (Top-Left) PyBullet
quadrotor simulation, showing the optimal safe trajectory (blue
line). (Top-Right) Learning episode trajectories without (red
lines) and with (blue lines) the safety filter. (Bottom) Ground
collisions are indicated with red squares.

In the second example [62], we consider the AscTec Humming-
bird drone, simulated in the Bullet Physics SDK [S11] as seen
in Figure S26 (Top-left). A two-layer control structure enables

position tracking, where the inner control loop takes pitch,
roll, and vertical acceleration as input and commands motor
torques. The outer controlled system model [S12] consists of
states x € R'0, inputs u € R3, and dynamics of the form
x(k+1) = 6l,.¢(x,u). The safety constraint is to stay above
the ground, while the learning task is to efficiently tune an outer
saturated PD controller to approach a specific landing position

X4, Yd, Z4- The outer PD controller takes the form
clip(pr2(Xg — x) + di2X, —1,1),
clip(pr2(ya — y) + diay, —1,1),
clip(ps(zg — 2) + &5z, —1,1),
where clip(x, ¢1, ) = max(min(x, ¢z), ¢1), with PD-controller
gains pio,p3 € [0,10], and dip,d3 € [—10,0]. A Bayesian
optimization algorithm [S13] episodically adjusts the PD gains to
minimize |xg — x| + |Vg — ¥| + 2g — 2| + 100]| Tges () — U [
where safety ensuring actions are largely penalized during the
learning process. As depicted in Figure S26 (bottom), the direct
application of the learning procedure results in ground crashes.
The learning-based safety filter model (51) is obtained from
hovering data at a safe altitude and inferred using Gaussian
process regression in a parametric fashion. The learning-based
PSF of the form (54) was designed using L = 0.999 (based
on an incremental stabilizability argument instead of Lipschitz
continuity) with constraint tightening fraction e = 0.01. The
confident subset constraint was designed to achieve constraint
satisfaction with probability ps = 0.9. The terminal set was
formulated as a subset of the value function corresponding
to a linear quadratic regulator for the hovering position using
a linearization of (51). The Bayesian optimization PD tuning
results with the safety filter are shown in Figure S26, where
safety is ensured during all 240 learning episodes. The learned
controller achieves good performance and does not require
safety interventions after completion of learning.

Tldes (X; P, d) =
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FIGURE 7 Learning-based enhanced predictive safety filter. Uncer-
tain model regions (red) are avoided when planning backup trajec-
tories. An additional safety margin (circles) allows for compensation
of the remaining uncertainty during closed-loop operation.

form (35) can be estimated using measurements of the
form yk = X1 — Xk + € with €, independent and iden-
tically distributed noise, as exemplified in “Probabilistic
Non-Parametric Model: Gaussian Process Regression.” The
central idea of the following approach is to restrict backup
trajectories {xi|k}, {“i\k} to high-confidence subsets of the
state and input space by imposing

ENxypupe) C €', fori=0,.,N (52)
along predictions, where & C R™ captures a tolera-
ble amount of one-step prediction error. This mechanism
causes trajectories to avoid regions with low model confi-
dence due to sparse data coverage, as seen in Figure 7. We
note that (52) can be reformulated as a set of inequality
constraints in the case of GP regression or Bayesian linear
regression, and becomes a convex constraint in the case of
linear features [155, Section 4.1], [62, Section 5.1].

While various existing robust predictive control tech-
niques can be used to obtain robustness in probabil-
ity (36), we focus on a constraint tightening approach
based on [166], [167]. The idea is to introduce increasing
safety margins for all constraints along the prediction
horizon, ensuring recursive feasibility and constraint sat-
isfaction in a closed-loop. In the case of polytopic state,
input, terminal, and learning error constraints (52) of the
form {x € R"[Ax < 1"} with A € R"4*" the tightening
of the constraint sets is

X={xeR™ | A% < (1—¢)1"}, (53a)
Ui =f{ueR™ | A< (1—¢)1"},  (53b)
‘1? ={x e R™ | Afx < (1—¢€;)1™e}, (53¢)

with 1" denoting the vector of ones of dimension n and
with a monotonically increasing tightening sequence e¢;
satisfying €9 = 0 and €;;1 > ¢;. Integrating the learning-
based model (51) and the tightened constraints (53) into
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the predictive safety filter problem (28) yields

min l[tdes (k) — oy | (54a)
s.t. xop = x(k), (54b)
XNk € SN™ (54c)

ik = Fgpo i) + (o ), (54d)

Xk € X, fori=0,..,,.N—1, (54e)

wyg €U;,  fori=0,.,N-1, (54f)
E(xyp ) €€, fori=0,..,N—1. (54g)

Similar to the nominal case, constraint satisfaction under
application of u(k) = ué‘ ; can be shown through recursive
feasibility of (54) using the tightened constraints together
with a robust terminal invariant S™™ set:

Assumption 2 (Robust Terminal Control Invariant Set)
Consider the system (51). There exists a terminal set
Stm C Xy and a Lipschitz continuous control law '™ :
St s R™ such that forallx € S™ and e € 5_}\,, we have

1) Ex, k™ (x)) C &L,

2) ™™ (x) € Uy, and

3) £(x, k™™ (x)) +  (x, €™ (x)) + e € St™.

Suppose 0 € int(X x U) and the linearization of (51)
at the origin is stabilizable. In that case, a sufficiently
small learning error £!(x,u) allows the construction of
a terminal set S™ and controller x™™ satisfying As-
sumption 2 [11, 3.3.2]. Compared with the nominal PSF
terminal set assumption (Assumption 1), Assumption 2
ensures forward invariance of a polytopic terminal set
SU™ for all possible learning errors and requires x™ to
be Lipschitz continuous. Combining Assumption 2 with
assuming Lipschitz continuity of the dynamics model (51)
and Lipschitz continuity of &'(x,u) under the Hausdorff
metric (see “Probabilistic Non-Parametric Model: Gaussian
Process Regression” for such an &'(x,u)) enables the fol-
lowing data-driven PSF result [62, Theorem 4.6]:

Theorem 6

Let Assumption 2 hold and assume that (51) and the cor-
responding uncertainty bound &' (x,u) satisfying (35) are
Lipschitz continuous mappings with Lipschitz constants
L, Lg. Consider (53) with constraint tightening sequence

1- /L
1—./Lf
and allowable disturbance bound 8_1, ={x e ]R”|Agx <
71"} C R™ in (52) with scaling factor v > 0. If L¢g < ce
for some ¢ > 0, then there exists a v > 0 small enough

that initial feasibility of (54) ensures safe system operation
for all future times according to (2) at probability level ps.

