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Toward Workload-Based Adaptive Automation: The Utility of fNIRS for Measuring Load
in Multiple Resources in the Brain

Abstract. We investigate the utility of functional near-infrared spectroscopy (fNIRS)
for workload-based adaptive automation through the lens of multiple resource
theory. We focus on the criteria of unobtrusiveness, responsiveness, load sensitivity
(low vs high load), and load diagnosticity (differentiating types of load). We report
a large meta-review, in which we conclude that only a few studies were suitable for
evaluating sensitivity and diagnosticity in complex real-world tasks. While these
reveal that the fNIRS signal is adequately sensitive to gradations of load level
changes (sensitivity), the diagnosticity of fNIRS to different sources of cognitive
load remained uncertain. We manipulated mental load of a complex shape sorting
task via working memory load (WM) and visual perceptual load (VL), while a
secondary auditory task was present throughout. We measured the effect of these
manipulations at the group-level using conventional secondary and eyetracking
workload measures, as well as hemodynamic response in specific functional regions
in the brain, including regions involved in multi-tasking (MT), VL, WM, and
auditory load (AL). Our findings revealed that fNIRS is both sensitive and diagnostic
to load in complex tasks, with greater sensitivity revealed by deoxyhemoglobin than
oxyhemoglobin and the brain regions associated with diagnosticity align with

neuroscience literature on perceptual load, WM, and goal-directed multitasking.
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1 Introduction
The concept of adaptive automation (AA) has been discussed frequently in the fields of human-

computer interaction (HCI) and human factors, whereby some aspect of automation is changed in
real time, based on an inference of human cognitive state made by an automated agent (e.g., Al-
Hudhud, Algahtani, Albaity, Alsaeed, and Al-Turaiki (2019); Dorneich et al. (2015); Rouse
(1988); C. D. Wickens, Helton, Hollands, and Banbury (2022)). More specifically, workload-
based AA is implemented by using a human operator's cognitive load to define how the agent's
response should adapt. For example, if cognitive workload is high then the agent could automate

some of the tasks done manually, or at least increase the degree of automation of those tasks



(Onnasch, Wickens, Li, & Manzey, 2014). Attractive as this concept is, AA has proven
challenging to implement in practice, and it has been difficult to demonstrate its performance
benefits over non-adaptive automation (e.g., Sauer, Kao, and Wastell (2012); see C. D. Wickens
et al. (2022) for a summary). A myriad of neurophysiological techniques have been proposed to
measure workload objectively and in real time. These techniques require no deliberative
response from the human in order for the adaptive agent to form a workload estimate. Most
generally, these have been categorized under the purview of physiological or neuroergonomic
measures of mental workload (Brouwer, Zander, van Erp, Korteling, & Bronkhorst, 2015;
Fairclough, Ewing, Burns, & Kreplin, 2019; Goshvarpour & Goshvarpour, 2023; Saikia, Kuanar,
Borthakur, Vinti, & Tendhar, 2021; Shirzadi, Einalou, & Dadgostar, 2020) and include measures
such as the power in certain frequency bands (e.g., alpha, theta) as measured by EEG (Gevins &
Smith, 2003), pupil diameter (Kaber & Kim, 2011; Recarte & Nunes, 2003), or cardiac
parameters (Backs, Lenneman, Wetzel, & Green, 2003). Many of these are covered in depth by
H. Ayaz and Dehais (2018) and are summarized by C. D. Wickens et al. (2022).

Of particular interest in the current paper is functional near-infrared spectroscopy
(fNIRS), a non-invasive brain blood-flow measurement device that has seen a rapid increase in
use across a variety of research domains since its development in the 1990s (Hasan Ayaz et al.,
2022; Chance, Zhuang, Chu, Alter, & Lipton, 1993; von Lithmann et al., 2021; M. Yiicel et al.,
2021; M. A. Yiicel, Selb, Huppert, Franceschini, & Boas, 2017; H. Zhao & Cooper, 2018).
Aligned with multiple resource theory (Navon & Gopher, 1979; C. D. Wickens, 1980), we focus
on the utility of fNIRS for addressing four key measurement challenges that have hampered
workload-based AA accomplishments to date, unobtrusiveness of the sensors, sensitivity to
load levels, diagnosticity of qualitatively different types of load (e.g., visual vs cognitive vs
motor), whose importance, in the context of multiple resources within the brain, will be
discussed below, and temporal responsiveness suitable for real-time adaptations. These four
have been a hallmark of mental workload research for decades, first introduced by Moray (1979),
and subsequently formalized by C. Wickens (1984).

One of the largest challenges to the implementation of AA is to obtain an assessment of
high mental workload (or reduced residual capacity) in a behaviorally unobtrusive fashion (e.g.,
by avoiding imposing a secondary task, or the requirement that a subjective rating be given in

real time). We note the advantages of neurophysiological measures of mental workload in this



regard, in that they are passive, requiring neither vocal nor manual responses to provide
workload estimates. In addition to unobtrusiveness, a second criterion imposed on all workload
measures is that they are sufficiently sensitive. That is, if increases in task load are imposed of
differing magnitude, the measure in question will also reflect those proportional differences in a
reliable fashion. A third criterion also imposed on effective workload measures is that they be
diagnostic, in the sense of signaling not only the amount of mental workload, but also the nature
of that load, e.g., whether it is visual, auditory, imposed on working memory, or imposed on
executive functioning (C. Wickens & Tsang, 2014). This use is not to be confused with a
clinical diagnosis of a medical condition. The importance of diagnosticity in workload measures
emerged with the development of multiple resource theory (Navon & Gopher, 1979; C. D.
Wickens, 1980). This development provided the realization that different “fixes” for a workload-
overload situation should depend, to some extent, on which resources were overloaded, and not
just that “resources were overloaded.”

Temporal responsiveness, the fourth criterion, is particularly relevant for physiological
measures, and applies to any workload measure that is intended for adaptive automation. If
changes to automation are to be based on an assessment of momentary capabilities of the human
operator, and these capabilities are driven, in part, by dynamic fluctuations of the load imposed
by the task (either on all resources, or specific resources), then it is essential that a fully reliable
workload estimation be provided within a time interval less than the bandwidth (fluctuation rate)
of the task demands. If data collection, workload inference, and adapting automation takes too
long, then the environment and workload may have already changed, mitigating the need for that
adaptation. Alternatively, if an imperfect inference of workload is made within less time, then in
the case when the inference is wrong (and the degree of automation is lowered or raised, when it
should have been raised or lowered respectively), trust in the AA system will rapidly erode. This
is particularly relevant for AA, given that adaptive changes to interfaces made by intelligent
automation agents should be guided by knowledge of which resource is overloaded.

It is important to note that in this paper we do not examine AA directly. Instead, we evaluate
the promising characteristics of fNIRS that may allow it to serve as a vital component of
unobtrusive AA systems, by using group-level statistical analyses to demonstrate the utility of
fNIRS for measuring different types of cognitive load, which is a hallmark of multiple resource

theory. In particular, fNIRS has not been systematically evaluated in prior literature through our



four key criteria of unobtrusiveness, temporal responsiveness, sensitivity, and diagnosticity. This
paper therefore makes three contributions to the workload-based adaptive automation domain: 1)
We conducted a meta-review of the literature on fNIRS and workload in the HF and HCI realms,
and use this literature to explore temporal responsiveness, unobtrusiveness, sensitivity and
diagnosticity. 2) Based on the limited and inconclusive research to date on the topic of fNIRS as
a measurement modality for workload-based AA, we describe seven standards of empirical
studies (e.g., multiple brain regions measured, use of a complex task, multiple load levels
manipulated, use of additional workload measures as manipulation checks, suitable N,
investigation of both HbO and HbR) that are needed to advance the field of neuroergonomics
with respect to workload-based AA. We describe findings from the small handful of studies in
our meta-review that satisfy these standards. 3) We then designed an experiment to empirically
evaluate the utility of fNIRS for further examination of sensitivity and diagnosticity. Evaluating
the ability to measure different load levels (specificity) in different cognitive resources
(diagnosticity) is a crucial step toward realizing the goals of workload-driven AA.

The rest of this paper is organized as follows: First we describe the fNIRS signal in detail.
Next, we describe our meta-review and summarize the findings. We then describe our
experiment methodology (n = 43) and we present our results and interpretations. We interpret
our findings in light of the meta-review findings, comparing and contrasting our results with the

prior related work. Finally, we describe limitations of our work and avenues for future work.

2 Brain Measurement and Functional Near-Infrared Spectroscopy
When the brain reacts to a stimulus, neurons send electrical signals down the network of

interconnected neurons that are recruited to handle the stimuli. These electrical potentials can be
measured with EEG with excellent temporal responsiveness. Unfortunately, EEG has poor signal
to noise ratio and spatial resolution (Duan, Liu, & Lian, 2021; Kwon, Shin, & Im, 2020; Putze et
al., 2014). These challenges are partially overcome by technologies like fMRI and fNIRS, which
can measure the hemodynamic response of blood flow rushing to the area of these electrical
potentials to support neuronal activation. While the fMRI represents the gold standard for
spatially accurate measurement of the functional human brain, it is not practical for
measurements in naturalistic HCI settings. fMRI restricts movement within a scanner and is cost

prohibitive, while fNIRS is less expensive, less obtrusive, and offers information highly



correlated to fMRI’s BOLD signal (Cui, Bray, Bryant, Glover, & Reiss, 2011; Lai, Ho, Lim, &
Ho, 2017). Following increased neural activity is an increase in cerebral blood flow which
generally causes an increase in HbO and decrease in HbR (Logothetis, Pauls, Augath, Trinath,
and Oeltermann (2001), see Figure 1). fNIRS pulses near infrared light into the brain cortex (in
the wavelength range of 650nm — 900 nm) and it measures the blood-flow in the cerebral cortex
and the signal may be influenced by systemic physiological factors like respiration and Mayer
wave oscillations. Researchers have found that the HbO signal is more affected by these
systemic factors (hence contributing “noise” to a workload estimation) than is the HbR signal
(Dravida, Noah, Zhang, & Hirsch, 2017; Huppert, Franceschini, & Boas, 2009; Obrig et al.,
2000; Q. Zhang, Strangman, & Ganis, 2009; Yiheng Zhang, Brooks, Franceschini, & Boas,
2005). As shown in Figure 1, the hemodynamic response measured by fNIRS (AHbO and AHbR)
is characterized by quick steep peaks in HbO, then HbR, followed by eventual plateaus in both.
There are approximately two seconds between HbO and HbR peaks, both happening within
approximately eight seconds of stimulus onset (Huppert, Hoge, Diamond, Franceschini, & Boas,
2006). Thanks to rapid developments in biotechnology in recent years, newer fNIRS devices are
now portable, wireless, and they offer large numbers of channels across the outer cortex of the
brain, allowing for brain measurement in naturalistic settings. Several recent papers provide an
excellent overview of recent advances in fNIRS signal processing, analysis techniques, and
biotechnology domains (Hasan Ayaz et al., 2022; von Lithmann et al., 2021; M. A. Yiicel et al.,
2017; H. Zhao & Cooper, 2018).
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Figure 1: Typical time response of HbO and HbR after stimulus (such as completing a n-back task). HbO peaks between 6-8s
following the stimuli and HbR dips at the same time.

