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The spatial distribution of marine di-nitrogen (N;) fixation informs our
understanding of the sensitivities of this process as well as the potential for this
new nitrogen (N) source to drive export production, influencing the global
carbon (C) cycle and climate. Using geochemically-derived 8'°N budgets, we
guantified rates of N, fixation and its importance for supporting export
production at stations sampled near the southwest Pacific Tonga-Kermadec
Arc. Recent observations indicate that shallow (<300 m) hydrothermal vents
located along the arc provide significant dissolved iron to the euphotic zone,
stimulating N fixation. Here we compare measurements of water column
8"°Nnossnoz With sinking particulate 8*°N collected by short-term sediment
traps deployed at 170 m and 270 m at stations in close proximity to subsurface
hydrothermal activity, and the §"°N of N, fixation. Results from the 8*°N budgets
yield high geochemically-based N fixation rates (282 to 638 pmol N m™2 d™) at
stations impacted by hydrothermal activity, supporting 64 to 92% of export
production in late spring. These results are consistent with contemporaneous
5N, uptake rate estimates and molecular work describing high Trichodesmium
spp. and other diazotroph abundances associated with elevated N fixation rates.
Further, the 8'°N of sinking particulate N collected at 1000 m over an annual
cycle revealed sinking fluxes peaked in the summer and coincided with the
lowest 8'°N, while lower winter sinking fluxes had the highest 8°N, indicating
isotopically distinct N sources supporting export seasonally, and aligning with
observations from most other §'°N budgets in oligotrophic regions.
Consequently, the significant regional N; fixation input to the late spring/
summer Western Tropical South Pacific results in the accumulation of low-
8" Nnozsnoz in the upper thermocline that works to lower the elevated
8" Nnozsno2 generated in the oxygen deficient zones in the Eastern Tropical
South Pacific.
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1 Introduction

The biological fixation of dinitrogen (N,) gas, mediated
primarily by marine prokaryotes (“diazotrophs”), is the largest
source of newly fixed nitrogen (N) to the global ocean (Gruber,
20045 Landolfi et al, 2018), fertilizing primary productivity and
supporting carbon (C) export (Dugdale and Goering, 1967; Karl
etal., 1997; Capone, 2001; Capone et al., 2005). The global rate and
distribution of marine N, fixation remains uncertain, although
geochemical and biological observations indicate significant N,
fixation rates occur in both the Tropical Atlantic (Gruber, 2004;
Capone et al,, 2005; Mahaffey, 2005; Marconi et al., 2017) as well as
the Western Tropical South Pacific (WTSP) (Berthelot et al, 2017;
Bonnet et al., 2017; Caffin et al, 2018; Knapp et al, 2018). These
high rates of N fixation in the Tropical Atlantic are consistent with
locations of elevated rates of atmospheric dust deposition (Jickells
et al., 2005; Mahowald et al., 2005; Conway and John, 2014; Xu and
Weber, 2021), while emerging evidence in the WTSP describes the
significance of hydrothermally sourced iron (Fe) (Guicu et al., 2018;
Bonnet et al,, 2023b) meet the high Fe requirements of diazotrophs
(Berman-Frank et al,, 2001; Kustka et al, 2003) in the region.
Indeed, Fe and phosphorus availability are thought to primarily
influence the spatial distribution of marine N; fixation (Moore etal.,
2009; Monteiro et al., 2011; Dutkiewicz et al., 2012; Weber and
Deutsch, 2014).

A long-standing goal of marine N fixation research is to better
characterize the marine diazotroph community and their sensitivity
to environmental fluctuations, while relating these to their regional
distributions and consequential N fixation fluxes (Mahaffey, 2005;
Moisander et al,, 2010; Sohm et al,, 2011). Diazotrophs are
identified by the nitrogenase (nifH) gene that encodes for the Fe
binding protein of the nifH operon (Zehr et al, 1998; Zehr and
Turner, 2001; Turk-Kubo et al.,, 2012). Common marine
proteobacterial (e.g., alpha-, beta- gamma-, delta-) and
cyanobacterial diazotroph types include: 1) non-heterocystous
filamentous (e.g., Trichodesmium spp.), 2) heterocystous
filamentous (e.g., Richelia), and 3) unicellular (e.g., Crocosphaera
spp.) (Capone et al., 1997; Luo et al., 2012; Moisander et al,, 2014).
Historically, high rates of N, fixation by these and other diazotrophs
have been associated with warm (>25 °C), nitrate (NO;)- and
ammonium (NH,")-depleted, Fe-rich surface waters (Kustka et al,,
20035 Staal et al,, 2003; Bonnet et al, 2009). The impact Fe has on
the intra-basin distribution of N, fixation rates is particularly
evident in the South Pacific, with low Fe supply associated with
low rates of N, fixation in the Eastern Tropical South Pacific (ETSP)
(Dekaezemacker etal, 2013; Knapp etal, 2016a). While historically
atmospheric deposition has been considered the primary source of
Fe fueling marine diazotrophy, the WTSP surface waters appear
relatively unique, with the primary Fe supply thought to originate
from shallow (<300 m) hydrothermal vents, particularly in the Lau
Basin (Guieu et al., 2018; Tilliette et al., 2022; Bonnet et al, 2023b).