€ =¢€ for some € > 0

(55)



Theorem 6 states that Lipschitz continuity allows to
design the learning-based PSF problem (54) using the it-
erative constraint tightening sequence (55) in combination
with the admissible disturbance bound c‘jfr along backup
trajectories. The remaining tuning parameters are therefore
limited to the scalars € and <. Furthermore, if Lg is small
enough for a selected ¢, a sufficiently small v > 0 exists
such that initial feasibility implies constraint satisfaction
at probability level ps for all times. Intuitively, sufficiently
small Lg means that the difference between £(x,u) and
E(x + Ax,u + Au) must be small for small values Ax, Au,
such that the error bound is not allowed to change rapidly.
In the case of GP regression using a squared exponential
kernel, this relates either to a sufficiently large length-scale
parameter or homogeneous data coverage [151].

If problem (54) is not initially feasible due to the
confident subset constraint (54g), either the model needs
to be refined using additional data or the probability
level ps can be lowered, since ps — 0 typically implies
E(x,u) — {0}. While the exact values of Ly, Lg, ¢, and
v are challenging to compute explicitly, the discussion in
[62, Section 4.3] using p = L provides an extensive practical
tuning guideline with a statistical verification procedure.
Note that conservativeness can further be reduced using
incremental Lyapunov functions [167] instead of Lipschitz
continuity of (51) [62].

CONCLUSION

This article provides an introduction to three approaches
for constructing safety filters for safety-critical control
design and discusses recent research that has sought to
unify these techniques. The prospect of bridging the gap
between first-principle models and real-world systems
through data is a topic on the forefront of research in con-
trol theory and applications. We highlight how the three
safety-filter techniques can be integrated with learning-
based models to yield theoretical and practical safety
guarantees in the face of model uncertainty. Applications
demonstrating each of the safety filter techniques are
presented and show that the proposed approaches are
promising solutions for real engineering challenges. The
design of safety filters that blends the three techniques
is subject to ongoing investigations and can capitalize on
advantages regarding scalability, optimality, and computa-
tional efficiency present in each method to produce both
performant and robust safety filter designs.

Challenges and future research directions

While we have provided an overview of standard forms

and data-driven extensions of HJ reachability, CBFs, and

PSFs, there remain several interesting directions for re-

search, both in and outside of a data-driven paradigm.
One of the most important open problems is conserva-

tive safety interventions, as discussed in “Approximation

of Ideal Safety Filter.” Such overly cautious interventions
typically arise due to poor under-approximations of the
maximal control invariant set. The CBF and PSF method-
ologies explicitly rely on using a set known to be control
invariant, either as the O-superlevel set of the CBF or as
the terminal control invariant set in a PSF. If these sets are
conservative under-approximations of the maximal control
invariant set, the closed-loop behavior of the respective
safety filters will be conservative. HJ reachability seeks to
address this problem directly by computing the maximal
control invariant set, but it does not scale well with system
dimension.

We believe that meaningful steps forward in addressing
this challenge will focus on finding permissive under-
approximations of the maximal control invariant set in a
computationally efficient manner, and promising threads
in this vein have recently arisen across the safety filter
methodologies. Work from the perspective of HJ reach-
ability has focused on using learning-based methods to
approximate the maximal control invariant set of high-
dimensional systems [86], [93]. Several approaches have
arisen for synthesizing less conservative CBFs for higher-
dimensional systems by utilizing system structure [110],
convex sums-of-squares programming [107], and data-
driven methods [111]. Similarly, data-driven approaches
for enlarging the terminal invariant set in PSFs have re-
cently been explored [12], [122]. Perhaps the most promis-
ing threads exist at the intersection of the methodologies
presented in this work, where computational tools based
in HJ reachability support CBF and PSF-based safety fil-
ters [15], [16], [126], [168].

A second open question that is of great interest is
bridging the performance gap between the ideal safety
filter and the three safety filter methodologies. As seen
in “Safety Filter Design Example", the ideal safety filter,
though intractable to implement on many real-world sys-
tems, greatly outperforms the HJ reachability, CBF, and
PSF-based safety filters. The performance of the ideal
safety filter is fundamentally enabled by the long predic-
tion horizon used in the optimization problem defining
it. In the context of HJ reachability and CBF-based safety
filters, future research directions will seek to incorporate a
prediction horizon into the safety filter design, as is being
explored in the recent work in [103], [134]. In the context
of PSFs, if future desired inputs are explicitly known or
can be described parametrically, they may be incorporated
into the cost function of a PSF. We believe this may enable
improved performance by PSF-based safety filters, which,
however, has yet to be studied thoroughly.

This direction of incorporating future inputs also
presents an opportunity for data-driven methods. In par-
ticular, data-driven approaches that forecast future desired
input signals based on a combination of previous expe-
riences and a system’s current state could be incorpo-
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rated into the control synthesis process, enabling improved
performance. An example of such a setting is human
commands in shared autonomy systems, where prediction
or anticipation models of human decisions that leverage
data [145], [169], [170] can lead to improved closed-loop
performance by a safety filter.

Beyond these challenges facing the core safety filter
methodologies, there are a number of other interesting
open questions surrounding data-driven safety filters. A
primary question regards constructing a general process
for the safe collection of data from real-world systems [21],
[62], [66], [157]. Such a process will address questions on
how to best incorporate prior knowledge of a system, how
initial uncertainty should be quantified and subsequently
improved, how sampling should be done to guide efficient
experimental design, and how safety constraints should be
met during the acquisition of data. Each of these individual
questions provides a wealth of future research directions
that require a unifying theory with the practical limitations
of real-world systems.

“Learning with Real-World Data" highlights a second
area that we believe presents meaningful future research
directions. In particular, data produced by real-world sys-
tems is often not immediately amenable to being utilized
in a learning algorithm. Instead, the data must often go
through various forms of preprocessing to ensure it is
well-conditioned for a learning problem. This processing
modifies the data and can introduce its own form of
uncertainty and residual learning error that should be
accounted for in safety filter design. Future research will
seek to characterize what processing tools are the most
effective for different challenges present in real-world data
and provide a rigorous quantification of their impact on
the resulting learning error.

Lastly, data-driven models must be computationally
efficient to be integrated into safety filters deployed in
highly dynamic applications such as legged robots or
aircraft control. It is also desirable for models to quickly
incorporate incoming measurements and allow model re-
finement in real time. These challenges are fundamentally
at the intersection of theory and practice, and addressing
them must consider the tradeoff between model accuracy
and expressiveness and computational requirements. A
related open question for future work is to explicitly
consider changing system dynamics, for instance, due to a
system component failure or unexpected disturbances, in
the safety filter design. This includes the detection of such
events as well as active compensation mechanisms, which,
without such detection, may render data-driven models
and their corresponding safety filter designs unreliable.

Recent and ongoing research on data-driven safety
filters has shown great promise for solutions to some
of the largest challenges in ensuring real-world control
systems’ safety. We believe the path forward for data-
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driven safety filter research lies in studying the challenging
questions that arise when working with real-world systems
producing real-world data while operating in dynamic
environments.