3 Meta-Review of fNIRS and Workload Research



A substantial body of work has investigated the use of this device in HCI literature. In this
section, we present a meta-review of this work. We included two digital libraries in our review:
The ACM digital library (for venues such as ACM Transactions on Computer Human Interaction
(TOCHI), ACM Special Interest Group on Computer Human Interaction (SIGCHI)), and
Frontiers digital library (for Journals such as Frontiers in Neuroscience, Frontiers in
Neuroergonomics). To collect relevant literature across these venues, we used the search terms
“NIRS” OR “NIRS” OR “functional near-infrared spectroscopy” OR “near-infra-red
spectroscopy” AND “workload”. Of the resulting articles, we reviewed the abstracts and
removed duplicate articles and we filtered the articles and only retained papers that manipulated
task difficulty level in some way with the goal of measuring workload (this included studies that
looked at rest/no load vs task on/load, as well as studies with more fine-tuned levels of load,
such as Oback, 1back, 2back tasks). This resulted in 54 published studies that examined fNIRS as
a cognitive workload measure (see Appendix 1). In the following sections, we analyze these
studies with respect to our key criteria of interest: unobtrusiveness, temporal responsiveness,

sensitivity, and diagnosticity, below.

3.1 Unobtrusiveness
Thanks to rapid developments in biotechnology in recent years, newer fNIRS devices are now

portable, wireless, and they offer large numbers of channels across the outer cortex of the brain
(Pinti et al., 2020). An unobtrusive device also provides the opportunity to gain access to data
while people perform tasks in naturalistic settings, and for longer continuous durations. The
‘device type’ column in Appendix 1 lists the device and the ‘fNIRS Set Up’ column lists the
number of channels and regions used in each of the studies in our meta-review. We found the
most common and median number of channels used was 16, and the mean was 26 channels.
There was a single study with two channels, and three studies with over 100 channels. Our
review also found the most common device was the OxyplexTS from ISS, followed by various
models from NIRx and Hitachi. Several fNIRS companies have developed wireless versions of
their technology including (but not limited to) NIRx, Artinis, and Obelab. Recent work has also
explored development of highly lightweight, wearable fNIRS systems that can be ergonomically
developed for specific operational settings such as team crisis management (Xu, Slagle,
Banerjee, Bracken, & Weinger, 2019). fNIRS probes have been further developed to measure
different depths within the brain (e.g., short-distance channels). Optodes with less distance



between them penetrate less into the brain, measuring only the superficial layers which in turn
can then be used as regressors in analyses such as the oft used general linear model approach
(Wyser et al., 2020). Taken together, these advancements in biotech continue to push the
envelope of innovation, resulting in highly unobtrusive fNIRS devices, and we expect this trend

to continue, with future fNIRS systems being developed to meet the needs of specific use cases.

3.2 Temporal Responsiveness

Based on our meta-review, time durations used for fNIRS analysis vary greatly (see ‘time
window’ column in Appendix 1), but the vast majority of papers analyze time windows of data
that are well over that deemed acceptable for adaptive automation, given the relatively high
bandwidth of task demand changes in most applied contexts. In fact, out of 54 papers identified
in Appendix 1, only eleven papers include analyses that look at window sizes of < 15 seconds
(i.e., for adaptive automation, capable of estimating workload fluctuations of 2 cycles/minute;
Girouard et al. (2009); Herff et al. (2014); L. Hirshfield et al. (2011); Nazeer et al. (2020)).
Researchers took a thorough look at time windows existing in the literature and reported that a
window size of 2-7s following a stimulus led to increased classification accuracy compared to
other time windows (R. Liu, Walker, Friedman, Arrington, & Solovey, 2021; Nazeer et al.,
2020). Similar bodies of research have proposed a 0-4s window for drowsiness detection using
fNIRS (Khan, Liu, Bhutta, & Hong, 2016). Another method for window detection with fNIRS is
a moving window method which explores all windows to find the best window for classification.
Researchers have used varying window lengths such as 3s (Shin et al., 2017) and 10s (Herff et
al., 2014). In recent work, researchers used moving windows of 5s, 10s, and 15s with 1s step size
along with their proposed individual-based time window selection (ITWS) algorithm for group-
level classification which considers how the best window may vary between participants (R. Liu
et al., 2021). They found a 5s window achieved the highest average accuracy (F1 score) and
applying their ITWS algorithm to the 5s window achieved the highest performance. These
findings throughout the literature suggest that optimal window sizes vary between participants
and tasks and suggest that a moving window method may result in the best classification
accuracy while using fNIRS. It is important here to realize also that the measure of
“performance” (e.g., classification accuracy of a high vs low workload state) has a very stringent

criterion in adaptive automation: for example, a classification accuracy of 80% would be



insufficient: a 20% error rate in classifying high vs. low workload could erode trust in the
system.

It is also important to emphasize that establishing the feasibility of temporal
responsiveness for adaptive automation must be based on individual participant data, rather than
group averaging effects. By averaging, the latter data will reveal a smoother and more reliable
response curve of the workload measure than any individual response. Yet, by definition,
adaptive automation must be based upon the responsiveness of the individual.

Because the underlying hemodynamic response is inherently slow, several researchers
have begun to integrate both EEG and fNIRS (Aghajani, Garbey, & Omurtag, 2017; L.-C. Chen,
Sandmann, Thorne, Herrmann, & Debener, 2015; Y. Chen et al., 2020; L. M. Hirshfield et al.,
2009 ; Pike, Maior, Porcheron, Sharples, & Wilson, 2014; Putze et al., 2014; Yujin Zhang &
Zhu, 2020), taking advantage of the better temporal resolution of EEG and better spatial
resolution of NIRS to better quantify the brain’s response to stimuli. The two modalities are
complementary in nature as EEG measures the electrical response and fNIRS measures the
metabolic response to brain activity (Putze et al., 2014).

Research on the temporal responsiveness of fNIRS has not reached a level of maturity
where we can confidently say that responsiveness needed for realistic AA is achievable with
fNIRS on its own. What we know about the hemodynamic responses measured by both fNIRS
and fMRI certainly suggests that responsiveness of fNIRS is slower than needed for realistic AA
systems, given their accuracy requirements. But the body of machine learning accomplishments
to date on different sized sliding windows, and work on hybrid fNIRS/EEG, suggests a path

forward for researchers to continue to explore.

3.3 Sensitivity and Diagnosticity (in Controlled Tasks)
Currently the literature on HbO/HbR sensitivity to measurement of workload is skewed heavily

toward studies using tightly controlled psychological tasks (e.g., stroop, n-back tasks) to
manipulate load. Furthermore, these studies are skewed toward evaluation of HbO over HbR,
with many cognitive load studies using only the HbO data in the analyses. Spotlighting HbO
makes sense in light of the strong response where oxygenated blood in the brain floods to regions
where neurons are firing, often referred to as “watering the entire garden for the sake of one
thirsty flower” (Malonek & Grinvald, 1996). This significant increase in HbO is due to a

metabolic increase resulting in a flush of oxygen that exceeds the metabolic needs of the



neurons, resulting in overcompensation (Malonek & Grinvald, 1996). This overly amplified HbO
response was helpful for early fNIRS studies, when devices had few channels, while exploring
the effect of simple tasks. Undoubtedly, the HbO signal gives a stronger response to neural
activation than HbR, and it has shown strong responses in studies with simple stimuli such as n-
back tasks (Hasan Ayaz et al., 2012) and Stroop tasks (L. Hirshfield et al., 2011). As described
next, when the task becomes more complex, the oversaturation of HbO can result in that measure
losing its diagnostic value.

Herff et al. (2014) evaluated both HbO and HbR during an increasingly difficult task
demanding working memory (the “n-back” task). In terms of sensitivity, both HbO and HbR had
steeper slopes during the 3-back test when compared to the 1- and 2- back tests. This suggests
that both HbO and HbR have similar sensitivities to WM in a controlled environment with a well
calibrated task; but other studies in more complex settings found different patterns in activation
between the two measures. One study by Dravida et al. (2017) found HbO a more reliable signal
than HbR), in response to increasing mental workload imposed by simple motor tasks. HbR
offers an additional benefit of being highly coordinated with fMRI Blood Oxygen Level
Dependent (BOLD) signals (Cui et al., 2011; Foy, Runham, & Chapman, 2016; Huppert et al.,
2006; Maclntosh, Klassen, & Menon, 2003; Schroeter, Kupka, Mildner, Uludag, & von Cramon,
2006). Additionally, the HbO signal has shown slow variable drift over a task while the HbR
signal did not (Unni, Thme, Jipp, & Rieger, 2017). Because HbO is more susceptible to drift and
systemic artifacts, HbR may be a more reliable measure of workload in complex tasks. Because
of the inconclusive results in literature, the current study aimed to compare the relative benefits
that HbR has in measuring workload as compared to the HbO signal. Another complication in
workload-focused fNIRS research to date that leads to inconclusive sensitivity results concerns
the correlation between task performance and cortical activation (Kimberly L Meidenbauer,
Choe, Cardenas-Iniguez, Huppert, & Berman, 2021). While some researchers have found
increasing brain activation with increasing task difficulty (linear effect), such as the n-back test
(Hasan Ayaz et al., 2012; Fishburn, Norr, Medvedev, & Vaidya, 2014; Kuruvilla, Green, Ayaz,
& Murman, 2013), others have found that increased task difficulty is not always associated with
an increase in HbO and decrease in HbR signals (non-linear effects) (Aghajani et al., 2017; Herff
et al., 2014; Mandrick, Chua, Causse, Perrey, & Dehais, 2016). This non-linear activation with

task difficulty suggests that participants may reach a maximum level of activation after difficult
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tasks (Mandrick et al., 2013), or participants may simply disengage from a task that is too
difficult (Causse, Chua, Peysakhovich, Del Campo, & Matton, 2017).

In terms of diagneosticity, only one paper, by Putze et al. (2014), took a close exploration
of diagnosticity of different types of load with fNIRS in a controlled task setting. Their goal was
to differentiate between visual and auditory load and participants were presented with movie and
audio clips, i.e., silent movies (no sound; VIS), audiobooks (no video; AUD), and movies with
both video and audio (MIX). They measured brain regions associated with visual and auditory
processing and found that visual load activated regions in the occipital cortex, while auditory
load did not engage that region. While the subject pool was relatively small (n = 12) and the
tasks were tightly controlled, these results show promise for fNIRS as a modality for

diagnosticity of workload.

3.4 Seven Standards for Experiments to Advance Workload-Based AA in Neuroergonomics
The meta-review papers described above involve simple and tightly controlled tasks such as n-

back tasks or presentation of video and audio clips to manipulate visual/auditory processing. To
further explore sensitivity and diagnosticity for workload-based AA, there is a need to consider
more complex study designs and task contexts. Thus, we filter the papers in Appendix 1 in light
of what we consider to be seven standards/features that we judge to be important to evaluate (as

seen in Table 1), as fNIRS is considered as a measurement tool for workload-based AA.

Table 1: Seven standards for experiments needed to evaluate fNIRS for workload-based AA.

(1) Participants should perform a complex task typical of real-world human-computer interactions.

(2) Workload should be experimentally manipulated in a controlled manner to impose greater or lesser cognitive demands (going
beyond just load on/off), in order to evaluate sensitivity of different load levels on a specific resource.

(3) Studies should focus on different specific resources within a multiple resource structure, hence examining diagnosticity

(4) The validity of experiment task manipulations should be assured by including additional workload measures, such as self-report
workload, response time, performance, and pupil diameter.