Biological tools have been used to calculate short-term N,
fixation rates (e.g.. Montoya et al,, 2004; Capone et al, 2005;
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Mulholland et al., 2019) and identify marine diazotrophic
potential (Turk-Kubo et al., 2012; Stenegren et al., 2018; Meiler
et al, 2022). However, the contribution of N, fixation to export
production is primarily estimated using a geochemically-derived
“8'°N” budget over short timescales (Casciotti et al, 2008;
Bourbonnais et al, 2009; White et al., 2013) as well as annual
cycles (Bottjer et al, 2017). The “3'°N” budget uses a two end-
member mixing model to compare the isotopic composition (8'°N)
of exported particulate organic matter captured in a sediment trap
(PNiini) to the 8'°N of N, fixation inputs (-1%e) (Hoering and Ford,
1960; Minagawa and Wada, 1986; Carpenter et al., 1997) and
subsurface NO; (measured at each location, where 8'°N (%o vs.
air) = [(("*N/"*N)sample/(*N/**N)o1r)-11x1000) (Altabet, 1988; Karl
et al, 1997; Dore et al, 2002; Casciotti et al, 2008; Bourbonnais
et al, 2009; White et al,, 2013). Most prior 8°N budgets indicate
that N fixation supports <20% of export production in oligotrophic
regions. In the North Pacific and ETSP, <25% of export production
is estimated to be supported by N, fixation (Casciotti et al, 2008;
Knapp et al, 2016a; Bottjer et al., 2017), although that 25% is likely
not equally distributed over an annual cycle. Specifically,
summertime stratification is believed to promote N, fixation-
supported export, while the deepening of the wintertime mixed
layer promotes NO3 supported export production (Casciotti et al,,
2008; Bottjer et al, 2017). In contrast to other 8"°N budgets from
oligotrophic regions, a recent study from the WTSP describes
particularly large contributions of N, fixation to export
production (>50%) during the late summer and early autumn
(Knapp et al, 2018). However, it remains unclear whether N,
fixation supports a meaningful fraction of N export in the WTSP
annually. Here we apply a 8'°N budget to samples collected in
shallow (170 m and 270 m), short-term drifting sediment traps to
evaluate the importance of N, fixation-supported export
production during the late spring. Additionally, we use sinking
material collected over the course of a year in a deep (1000 m),
moored sediment trap to evaluate seasonal trends in the §'°N of
exported particulate organic matter relative to the 8'°N for sources
of new N to surface waters. We compare the geochemically-derived
N, fixation rates from the short-term 8°N budgets with 5N,
incubation-based rates and estimates of diazotroph abundance,
and evaluate these results in the context of previous regional and
global N, fixation rate estimates, as well as seasonal trends extracted
from the deep, moored trap.

2 Methods
2.1 Sample collection

Sample collection was conducted as part of the GEOTRACES
TONGA (shallow hydroThermal sOQurces of trace elemeNts:
potential impacts on biological productivity and the bioloGicAl
carbon pump) research cruises (doi.org/10.17600/18000884)
aboard the R/V L’Atalante in November 2019 and R/V Alis in
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October 2020, with both cruises leaving from and returning to
Noumeéa, New Caledonia. The 2019 primary cruise collected
samples at 13 stations along a roughly zonal transect at ~20° S,
sampling Melanesian waters (MW), the Lau Basin (LB), and
crossing the Tonga-Kermadec Arc into the deeper South Pacific
Gyre (SPG). In 2020, samples were collected at four stations in MW
and the LB (Figure 1). On both cruises, water column samples
(n=200) for nitrate + nitrite ([NO3; +NO,]) concentration and
8'°N analysis were collected from Niskin or GoFlo bottles
deployed on conductivity, temperature, and depth (CTD), TOW
(small, classical CTD with 12 Niskin bottles), or trace metal clean
(TMC) rosettes equipped with sensors. At discrete depths from each
of the casts, 60 mL of 0.2 um filtered seawater were collected in
duplicate and stored in acid and deionized water-washed, sample-
rinsed (three times) high-density polyethylene bottles. These
samples were then immediately frozen at -20° C and subsequently
sent to Florida State University for post cruise analysis.

Short-term Particle Interceptor Traps [PIT, collecting area of
0.0085 m?, aspect ratio of 6.7, and filled with 02 pum filtered seawater
with added formaldehyde brine (5% formaldehyde, final
concentration) buffered with sodium tetraborate (pH 8)] were
deployed on a drifting mooring in close proximity to the
hydrothermal vents at 170 m and 270 m at station 5a-2019 for five
days and at 270 m at station 10a-2019 for four days during the 2019
cruise, collecting sinking particulate N (“PNyyy.”). Additionally, a long-
term Technicap PPS5 trap (1 m” collecting area, aspect ratio of 5.3) was
deployed (containing the same buffered formaldehyde brine solution
described above) at station 12-2019/4-2020 at 1000 m, collecting
samples every 14 days (bimonthly) for 12 months from November
2019 to October 2020. Although sediment traps are a standard tool
used to capture sinking particles, uncertainties remain in their
collection efficiency within the water column and between trap
designs (Buesseler et al., 2007; Baker et al., 2020; Tilliette et al., 2023).

2-2019 (MW)
3-2019 (MW)
4-2019 (LB)
5(a,b,c,d)-2019 (LB)
6-2019 (SPG)
7-2019 (SPG)
8-2019 (SPG)
10(a,b)-2018 (LB}
12-2019 (LB}
1-2020 (MW)
2-2020 (LB)
3-2020 (LB}
4-2020 (LB)

g

LI

155°E

FIGURE 1
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2.2 NO3z +NO," concentration and
5N analysis

For the 2019 samples, [NO3;+NO,] was determined using
colorimetric analysis (Aminot and Kerouel, 2007) with a detection
limit of 0.05 pM and a standard deviation (S.D.) of + 0.1 pM.
Furthermore, the [NO;+NO,] for the 2020 samples was measured
by chemiluminescence (Braman and Hendrix, 1989) using a Thermo
42i NO, analyzer at Florida State University. Briefly, samples were
injected into a heated, acidic vanadium (III) solution that reduces NO5”
+NO, quantitatively to nitric oxide gas (NOyg)). The NOy then reacts
with ozone inside the analyzer to produce light, the intensity of which is
quantitatively related to the amount of NO, in the sample and thus
the original [NO;+NO;]. The range of detection of the instrument
was adjusted according to the concentrations of the samples. Sample
[NO;+NO, ] was calibrated using a standard curve that bracketed the
range of samples with a lower reporting limit of 0.1 pM and an average
S.D. of + 0.1 M.

The nitrogen (N) isotopic composition of NO; +NO;
(8" Nno3sino2) was determined using the “denitrifier” method
(Sigman et al., 2001; Casciotti et al., 2002; Mcllvin and Casciotti,
20115 Weigand et al., 2016). This analysis was performed when
sample [NO; +NO;] = 0.3 uM. The 8" Nno3sno2 values were
reported when the standard deviation of replicate analyses
was <0.5%o. Samples were calibrated with IAEA N3 and USGS 34
as described in Mcllvin and Casciotti (2011).