AUTHOR INFORMATION

Kim P. Wabersich (wabersich@kimpeter.de) Kim Waber-
sich obtained his bachelor’s and master’s degrees in En-
gineering Cybernetics from the University of Stuttgart in
Germany in 2015 and 2017, respectively. He completed
his Ph.D. in predictive safety mechanisms at the Institute
for Dynamic Systems and Control at ETH Zurich in 2021
and continued his work as a postdoctoral researcher until
2022. He currently works at Bosch Research in Rennin-
gen (Germany), focusing on safety-critical systems with
applications in autonomous driving. His research interests
include control methods and their intersections with safe
reinforcement learning.

Andrew ]. Taylor (ajtaylor@caltech.edu) received the
B.S. and M.S. degrees in aerospace engineering from the
University of Michigan at Ann Arbor, in 2016 and 2017,
respectively. He is currently pursuing a Ph.D. degree at
Caltech in control and dynamical systems. His research
interests include safety-critical control for robotic systems
and data-driven control techniques for nonlinear systems.
He is a student member of IEEE.

Jason J. Choi (jason.choi@berkeley.edu) received the B.S.
degree in mechanical engineering from Seoul National
University in 2019. He is currently pursuing a Ph.D. degree
at University of California Berkeley, CA94720 USA, in
mechanical engineering. His research interests center on
optimal control theories for nonlinear and hybrid systems,
data-driven methods for safe control, and their applica-
tions to robotics and autonomous mobility.

Koushil Sreenath (koushils@berkeley.edu) is an asso-
ciate professor of mechanical engineering, at UC Berkeley,
CA94720 USA. He received a Ph.D. degree in electrical
engineering and computer science and a M.S. degree in
applied mathematics from the University of Michigan at
Ann Arbor, MI, in 2011. He was a postdoctoral scholar
at the GRASP Lab at University of Pennsylvania from
2011 to 2013 and an assistant professor at Carnegie Mellon
University from 2013 to 2017. His research interest lies at
the intersection of highly dynamic robotics and applied
nonlinear control. He received the NSF CAREER, Hellman
Fellow, Best Paper Award at the Robotics: Science and
Systems (RSS), and the Google Faculty Research Award
in Robotics.

Claire J. Tomlin (tomlin@eecs.berkeley.edu) is the James
and Katherine Lau Professor of Engineering and professor
and chair of the Department of Electrical Engineering
and Computer Sciences (EECS) at UC Berkeley, CA94720
USA. She was an assistant, associate, and full professor in
aeronautics and astronautics at Stanford University from



1998 to 2007, and in 2005, she joined UC Berkeley. She
works in the area of control theory and hybrid systems,
with applications to air traffic management, UAV systems,
energy, robotics, and systems biology. She is a MacArthur
Foundation Fellow (2006), an IEEE Fellow (2010), and in
2017, she was awarded the IEEE Transportation Technolo-
gies Award. In 2019, Claire was elected to the National
Academy of Engineering and the American Academy of
Arts and Sciences.

Aaron D. Ames (ames@caltech.edu) is the Bren Professor
of Mechanical and Civil Engineering and Control and
Dynamical Systems at Caltech, Pasadena, CA91125 USA.
Prior to joining Caltech in 2017, he was an associate profes-
sor at Georgia Tech in the Woodruff School of Mechanical
Engineering and the School of Electrical & Computer Engi-
neering. He received a B.S. in mechanical engineering and
a B.A. in mathematics from the University of St. Thomas in
2001, and he received a M.A. in mathematics and a Ph.D.
in electrical engineering and computer sciences from UC
Berkeley in 2006. He served as a postdoctoral scholar in
control and dynamical systems at Caltech from 2006 to
2008 and began his faculty career at Texas A&M University
in 2008. At UC Berkeley, he was the recipient of the 2005
Leon O. Chua Award for achievement in nonlinear science
and the 2006 Bernard Friedman Memorial Prize in Applied
Mathematics, and he received the NSF CAREER Award
in 2010, the 2015 Donald P. Eckman Award, and the 2019
IEEE CSS Antonio Ruberti Young Researcher Prize. His
research interests span the areas of robotics, nonlinear,
safety-critical control, and hybrid systems, with a special
focus on applications to dynamic robots -— both formally
and through experimental validation.

Melanie N. Zeilinger (mzeilinger@ethz.ch) is an asso-
ciate professor at ETH Zurich, 8092 Zurich, Switzerland.
She received the Diploma degree in engineering cybernet-
ics from the University of Stuttgart, Germany in 2006 and
the Ph.D. degree with honors in electrical engineering from
ETH Zurich, Switzerland, in 2011. From 2011 to 2012 she
was a postdoctoral fellow with the Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. She was a
Marie Curie Fellow and postdoctoral researcher with the
Max Planck Institute for Intelligent Systems, Tiibingen,
Germany until 2015 and with the Department of Electrical
Engineering and Computer Sciences at the University of
California at Berkeley, CA, USA, from 2012 to 2014. From
2018 to 2019 she was a professor at the University of
Freiburg, Germany. Her current research interests include
safe learning-based control, as well as distributed con-
trol and optimization, with applications to robotics and
human-in-the-loop control. She is a member of IEEE.

REFERENCES

[1] O.]. Ayamolowo, P. Manditereza, and K. Kusakana, “Exploring the gaps
in renewable energy integration to grid,” Energy Reports, vol. 6, pp. 992-999,
2020.

[2] S. Robla-Gémez, V. M. Becerra, J. R. Llata, E. Gonzéalez-Sarabia, C. Torre-
Ferrero, and ]. Pérez-Oria, “Working together: A review on safe human-
robot collaboration in industrial environments,” IEEE Access, vol. 5, pp.
26754-26773, 2017.

[3] E. Dassau, T. Hennings, J. Fazio, E. Atlas, and M. Phillip, “Closing the
loop,” Diabetes Tech. & Therapeutics, vol. 15, no. S1, pp. S-29-5-39, 2013.
[4] R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti,
M. O. Federici, T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering et al.,
“Nonlinear model predictive control of glucose concentration in subjects
with type 1 diabetes,” Physiological Measurement, vol. 25, no. 4, pp. 905-920,
2004.

[5] P. Englert, N. A. Vien, and M. Toussaint, “Inverse kkt: Learning cost
functions of manipulation tasks from demonstrations,” The Int. ]. of Robotics
Research, vol. 36, no. 13-14, pp. 1474-1488, 2017.

[6] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete problems in ai safety,” arXiv:1606.06565, 2016.

[7] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational tech-
niques for the verification of hybrid systems,” in Proc. of the IEEE, vol. 91,
no. 7, 2003, pp. 986-1001.

[8] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in Proc. IEEE 56th
Conf. on Decision and Control (CDC), Melbourne, VIC, Australia, 2017, pp.
2242-2253.

[9] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE Trans.
on Automatic Control, vol. 62, no. 8, pp. 3861-3876, 2016.