(5) To further examine the diagnosticity of the measures, researchers should measure multiple functional brain regions of interest
(ROIs), ideally mapped onto the multiple resources identified in the experimental design, in order to determine if specific ROIs are
differentially sensitive to the workload manipulation assumed to be reflected by increased activation there.

(6) Increased activation should be explored via the two different fNIRS measures of HbR and HbO.

(7) Finally, studies should have adequate statistical power, with a suitable N.

Of the studies examined we judged that NONE satisfied all 7 standards listed in Table 1.
Table 2 presents the set of studies reviewed (Appendix 1) that adhered to at least three of the
standards listed in Table 1, ordered by the number of standards adhered to. We did not rate

adherence to the power standard as this could not be represented as a dichotomous variable and

11



applying any particular N level as a criterion seemed to us to be quite arbitrary. As shown in the
list, most studies adhered to no more than 3 standards, and these are described in some detail in

the appendix. Only those adhering to 4 or more are described in detail below.

Table 2: Meta-review studies reviewed that adhered to atleast three of the seven standards, ordered by # of standards adhered to.
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3.5 Sensitivity and Diagnosticity (as assessed in studies that align with the seven standards)
Given the seven standards from Table 1, many papers were filtered from an in-depth review

because they either did not explicitly manipulate (feature 2) workload of an ongoing task
(instead comparing to a task performed with a resting state; Geng, Liu, Biswal, and Niu (2017)),
or compared two qualitatively different tasks (Putze et al., 2014) or had what we judged to be an
inadequate sample size (feature 7). Furthermore, many of the remaining studies were not
included in our in-depth review because the contributions of specific functional ROIs could not
be identified from the article text (feature 5). This included studies that focused on machine
learning classifiers of low vs. high workload (Asgher et al., 2019). In some cases, no convergent

workload measures were reported (feature 4); or the task was a very basic cognitive task like the
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N-back memory task (lacking complexity feature 1), even as such tasks may indeed reflect a
cognitive component of a complex real-world task. It is important to note that Afergan et al.
(2014) did report the success of {NIRS to operate in an adaptive automation system with a
complex real-world task (control of multiple unmanned vehicles), but they did not
experimentally manipulate (feature 2) the complexity of that primary task.

One paper by Hasan Ayaz et al. (2012) manipulated levels of workload during n-back, air
traffic control (ATC), and unmanned air vehicles (UAV) tasks. They found that oxygenation
increased within the prefrontal cortex (PFC) with increased task difficulty for the ATC
experiment. They also found that data communication requires less cognitive resources than
voice communications in the ATC simulation. During the UAV task, they found that expertise
tends to be associated with lower brain activity in the prefrontal area. These researchers used
oxygenation (HbO-HbR) as their fNIRS measure, rather than looking at the two values
separately. However, they did not perform ROI analysis and focused only on the PFC with 16
channels. Another paper by E. T. Solovey, Okerlund, Hoef, Davis, and Shaer (2015) investigated
how stereo vision and vibrotactile feedback affect user interaction during a spatial task with
interactive 3D displays with three levels of difficulty, although they did not systematically
compare different workload manipulations (feature 3). They observed difficulty effects on both
average HbO and HbR values and vibrotactile feedback on HbO only. While the number of
fNIRS channels were limited (10), they had a simulated “real-world task,” a large N (48),
integrated other subjective measures such as the NASA-TLX, and modified workload levels.
Another paper by (Peck, Yuksel, Ottley, Jacob, & Chang, 2013) manipulated the visual/cognitive
workload imposed as participants performed a data comparison task (demanding both visual
perception and working memory) on either bar graphs (presumed to be low workload) or pie
charts (presumed to require high workload). While finding no overall workload effects on
fNIRS, subjective ratings, or performance, they did observe individual differences such that
those who rated the pie graph to be more difficult, reflected this in the fNIRS measure (HbR)
when using the pie graph whereas those who rated the bar graph to be more difficult also showed
that same pattern (more oxygenation as reflected by HbR) when using the bar graph. The
investigators however did not compare ROIs, nor the two fNIRS measures (HbR and HbO), nor
did they include more than the single manipulation (graph type) of mental workload. Another

paper by R McKendrick et al. (2016) carried out an applied study in a very real-world context
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(natural navigation (feature 1)). They did not explicitly manipulate workload, but did compare
navigation supported by a map on either a head mounted display (HMD; which they
inappropriately labeled as AR) or on a hand-held display (HHD). The HHD smart phone, by
virtue of the smaller map image and the greater requirement for scanning, was assumed to
impose greater workload (feature 2), an assumption confirmed by convergent measure of
secondary task performance (feature 4). The fNIRS results, measured at left and right PFC ROIs
suggested greater sensitivity to this display manipulation of workload while performing an n-
back task (and more consistent effects across error and correct trials) for HbR than for HbO
[(feature 6) see their Figures 4 and 3 respectively]. Also, these effects appeared to be affected by
ROI (feature 5), being more sensitive and consistent for Left Lateral PFC (LLPFC) than for
Right Lateral PFC (RLPFC). 20 participants provided them with adequate statistical power
(feature 7).

Two aviation studies provide perhaps the closest match of features to the current
investigation. In the first study, Durantin, Gagnon, Tremblay, and Dehais (2014) employed a low
fidelity desk top flight simulator (feature 1) with workload manipulations (feature 2) along two
separate dimensions (feature 3): the dynamics and bandwidth the tracking task whereby the
participant followed a target aircraft (perceptual-motor load), and the cognitive complexity of the
rule dictating which aircraft to track (cognitive load). Convergent workload measures (feature 4)
of subjective ratings and heart rate variability were collected; but only one ROI was measured
and only for HbO. While both convergent measures validated the two workload manipulations,
the findings for fNIRS were somewhat puzzling. At low cognitive load, the increase in
perceptual/motor load did indeed produce increased oxygenation signaled by HbO; but at high
cognitive load the reverse effect of increasing perceptual/motor load was observed. The
investigators also reported a positive correlation (over participants) between HbO and the level
of performance observed, signaling, presumably, the greater cognitive effort required for a
participant to perform better. Statistical power was barely adequate (N=12; Feature 7).

The second study by Gateau, Ayaz, and Dehais (2018) involved aircraft piloting (feature
1). Manipulations of workload (feature 2) were imposed along two separate dimensions (feature
3): the working memory demands of air traffic control (ATC) communications (cognitive load)
and whether fNIRS was recorded in a flight simulator or in the actual aircraft during flight, with

working memory manipulated via flight parameter instructions given to participants. The
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convergent measure of the increasing multi-tasking workload from simulator to flight is based on
task analysis, and that from increasing ATC communications load was validated by embedded
secondary task performance (communications errors; feature 4). Four prefrontal ROIs (feature 5)
were assessed for both HbO and HbR (feature 6). Their data signaled a strong positive effect of
communications load on HbO. While the increasing load from simulator to the aircraft had no
significant main effect on HbO, the two workload manipulations did interact, in conjunction with
ROI to suggest that the increased cognitive load had a much greater effect on HbO in flight than
on the simulator; however, this enhanced effect was only observed at one ROI which appears,
from their figure to be the left medial prefrontal cortex, perhaps an ROI related specifically to
multi-tasking capabilities. The investigators collected data on HbR but did not report it; only
stating that HbR did not show the workload X ROI interaction described above, and thereby
suggesting HbR to be less sensitive. Statistical power was adequate (N=28; feature 7), but this
concern was mitigated using trained pilots as participants.

The research conducted to date suggests a complex interplay between task complexity,
practice effects, and human performance, which all have an effect on fNIRS measures of HbO
and HbR taken from the outer cortex of the brain. The literature outlined above suggests that
assessing the utility of fNIRS for sensitivity measurements of workload is a complex problem,
with more empirical work needed. In terms of diagnosticity of the fNIRS signal in response to
different types of load (auditory, visual, memory, etc.), very little research has been performed.

Therefore, more work is needed to evaluate the diagnosticity of fNIRS for its suitability for AA.

4 Methods
Noting the lack of research from the meta-review addressing the sensitivity and diagnosticity of

fNIRS, we designed an experiment to address the following three research questions:

RQI: Is fNIRS sensitive to Working memory (WM) manipulations (high/low) in a complex task
environment?

RQ2: Is fNIRS sensitive to Visual Load (VL) manipulations (high/low) in a complex task
environment?

RQ3: Is fNIRS diagnostic to the type of load, specifically when considering VL versus WM?

RQ4: Are HbO and HbBR differentially sensitive to (and therefore diagnostic of) these two different
workload manipulations?
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To address these questions, we designed a testbed environment to enable us to explore sensitivity
and diagnosticity in a study that checked off the seven standards in Table 1, where workload was
(2) experimentally manipulated in a controlled manner to impose greater or lesser cognitive
demands on (3) different specific resources within a multiple resource structure, and the
validity of our manipulations was assured by (4) examining additional workload measures, to
assure the sensitivity of our measure to demand manipulations that were also reflected in those
other subjective, secondary task, and physiological measures. Simple measures of performance
on the task whose workload is manipulated are inadequate for assessing mental workload (C.
Wickens & Tsang, 2014). Hence, we validate our workload manipulations against three
conventional and well-established workload measures: secondary task performance, subjective
ratings and the physiological measure of pupil diameter. To examine the diagnosticity of our
measure, we clearly identified (5) multiple functional regions of interest (ROIs), to determine
if different ROIs were differentially sensitive to the workload manipulation assumed to be
reflected by increased activation there. Within each ROI we also explicitly (6) compared the
two different fNIRS measures, HbR and HbO. Finally, our study had a large amount of (7)

statistical power, given its high N.

4.1 Testbed
The task is a shape sorting task (Fig 2) that involves sitting in front of a large monitor while

wearing headphones. The task was based on a previous task used by our team that facilitates
clean manipulation of multiple types of workload while aligning with dimensions of task
domains in which we foresee adaptive automation being employed (N. Tran et al., 2021).
Specifically, in other lines of our work we have been motivated by future scenarios in which
robotic teammates collaborating with humans in mixed reality environments will adaptively
select between communication strategies based on level and type of cognitive load. Inspired by
this vision, we implemented a mixed reality interaction task inspired by pick-and-place tasks
common to current industrial human-robot collaborative environments. This mixed reality
domain was then used to prototype workload manipulations that leveraged the structure of the
mixed reality task environment. Finally, the overall structure of this mixed reality testbed was

used to inform the design of the 2D testbed used in this work, which aligned with the domain-
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based design objectives of the mixed reality testbed while avoiding hardware constraints and

sources of noise that were not necessary for the purposes of the present experiment.

YOUR CALLSIGN: BRAVO QI

YOUR CALLSIGN: BRAVO

Target shape:

f) “Attention, Bravo. Please place any shape into bin number 8"

B) “Attention, Delta. Please place any shape into bin number 2.”

Figure 2: The shape sorting testbed. The a) instruction screen directs the participant on the primary task target shape and target
bins. Participants then sort the correct target shape out of a list of possible shapes (b) into the correct numbered bins (c).
Participants are assigned a callsign (d) and a secondary auditory task is presented through the right side of the headphones, where
the information can either be ignored (g) or where it must be attended to (f). Each task session lasts 45 seconds with time being
counted down (e), before filling out surveys and beginning a new task, with new updated instructions.