2.3 Sinking particulate N flux and
N measurements

The bulk PN, mass flux, and its associated isotopic
composition, “8'*Npngni”, collected by the sediment traps, was

Depth (m)
1]

— 10°5

1000
2000
20°5 3000
4000
South Paciflc Gyre

5000

G000

3075

Bathymetry of the southwest Pacific region with stations from the TONGA research cruises shown in larger filled circles with black outlines (2019),
and smaller filled circles with white outlines (2020); gray represents areas above sea-level. Stations 2-2019, 3-2019 and 1-2020 were sampled in
Melanesian waters (MW), stations 4-2019, 5-2019, 10-2019, 12-2019, 2-2020, 3-2020, and 4-2020 were sampled in the Lau Basin (LB), and stations
6-2019, 7-2019, and 8-2019 were sampled in the South Pacific Gyre (SPG). Stations 5 (a, b, ¢, d)-2019 and 10 (a, b)-2019 were proximal to the
shallow hydrothermal vents ‘Panamax’ and ‘Simone’, respectively. The South Equatorial Current (SEC) and branches thereof are indicated by the

white arrows.
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measured using an Elementar Analyser - Isotope Ratio Mass
Spectrometer (EA-IRMS) at the Mediterranean Institute of
Oceanography (SERCON INTEGRA 2). The Quantification
Limit was 7 pg N and the precision was between + 0.3%o for
highest masses and + 3.5%o for masses close to Quantification
Limit (k = 2).

2.4 3N budget calculations

A two end-member mixing model was used to evaluate the §'°N
budgets. This model assumes two quantitatively important “new” N
sources to surface waters, subsurface NO; +NO, and biological N,
fixation, as well as one loss term, PN;,;. The isotopic composition
of N, fixation inputs, “6'° Ny g, was assumed to be -1%o (Hoering
, 1997),
while the 8'°N of subsurface NO;+NO,” and PN, were
measured. The relative contribution of N, fixation to export
production, “f,g,”, is calculated by the following (Knapp et al,
2018):

and Ford, 1960; Minagawa and Wada, 1986; Carpenter et al.

8" Npgink = fn.ﬁx( -1%)+ (1 _fnﬁx)(slsNNOhN(}Z) (1)

which can be rearranged to solve for f,5,:

[(5 *Nyosnoa) - (8" NPNunk)]
[l + (8 NNO3+N02)]

The depth from which subsurface NO; +NO, is sourced
likely varies and is difficult to constrain; therefore, the short-
term 8'°N budgets are evaluated over a range of subsurface
8" Nno3+no2 source values. These values include the shallowest
8" Nyossno2 minima and the §'*Nyos,no2 of the sample
collected immediately below the minima (Knapp et al,, 2021).
The long-term 8'°N budgets are evaluated using the shallowest
average 8"° Nyo3sn0z Minima at station 12-2019/station 4-2020
as well as the average 8'*Ny 3,02 0f South Pacific Sub-tropical
Under Water (SPSTUW, 150m - 250 m depth) at station 4-2020.
Note, sampling resolution at station 12-2019 did not include
SPSTUW. These 8" Nyossno2 end-members for the moored
trap 8'°N bugdet were chosen to encompass the range of NO5°
+NO;" likely entrained to surface waters over an annual cycle
(Moutin et al.,, 2018). This seasonality is also observed at the
station ALOHA, Hawaii (Casciotti et al., 2008; Bottjer et al,,
2017). Once the fraction of export supported by N, fixation is
calculated, an N, fixation rate, “R,sx” can be calculated by
multiplying f,s, by the PNy, mass flux, yielding a
geochemically-derived N, fixation rate.

(2)

foix =

2.5 Bathymetric data

Bathymetric data from the sampling region were considered to
better understand the bathymetric-induced current steering as well
as the proximity of the stations to the shallow hydrothermal vents.
These bathymetric data were downloaded from NOAA’s National
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Centers for Environmental Information page (https://
www.ngdcnoaa.gov/mgg/global/). The ETOPO1 Global Relief
Model was used with the grid version ETOPO1 Bedrock.

3 Hydrography

Water masses along the TONGA transect were identified using
temperature, salinity, and potential density (Gg) (Figure 2) and align
with those reported in Tillictte et al. (2022). Plots of the water column
profiles in temperature-salinity space indicate that all stations were
largely influenced by the same water masses (Figure 2), reflecting the
dominance of the westward flowing SEC, which impacts waters from
400 to 1000 m across this region (Figure 1) (Talley et al, 20115 Guieu
et al, 2018; Tilliette et al, 2022). The SEC divides into branches,
particularly in the LB, due to the bathymetric blocking by islands and
deep-sea ridges (Webb, 2000; Tilliette et al, 2022). Many of these
branches in the LB are observed to have an overall southwestern
trajectory before returning to a western trajectory over the center of the
LB and maintaining this westward trajectory in MW (Figure 1)
(Tilliette et al,, 2022). Additionally, the Tonga-Kermadec Arc acts as
a physical barrier to deep water masses entering the LB from the SPG,
influencing circulation downstream (Tilliette et al, 2022). Surface
waters across this transect were turbulent down to ~150 m with a
Op 0of 23.7 + 0.2, temperature of 244 + 0.6°C, and salinity of 35.4 + 0.5,
aligning with previous studies (Table 1) (Tilliette et al,, 2022). Below
that, in the thermocline and extending to ~700 m, two major water
masses were present: SPSTUW and Western South Pacific Central
Water (WSPCW) (Talley et al, 2011; Lehmann et al, 2018; Tilliette
et al, 2022) (Figure 2) (Table 1). Across the transect, SPSTUW had an
average (+ 18.D.) G of 25.0 + 0.2, temperature of 22.5 + 0.8°C and was
further recognized by its characteristic salinity maximum of 35.7 + 0.1
(Talley et al, 2011; Lehmann et al,, 2018; Tilliette et al., 2022) between
150 and 250 m (Table 1). Between 250 and 500 m, WSPCW was
identified by a linear temperature-salinity relationship, with an average
(£ 1S.D.) Og of 264 + 0.2, temperature of 12.6 + 0.9°C and salinity of
349 + 0.2, comparable to values reported by Lehmann et al. (2018) and
Tilliette et al. (2022). Notably, between 380 and 400 m South Pacific
Subtropical Mode Water (SPSTMW), a subsidiary of WSPCW, was
identified by its characteristic G of 26.0 (Talley et al, 2011), with an
average (+ 1 S.D.) temperature of 14.9 + 0.5°C and salinity of 352 + 0.1
(Table 1). Finally, deep water masses were observed in the SPG east of
the Tonga-Kermadec Arc. In particular, Antarctic Intermediate Water
(AAIW) was observed at station 8-2019 and station 2-2020 between
630 and 700 m where a Gg 0f 26.9 + 0.1 temperature of 6.5 + 0.1°Cand
salinity of 34.4 + 0.0, aligning with previous studies (Table 1) (Talley