[10] , “Control barrier function based quadratic programs for safety
critical systems,” IEEE Trans. on Automatic Control, vol. 62, no. 8, pp. 3861-
3876, 2017.

[11] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control:
Theory, Computation, and Design, 2nd ed. Nob Hill Publishing, 2017.

[12] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in Proc. IEEE 57th Conf. on Decision
and Control (CDC), Miami, FL, USA, 2018, pp. 7130-7135.

[13] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer, 2008,
vol. 78.

[14] Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup control
barrier functions: Formulation and comparative study,” in Proc. IEEE 60th
Conf. on Decision and Control (CDC), Austin, TX, USA, 2021, pp. 6835-6841.

[15] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust
control barrier-value functions for safety-critical control,” in Proc. IEEE 60th
Conf. on Decision and Control (CDC), Austin, TX, USA, 2021, pp. 6814-6821.

[16] K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes,
and M. Pavone, “On infusing reachability-based safety assurance within
planning frameworks for human-robot vehicle interactions,” The Int. J. of
Robotics Research, vol. 39, no. 10-11, pp. 1326-1345, 2020.

[17] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in Proc. IEEE American
Control Conf. (ACC), New Orleans, LA, USA, 2021, pp. 3882-3889.

[18] K. P. Wabersich and M. N. Zeilinger, “Predictive control barrier func-
tions: Enhanced safety mechanisms for learning-based control,” IEEE Trans.
on Automatic Control, pp. 1-1, 2022.

[19] U. Rosolia, A. Singletary, and A. D. Ames, “Unified multi-rate control:
From low-level actuation to high-level planning,” IEEE Trans. on Automatic
Control, 2022.

[20] A. Wigren, J. Wagberg, F. Lindsten, A. G. Wills, and T. B. Schon, “Nonlin-
ear system identification: Learning while respecting physical models using
a sequential monte carlo method,” IEEE Control Sys., vol. 42, no. 1, pp.
75-102, 2022.

[21] J. E. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based control
in uncertain robotic systems,” IEEE Trans. on Automatic Control, vol. 64,
no. 7, pp. 2737-2752, 2019.

[22] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-
based model predictive control: Toward safe learning in control,” Ann. Rev.
Control, Robotics, and Autonomous Sys., vol. 3, pp. 269-296, 2020.

[23] A.]. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “Learning for safety-
critical control with control barrier functions,” Proc. of Machine Learning

« 35



Research (PMLR), vol. 120, pp. 708-717, 2020.

[24] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and command
governors for systems with constraints: A survey on theory and applica-
tions,” Automatica, vol. 75, pp. 306-328, 2017.

[25] M. Krstic and M. Bement, “Nonovershooting control of strict-feedback
nonlinear systems,” IEEE Trans. on Automatic Control, vol. 51, no. 12, pp.
1938-1943, 2006.

[26] I. Abel, D. Steeves, M. Krsti¢, and M. Jankovi¢, “Prescribed-time safety
design for a chain of integrators,” in Proc. IEEE American Control Conf.
(ACC), Atlanta, GA, USA, 2022, pp. 4915-49200.

[27] C. M. Kellett, “A compendium of comparison function results,” Mathe-
matics of Control, Signals, and Sys., vol. 26, no. 3, pp. 339-374, 2014.

[28] R. Bellman, Dynamic Programming. Princeton university press, 1957.

[29] D. Bertsekas, “Infinite time reachability of state-space regions by using
feedback control,” IEEE Trans. on Automatic Control, vol. 17, no. 5, pp. 604
613, 1972.

[30] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target
sets and target tubes,” Automatica, vol. 7, no. 2, pp. 233-247, 1971.

[31] J.-P. Aubin, “A survey of viability theory,” SIAM ]. on Control and
Optimization, vol. 28, no. 4, pp. 749-788, 1990.

[32] M. Bardi, I. C. Dolcetta et al., Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations. Springer, 1997, vol. 12.

[33] C. Tomlin, J. Lygeros, and S. Sastry, “Synthesizing controllers for non-
linear hybrid systems,” in Int. Work. on Hybrid Sys.: Computation and Control.
Springer, 1998, pp. 360-373.

[34] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability speci-
fications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349-370, 1999.

[35] J. Lygeros, “On reachability and minimum cost optimal control,” Auto-
matica, vol. 40, no. 6, pp. 917-927, 2004.

[36] S. Prajna, “Barrier certificates for nonlinear model validation,” Aufomat-
ica, vol. 42, no. 1, pp. 117-126, 2006.

[37] P. Wieland and F. Allgower, “Constructive safety using control barrier
functions,” IFAC Proc. Vol., vol. 40, no. 12, pp. 462-467, 2007.

[38] A. Ames, J. Grizzle, and P. Tabuada, “Control barrier function based
quadratic programs with application to adaptive cruise control,” in Proc.
IEEE 53rd Conf. on Decision and Control (CDC), Los Angeles, CA, USA, 2014,
pp. 6271-6278.

[39] H. Chen and F. Allgéwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica, vol. 34,
no. 10, pp. 1205-1217, 1998.

[40] L. Griine and J. Pannek, Nonlinear model predictive control.
2017.

[41] I. M. Mitchell, A. M. Bayen, and C. ]. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. on Automatic Control, vol. 50, no. 7, pp. 947-957, 2005.

[42] ]. E. Fisac, M. Chen, C.]J. Tomlin, and S. S. Sastry, “Reach-avoid problems
with time-varying dynamics, targets and constraints,” in Proc. of the 18th
Int. Conf. on Hybrid Sys.: Computation and Control (HSCC), Seattle, WA, USA,
2015, pp. 11-20.

[43] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in Proc.
IEEE 18th European Control Conf. (ECC), Naples, Italy, 2019, pp. 3420-3431.

[44] R. Konda, A. D. Ames, and S. Coogan, “Characterizing safety: Minimal
control barrier functions from scalar comparison systems,” IEEE Control Sys.
Let., vol. 5, no. 2, pp. 523-528, 2020.

[45] S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier
functions,” IEEE Control Sys. Let., vol. 3, no. 1, pp. 108-113, 2018.

[46] M. Jankovic, “Robust control barrier functions for constrained stabiliza-
tion of nonlinear systems,” Automatica, vol. 96, pp. 359-367, 2018.

[47] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames,
“Towards a framework for realizable safety critical control through active
set invariance,” in Proc. ACM/IEEE 9th Int. Conf. on Cyber-Physical Sys.
(ICCPS), Porto, Portugal, 2018, pp. 98-106.

[48] T. Gurriet, M. Mote, A. D. Ames, and E. Feron, “An online approach
to active set invariance,” in Proc. IEEE 57th Conf. on Decision and Control
(CDC), Miami, FL, USA, 2018, pp. 3592-3599.