Primary Task. At the beginning of each task, the participants are shown an instructions screen
(Fig 2a). They are instructed to search for a specific target colored shape (e.g., green circle) and
to place that shape into bins with specific numbers (e.g. bins 3,4,5,7). When participants have
read the instructions (Fig 2a) they click on a ‘begin task’ button. At that time, the instructions
screen is replaced by the task screen (Fig 2b-e). When the task begins, the participant has 45
seconds to identify every target shape and to sort it into a valid bin, while the shapes are
continually refreshed (swapping one shape out for another) every 4 seconds. To ensure target
shapes appear often, a timer of 6 seconds is also included in the task. If the target shape is not
present on the screen when the time elapsed, the target shape is swapped for one of the distractor
shapes during the next refresh cycle. The shapes and target bins are shown in Fig 2b and Ic,
respectively. While the participants complete the tasks, some bins are randomly blacked out for a
few seconds at a time, so that shapes cannot be placed into them (2c). Shapes are sporadically
blacked out in such a way that there is always at least one bin accessible to the participant for
placement into a target bin. For example, if the target bins are 5, 4, 3, 7 (Fig. 2a) there will never
be a time when all four of those bins will be inaccessible. This is done to ensure that participants
keep all bin numbers in working memory throughout each task. A timer on the screen (Fig 2¢)

counts down from 45 seconds while the participants sort the shapes.
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Secondary Auditory Task. While participants do the continuous task and search for their
specific target shape, they are simultaneously monitoring auditory information being played
through headphones. Each participant is assigned a callsign (Fig 2d), which is Bravo. Two types
of auditory information are randomly played through the headphones on average every 15
seconds. Distractor audio information is played at times (Fig 2g) when the callsign does not
match the participant’s callsign. They are told that they can ignore this information. A target
auditory task (Fig 2f) uses the participant’s actual callsign of Bravo, and a request is made to the
participant to place an additional shape (of a different shape/color than the primary task target
shape) into any bin. When this target callsign of Bravo is used, the participant must quickly sort

the secondary task shape, and then return to the primary task.

Working Memory and Visual Perceptual Load Manipulations

Working Memory Load (WM) is either low or high, depending on the number of bins needing to
be remembered. Low WM has 2 bins, while high WM has 4 bins to be memorized. Visual
Perceptual Load (VL) is either low or high, depending on the similarity metric between the target
shape and the rest of the shapes available at the top of the screen (see Lavie’s foundational work
on visual perceptual load for more detail; Lavie (1995); Lavie, Hirst, de Fockert, and Viding
(2004)). High Similarity (high VL) is defined by a sort distractor object sharing one property
with the sort target object in terms of their shape or color. For example, a green circle and a
green square are considered similar as they both share the same color feature. A red circle and a
blue square are considered dissimilar as they share neither of the color or shape features. There
are a total of nine different sort objects defined by the combination of Color = [red, green, blue]
and Shape = [circle, square, triangle]. Once a target shape is selected, the distractors are selected
from a subset of that total, which matches the VL for that condition, resulting in four distractor
objects for each type of perceptual load. Figure 3 shows an example of low VL (top) and high
VL (bottom). In low similarity (Low VL) the target shares no features in common with the

distractors.
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YOUR CALLSIGN: BRAVO

YOUR CALLSIGN: BRAVO

'YOUR CALLSIGN: BRAVO
Reminder

Figure 3: Left (instructions before a task begins). Top right: An example of a search task where the VL is low because
target and distractors share no features in common. Bottom right: an example of a search task where the VL is high: 1
feature is shared. See (Nhan Tran et al., 2021) for an example of this task implemented in a mixed reality context.

4.2 Experiment Protocol and Procedures (IRB Protocol #19-0436)
In its simplest form, the control task in the testbed involved sorting of shapes in such a way that

it elicited low levels of WM, VL, and AL (L"™L"'L%), which is our control task. From there, the
testbed was configured to experimentally manipulate WM and VL between low and high levels,
while keeping AL low. Thus, our experiment had four conditions where load levels of WM and

VL were modulated between low and high, while AL was maintained at a continuous low level:

LYY L4 (control)

LYmHY! 4L (VL modulated to high)

HY™ LY AL (WM modulated to high)

HY"H! L4 (Both WM and VL modulated to high)

We note that since the auditory load (AL) secondary task was always set to a low load level
throughout all conditions, we omit that redundant item in our results section (e.g., LY™LY! L4
becomes LY™LY"). Equipped with high-density fNIRS, we identified four regions of interest
(ROIs) to measure in the brain, enabling us to specify the type of load experienced by our
participants (diagnosticity). These four ROIs included brain regions associated with WM, VL,
and AL, as well as a critical multitasking (MT) region that becomes engaged during complex
multitasking scenarios, where users coordinate their short- and long-term goals and intentions
with the immediate constraints of the task environment (Tomasi, Chang, Caparelli, & Ernst,

2007).
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43 participants completed this experiment (51% female, median age = 23 years). All
participants were recruited from a population consisting of staff, faculty, and students at a large
university in the Western United States. After providing informed consent, participants were
equipped with the neurophysiological sensors (described below), and earbud headphones were
placed into each ear to deliver the auditory secondary task. Next all participants went through a
tutorial to learn how to complete the task. They did an example task and had the opportunity to
ask questions from the researcher before beginning the experiment. There were four conditions
in the experiment, with each combination of WM (high/low) x VL (high/low). Participants then
completed 24 continuous 45-second-long tasks, with the four conditions described above
presented in a randomized block design order, while the AL secondary task continued at a low
load level, but continuous pace, throughout the experiment. After each trial, they completed the
mental demand item from the NASA-TLX, workload rating scale (Hart & Staveland, 1988).

As shown in Figure 4 (left), participants were equipped with a desk-mounted eye tracker
(Tobii 4c), and functional near-infrared spectroscopy (NIRx Sport 2) with a custom montage
designed to measure regions of interest (ROIs). The montage included 42 measurement channels,
as shown in Figure 7. We selected the montage to cover regions of the brain including the

frontal, visual, and auditory cortical regions that have been implicated in prior cognitive load

research on working memory, visual load, and auditory working memory load (Crottaz-Herbette,
Anagnoson, & Menon, 2004; Muller-Plath, 2008; Putze et al., 2014; Suh et al., 2019; Tomasi et
al., 2007).

Figure 4: Sensor set-up included a Tobii 4¢ eye tracker and a NIRx Sport2 fNIRS device.
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5 Results and Interpretation

5.1 Conventional Workload Measures
Of the 43 participants in the study, data from one participant were discarded because the

behavioral data suggested that they did not participate in the task (e.g., they did not move shapes
into bins at all). Thus, there were 42 participants used in the resulting analysis. Our conventional
workload measures include self-report mental workload, secondary task accuracy and response
time, and measures from eye tracking to further assess workload.

The response time (RT) data were recorded for each participants’ response to a task. In
both the primary and secondary tasks, the testbed recorded the number of milliseconds between
when a target shape was presented on the screen (as was the case in the primary task) or when a
target audio prompt was delivered (as was the case in the secondary task) to when the participant
selected the target shape for sorting. Average sorting accuracies were calculated for both the
primary and secondary tasks as the number of correct sorts divided by the number of total
possible sorts. The number of total possible sorts is the sum of the number of correct sorts,
incorrect sorts, and missed sorts. Because the RT data were skewed, prior to analysis the data
were transformed via the inverse transform.

The results of the primary independent variables were analyzed using a 2 x 2 ANOVA,
for each dependent measure. Specifically, the independent variables were (load level high|low) x
(load type WM|VL). Results of primary task performance are shown in Figure 5. The left side of
Figure 5 shows the data for primary task accuracy. The ANOVA revealed a significant increase
in accuracy associated with increasing WM (F=17.075; df = 1; p<.001; eta squared = 0.016), no
effect of VL (F=0.066), and a non-significant interaction between the two sources of load
(F=3.774; p=.0523 eta squared = 0.003), seen in Figure 5, whereby the increasing accuracy with
higher WM was attenuated at higher levels of VL.
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Figure S: Left: Effect of WM and VL on primary task accuracy. Right: The effects of WM and VL on primary task RT. The
error bars represent the unbiased one standard error as imple
mented by the Pandas sem function.

The right side of Figure 5 depicts primary task RT, where the ANOVA revealed highly
significant increases in RT associated with both increasing WM (F=8.224, P<.01, eta squared =
0.013) and VL (F=25.294, p<.001, eta squared = 0.042). The former effect, coupled with the
data in Figure 6 suggests that the influence of WM produced a speed accuracy tradeoff. Higher
WM produced more accurate responding (Fig 5, left) but at the cost of considerably slower

processing (Fig 5, right). There was no interaction between the two variables.

Mental Demand WM X VL Secondary Task Accuracy WM X VL
10.0{ =& VLHigh —$- VL High
| == VLLlow 0.45 4 — VL Low
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Mental Demand

8.5 1

Secondary Task Accuracy

8.01

Low High Low High
WM Load WM Load

Figure 6. Left: Effects of WM and VL on self-report mental demand. Right: Effects of WM and VL on secondary task accuracy.
The error bars represent the unbiased one standard error as implemented by Pandas ‘sem’ function.

Figure 6 depicts the effects of WM and VL on subjective mental workload as assessed by the
mental demand sub-scale from the NASA-TLX (Hart & Staveland, 1988). There was a
significant increase in mental load imposed by increases in both WM (F=36.868, p<0.01, eta

squared = 0.034) and of VL (F=4.183, p<.05, eta squared = 0.003) with no interaction. The right
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side of Figure 6 shows the effect of VL and WM on secondary task accuracy. There was a
significant decrease in secondary task accuracy associated with increasing WM (F =78.65,
p<0.01, eta squared = 0.069). The significant interaction of WM with VL (F=5.705, p<0.05, eta
squared = 0.005) signaled that the accuracy decrease imposed by WM was amplified at high
levels of VL. There was no main effect of VL. The only effect observed on secondary task RT
was the slowing caused by increasing WM load (F = 7.424, p<0.01, eta squared = 0.0208).

The eye tracking analysis was carried out on the data of a 36-participant subset of the 42
described above. Unfortunately, the eyetracking acquisition computer did not function properly
during six data collections, resulting in data loss of six participants. The eye tracking features
were generated using Tobii Pro Lab software. For each sample, Pro Lab reports the pupil
diameter for each eye, the mental workload measure of interest in the current analysis. A mean
value was computed of the samples corresponding to the time the task was undergone to obtain a
value for each eye.

The analysis revealed that both left and right pupil diameter increased with increased
WM load (F=9.325, p<0.01, eta squared = 0.0136) and left pupil (F=9.459, p<0.01, eta squared =
0.013). This aligns with prior eye tracking research which has repeatedly found pupil diameter to
be a reliable measure of workload (Duchowski et al., 2018; Lohani, Payne, & Strayer, 2019),
especially in visual attention tasks. The VL manipulation had no effect on pupil diameter.

In summary, the results from the conventional workload measures described above are
conclusive: The degrading effects of increasing both WM and VL were quite pronounced; on
response time of the primary task, and three conventional measures of workload (secondary task,
subjective ratings and, for WM load, pupil diameter (C. Wickens & Tsang, 2014)). Furthermore,
in general, when effect sizes are compared between the two manipulations, there was a
considerably greater load imposed by higher WM than by the higher VL. Indeed, increasing VL
had no effect on either pupil diameter or performance of the auditory secondary task. The only
puzzling and unexpected effect in these data was the actual increase in primary task performance
accuracy associated with increasing WM (Figure 5 left). We interpret this effect in terms of a
strategic speed-accuracy tradeoff (C. D. Wickens et al., 2022) in which participants,
encountering the need to retain more information in working memory when load is higher, are
increasingly cautious and take significantly more time to carefully rehearse the item.