et al,, 2011; Tilliette et al., 2022).

4 Results
4.1 NOs +NO,™ concentration and §°N

The [NO; +NO; ] in the upper 100 m of the WTSP was <0.1 pM
except at stations influenced by the hydrothermal vents, i.e., stations 5-
2019 and 10-2019, where the [NO;+NO,] was 0.2 + 0.0 tM to 0.7 +
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FIGURE 2

Temperature-salinity plot of samples from the 2019 and 2020 TONGA
cruises as well as the prevalent water masses across the transect The
dotted grey lines indicate potential density ( cg) isopycnals. The water
masses include surface waters, South Pacific Subtropical Under Water
(SPSTUW), Western South Pacific Central Water (WSPCW), South Pacific
Subtropical Mode Water (SPSTMW), a subsidiary of WSPCW and
Antarctic Intermediate Water (AAIW).

0.0 uM (average =1 S.D.) between 60 m and 100 m (Figures 3A, C). At
400 m, the [NO;+NO,] increased to between 10 and 15 pM,
corresponding to 8" Nyosnoz ranging from 6 to 8% (Figures 3B,
D). This is consistent with the presence of WSPCW (Tilliette et al,
2022) and more particularly, SPSTMW (Lehmann et al, 2018) and
aligns with other studies in the region (Knapp et al,, 2018). At station 8-
2019, the [NO; +NO,'] increased to 26.7 UM at 630 m with a
corresponding 8" Nyossnoz Of 6.9 + 0.1%0 (Figures 3A, C),
consistent with AAIW (Talley et al, 2011; Lehmann et al, 2018;
Tilliette et al, 2022). The majority of stations within MW and the LB
(ie. stations 1-2019 to 5-2019, 10-2019, and 12-2019) had 8"*Nyos
+No2 ranging from 4 to 6%o at 200 m, decreasing shallower in the water
column to 2 to 4% at 150 m associated with the transition between
SPSTUW and surface waters (Figures 3B, D). The SPG stations
(stations 6-2019, 7-2019 and 8-2019) had an average §"*Nyossn02 of
6.8 + 0.0%o at ~200 m characteristic of SPSTUW. This 8 Nyosanoz
was significantly higher than the 8"*Nyoz,n02 at 200 m in MW and LB
samples, where the average 8'°Nyos,n02 at 200 m was 5.0 + 0.6%o and
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5.1 + 0.6%o, respectively (p<0.5 and p<0.01, respectively, evaluated with
the Kruskal-Wallis test; Kruskal and Wallis, 1952). Furthermore, the
elevated 8"*Nyo3. w02 in SPG SPSTUW corresponded to significantly
lower [NO;+NO, ] at 200 m (2.4 + 0.8 uM) compared to the LB,
where the average [NO; +NO, ] at 200 m was 3.3 + 0.6 UM (p<0.01,
Kruskal and Wallis, 1952) (Figures 3A, C). Within the surface waters
(upper 150 m), the 8" Nyossnoz at hydrothermal station 5-2019 was
significantly lower between the four casts (5a - d), 1.8 + 0.9%,
compared to the average 8" Nnossnoz in the upper 150 m at
hydrothermal station 10 (10 a, b), 44 + 0.6%o (p<0.01, Kruskal and
Wallis, 1952) (Figures 3B, D). The lowest 8" " Nnossnoz 0.7 + 0.1%a,
was observed at station 5¢-2019 at 100 m, above which 8 Nyoz4n02
increased to 1.0 + 0.0%o at 95 m (Figures 3A, C). The 8" Nyozsno2
reported here for the TONGA study are publicly available (Knapp and

Forrer, 2023).

4.2 PNgink flux and 615N

The PNy flux collected in the shallow short-term drifting
traps was calculated to be 350 umol N m™ d™' (170 m, station 5a-
2019), 436 pmol N m™ d™! (270 m, station 5a-2019), and 693 umol
N m™d™" (270 m, station 10a-2019) (Table 2). Further, the average
(£ 1 8.D.) 8" Npnsink Was -0.5 + 3.5%0 and -0.2 + 1.9%o at 170 m and
270 m at station 5a-2019, respectively, and -0.6 + 2.3%o at 270 m at
station 10a-2019 (Table 2) (Figure 4). In comparison, the annual
average PN, flux collected in the long-term 1000 m PPS5 moored
trap at station 12-2019/4-2020 was an order of magnitude lower,
16.5 + 14.3 umol N m™ d'!, and had a higher annual mass-weighted
average (+ 1 S.D.) 8" Npginlo 3.4 + 1.9%0, compared to the
shallower, short-term traps (Table 2) (Figure 4).

The seasonal average (+ 1 S.D.) PN, fluxes collected in the
deep, moored trap were higher in the austral summer and autumn,
at 30.9 + 11.0 umol N m™” d' and 17.0 + 154 umol N m™> d™',
respectively, compared to the average austral winter and spring
PNk fluxes of 8.0 + 9.0 umol N m> d™" and 8.5 + 8.5 pmol N m™
d'', respectively (Table 2) (Figure 4). The average, mass-weighted (+
1 S.D.) summer 8" Npyginx from the 1000 m PPS5 moored trap,
1.5 + 0.7%o, was lower than the wintertime average of 5.9 + 1.1%o,
while the average (+ 1 S.D.) spring and autumn mass-weighted
8" *Npnsinks 2.9 * 0.5%0 and 3.3 + 1.7%o, respectively, were
intermediate between summer and winter values.