[49] T. Mannucci, E. J. van Kampen, C. de Visser, and Q. Chu, “Safe

Springer,

36 »

exploration algorithms for reinforcement learning controllers,” IEEE Trans.
on Neural Networks and Learning Sys., vol. 29, no. 4, pp. 1069-1081, 2017.

[50] O. Bastani, “Safe reinforcement learning with nonlinear dynamics via
model predictive shielding,” in Proc. IEEE American Control Conf. (ACC),
New Orleans, LA, USA, 2021, pp. 3488-3494.

[51] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with gaussian pro-
cesses,” in Proc. IEEE 53rd Conf. on Decision and Control (CDC), Los Angeles,
CA, USA, 2014, pp. 1424-1431.

[52] S. Herbert, J. J. Choi, S. Sanjeev, M. Gibson, K. Sreenath, and C. J.
Tomlin, “Scalable learning of safety guarantees for autonomous systems
using hamilton-jacobi reachability,” in Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), Xi’an, China, 2021, pp. 5914-5920.

[53] P. Jagtap, G. J. Pappas, and M. Zamani, “Control barrier functions for
unknown nonlinear systems using gaussian processes,” in Proc. IEEE 59th
Conf. on Decision and Control (CDC), Jeju, South Korea, 2020, pp. 3699-3704.

[54] J. Choi, E. Castafieda, C. J. Tomlin, and K. Sreenath, “Reinforcement
learning for safety-critical control under model uncertainty, using control
lyapunov functions and control barrier functions,” in Proc. Robotics: Science
and Sys. (RSS) XVI, Bend, OR, USA, 2020.

[55] C. Folkestad, Y. Chen, A. D. Ames, and ]J. W. Burdick, “Data-driven
safety-critical control: Synthesizing control barrier functions with koopman
operators,” IEEE Control Sys. Let., vol. 5, no. 6, pp. 2012-2017, 2020.

[56] M. J. Khojasteh, V. Dhiman, M. Franceschetti, and N. Atanasov, “Proba-
bilistic safety constraints for learned high relative degree system dynamics,”
in Proc. of Machine Learning Research (PMLR), 2020, pp. 781-792.

[57] N. Csomay-Shanklin, R. K. Cosner, M. Dai, A. J. Taylor, and A. D.
Ames, “Episodic learning for safe bipedal locomotion with control barrier
functions and projection-to-state safety,” Proc. of Machine Learning Research
(PMLR), vol. 144, pp. 1041-1053, 2021.

[58] A. J. Taylor, V. D. Dorobantu, S. Dean, B. Recht, Y. Yue, and A. D.
Ames, “Towards robust data-driven control synthesis for nonlinear systems
with actuation uncertainty,” in Proc. IEEE 60th Conf. on Decision and Control
(CDC), Austin, TX, USA, 2021, pp. 6469-6476.

[59] F. Castafieda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath,
“Gaussian process-based min-norm stabilizing controller for control-affine
systems with uncertain input effects and dynamics,” in Proc. IEEE American
Control Conf. (ACC), New Orleans, LA, USA, 2021, pp. 3683-3690.

[60] V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, “Control
barriers in bayesian learning of system dynamics,” IEEE Trans. on Automatic
Control, pp. 1-1, 2021.

[61] Y. Emam, P. Glotfelter, S. Wilson, G. Notomista, and M. Egerstedt, “Data-
driven robust barrier functions for safe, long-term operation,” IEEE Trans.
on Robotics, pp. 1-1, 2021.

[62] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,” Au-
tomatica, vol. 129, p. 109597, 2021.

[63] A. Didier, K. P. Wabersich, and M. N. Zeilinger, “Adaptive model
predictive safety certification for learning-based control,” in Proc. IEEE 60th
Conf. on Decision and Control (CDC), Austin, TX, USA, 2021, pp. 809-815.

[64] S. Muntwiler, K. P. Wabersich, A. Carron, and M. N. Zeilinger, “Dis-
tributed model predictive safety certification for learning-based control,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 5258-5265, 2020.

[65] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Prob-
abilistic model predictive safety certification for learning-based control,”
IEEE Trans. on Automatic Control, vol. 67, no. 1, pp. 176-188, 2021.

[66] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based
model predictive control for safe exploration,” in Proc. 57th IEEE Conf.
Decision and Control (CDC), Miami, FL, USA, 2018, pp. 6059-6066.

[67] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control to
safe reinforcement learning,” Ann. Rev. Control, Robotics, and Autonomous
Sys., vol. 5, pp. 411444, 2021.

[68] E. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp.
1747-1767, 1999.

[69] H. K. Khalil and J. W. Grizzle, Nonlinear Systems. Upper Saddle River,
NJ: Prentice Hall, 2002, vol. 3.

[70] 1. M. Mitchell and J. A. Templeton, “A toolbox of hamilton-jacobi solvers



for analysis of nondeterministic continuous and hybrid systems,” in Int.
Work. on Hybrid Sys.: Computation and Control. Springer, 2005, pp. 480-494.

[71] A. Alan, A. ]. Taylor, C. R. He, A. D. Ames, and G. Orosz, “Control
barrier functions and input-to-state safety with application to automated
vehicles,” arXiv:2206.03568, 2022.

[72] M. Lazar and M. Tetteroo, “Computation of terminal costs and sets for
discrete-time nonlinear mpc,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 141-
146, 2018.

[73] M. Nagumo, “Uber die lage der integralkurven gewohnlicher differen-
tialgleichungen,” Proc. of the Physico-Mathematical Society of Japan. 3rd Series,
vol. 24, pp. 551-559, 1942.

[74] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex architecture
for safe online control system upgrades,” in Proc. of IEEE American Control
Conf. (ACC), vol. 6, Philadelphia, PA, USA, 1998, pp. 3504-3508.

[75] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, Viability theory: new
directions. Springer Science & Business Media, 2011.

[76] M. Chen, S. L. Herbert, H. Hu, Y. Pu, J. F. Fisac, S. Bansal, S. Han, and
C. J. Tomlin, “Fastrack:a modular framework for real-time motion planning
and guaranteed safe tracking,” IEEE Trans. on Automatic Control, vol. 66,
no. 12, pp. 5861-5876, 2021.

[77] T. Hsu, J. J. Choi, D. Amin, C. J. Tomlin, S. C. McWherter, and
M. Piedmonte, “Towards flight envelope protection for the nasa tiltwing
evtol flight mode transition using hamilton-jacobi reachability,” in Proc.
Vertical Flight Society Forum 79, 2023.

[78] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An efficient
reachability-based framework for provably safe autonomous navigation in
unknown environments,” in Proc. IEEE 58th Conf. on Decision and Control
(CDC), Nice, France, 2019, pp. 1758-1765.

[79] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic
management: a study in multiagent hybrid systems,” IEEE Trans. on Auto-
matic Control, vol. 43, no. 4, pp. 509-521, 1998.