Consequently, they are substantially slowed in their response, but accuracy is improved. The
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mental workload imposed by this greater rehearsal processing is clearly expressed in the three
conventional workload measures: secondary task RT, NASA-TLX, and pupil diameter. The
dissociation between primary task performance and workload measures has been frequently

observed (Yeh & Wickens, 1988).

5.2 fNIRS Workload Measures

In this section we look at the main effects of our independent variables, increasing visual and
working memory load), as we did for the conventional measures. We look at these main effects
on the fNIRS data, using two common techniques for defining regions of interest (ROIs). These

are average-across channels ROI analysis and channel-specific ROI analysis, as detailed next.

Preprocessing Pipeline. All {NIRS preprocessing was conducted in NIRS AnalyzIR Toolbox in
MATLAB (H. Santosa, Zhai, Fishburn, & Huppert, 2018). First, the raw voltages were down
sampled to 4Hz and converted to optical density. The Modified Beer Lambert Law (Jacques,
2013; Strangman, Franceschini, & Boas, 2003) was then applied to convert optical density
signals to oxygenated and deoxygenated hemoglobin concentrations using a canonical HRF basis
set, which has been shown as the best performing basis set for longer task durations (Hendrik
Santosa, Fishburn, Zhai, & Huppert, 2019). We then applied motion correction to the
hemoglobin signals using the NIRS Toolbox’s autoregressor function, which adds the NIRx
accelerometer data as auxiliary data into the regressors in the generalized linear model (GLM)
function. The GLM was applied with the default parameters, using an autoregressive, iteratively
reweighted least-squares model (AR-IRLS) with pre-whitening to correct for serially correlated
errors and motion present in the fNIRS signal (J. W. Barker, Aarabi, & Huppert, 2013).
Following preprocessing, we took the resulting AHbO and AHbR timeseries data and
calculated subject level (first-level) statistics using a mixed-effects model (Kimberly L.
Meidenbauer, Choe, Cardenas-Iniguez, Huppert, & Berman, 2020). The resulting first-level
model contains the subject level regression coefficients as well as their corresponding error-
covariance matrices per subject. We then used the subject level results to conduct t-tests at the

group level (Kimberly L. Meidenbauer et al., 2020).
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5.2.1 Sensitivity and Diagnosticity via Average-Across Channels ROI Analyses
Results from this analysis were then used for group-level contrasts between individual load

levels (IVs) within specific pre-defined ROIs. We spatially register our fNIRS channels (C.
Holmes et al., 1998; H. Santosa et al., 2018) onto anatomical brain regions in LONI space, with
accompanying Brodmann Area (BA) labels (Jacobs, 2011; Shattuck et al., 2008). We used that
information to identify four functional ROIs: WM, VL, AL, and multitasking based on the
following literature: Tomasi et al. (2007) used fMRI to measure brain activation patterns during
two sets of tasks with graded levels of cognitive load; including verbal working memory (WM)
and visual attention (VA) tasks. They specifically outlined networks where WM and VA were
activated during these tasks. Based on their ROI analysis, these researchers found that for both
tasks, increased task difficulty resulted in increased BOLD responses in the parietal, occipital,
and fusiform gyri, which relates to sensitivity. They also found that increased load increased the
BOLD response in the inferior, medial, and middle frontal gyrus (BA 9) more strongly during
WM tasks than VA tasks. Finally, they found only two regions to be activated uniquely to the
VA task: the postcentral gyrus and superior occipital gyrus, which relates to diagnosticity. This
information was used to define the VL and WM regions shown in Figure 7.

We expected to see interaction effects between our WM and VL condition combinations,
so we also identified a multitasking ROI, where our goal was to focus on functional brain regions
responsible for goal-directed multitasking. Since multitasking has been found to engage
Brodmann Area 10 in the frontopolar region, we used that region to define our multi-tasking ROI
(Mansouri, Koechlin, Rosa, & Buckley, 2017). Tomasi et al. (2007) found that increased WM
caused greater activation in a frontoparietal network and was more pronounced for WM than VA
tasks. Nevertheless, both types of tasks caused activation of this interconnected network. The
frontoparietal network has previously been closely tied to the control of working memory
(Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015). This is further evidence that the MT ROI
has been implicated in both WM and VA tasks but shows more significant results for WM tasks.
Lastly, we defined an Auditory Load (AL) region of interest (Figure 7), based on prior fMRI
work on auditory perceptual load, to measure the effects of the WM and VL load manipulations

on the auditory processing of the secondary auditory task.
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Figure 7: Regions of interest overlaid over the 42-channel fNIRS montage. Red circles represent light sources, blue circles
represent light detectors. Red, green, blue, and purple lines represent a channel of measured data that falls into the WM, VL, AL,
and MT ROlIs, respectively. In the schematic picture, Nz represents the nasion, Iz represents the inion, LPA and RPA represent
the left and right pre-auricular regions, respectively (used in standard EEG 10-20 landmarking).

We then ran contrast statements that corresponded to WM main effects (high WM — low WM)
and VL main effects (high VL — low VL). Furthermore, for the HbO and HbR data, we
performed ROI analysis using the ROI average function in NIRS toolbox, which averages the
contrast statistics over the specified ROIs (more on this in H. Santosa et al. (2018); Zhai,
Santosa, and Huppert (2020)). The result is a set of beta (8) values and t-values for each

contrast. B-values are the resulting coefficients from the GLM and tell how well the data fit the
expected hemodynamic response (canonical, in this case), which is a rise in HbO and decrease in
HbR. While B-values can be difficult to interpret on their own, they can be compared statistically
through t-tests. The resulting t-values represent the results from the above two contrasts between
conditions. Table 3 presents the effect sizes of the workload manipulations on fNIRS, showing
HbO on the left half of the table and HbR on the right half and Figure 8 overlays the values from
Table 3 over our ROIs on the brain. Since we employed an auditory secondary task to assess
workload, we were also interested in the sensitivity of the auditory ROI (AL ROI) to the
manipulations of both visual and WM, as will be discussed below.

Table 3: HbO and HbR B-values and T-values for the main effects (IV stands for independent variable) of the WM and VL
manipulations, averaged across each ROI (bold face with a * denotes significance (p<0.05)). The contrasts run are (H¥™LY! +

H¥"HY) — (L¥=LV + L¥™H"!) for the WM load main effect (first row for each variable: B or T) and (L¥™H"! + HY™H") — (L¥™L"!
+ H"™L"Y) for the VL main effect (second row of each variable).

HbO HbR

WM WM
] ROI VL ROI MT ROI AL ROI ] ROI VLROI | MT ROI AL ROI
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WMIV -0.65 2.59 -1.56 -0.29 WMIV -3.61* | -2.60* -2.82* -1.01

VL IV -4.26* 3.70% -5.93* -0.78 VL IV -3.52% | -2.08* -1.46 0.12
WM WM
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Figure 8: T-values from Table 3, overlayed over the fNIRS ROIs of multitasking, WM, VL, and AL. For HbO (left side) the red
spectrum indicates increased activation, with darker red indicating more increased activation. For HbR (right) blue suggests more
activation at that region, with darker blue indicating higher levels of activation.

As shown in Table 3, greater oxygenation is indicated, in the left half of the table, by more positive
values for HbO and, in the right half, by more negative values for HbR. Within each half, the effect
size of the manipulation is depicted in two different, but highly correlated measures, 3 (upper half
of each half) describes the size of the difference between low and high workload by the
corresponding difference in B3, as derived from the toolbox. T (lower half of each half) describes
the statistical significance of this effect as assessed by t-tests, also provided by the toolbox. These
effects can be considered as equivalent to main effects of each of the two manipulations of
workload (WM and VL). Within each of these 4 sub-tables are the critical effects of manipulating

the two kinds of mental load (the two rows) on the activation within the four ROIs (four columns).
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Viewing Table 3, we find support in the affirmative for RQ/ and RQ2. fNIRS is indeed

sensitive to WM levels (RQ1) as well as to VL levels (RQ2) in complex task environments. The

boldfaced values (signaling significance) are high, and frequently occurring. Specifically, we note:

1.

Overall, HbR (right side) appears to be more sensitive than HbO (left side) in that the values
are both generally higher and more likely to be significant for HbR and show a consistent
sign (negative) for the direction of the effect (increase workload) across all 8 cells, whereas
HbO does not show such consistency, addressing RQ4.

Examining the pattern of effects within HbR in particular (right side), the effect of WM is
considerably more powerful than is the effect of VL, whether assessed by T- or by B-values.
The difference in power between the two manipulations is consistent with the difference in
effect size for the more traditional measures of workload reported above by secondary task
performance, subjective workload, and pupil diameter. It is noteworthy that this
disproportionately higher influence of WM on HbR was particularly evident in the multi-
tasking (MT) ROI where both the T-value and the B-value value are approximately twice
as big for the manipulation of WM as for that of VL. This aligns with the findings of
(Tomasi et al., 2007; Wallis et al., 2015) who found that WM is closely tied to the
frontoparietal attention network, which encompasses regions in both of our WM and MT
ROIs.

The WM ROI (column 1) was generally more sensitive to workload manipulations than
was the VL ROI and the MT ROI. But the VL ROI is nevertheless somewhat sensitive to
both manipulations. The same cannot be said for the MT ROI, which, within HbR has a

relatively low and non-significant sensitivity to VL.

We see little support for RQ3, that fNIRS data viewed through our four ROIs as shown in Table 3

and Figure 8, is not diagnostic to the type of load, but the results are not straightforward. More

specifically, viewing Table 3, the following conclusions emerge with respect to diagnosticity:

4. Regarding diagnosticity, in HbR we do net see the sort of specificity that would have been

reflected in an interaction, whereby the VL ROI was more affected by VL than WM, and
WM ROI was more affected by WM than VL. Instead, as described above, our

manipulation of WM is consistently more powerful than that of VL, and the working
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memory ROI is consistently more sensitive than the VL ROI, whether B-value differences,

or their significance in T-values is considered.

In an effort to quantify the differential diagnosticity of fNIRS in response to the two workload
manipulations imposed, we asked: if a workload researcher were examining an fNIRS response,
with no prior knowledge of the resources imposed by a manipulation, how accurately could she
assess that the workload increase was imposed on one resource vs the other? That is, we make a
differential diagnosis. To do this, in a quasi-Bayesian approach we approximate odds (a
probability) by the strength of a signal, in T that represents the magnitude of a workload increase.

In particular, we examine the ratios of T-values as follows:
[WMROL = YVLRON  gjyen that WM was increased
to the

[WMROL + YVLRON - gjyen that VL was increased

That is, the ratio of two odds ratios. When this ratio is 1.0, we argue that the hemodynamic
values reflected by the two ROIs in question are undiagnostic. In calculating diagnosticity in this
manner, we have chosen to use HbR, because examination of Table 3 reveals that it is the more
sensitive measure of the two. Using the values in Table 3, we calculate that this diagnosticity

ratio as:

5.07 . 491 _ 1.07 _ 082

471 376 1.30
This ratio, being close to 1.0 and certainly not substantially greater than 1.0, suggests that the
global ROI measures, averaging as they do over several separate channels are not diagnostic of
the source of workload. In interpreting this negative result, we note that Figure 8 reveals that
several separate channels are involved in each ROI, and hence, a better reading of diagnosticity

may come from examining the individual channel response as we do in the following section.