4.3 Results of the §'°N budget

The 8N budget described above compares the §'°N of the
primary form of N exported from the euphotic zone, &'*Npygn
with the §'°N of the two input terms, subsurface NO;+NO,” and
N, fixation. This provides a geochemically-derived estimate of the
fractional contribution of N, fixation to export production (f,sy) as well
as rate of N, fixation (Rusy). Given that the subsurface §"*Nyos.no2
source is difficult to constrain, we evaluate the shallow 8"°N budgets
using the shallowest subsurface 8" *Nyo 3,0, minima as well as the
sample immediately below the minima (Knapp et al, 2021), while the
8"°N budget using the deep trap PNy flux uses the average subsurface
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TABLE 1 Water masses identified from the 2019 and 2020 TONGA cruises and their average (+ 1 $.D.) hydrographic and NO;"+NO," properties and
number (n) of samples from each water mass.

Water Mass Tem;(afcr? ture Salinity [NOiJV\N val (YiliE.Nﬁeri:zzi r)
s.ur&.;-,;r \;mm 0-150 244 +0.6" 354+ 05" 23.7 402 0.2+ 02" i; i :;
spfgrw 150 - 250 22.5 + 08" 357 £ 01" 250+ 02 24408 49+ 14
w?;?v 250 - 550 12.6 + 0.9'2 349 02" 26.4 + 02 7.8+ 25" 7.0 £0.7°
se 52}““" 380 - 400 149 +0.5° 352+0.1° 260 % 00° 9.0 +05 74%04
A‘:ZI)W > 600 65+ 0.1 344 + 00" 269 +0.1%* 267 +12™ 69 0.1

'Tilliette et al., 2022

2Lehmann et al., 2018

3Talley et al,, 2011

* Average for hydrothermal vent stations only (station 5-2019 and station 10-2019).
sAm‘ag for all non-hydroth 1 vent (ie., all
*n = 1 for this measurement.

These data align with the studies indicated in superscript.

8" Nyos:noz minima at station 12-2019/4-2020 and the average
SPSTUW 8"*Nyossnoz at station 4-2020. At the shallow trap
stations in close proximity to the hydrothermal vents, the subsurface
8" Nyoss 02 ranged from 1.2 to 2.2%o0 and 3.6 to 4.7% at stations 5-
2019 and 10-2019, respectively, while at the deep mooring (station 12-

A [NO3 =~ +NO; =1 (M) B
0 5 10 15 20 25 30 35 40 0

except station 5-2019 and station 10-2019).

2019/4-2020) the average subsurface §'°Nygsino; minima and
SPSTUW &'*Nyos.no2 Were 2.4%o and 4.6%o, respectively (Table 2).
Additional uncertainty in the N budgets indudes the standard
deviation of the ' Npyink analysis (Table 2). The 8°N value for N,
fixation, (8'*Ny,) of -1% is based on literature reports of diazotrophic

6" Nugs o oz (%) vs. Ny in air
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biomass 8'°N (Hoering and Ford, 1960; Minagawa and Wada, 1986;
Carpenter et al, 1997) (Table 2). Comparing these values with the
8" N pyeini We calculate that at station 5-2019, the f,5, ranged from 77
to 84 + 159% for the 170 m trap, while the f, 5, ranged from 64 to 76 +
86% at the 270 m trap (Table 2). At station 10-2019, the f,, at the 270
m trap ranged from 90 to 92 + 50% (Table 2). We further calculate a
geochemically derived Rygy 0f 282 + 550 yumol N m™” d ' and 331 375
umol N m™d™ for the 170 m and 270 m traps deployed at station 5-

10.3389/fmars.2023.1249115

2019, respectively, and 638 + 347 pmol N m? d™ for the 270 m trap
deployed at station 10-2019 (Table 2). The 8'°N budget calculated for
the moored trap at station 12-2019/4-2020 (note that the trap is deeper,
ie. 1000 m instead of 170 - 270 m for the drifting ones) yielded a mass-
weighted f5, of 12 to 64 + 29% (average = 42 + 13%) for the summer,
while the spring and autumn had similar but lower mass-weighted f,g,
of 0to 37 + 21% (average = 0 + 29%) and 0 to 43 + 69% (average = 12 +
36%), respectively, and winter had a mass-weighted f,s, of 0 £ 18%.

TABLE 2 The mass and isotopic composition of the sinking particulate N (PN, flux captured in the short-term PIT and long-term PPS5 traps, and
results of the §'°N budgets.

815 Nnosz Bottle-
Av. +NO2z end- based av.
5 Npnsin | member N, fix rate®
(%) range> (umol N m2
(%) d?
5-2019 | 1759° 170 5 Late 350 05+35 12-22 77 to 282+ 1942 +1212°
(LB) w Spring B4 + 550
159
52019 | 1759° 270 5 Late 436 02+19 12-22 64 to 331+ 1942 +1212°
(LB) W Spring 76 + 375
86
10- 175.2° 270 4 Late 693 06+23 36 -47 90 to 638 + 2047 + 566°
2019 W Spring 92 + 347
(LB) 50
TONGA 0to
(this study) Spring 85+ 85 29+ 05° 37 % -1 10
21°
12 to
12- Summer 3(:‘1901 1.5+ 0.7° 64 + 10 10
2019/ | 1779° : - 5 29°
42020 W 1000 360 24" - 46
5
(LB) 0to
Autumn ljf: 33+17° 43 + o 10
y °
y 9 0+ 10 10
Winter 8.0+9.0 59+ 1.1 18° - -
80 to
A 163. Lat
636 | 15 5 ¢ 303 06+1 70 -84 83+ | 254450 593 + 511
(MW) “E summer 13
OUTPACE
(Knapp B | 1707 S0 to N
et al,, 150 5 Autumn 30 31+1 72 -83 56 + 16+6 706 + 302
, (SPG) | W
2018) 12
c 165.8° 0t08 n
(SPG) W 150 5 Autumn 47 77 %1 7.0 -84 i1 545 59 + 16
! Austral seasons divided into: Spring (September, October, N ber), § (December, January, February), Autumn (March, April, May), Winter (June, July, August).
2 average + 1 8D,
? Subsurface 8" Nyo3.0002.
* See Methods section 2.6.
S&anlﬁ n t 11- ||pu1en n_, r_‘
S Lory et al,, 2023,

7 Shallow subsurface 5'*Nyqs.102 minima end-member for station 12-2019 and 4-2020.

# Average SPSTUW 8"*Nyo3.no2 end-member at station 4-2020. Note, sampling resolution at station 12-2019 did not include SPSTUW.