[80] A. K. Akametalu, S. Ghosh, J. F. Fisac, and C. J. Tomlin, “A minimum
discounted reward hamilton-jacobi formulation for computing reachable
sets,” arXiv:1809.00706, 2018.

[81] B. Xue, Q. Wang, N. Zhan, M. Frinzle, and S. Feng, “Reach-avoid
differential games based on invariant generation,” arXiv:1811.03215, 2018.

[82] M. G. Crandall, L. C. Evans, and P-L. Lions, “Some properties of
viscosity solutions of hamilton-jacobi equations,” Trans. of the American
Mathematical Society, vol. 282, no. 2, pp. 487-502, 1984.

[83] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces
in computational geometry, fluid mechanics, computer vision, and materials
science. Cambridge university press, 1999, vol. 3.

[84] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tom-
lin, “Decomposition of reachable sets and tubes for a class of nonlinear
systems,” IEEE Trans. on Automatic Control, vol. 63, no. 11, pp. 3675-3688,
2018.

[85] S. L. Herbert, S. Bansal, S. Ghosh, and C. J. Tomlin, “Reachability-based
safety guarantees using efficient initializations,” in Proc. IEEE 58th Conf. on
Decision and Control (CDC), Nice, France, 2019, pp. 4810-4816.

[86] S. Bansal and C. J. Tomlin, “Deepreach: A deep learning approach
to high-dimensional reachability,” in Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), Xi’an, China, 2021, pp. 1817-1824.

[87] S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone, “Robust
tracking with model mismatch for fast and safe planning: an sos opti-
mization approach,” in Int. Work. on the Algorithmic Foundations of Robotics.
Springer, 2018, pp. 545-564.

[88] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,
“Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots,” The Int. ]. of Robotics Research,
vol. 39, no. 12, pp. 1419-1469, 2020.

[89] 1. Hwang, D. M. Stipanovi¢, and C. J. Tomlin, “Polytopic approximations
of reachable sets applied to linear dynamic games and a class of nonlinear
systems,” in Advances in Control, Communication Networks, and Transportation
Sys. Springer, 2005, pp. 3-19.

[90] A. B. Kurzhanski and P. Varaiya, “On ellipsoidal techniques for reach-
ability analysis. part i: external approximations,” Optimization methods and
software, vol. 17, no. 2, pp. 177-206, 2002.

[91] F. Gruber and M. Althoff, “Computing safe sets of linear sampled-data

systems,” IEEE Control Sys. Let., vol. 5, pp. 385-390, 2020.

[92] S. Kousik, P. Holmes, and R. Vasudevan, “Safe, aggressive quadrotor
flight via reachability-based trajectory design,” in Proc. ASME Dynamic
Sys. and Control Conf. (DSCC), vol. 59162, Park City, UT, USA, 2019, p.
V003T19A010.

[93] J. E. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging hamilton-jacobi safety analysis and reinforcement learning,” in
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Montreal, QC,
Canada, 2019, pp. 8550-8556.

[94] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety and
liveness guarantees through reach-avoid reinforcement learning,” in Proc.
Robotics: Science and Sys. (RSS) XVII, Virtual, 2021.

[95] J. Li, D. Lee, S. Sojoudi, and C. J. Tomlin, “Infinite-horizon reach-
avoid zero-sum games via deep reinforcement learning,” arXiv preprint
arXiv:2203.10142, 2022.

[96] A. V. Fiacco and G. P. McCormick, Nonlinear programming: sequential
unconstrained minimization techniques. SIAM, 1990.

[97] E. D. Sontag, “A ‘universal’construction of artstein’s theorem on non-
linear stabilization,” Sys. & Control Let., vol. 13, no. 2, pp. 117-123, 1989.
[98] X. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada,

J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping and
adaptive speed regulation on accessible mobile robot testbeds,” in Proc.
IEEE Conf. on Control Tech. and App. (CCTA), Kohala Coast, HI, USA, 2017,

pp- 1769-1775.

[99] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Trans. on Robotics, vol. 33, no. 3,
pp. 661-674, 2017.

[100] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor
dynamics using barrier certificates,” in Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 2018, pp. 2460-2465.

[101] A. Singletary, W. Guffey, T. G. Molnar, R. Sinnet, and A. D. Ames,
“Safety-critical manipulation for collision-free food preparation,” IEEE
Robotics and Automation Let., vol. 7, no. 4, pp. 10954-10961, 2022.

[102] W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier
functions for mechanical systems: Theory and application to robotic grasp-
ing,” IEEE Trans. on Control Sys. Tech., vol. 29, no. 2, pp. 530-545, 2019.

[103] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered
safety for legged robots via control barrier functions and model predictive
control,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Xi'an,
China, 2021, pp. 8352-8358.

[104] A. Agrawal and K. Sreenath, “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal robot
navigation.” in Proc. Robotics: Science and Sys. (RSS) XIII, vol. 13, Cambridge,
MA, USA, 2017.

[105] A. J. Taylor, V. D. Dorobantu, R. K. Cosner, Y. Yue, and A. D. Ames,
“Safety of sampled-data systems with control barrier functions via approx-
imate discrete time models,” in Proc. IEEE 61st Conf. on Decision and Control
(CDC), Cancti, Mexico, 2022, pp. 7127-7134.

[106] L. Wang, D. Han, and M. Egerstedt, “Permissive barrier certificates for
safe stabilization using sum-of-squares,” in Proc. IEEE American Control
Conf. (ACC), Milwaukee, W1, USA, 2018, pp. 585-590.

[107] A. Clark, “Verification and synthesis of control barrier functions,” in
Proc. IEEE 60th Conf. on Decision and Control (CDC), Austin, TX, USA, 2021,
pp- 6105-6112.

[108] H. Dai and F. Permenter, “Convex synthesis and verification of control-
lyapunov and barrier functions with input constraints,” arXiv preprint
arXiv:2210.00629, 2022.

[109] T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D.
Ames, “Model-free safety-critical control for robotic systems,” IEEE Robotics
and Automation Let., vol. 7, no. 2, pp. 944-951, 2021.

[110] A. J. Taylor, P. Ong, T. G. Molnar, and A. D. Ames, “Safe backstepping
with control barrier functions,” in Proc. IEEE 61st Conf. on Decision and
Control (CDC), Canctin, Mexico, 2022, pp. 5775-5782.

[111] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu,
and N. Matni, “Learning control barrier functions from expert demonstra-
tions,” in Proc. IEEE 59th Conf. on Decision and Control (CDC), Jeju, South
Korea, 2020, pp. 3717-3724.

[112] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using

« 37



robust neural lyapunov-barrier functions,” Proc. of Machine Learning Research
(PMLR), vol. 164, pp. 1724-1735, 2022.

[113] Z. Qin, D. Sun, and C. Fan, “Sablas: Learning safe control for black-box
dynamical systems,” IEEE Robotics and Automation Let., vol. 7, no. 2, pp.
1928-1935, 2022.