5.2.2  Sensitivity and Diagnosticity via Channel-Specific ROI Analyses

In the last section, we discussed the average-across channel ROI analysis, in which the responses
of individual channels in our four pre-defined ROIs were averaged together for a ‘big picture’

analysis. From these results, we find our ROIs to indeed be quite sensitive to manipulated
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workload, but they are not diagnostic to the type of load. To identify important differences
within the individual channels, in this section we discuss the Channel-Specific ROI analysis in
which individual channels were evaluated for statistical differences. Channel-wise statistics can
be used to identify significant activation changes in more fine-grained functional ROIs than can
be done with averaging across multiple channels. Because the channel-wise statistical
comparisons have a larger chance of generating Type II errors, we use g-values rather than p-
values to set our threshold of significance at .05. q-values are based on Benjamini-Hochberg
false-discovery rate-corrected p-values (Benjamini & Hochberg, 1995). Each contrast in this
section includes tables of the results that were significant (q<0.05) and were in the direction that
corresponds to increased brain activation (positive values for HbO and negative values for HbR).
We also include the corresponding LONI region and Brodmann Area that each channel covers.
To evaluate the main effects, we ran contrast statements that corresponded to WM main effects
(high WM — low WM) and VL main effects (high VL — low VL). Results are shown in Figure 9,
with the full statistical results available in Appendix 2.
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Figure 9: Working Memory Main Effects (HYM — LWM) and VL Main Effects HYL — LVL> overlaid over a brain, with nasion (Nz)
and inion (Iz) locations added for reference. Only significant channels (¢ < 0.05) are shown. For HbO, positive z-values (red)
correspond to relatively larger activity for the first term in the contrast, and negative #-values (blue) correspond to larger activity
for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region. Green * indicates
regions that are mutually exclusive (shown by one but not the other) between the WM and VL main effects tests.

In Figure 9, we note that there are six distinct channels (covering five distinct anatomical
regions) that are uniquely activated (e.g., increased HbO or decreased HbR) for either the WM
main effect (top of Fig. 9), or for the VL main effect (bottom of Fig. 9), but not for both. These

regions are denoted with a green * in Figure 9, showing the location on the brain of each unique
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region, and they are listed in Table 4. For the full set of statistical results that accompany Figure

9, please see Appendix 2.

Table 4: Summary of results from Table 3, with only unique significant activation shown.
Mutually exclusive regions activated for Working Memory main § Mutually exclusive regions activated for VL main
effects effects

L superior occipital gyrus L angular gyrus (x2 channels)

L inferior frontal gyrus -
R precentral gyrus -

HbR R angular gyrus

To further evaluate the effects of load type on individual channels, we also wanted to directly
contrast the fNIRS data when participants experienced just high WM, from times when they
experienced just high VL. To do this we performed the following contrasts: (WMMghyLlew) -
(VLhghWMO™) and its inverse (VLME"WMOW) - (WMPMEMVLIOW) Results are shown in Figure 10,
with full statistical output in Appendix 2.

Viewing the results shown in Figures 9, 10 and Table 3, we find strong support in the
affirmative for RQI and RQ2. fNIRS is indeed sensitive to WM levels (RQ1) as well as to VL
levels (RQ2). Although these findings were already found in the four-region ROI analysis
presented previously, the channel-wise results shown here, provide critical support in the
affirmative for RQ3, that our fNIRS channel-wise results are indeed diagnostic to load

levels in our complex task. More specifically, we note that:

From the data presented in Figure 9 and Table 4, we can conclude that:

1. Single-channel measures were diagnostic: one HbO channel (left superior occipital gyrus)
and three HbR channels (left inferior frontal gyrus, right precentral gyrus, right angular
gyrus) identified WM but not VL; activation of two HbO channels (both over left angular
gyrus) signaled VL but not WM. These channels contribute to diagnosticity by
differentiating markers of WM from markers of VL.

2. It is notable that the left [IFG was uniquely activated for the WM main effect, but not for

VL. The left IFG is part of the multitasking ROI that was used in our average-across

31



channels ROI analysis above (shown in our fNIRS montage in Figure 7). Working

memory and multitasking share resources in the brain (A. Baddeley, 1996; A. Baddeley
& Della Sala, 1996; Smith & Jonides, 1999), which is likely why we see this increase in

the left IFG as more multitasking is needed to support task control when WM increases.

Looking at Figure 9, we see further support of diagnosticity between WM and VL. More

specifically:
1.

Looking at the differences in HbO and HbR in Figure 10 (top), our contrast WM"eh-

VL"gh yields HbO deactivation in the frontal regions and significant activation in the

parietal gyrus, and HbR shows activation of the left frontal gyrus and left occipital gyrus.

In Figure 10 (bottom), we see a similar trend between HbO and HbR in the inverse

contrast (VLM WM!*") whereas HbO is significantly activated throughout the bilateral

frontal gyrus and left supramarginal gyrus while HbR is activated in the right precentral

gyrus. The differences across these two measures of hemoglobin show how they are

inversely related to one another: when HbO shows activation in a region, HbR often

shows deactivation in the same region and vice versa. VLM-WM'*" shows greater HbO

activation in the bilateral frontal regions and HbR activation in the right precentral gyrus.

The above two findings suggest that WM tasks induce activation of the parietal and left

frontal regions, while VL tasks also activate the frontal and precentral regions. We again

conclude that there is overlap between the WM and VL activation regions, especially in

the frontal gyrus, where much of both memory and visual processing occur.
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Figure 10: Contrasts: (WM"ighyLlow) - (VLhighWM!o%) and its inverse (VLMg"WM'oW) - (WMMighVLIow) overlaid over a brain, with
nasion (Nz) and inion (Iz) locations added for reference. Only significant channels (¢ < 0.05) are shown. For HbO, positive #-
values (red) correspond to relatively larger activity for the first term in the contrast, and negative z-values (blue) correspond to
larger activity for the second term. For HbR contrasts, negative #-values (blue) correspond to larger activation in that region.
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6 Discussion
The main goal of this paper was to evaluate the utility of fNIRS for workload-based adaptive

automation through the lens of the four principles of unobtrusiveness, temporal responsiveness,

sensitivity, and diagnosticity criteria. Table 5 summarizes our findings, which we discuss here.

6.1 Meta-Review Goals and Findings

We explored the four criteria via a meta-review of related workload-focused fNIRS
literature. With respect to unobtrusiveness, we found a combination of research literature and
commercial bio-technology developments that suggest that fNIRS is a device well- suited for
being unobtrusive in AA. We expect future fNIRS devices to be designed for specific-use cases,
where the number and layout of channels, comfort of the probes, quality of the signal vs. cost,
are all considered for a specific use case. We summarize our findings in Table 5.

With respect to temporal responsiveness, it is generally agreed upon that the underlying
hemodynamic response is quite slow by nature throughout fNIRS literature, as most studies in
our meta-review ran analyses on fNIRS data with tasks lasting more than 25 seconds (see
Appendix 1). Thus, fNIRS is not ideally suited for AA because of the resulting lag induced in a
closed loop adaptive system, and inherent instability when that lag approaches the time constant

of workload changes within the task (C. D. Wickens et al., 2022).

Table 5: Summary of findings collated from our experiment and the meta-review. Top: a graphic depicting our findings, with
mappings on the suitability of fNIRS for workload-based AA based on the four criteria of temporal responsiveness,
unobtrusiveness, diagnosticity, and sensitivity. Bottom: Text summary of our findings regarding the four criteria.

unobtrusive

diagnostic
temporal

responsiveness sensitive
Not suitabl hat suitable Well suited
Criteria Summary of Meta-Review and Experimental Findings

Meta-review findings show a strong trend toward devices continuing to be more wearable, practical, and
specialized to specific use cases.

Unobtrusiveness | Empirical results were achieved in this study using a NIRSport 2. The wireless NIRSport2 was equipped
with probe tips specially designed for comfort on the scalp.

Meta-review findings suggest that like fMRI, NIRS on its own, measures a slowly moving hemodynamic
response, which makes its temporal responsiveness relatively slow. More work is needed, following the
lead of researchers who have focused on exploring short sliding windows of time in ML classification and
Temporal on hybrid EEG/fNIRS adaptive systems.

responsiveness
Empirical results were generated using statistical tests on task lengths of 45 seconds in duration, which

does not further our understanding of the temporal responsiveness of the fNIRS signal.
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Meta-review showcased strong results of the sensitivity to workload manipulations; however with the
majority of work focused on extremely simple, highly controlled benchmark tasks (e.g. n-back tasks),
rather than those tasks typical of an extra-laboratory working environment.

Sensitivity Empirical results indicate that fNIRS is sensitive to changes in visual) and working memory load levels.
HbR appeared to be more sensitive than HbO for WM, while both HbR and HbO appeared to be sensitive
to VL manipulations (as shown in Tables 3 and 4).

Meta-Review found very little prior work on diagnosticity. Of that handful of work, the vast majority has
been done on simple, highly controlled tasks.

Empirical results indicate that fNIRS is diagnostic to type of load, specifically to visual vs WM, but these
findings are not clear cut. In the channel-wise analysis, we found unique regions that are activated in the
WM main effects comparison that were not activated by the VL main effects, and vice versa. Such
diagnosticity was not revealed by the ROI analysis where we condensed the data into four ROIs. When the
data was kept in its channel-wise form, we did see diagnosticity: For WM, we see one HbO channel and
three HbR channels that are unique for differentiating WM (HbO: Left superior occipital gyrus, HbR: L
inferior frontal gyrus, R precentral gyrus, R angular gyrus). For diagnosticity for VL, we see two HbO
channels uniquely differentiating VL, both measure the L angular gyrus.

Diagnosticity

To combeat this issue, much recent research has focused on exploring shorter time windows for
machine learning classification, with a sliding window approach being particularly well suited
for the fNIRS signal (see R. Liu et al. (2021) for a thorough review of time windows used to
date). While the fNIRS signal is bound by the nature of the hemodynamic response to be
relatively sluggish, a number of studies have taken a multimodal approach, merging fNIRS data
with other behavioral and physiological measurements that have higher temporal responsiveness.
Some such approaches utilize hybrid fNIRS/EEG systems for future AA systems that combine
the spatial resolution of fNIRS with the high temporal responsiveness of the EEG signal (Kwon
et al., 2020; Putze et al., 2014).

In terms of sensitivity and diagnosticity of the fNIRS signal for workload measurements,
the findings in our meta-review were less conclusive. Research conducted to date suggests a
complex interplay between task difficulty, practice effects, and human performance, which all
have an unpredictable effect on fNIRS measures of HbO and HbR taken from the outer cortex of
the brain (Herff et al., 2014; R. McKendrick, Ayaz, Olmstead, & Parasuraman, 2013; Kimberly
L Meidenbauer et al., 2021). More work is needed in this area to better understand the
relationship between these factors on sensitivity and diagnosticity of fNIRS signals (Herff et al.,

2014).
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6.2 Experiment Findings and Interpretations
As outlined below, our results lent clear, affirmative support for RQ1, RQ2 and RQ4. With

respect to RQ3, and diagnosticity, only our channel-wise analysis lent support for our ability to
differentiate changes in WM from changes in VL. Importantly, our findings align with prior
neuroscience work on visual attention, WM, executive processing, and multitasking (A.
Baddeley, 1996; A. Baddeley & Della Sala, 1996; Smith & Jonides, 1999; Tomasi et al., 2007).
Regarding the primary purpose of validating the use of fNIRS in AA, our findings contribute to
the studies that have also done this in realistic tasks (e.g., Hasan Ayaz et al. (2012); Gateau et al.
(2018)). Our conventional measures of primary and secondary task performance, subjective
measures (NASA-TLX) and neuroergonomic measures (pupil diameter), as shown in Figures 2-
4, validated that the two workload manipulations were effective and revealed that our
manipulation of WM was considerably more powerful than that of VL. Furthermore, our fNIRS
results converged on and replicated these two trends.