# Mass-weighted average values for each season.
% No data.
!! Caffin et al., 2018

The table includes the range in the 5'"Nyos. w02 end-member, fraction of export production supported by N, fixation (“f,s.") and N, fixation rate determined by multiplying the PN, flux by
{45, for the TONGA (this study) and OUTPACE (Knapp et al., 2012) projects. Uncertainty in f,5, and R, reflects both the range in 8'*Nyqs. 00, end-member as well as the standard deviation

of the PN,y '°N measurements,
*Trap deployment time.
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FIGURE 4

Bimonthly measurements of PNy, flux and 8 Npyn, from the 1000 m trap deployed at station 12-2019/station 4-2020 between November 2019
to October 2020. Circle color corresponds to the season when the majority of the PNy, was collected over bimonthly sampling intervals and circle
size corresponds to PNgry flux magnitude (umol N m > d™%). Each measurement is plotted at the end date of the two-week sampling interval. The
35Ny, end-member (-1%.) is represented by the dotted black line and the low §®°Nygs.no2 €nd-member at station 12-2019 and 4-2020 (2.4%.)
and average SPSTUW §Nyoz. noz €nd-member at station 4-2020 (4.6%.) are represented by the dashed and solid lines, respectively. Data available

in Supplementary Table 51.

These £, values indicate that the highest contribution of N; fixation to
export production collected at 1000 m was during the summer,
followed by autumn and spring. Due to significant PNy flux
attenuation with depth (Martin et al, 1987), we do not calculate a
Ry for the moored trap data.

5 Discussion

5.1 TONGA $"N budgets reflect high rates
of N, fixation in the WTSP

The results of the short-term 8'°N budgets suggest that N,
fixation rates were high (282 to 638 umol N m™> d') near the
hydrothermal vents at the time of the 2019 cruise. While there are
notable differences in the magnitude of these geochemically-derived
N, fixation rates and the bottle-based '*N,, uptake rates reported by
Lory et al,, 2023, we consider these results to be broadly consistent
with one another, as well as consistent with estimates of diazotroph
abundance measured contemporaneously (Bonnet et al, 2023b).
Specifically, bottle-based "°N, uptake rates were 3 to 7 times higher
than the R, g, estimated from the §'°N budget (Table 2); however,
both rate estimates are at the upper-end typically reported by each
technique (Gruber, 2004; Capone et al., 2005; Casciotti et al., 2008;
Luo et al,, 20125 Knapp et al., 2016a) and align with previous work
from the region (Montoya et al,, 2004; Berthelot et al., 2017; Bonnet
et al, 2017; Knapp et al, 2018; Shao et al, 2023). Prior work
investigating N, fixation’s contribution to export production has
attributed discrepancies between these two metrics to potential
sediment trap under collection of exported material (Knapp et al,
2016a; Bottjer et al, 2017, Knapp et al,, 2018), alternate sources of
fixed N to the euphotic zone including horizontal advection (Bottjer
et al, 2017), phytoplankton bloom stage as well as temporal delay

Frontiers in Marine Science

between organic matter formation and capture by the sediment trap
(de Verneil et al, 2017; Caffin et al., 2018; Knapp et al, 2018), and
bottle-based '°N, incubations with their associated methodological
considerations (i.e., bottle effects) (White et al., 2020). Additionally,
our §"°N budgets should be considered a lower bound for estimated
N, fixation rates because of the mixing-model's inherent
assumption that the only fate of newly fixed N is to be balanced
by the sinking flux, and that no newly fixed N is released to the
dissolved pool, which is likley unrealistic (Capone et al, 1994;
Glibert & Bronk, 1994; Mulholland and Capone, 2004; Bonnet et al.,
20165 Knapp etal,, 2016b). Further, the trap depth used here, 170 m,
is below the base of the mixed layer, and thus underestimates new/
export production. While euphotic zone nitrification is a source of
low-8"°Nyos that could lead to an overestimation of N, fixation
supported export production, rates of euphotic zone nitrification
from this and other similar oligotrophic regions are low (<10 nmol
Lt d'l} (Smith et al,, 20145 Raes et al., 2020) compared to the very
high rates of N, fixation using multiple metrics in this study. This
therefore suggests that N, fixation is the dominant mechanism
generating the low-8""Npyg;n, signal observed.