[114] S. Liu, C. Liu, and J. Dolan, “Safe control under input limits
with neural control barrier functions,” in 6th Annual Conf. on Robot
Learning (CoRL), Auckland, New Zealand, 2022. [Online]. Available:
https://openreview.net/forum?id=4ffL.Qu_O-DI

[115] E. Castafieda, H. Nishimura, R. McAllister, K. Sreenath, and A. Gaidon,
“In-distribution barrier functions: Self-supervised policy filters that avoid
out-of-distribution states,” arXiv preprint arXiv:2301.12012, 2023.

[116] A. Mesbah, K. P. Wabersich, A. P. Schoellig, M. N. Zeilinger, S. Lucia,
T. A. Badgwell, and J. A. Paulson, “Fusion of machine learning and mpc
under uncertainty: What advances are on the horizon?” in Proc. IEEE
American Control Conf. (ACC), Atlanta, GA, USA, 2022, pp. 342-357.

[117] A. Singletary, A. Swann, Y. Chen, and A. D. Ames, “Onboard safety
guarantees for racing drones: High-speed geofencing with control barrier
functions,” IEEE Robotics and Automation Let., vol. 7, no. 2, pp. 2897-2904,
2022.

[118] L. Griine, D. Nesi¢, and J. Pannek, Model predictive control for nonlinear
sampled-data systems. Springer, 2007.

[119] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using
model predictive control with a terminal cost,” Ann. Rev. in Control, vol. 35,
no. 2, pp. 178-186, 2011.

[120] K. P. Wabersich, F. A. Bayer, M. A. Miiller, and F. Allgéwer, “Economic
model predictive control for robust periodic operation with guaranteed
closed-loop performance,” in Proc. IEEE 18th European Control Conf. (ECC),
Naples, Italy, 2018, pp. 507-513.

[121] F. D. Brunner, M. Lazar, and F. Allgower, “Stabilizing linear model
predictive control: On the enlargement of the terminal set,” in Proc. IEEE
13th European Control Conf. (ECC), Ziirich, Switzerland, 2013, pp. 511-517.

[122] U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks. a data-driven control framework,” IEEE Trans. on Automatic
Control, vol. 63, no. 7, pp. 1883-1896, 2017.

[123] E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact penalty
functions in model predictive control,” in Proc. Control Conf., Cambridge,
United Kingdom, 2000, pp. 2319-2327.

[124] M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model
predictive control with robust stability guarantees,” IEEE Trans. on Auto-
matic Control, vol. 59, no. 5, pp. 1190-1202, 2014.

[125] C. Feller and C. Ebenbauer, “Relaxed logarithmic barrier function based
model predictive control of linear systems,” IEEE Trans. on Automatic
Control, vol. 62, no. 3, pp. 12231238, 2016.

[126] S. Tonkens and S. Herbert, “Refining control barrier functions through
hamilton-jacobi reachability,” Proc. IEEE/RS] Int. Conf. on Intelligent Robots
and Sys. (IROS), pp. 13355-13 362, 2022.

[127] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE Control Sys. Let., vol. 1,
no. 2, pp. 310-315, 2017.

[128] D. P. Bertsekas, Dynamic programming and optimal control: Approximate
dynamic programming, 4th ed. Athena Scientific Belmont, MA, 2012, vol. 2.

[129] D. Lee and C. ]J. Tomlin, “Hamilton-jacobi equations for two classes of
state-constrained zero-sum games,” arXiv:2106.15006, 2021.

[130] J. Zeng, Z. Li, and K. Sreenath, “Enhancing feasibility and safety
of nonlinear model predictive control with discrete-time control barrier
functions,” in Proc. IEEE 60th Conf. on Decision and Control (CDC), Austin,
TX, USA, 2021, pp. 6137-6144.

[131] M. Davoodi, J. M. Cloud, A. Igbal, W. J. Beksi, and N. R. Gans, “Safe
human-robot coetaneousness through model predictive control barrier func-
tions and motion distributions,” IFAC-PapersOnLine, vol. 54, no. 20, pp. 271-
277, 2021.

[132] A. Thirugnanam, J. Zeng, and K. Sreenath, “Safety-critical control and
planning for obstacle avoidance between polytopes with control barrier
functions,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),
Philadelphia, PA, USA, 2022.

[133] U. Rosolia and A. D. Ames, “Multi-rate control design leveraging con-
trol barrier functions and model predictive control policies,” IEEE Control

38 »

Sys. Let., vol. 5, no. 3, pp. 1007-1012, 2021.

[134] J. Breeden and D. Panagou, “Predictive control barrier functions for
online safety critical control,” in Proc. IEEE 61st Conf. on Decision and Control
(CDC). IEEE, 2022, pp. 924-931.

[135] S. Briiggemann, D. Steeves, and M. Krstic, “Simultaneous lane-keeping
and obstacle avoidance by combining model predictive control and control
barrier functions,” in Proc. IEEE 61st Conf. on Decision and Control (CDC).
IEEE, 2022, pp. 5285-5290.

[136] A. Singletary, P. Nilsson, T. Gurriet, and A. D. Ames, “Online active
safety for robotic manipulators,” in Proc. IEEE/RS] Int. Conf. on Intelligent
Robots and Sys. (IROS), Macau, China, 2019, pp. 173-178.

[137] T. Gurriet, M. Mote, A. Singletary, P. Nilsson, E. Feron, and A. D. Ames,
“A scalable safety critical control framework for nonlinear systems,” IEEE
Access, vol. 8, pp. 187249-187 275, 2020.

[138] A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier
functions,” in Proc. IEEE American Control Conf. (ACC), Denver, CO, USA,
2020, pp. 1399-1405.

[139] B. T. Lopez, J. E. Slotine, and J. P. How, “Robust adaptive control barrier
functions: An adaptive and data-driven approach to safety,” IEEE Control
Sys. Let., vol. 5, no. 3, pp. 1031-1036, 2021.

[140] A. Mesbah, “Stochastic model predictive control with active uncertainty
learning: A survey on dual control,” Ann. Rev. in Control, vol. 45, pp. 107-
117, 2018.

[141] E. Arcari, L. Hewing, M. Schlichting, and M. Zeilinger, “Dual stochastic
mpc for systems with parametric and structural uncertainty,” Proc. of
Machine Learning Research (PMLR), vol. 120, pp. 894-903, 2020.

[142] L. Ljung, System identification. Springer, 1998.

[143] M. Maiworm, D. Limon, J. M. Manzano, and R. Findeisen, “Stability of
gaussian process learning based output feedback model predictive control,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 455-461, 2018.

[144] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements
of statistical learning: data mining, inference, and prediction. ~Springer, 2009,
vol. 2.