We ran our analyses using two different techniques for ROI mappings: Average-Across
Channels and Channel-Specific. Both techniques yielded clear and convergent evidence of
sensitivity of load level. Our fNIRS measure of global activation at each of our four ROIs (WM,
VL, AL, and MT) were shown in Table 3, where we note that most of the T and BB were in the
“expected” direction, signaling greater oxygenation (higher HbO, and, particularly, lower HbR
and thus more sensitivity) with increased workload. They also showed greater effects for the
manipulation of working memory than of visual workload. This differential effect of
manipulation power on sensitivity was also reflected in the multitasking ROI. Thus, the fNIRS
data provided a differentially sensitive measure of workload. It also became clear that these
effects were more strongly reflected in HbR, than in the more frequently used HbO.

Although the fNIRS analyses performed by averaging data into four ROIs did not show
support for diagnosticity, the fNIRS results completed at the channel-level did yield clear
findings to support diagnosticity. These results found with respect to diagnosticity unique to
WM, both HbO and HbR make contributions toward diagnosticity. For the WM and VL main
effects comparisons (Fig 9, Table 3), we note that one HbO channel and three HbR channels
were unique for differentiating WM (HbO: Left superior occipital gyrus, HbR: L inferior frontal
gyrus, R precentral gyrus, R angular gyrus).
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These findings dovetail with literature on the WM network in complex tasks, that it engages
an interconnected network of brain regions that work together to maintain and update working
memory while shifting attention and executing tasks based on the changing task environment.
Notably, the Left inferior frontal gyrus (IFG) plays a key role in the executive function behind
working memory (Nee et al., 2013). This aligns with the prior work by Gateau et al. (2018) in
which they found the left PFC (their ROI #2) experienced greater HbO changes during the real
flight condition than in the simulator condition when carrying out high WM tasks. Those authors
note that multitasking became critical when carrying out a high WM task rather than a low WM
task while also navigating a real aircraft.

With respect to diagnosticity unique to the VL main effect, only HbO contributes toward
diagnosticity (as shown in Table 3, and by the green * in Figure 9). For unique diagnosticity for
VL, there were two HbO channels uniquely differentiating VL, both of which cover the L
angular gyrus. The angular gyrus has long been recognized as a key region involved in visual
attention and visuospatial processing (Gobel, Walsh, & Rushworth, 2001; Studer, Cen, & Walsh,
2014), and indeed seems to be an important region distinguishing VL manipulations (e.g.,
making our target shapes more/less like the surrounding distractors) from the WM
manipulations. Support for diagnosticity was further found by contrasting the two conditions of
WML with VIehWM!*Y, The contrast results (Appendix 2, Table B) suggest that WM
tasks induce activation of the parietal and left frontal regions, while VL tasks also activate the
frontal and precentral regions. We again conclude that there is overlap between the WM and VL
activation regions, especially in the frontal gyrus, where much of memory and visual processing
occur.

In summary, the unique brain regions identified as unique to WM and unique to VL dovetail
with research from the fMRI domain about the brain regions involved in VL versus WM, with
WM activating a more diverse interconnected network of brain regions that spans from the
prefrontal cortex, back through the parietal region, and into the occipital cortex. VL, on the other
hand, only engaged unique brain regions in the left angular gyrus, which has been repeatedly
linked to visuospatial attention. These results align with prior literature in the neuroscience
domain; suggesting that the brain resources engaged in visual attention and WM are highly
overlapping, but not identical (Tomasi et al., 2007). For example, one study that evaluated verbal

WM and spatial attention (SA) tasks using fMRI found a common activation network made of
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the frontal, temporal, and parietal cortices, suggesting that tasks share a common dynamic
shifting of attentional resources in these common areas (LaBar, Gitelman, Parrish, & Mesulam,
1999). More aligned with our experiment, Tomasi et al. (2007) employed a similar paradigm to
evaluate the effects of high and low WM and visual attention (VA) tasks. They found that
despite the differential attentional requirements of the tasks, they both activated a common
network including the prefrontal, parietal, and occipital cortices.

Viewing our findings through the lens of resource theory, we expected to see increased
load placed on brain regions responsible for multitasking, as a result of coordination of our
complex task, with increased WM in particular placing greater demands on MT regions than VL
increases. Our observed pattern of effects on the MT ROI are readily interpretable. Multitasking
is heavily supported by executive control (C. D. Wickens et al., 2022). So is working memory
which, at higher load, involves more mental juggling of the subtasks of maintenance and
processing (A. D. Baddeley & Hitch, 1974; Engle, 2002). In contrast, VL increases impose
primarily input-output processing, not imposing greater multi-tasking requirements. To our
knowledge, none of the studies reviewed above, nor the larger set contained in Appendix 1,
examined this specific multi-tasking ROI as we do here.

6.3  Implications for Workload Based Adaptive System Designs
While our work revealed, as other’s also have, that fNIRS is quite sensitive to variations in visual
and working memory load (particularly the latter), its feasibility for adaptive systems remains
constrained by the lag in its measurement, as seen in the current experiment, and replicating
many earlier studies. This lag is bound by the nature of the hemodynamic response (Figure 1)
with it taking roughly 8 seconds after a stimulus onset for HbO and HbR to peak (Huppert et al.,
2006). This naturally occurring 8-second lag clearly places a lower bound that makes it
challenging to classify load levels on fNIRS time windows. As noted previously (section 3.2 on
temporal responsiveness), most research has found that ~25-second continuous tasks, paired with
~25-second-long window lengths, has yielded most success to date in single trial classification of
fNIRS workload levels.

A lag value of this magnitude does not preclude fNIRS use in adaptive automation.
However, it will only reliably reflect changes in workload in circumstances when the workload
changes that AA is designed to compensate for, are themselves relatively gradual, such as the

increased workload imposed by fading illumination at dusk, or that associated with cumulative
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mental fatigue. In this regard, statistically significant classification rates between low and high
workload conditions in a shorter period of time are not sufficient to justify incorporation in
adaptive automation, simply because even a small loss in classification accuracy (associated say
with a 90% classification rate) will be likely to undermine user trust in the system. A promising
option is to couple fNIRS with other unobtrusive workload assessment techniques, such as EEG
alpha/theta ratio, or pupil diameter that may have a much faster response rate, even if those are
less sensitive, and less diagnostic; in short, a team approach to on-line workload assessment.

Given the meta-review and empirical findings summarized in Table 5, it is clear that
fNIRS developers of workload-based AA systems should consider using multiple measurement
modalities (e.g., hybrid EEG/fNIRS) to improve temporal responsiveness, and inclusion of both
HbO and HbR in the measurement and modeling approaches will provide complementary

measurements toward load sensitivity and diagnosticity.

7 Study Limitations
Group-Statistics vs Single-Trial Classification. In this study we have evaluated the utility of

fNIRS for diagnosticity, sensitivity, and temporal responsiveness at the group statistical level, we
have not run machine learning analyses per individual. Before turning to machine learning and
single trial analyses, we opted to take the important step of first using group-level statistics to
establish the statistical reliability of the time-varying response and the reliability of the fNIRS
signal to distinguish between the different forms of load. Thus, our findings can only be
interpreted at the group level; and our ability to extrapolate findings to the individual-level,
where adaptive systems would operate, is limited. Yet determining the statistical differences at
this group level is essential to extending the technique to adaptive automation, where machine
learning can classify the differences in inferred workload based on individual responses. Future
work should extend these findings to investigate load diagnosticity, sensitivity, and temporal
responsiveness at the individual level, and we hope that our use of cognitive load theory and
development of a complex load manipulation testbed provides a pathway to extend this work

toward individual level measurement and modeling.

fNIRS Preprocessing. Of major concern within the fNIRS signal is the presence of serially
correlated errors due to high sampling rate and heavy-tailed noise distributions (Kimberly L

Meidenbauer et al., 2021; H. Santosa et al., 2018) due to noise in the signal. We did not use
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short-channel regression in our preprocessing pipeline. This is a limitation of this work as short-
channel regression is the optimal technique of distinguishing task-evoked non-neuronal response
(systemic noise) from the neuronal signal of interest (Tachtsidis & Scholkmann, 2016; M. Yiicel
et al., 2021). Our pipeline utilized both accelerometer regression and AR-IRLS pre-whitening,
which have been applied widely throughout fNIRS literature to reduce motion and physiological-
related noise. The AR-IRLS model uses an auto-regressive filter to minimize these errors and
iteratively down-weighs outliers in a weighted regression, and has been adapted for real-time
filtering (J. Barker, Rosso, Sparto, & Huppert, 2016; J. W. Barker et al., 2013). However, it is
best practice to utilize short-separation channel regression to obtain the true hemodynamic
response signal. We encourage future work to use this technique, especially within the context of

AA.

8 Conclusions and Future Work

Although the concept of workload-based adaptive automation has been discussed frequently in
the fields of HCI and human factors, these intelligent systems have proven very difficult to
achieve. In this paper we focused on the utility of fNIRS for addressing four measurement
criteria that are essential to consider if we are to realize the vision of workload-based AA with
fNIRS and described a meta-review and empirical study to explore these criteria. We found that
fNIRS has relatively poor temporal responsiveness, but it rates highly with respect to
unobtrusiveness. Further, the fNIRS signal is adequately sensitive to gradations of load level
changes (sensitivity), and when data are viewed in channel-wise format, the fNIRS device does
appear to offer diagnosticity; whereby the type of load being modulated (in our case WM and
VL) can be uniquely identified. Although our findings showed support for sensitivity and
diagnosticity of the fNIRS signal, we note the strong need for more research to be conducted by
fNIRS researchers in the HF and HCI domains, if we are to build workload-based AA using the
fNIRS signal. Future research should focus on diagnosticity and sensitivity of fNIRS for
measuring workload changes in studies that utilize complex, ecologically valid tasks, with a
suitable number of channels for differentiation of different types of workload. Also, adaptive
systems are composed of data-hungry algorithms, which cannot be adequately trained on small
datasets, especially given the high dimensional features space of brain data. Even if the fNIRS

signal is suitable for differentiating between different types of load and different levels of load,
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there is a great need for the research community to make dataset and testbed sharing a priority.
Shared fNIRS data should contain information about the anatomical brain region measured by
each channel, as well as access to raw data streams, so that researchers can train models on
datasets aggregating different experiments, different devices, and different labs. These large-
scale efforts will be instrumental in order to fully realize the goals of using fNIRS as a basis for

workload-based AA.
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Appendix 1: Meta-Review Table
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Appendix 2. fNIRS Statistical Results

Table A: Channel-wise results for (WMMehVLIew)y>(VLhighWwM!oW) contrast. With type of hemoglobin (Hb), source-detector position
(S D), functional brain regions, and Brodmann Area (BA) listed, as well as T, p, q, power values.