Regardless of the mechanism(s) driving these discrepancies,
both the 8N budget and "°N, uptake rate estimates are also
consistent with the elevated diazotroph abundances (Bonnet et al.,
2023a; Lory et al, 2023) observed on the 2019 TONGA cruise
(Figure 5). Here we compare averages of biological and geochemical
metrics associated with N, fixation for the three hydrographic
regions, MW, the LB, and the SPG (defined in Section 2.1). While
results from the qPCR analysis targeting nifH genes indicate that
Trichodesmium spp. and UCYN-A dominated the diazotroph
assemblage in the upper 50 m across the TONGA transect,
Trichodesmium spp. were most abundant in the LB near the
hydrothermal vents (average 1.0x10” gene copies L"), followed by
UCYN-A (average 3.0x10° gene copies L") (Figures 5A, B). These
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exceptionally high abundances of Trichodesmium spp. and UCYN-
A were on the order of one to four times higher than previous
studies (e.g., Zehr & Turner, 2001; Moisander et al., 2010; Turk-
Kubo et al, 2012; Moisander et al., 2014; Benavides et al., 2018;
Benavides et al,, 2020; Confesor et al, 2022). Notably, the highest
regionally-averaged, trapezoidally-integrated upper 50 m "°N,
uptake rates were found in the LB (1038 + 600 pmol N m~ d™),
where Trichodesmium spp. were most abundant and where the
lowest regionally-averaged 8"°Nyossno2 subsurface minima of
2.8 + 1.5%o (Figure 5F) was observed between 100 and 200 m.
This underscores the potential significance of Trichodesmium spp.
supporting N, fixation near the hydrothermal vents. UCYN-A was
the dominant diazotroph in the upper 50 m in MW and the SPG,
with regional averages of 2.5x10° gene copies L' and 3.1x10° gene
copies L', respectively, followed by Trichodesmium spp., with
regional averages of 3.0x10° and 3.7x10° gene copies L,
respectively. Average abundances of UCYN-B (2.6x10* to 3.2x10°
gene copies L"), UCYN-C (4.3x10" to 1.7x10” gene copies L') and
Gamma proteobacteria (5.4x10° to 9.9x10° gene copies L)
remained comparatively low across the transect (Figures 5C-E),
but were similar in magnitude to previous studies in the region
(Moisander et al., 2014; Benavides et al., 2018; Benavides et al.,
2020). Although UCYN-A have extremely high gene abundances
and dominate the upper 50 m in MW and the SPG, the
trapezoidally-integrated upper 50 m '°N, uptake rates were lower
than in the LB, 713 + 691 and 537 + 629 pmol N m? d”,

10.3389/fmars.2023.1249115

respectively, and were associated with a higher regional average
8" Ny o3sno2 Subsurface minima of 4.4 + 1.2%o and 5.5 + 1.9%o,
respectively, observed between 100 to 200 m (Figure 5F). While care
should be taken when relating nifH gene copies to diazotroph
biomass, these gene copy abundances broadly correspond to
elevated diazotroph abundances (Meiler et al., 2022) and confirm
the significance of diazotrophy in the region.

5.2 N5 fixation is an important source of N
supporting export production in the WTSP

The agreement between the geochemically-derived N, fixation
rates, '°N, uptake rates and diazotroph abundances together
indicate that export production in the WTSP at the time of this
study was driven by N, fixation (Bonnet et al, 2023b). This is in
contrast to prior work in other oligotrophic regions where the
majority of export was supported by subsurface NO;', even when
N, fixation inputs were high (Casciotti et al., 2008; Bourbonnais
et al, 2009; White et al., 2013; Bottjer et al,, 2017). The shallow
sediment traps deployed for the TONGA project indicate that N,
fixation supports a majority of export production (f,4, = 64 to 92%)
near the hydrothermal vents, at least in the late spring (Table 2;
Figures 6A, B). These f,4, values are similar to those calculated from
the previous OUTPACE campaign during the late summer/early
autumn in MW (station A, 80 to 83 *+ 13%), and near the Tonga-
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FIGURE 5

Box plots of the upper 50 m nifH gene abundances (gene copies L) from Bonnet et al, 2023a and Lory et al,, 2023 for the hydrographic regions of
MW, the LB and the SPG for (A) Trichodesmium spp., (B) UCYN-A, (C) UCYN-B, (D) UCYN-C, and (E) Gamma proteobacteria, as well as

(F) box plots of the regional average, trapezoidally-integrated upper 50 m 5N, fixation rates from Lory et al, 2023, with the corresponding regional
average 90 to 195 m §"Nygz,no2 (blue triangles). The open circles associated with the box plots indicate outliers.
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Kermadec Arc (station B, 50 to 56 + 12%) (Table 2; Figure 6C)
(Knapp et al, 2018). The high f 5, values reported here from the
short-term traps deployed at TONGA Stations 5 and 10 replicate a
geochemical signature that has not been observed outside of the
WTSP, underscoring the significance of N, fixation regionally
(Bonnet et al, 2023b). We also emphasize the potential for the
£, 6x from our 8°N budgets to underestimate the importance of N,
fixation to export due to the mixing-model’s inherent assumption
that the only fate of newly fixed N is the PNy flux captured by the
sediment traps, as opposed to being released and persisting as
dissolved organic nitrogen (Capone et al, 1994; Glibert and
Bronk, 1994).

While the results of the short-term §'°N budgets from both the
TONGA and OUTPACE campaigns found that N, fixation
supports the majority of export production in the late spring, late
summer, and early autumn in the LB and MW, we also consider the
8"* Npwsink collected in the deep, moored trap at station 12-2019/4-
2020 in the LB to evaluate this trend over an annual cycle (Figure 4).
Unsurprisingly, the mass flux collected in the shallower, short-term
PIT traps was higher and the 8" Npnsink Was lower than that
collected in the deeper, moored trap. However, we note that the
moored trap was deployed ~200 km west of the shallow traps and
hydrothermal vents (Table 2) (Figures 1, 4), and the conical shape of
the PPS5 has been observed to undersample (Baker et al., 2020;
Tilliette et al., 2023). The §"Npygaqk in the shallow PIT traps
collected in the late spring at stations 5-2019 and 10-2019 ranged
from -0.2 to -0.6%o compared to a seasonal average 8"*Nppyini 0f 2.9
* 0.5%0 and 1.5 * 0.7%o observed in the moored PPS5 trap during
the spring and summer, respectively. We expect that the higher
8"*Npnsink found in the deeper moored trap likely resulted from the
collection of PN, from a larger surface area than the shallow
short-term traps, where export production may have been
supported by a mixture of N sources with higher §'°N (Siegel and
Deuser, 1997; Siegel et al., 2008). Additionally, horizontal advection
of particles generated at locations not impacted by the shallow
hydrothermal vents potentially decouples the euphotic zone
diazotrophic abundance and/or importance from the PN collected
in the moored trap (Wanick et al, 2000). Indeed, the exported
material in the deep trap was observed to be compositionally
different from that captured in the shallow, short-term traps,
where the hydrothermal signature of the particles was less evident
due to organic matter remineralization while being transported to
depth (Tilliette et al,
components of sinking PN to the deep trap potentially
underestimates the importance of N, fixation to export
production. Similar flux and isotopic composition offsets have
been observed between shallow and deep sediment traps in the
ETSP (Berelson et al., 2015; Knapp et al., 2016a; Tilliette et
al,, 2023).