[145] B. Tearle, K. P. Wabersich, A. Carron, and M. N. Zeilinger, “A predictive
safety filter for learning-based racing control,” IEEE Robotics and Automation
Let., vol. 6, no. 4, pp. 7635-7642, 2021.

[146] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in Proc. Int. Conf. on Learning
Representations (ICLR), Vancouver, BC, Canada, 2018, pp. 1-18.

[147] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using
learned dynamics,” in Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), Montreal, QC, Canada, 2019, pp. 9784-9790.

[148] M. Milanese and C. Novara, “Set membership identification of nonlinear
systems,” Automatica, vol. 40, no. 6, pp. 957-975, 2004.

[149] M. Chen and C. J. Tomlin, “Hamilton—jacobi reachability: Some recent
theoretical advances and applications in unmanned airspace management,”
Ann. Rev. of Control, Robotics, and Autonomous Sys., vol. 1, no. 1, pp. 333-358,
2018.

[150] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization.
Princeton university press, 2009.

[151] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. The MIT Press, 2006.

[152] A. Lederer, J. Umlauft, and S. Hirche, “Uniform error bounds for
gaussian process regression with application to safe control,” Advances in
Neural Information Processing Sys., vol. 32, 2019.

[153] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in Proc. IEEE 55th Conf. on Decision and Control (CDC),
Las Vegas, NV, USA, 2016, pp. 4661-4666.

[154] T. Beckers, D. Kuli¢, and S. Hirche, “Stable gaussian process based
tracking control of euler-lagrange systems,” Automatica, vol. 103, pp. 390—
397, 2019.

[155] K. P. Wabersich and M. N. Zeilinger, “Nonlinear learning-based model
predictive control supporting state and input dependent model uncertainty
estimates,” Int. ]. Robust and Nonlinear Control, vol. 31, no. 18, pp. 8897-8915,
2021.

[156] F. Castaneda, J. J. Choi, B. Zhang, C. ]J. Tomlin, and K. Sreenath,


https://openreview.net/forum?id=4ffLQu_O-Dl

“Pointwise feasibility of gaussian process-based safety-critical control under
model uncertainty,” in Proc. IEEE 60th Conf. on Decision and Control (CDC),
Austin, TX, USA, 2021, pp. 6762-6769.

[157] F. Castafieda, J. J. Choi, W. Jung, B. Zhang, C. J. Tomlin, and K. Sreenath,
“Probabilistic safe online learning with control barrier functions,” arXiv
preprint arXiv:2208.10733, 2022.

[158] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (rts): A safe and fast reinforcement learning safety layer
for continuous control,” IEEE Robotics and Automation Let., vol. 6, no. 2, pp.
3663-3670, 2021.

[159] L. C. Evans and P. E. Souganidis, “Differential games and represen-
tation formulas for solutions of hamilton-jacobi-isaacs equations,” Indiana
University mathematics journal, vol. 33, no. 5, pp. 773-797, 1984.

[160] W. Chu and Z. Ghahramani, “Preference learning with gaussian pro-
cesses,” in Proc. Int. Conf. on Machine Learning (ICML), Bonn, Germany, 2005,
pp. 137-144.

[161] R. K. Cosner, M. Tucker, A. J. Taylor, K. Li, T. G. Molnar, W. Ubellacker,
A. Alan, G. Orosz, Y. Yue, and A. D. Ames, “Safety-aware preference-
based learning for safety-critical control,” Proc. of Machine Learning Research
(PMLR), vol. 168, pp. 1020-1033, 2022.

[162] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “A control barrier
perspective on episodic learning via projection-to-state safety,” IEEE Control
Sys. Let., vol. 5, no. 3, pp. 1019-1024, 2021.

[163] A. Alan, A.J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe controller
synthesis with tunable input-to-state safe control barrier functions,” IEEE
Control Sys. Let., vol. 6, pp. 908-913, 2022.

[164] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-regret reductions for
imitation learning and structured prediction,” in Proc. 13th Int. Conf. on
Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, 2010, pp. 661-
668.

[165] S. Muntwiler, K. P. Wabersich, L. Hewing, and M. N. Zeilinger, “Data-
driven distributed stochastic model predictive control with closed-loop
chance constraint satisfaction,” in Proc. IEEE 21st European Control Conf.
(ECC), Delft, Netherlands, 2021, pp. 210-215.

[166] D. L. Marruedo, T. Alamo, and E. Camacho, “Input-to-state stable mpc
for constrained discrete-time nonlinear systems with bounded additive
uncertainties,” in Proc. IEEE 41st Conf. Decision and Control (CDC), vol. 4,
Las Vegas, NV, USA, 2002, pp. 4619-4624.

[167] J. Kohler, M. A. Miiller, and F. Allgéwer, “A novel constraint tightening
approach for nonlinear robust model predictive control,” in Proc. IEEE
American Control Conf. (ACC), Milwaukee, WI, USA, 2018, pp. 728-734.

[168] A. Didier, R. C. Jacobs, ]. Sieber, K. P. Wabersich, and M. N. Zeilinger,
“Approximate predictive control barrier functions using neural networks:
A computationally cheap and permissive safety filter,” in Proc. IEEE 23rd
European Control Conf. (ECC), Bucharest, Romania, 2023, pp. 1231-1237.

[169] S. Lockel, J. Peters, and P. van Vliet, “A probabilistic framework for
imitating human race driver behavior,” IEEE Robotics and Automation Let.,
vol. 5, no. 2, pp. 20862093, 2020.

[170] J. F. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J.
Tomlin, and A. D. Dragan, “Probabilistically safe robot planning with
confidence-based human predictions,” in Proc. Robotics: Science and Sys.
(RSS) X1V, 2018.

«

39



	Outline of the Article
	Definitions and Notation
	The Safety Filter Problem with Known System Dynamics
	Safety Filter Methodologies
	Set Invariance

	Switching Safety Filter
	Hamilton-Jacobi Reachability Safety Filter
	Control Barrier Function Safety Filter
	Predictive Safety Filter
	Conceptual ideal safety filter
	Comparison of approaches
	REFERENCES
	Nagumo's Theorem and Switching Safety Filters
	Hamilton-Jacobi Reachability Analysis for Safe Set Synthesis

	REFERENCES
	Safety Filters using Control Barrier Functions
	Predictive Safety Filters
	Discussion on Basic Safety Filters

	Data-driven Safety Filters
	REFERENCES
	REFERENCES
	Data-driven Hamilton-Jacobi Reachability
	Data-driven Control Barrier Functions
	Data-driven Predictive Safety Filters

	Safe miniature race car operation and imitation learning
	Predictive safety filters using Bayesian model estimates for safe quadrotor tuning
	REFERENCES
	Conclusion
	Author Information
	Biographies
	Kim P. Wabersich
	Andrew J. Taylor
	Jason J. Choi
	Koushil Sreenath
	Claire J. Tomlin
	Aaron D. Ames
	Melanie N. Zeilinger

	REFERENCES