Since aerosol inputs to this region are minimal (Guieu et al,
2018), we expect that the seasonal variability of 8" *Npyn in the
deep, moored trap reflects shifts in the importance of N, fixation
and subsurface NO;™ for supporting export production over
seasonal timescales. In the deep trap, annual PNy, fluxes peaked

2023). The associated distance and time
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in the summer (30.9 + 11.0 pmol N m? d"), coinciding with the
lowest average mass-weighted 8" Npygne 1.5 = 0.7%o, while the
lowest PN, fluxes were observed in the winter (8.0 + 9.0 pmol N
m? d"') and coincided with the highest average mass-weighted
8" Npnginks 5.9 * 1.1%o, indicating that isotopically distinct N
sources support export seasonally. Since there are steep gradients
inboth [NO; +NO,] and 8"°*Nyos:n02 with depth (Figures 3,6), a
higher winter 8" Npsink may reflect entrainment of a deeper NO3’
+NO; source (likely SPSTUW) with a higher 8" Nnossnoz due to
winter mnung (Moutin et al., 2018). The net effect of a higher
subsurface 8'°Nyossno: end-member would be to raise the
estimated fua, (Table 2) (Bottjer et al, 2017). As a result, the
mass-weighted seasonal f,g, values for the deep trap range from
12 to 64 + 29% in the summer and 0 + 18% in the winter, describing
a largely N, fixation supported export system in the summer.
Further, since the majority of annual export is focused in the
summer, and was supported by low-8"°N N sources, we attribute
an important fraction of annual export production and deep (>1000
m) long-term C sequestration to N, fixation at station 12-2019/4-
2020 (Figure 4; Table 2).

Considering the elevated chlorophyll a concentrations observed
over a large area in this region ranging up to 360,000 km? (Bonnet
et al, 2023b), and given the high R4, and f,5, values estimated at
station 5a-2019 and 10a-2019, along with the large fraction of N,
fixation supported export production at station 12-2019/4-2020
over an annual timescale, the otherwise oligotrophic WTSP appears
to be biogeochemically unique where N fixation supports a large
fraction of annual export production as a result of the influence of
shallow hydrothermal vents. The significance of these regional N,
fixation inputs in the WTSP are further pronounced in the
gradients of water column 8"*Nyqs,n0 both zonally as well as
with depth (Figures 3, 6). In particular, 8'*Nyo 3,02 between 150
and 400 m decreases from east to west (SPG to MW) across the
zonal transect, and also decreases from ~400 m to shallower depths.
These isotopic gradients reflect the accumulation of low-8""N N
inputs in the upper thermodline to the west along this transect that
are presumably associated with the remineralization of diazotrophic
inputs (Casciotti et al., 2008; Knapp et al.,, 2008). This accumulation
of low-8"°Nyossnoz in the upper 400 m of the WTSP erodes the
elevated 8" Nyossno2 originating from dissimilatory NOj
reduction occurring in the oxygen deficient zones of the ETSP
(Bourbonnais et al., 2015; Peters et al., 2018; Casciotti et al., 2013), a
geochemical signature that reflects basin-scale compensation of N
losses in the east with N inputs in the west that is consistent with
peloceanographic records (Brandes and Devol, 2002; Deutsch et al.,
2004; Weber and Deutsch, 2014; Knapp et al., 2018).

6 Conclusions
Here we report results of §"°N budgets that compare subsurface
8" Nnosnoz with the 8" Npygnx captured in short-term, shallow (170

and 270 m) PIT deployed near the hydrothermal vents of the Tonga-
Kermadec Arc and long-term, deep (1000 m) moored PPS5 sediment
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compared with (C) results from the austral late summer/early autumn at OUTPACE stations( A-C) Each panel includes water column profiles of
35Nyosanoe for samples from the 2019 and 2020 TONGA cruises in color and the OUTPACE cruise in grey and the associated 8°N budget terms,
including the sediment trap 5 Npnsink (inverted triangles and open circle and square), the 8N (vertical dashed line) and ranges in subsurface

8" Nnos:noz, Which are represented by the orange shaded region in (A), blue shaded region in (B), and steel-grey shaded region in (C) (Table 2). The
fractional contribution of N; fixation to export production is indicated by the grey shading and the corresponding fraction is indicated along the

traps deployed ~200 km west of the Arc. These results are evaluated in
the context of "N, uptake rates (Lory et al, 2023) and nifH gene
abundances (Bonnet et al., 2023b) collected contemporaneously, as well
as with prior work from the region (Knapp et al, 2018). Results from
the short-term, shallow 8"°N budgets indicate that N, fixation supports
the majority, 64 to 92%, of export in late spring in the Lau Basin, while
the mass-weighted, seasonally-averaged §'°N budgets from deeper
traps suggest that N, fixation supports 12 to 64% of export
production and thus long-term C sequestration in the summer when
the highest PN, fluxes are observed. As the seasons progress into
winter, export production becomes increasingly supported by
subsurface NO,". The observations from this cruise as well as from
the OUTPACE study (Knapp et al, 2018) are in contrast to other
regions explored so far, where even significant N, fixation inputs do
not support the majority of export (Casciotti et al, 2008; Bourbonnais
et al, 2009 Bottjer et al, 2017), underscoring the significance of
diazotrophy in the WTSP. While diazotroph abundance was high
across the transect, Trichodesmium spp. nifH gene copies were highest
in the vicinity of the hydrothermal vents, which appear shallow enough
to meet the considerable Fe demands of primary productivity in
general (Tillictte et al, 2022), and N, fixation in particular, in the
region (Bonnet et al, 2023b), highlighting the sensitivity of N, fixation
to Fe availability. These results suggest that the significant N, fixation
inputs to the WTSP in the late spring, summer, and early autumn work
to lower the elevated upper thermodine 8"*Nyos 02 Originating from
dissimilatory NO;™ reduction in the oxygen deficient zones of the
Eastern Tropical South Pacific.
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