Contrast: (WMPighVLow)>(VLhighyyplow)

L anterior frontal gyrus 9,11, 46 -2.77 0.006 0.033 0.61
HbO 2 2, L middle frontal gyrus 45, 46 -2.82 0.005 0.029 0.63
HbO 43; L superior frontal gyrus 8,9 -2.87 0.004 0.028 0.64
HbO 4 4, L middle frontal gyrus 6,9,8 -4.26 <0.001 <0.001 0.96
HbO 65; R anterior frontal gyrus 8,9 -2.66 0.008 0.043 0.56
HbO 6 6; R middle frontal gyrus 45, 46 -4.76 <0.001 <0.001 0.99
HbO 68; R middle frontal gyrus Z’S 44, 46, -3.05 0.002 0.018 0.71
HbO 87; R superior frontal gyrus 8,9 -5.76 <0.001 <0.001 0.99
HbO 119; R superior parietal gyrus 7 3.00 0.003 0.020 0.70
HbO 1112; R superior parietal gyrus 7 3.29 0.001 0.011 0.79
HbO 12 9; L superior parietal gyrus 7 3.28 0.001 0.011 0.78
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HbO
HbO
HbO

HbR

HbR
HbR
HbR

Table B: Channel wise results for the Working Memory Main Effects (HYM — LWM) and VL Main Effects HV: —

12 15;
13 14,
14 16;

32;

43;
78;

10 13;

L angular gyrus 7,19,39

R angular gyrus 39,40, 7
L supramarginal gyrus 40, 39, 48
L inferior frontal gyrus 2’6 44, 45,
L superior frontal gyrus 8,9

R precentral gyrus 44,6,9

L superior occipital gyrus 18,19, 17

3.10
2.59
-5.79

-3.73

-3.65
3.01
-2.62

0.002
0.010
<0.001

<0.001

<0.001
0.002
0.009

0.016
0.049
<0.001

0.004

0.004
0.020
0.047

0.73
0.54
0.99

0.89

0.88
0.70
0.55

LVL contrasts.

With type of hemoglobin (Hb), source-detector position (S D), functional brain regions, and Brodmann Area (BA) listed, as well
as T, p, q, power values, and uniqueness. The ‘unique?’ column in Table 3 has a ‘Y’ for all channels that are unique to the VL and
WM main effects comparisons (present in one of VL or WM, but not present in the other).

Contrast: Working Memory Main Effect (HYM — LWV)

HbO 1013;
HbO 14 10;
HbR | 14 10;
HbR | 22;
HbR | 12;
HbR | 78;
HbR | 11 14;
HbR | 88;
HbR | 66;

L superior occipital gyrus = 18, 19, 17
L superior parietal gyrus 40, 7,2

L superior parietal gyrus | 40, 7,2

L middle frontal gyrus 45,46

L inferior frontal gyrus 45,46

R precentral gyrus 44,6,9
R angular gyrus 7,19,39

R middle frontal gyrus 6,9,8

R middle frontal gyrus 45,46

Contrast: VL Main Effect (HY" — L")

HbO 14 10;
HbO 129;
HbO 14 15;
HbO 1215;
HbR | 14 10;
HbR | 22;
HbR | 88;
HbR | 67,

L superior parietal gyrus 40, 7,2
L superior parietal gyrus 7

L angular gyrus 39, 40,7
L angular gyrus 7,19, 39

L superior parietal gyrus | 40,7,2
L middle frontal gyrus 45,46

R middle frontal gyrus 6,9,8

R middle frontal gyrus 9,46

3.46
3.26

-4.75
-3.99
-2.57
-3.83
-3.13
-2.94

-3.5

3.78
3.35

2.93
2.85
-2.9
-3.54

-2.8
-2.98

0.001
0.001

<0.001
<0.001
0.011
<0.001
0.002
0.004

0.001

<0.001
0.001

0.004
0.005
0.004
<0.001

0.006
0.003

0.007  0.83
0.011 0.78
<0.001 | 0.99
0.002 | 0.93
0.049 | 0.53
0.003 0.91
0.015 | 0.74
0.023 0.67
0.006 @ 0.84

0.003

0.009  0.81
0.024  0.67
0.027  0.64
0.025 | 0.66
0.006 | 0.85
0.031 0.62
0.021 0.69

Table 1: Seven standards for experiments needed to evaluate fNIRS for workload-based AA.

z Z K<<z zZ zZ

Z z Z|Z <K < Z Z
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(1) Participants should perform a complex task typical of real-world human-computer interactions.

(2) Workload should be experimentally manipulated in a controlled manner to impose greater or lesser cognitive demands (going
beyond just load on/ofY), in order to evaluate sensitivity of different load levels on a specific resource.

(3) Studies should focus on different specific resources within a multiple resource structure, hence examining diaﬁnosticity

(4) The validity of experiment task manipulations should be assured by including additional workload measures, such as self-report
workload, response time, performance, and pupil diameter.

(5) To further examine the diagnosticity of the measures, researchers should measure multiple functional brain regions of interest
(ROIs), ideally mapped onto the multiple resources identified in the experimental design, in order to determine if specific ROIs are
differentially sensitive to the workload manipulation assumed to be reflected by increased activation there.

(6) Increased activation should be explored via the two different fNIRS measures of HbR and HbO.
(7) Finally, studies should have adequate statistical power, with a suitable N.

Table 2: Meta-review studies reviewed that adhered to atleast three of the seven standards, ordered by # of standards adhered to.

# workload diff convergent | multiple
Author standards | complexity | manipulation | resources | measures ROI

Isbilir 3 y y

Chu 3 y

Lei

Hamann

[zzetoglu

Peck

Solovey

McKendrick

Ayaz

Durantin

Kerr

< < K K K KK K

< < K K & KK K

Putze

Gateau

Table 3: HbO and HbR B-values and T-values for the main effects (IV stands for independent variable) of the WM and VL
manipulations, averaged across each ROI (bold face with a * denotes significance (p<0.05)). The contrasts run are (H¥™LV' +
HY™HY) — (LYY + L¥HY) for the WM load main effect (first row for each variable: 8 or T) and (L¥*H"' + HY™H"!) — (L¥™LV
+ HY"LY) for the VL main effect (second row of each variable).

HbO HbR

WM WM
5 ROI VL ROI MT ROI AL ROI 5 ROI VL ROI | MT ROI AL ROI
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WM IV

-0.65

2.59

-1.56

-0.29

WM IV

-3.61*

-2.60*

-2.82*

-1.01

VL IV

-4.26*

3.70*

-5.93*

-0.78

VL IV

-3.52%

-2.08*

-1.46

0.12

WM

WM

T ROI VL ROI MT ROI AL ROI T ROI VL ROI | MT ROI AL ROI
WMIV -0.36 1.9 -0.67 -0.15 WMIV -5.07* | -4.71* -2.48* -1.23
VLIV -2.35% 2.70* -2.53* -04 VL1V -4.91* | -3.76* -1.28 0.14

Table 4: Summary of results from Table 3, with only unique significant activation shown.
Mutually exclusive regions activated for Working Memory main § Mutually exclusive regions activated for VL main
effects effects

Region
L superior occipital gyrus L angular gyrus (x2 channels)

L inferior frontal gyrus

R precentral gyrus

HbR R angular gyrus

Table 5: Summary of findings collated from our experiment and the meta-review. Top: a graphic depicting our findings, with
mappings on the suitability of fNIRS for workload-based AA based on the four criteria of temporal responsiveness,
unobtrusiveness, diagnosticity, and sensitivity. Bottom: Text summary of our findings regarding the four criteria.

unobtrusive

diagnostic
temporal
responsiveness

sensitive

Not suitabl S hat suitable Well suited

Criteria Summary of Meta-Review and Experimental Findings

Meta-review findings show a strong trend toward devices continuing to be more wearable, practical, and
specialized to specific use cases.

Unobtrusiveness | gmpirical results were achieved in this study using a NIRSport 2. The wireless NIRSport2 was equipped

with probe tips specially designed for comfort on the scalp.

Meta-review findings suggest that like fMRI, {NIRS on its own, measures a slowly moving hemodynamic
response, which makes its temporal responsiveness relatively slow. More work is needed, following the
lead of researchers who have focused on exploring short sliding windows of time in ML classification and
Temporal on hybrid EEG/fNIRS adaptive systems.

responsiveness . o . . .
Empirical results were generated using statistical tests on task lengths of 45 seconds in duration, which

does not further our understanding of the temporal responsiveness of the fNIRS signal.
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Meta-review showcased strong results of the sensitivity to workload manipulations; however with the
majority of work focused on extremely simple, highly controlled benchmark tasks (e.g. n-back tasks),
rather than those tasks typical of an extra-laboratory working environment.

Sensitivity Empirical results indicate that fNIRS is sensitive to changes in visual) and working memory load levels.
HbR appeared to be more sensitive than HbO for WM, while both HbR and HbO appeared to be sensitive
to VL manipulations (as shown in Tables 3 and 4).

Meta-Review found very little prior work on diagnosticity. Of that handful of work, the vast majority has
been done on simple, highly controlled tasks.

Empirical results indicate that fNIRS is diagnostic to type of load, specifically to visual vs WM, but these
findings are not clear cut. In the channel-wise analysis, we found unique regions that are activated in the
WM main effects comparison that were not activated by the VL main effects, and vice versa. Such
diagnosticity was not revealed by the ROI analysis where we condensed the data into four ROIs. When the
data was kept in its channel-wise form, we did see diagnosticity: For WM, we see one HbO channel and
three HbR channels that are unique for differentiating WM (HbO: Left superior occipital gyrus, HbR: L
inferior frontal gyrus, R precentral gyrus, R angular gyrus). For diagnosticity for VL, we see two HbO
channels uniquely differentiating VL, both measure the L angular gyrus.

Diagnosticity

—— HbO

Stimulation
Period

Changes in Concentration [mM]

T 1 I 1 1
8 10 12 14
Time (s)

Figure 1: Typical time response of HbO and HbR after stimulus (such as completing a n-back task). HbO peaks between 6-8s
following the stimuli and HbR dips at the same time.

YOUR CALLSIGN: BRAVO YOURCACLSIGIEERAVO

Reminder

Reminder

Target shape:

f) “Attention, Bravo. Please place any shape into bin number 8.

B) “Attention, Delta. Please place any shape into bin number 2.”

Figure 2: The shape sorting testbed. The a) instruction screen directs the participant on the primary task target shape and target
bins. Participants then sort the correct target shape out of a list of possible shapes (b) into the correct numbered bins (c).
Participants are assigned a callsign (d) and a secondary auditory task is presented through the right side of the headphones, where
the information can either be ignored (g) or where it must be attended to (f). Each task session lasts 45 seconds with time being
counted down (e), before filling out surveys and beginning a new task, with new updated instructions.
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YOUR CALLSIGN: BRAVO

Remi

YOUR CALLSIGN: BRAVO

Reminder

Target shape:

Target bins: 5, 4, 3, 7

'YOUR CALLSIGN: BRAVO

YOUR CALLSIGN: BRAVO

Reminder

Target shape:

Target bins: 5, 3, 4, 6

Figure 3: Left (instructions before a task begins). Top right: An example of a search task where the VL is low because
target and distractors share no features in common. Bottom right: an example of a search task where the VL is high: 1
feature is shared. See (Nhan Tran et al., 2021) for an example of this task implemented in a mixed reality context.

Figure 4: Sensor set-up included a Tobii 4¢ eye tracker and a NIRx Sport2 fNIRS device.

Primary Task Block Accuracy WM X VL Primary Task Reaction Time WM X VL

0.62 1 —§— VL High 18001 g vi High

0.60 -~ VL Low = —$— VL Low
0 E
= —
g 0.5 v 1700
< =
< 0.56 B
g £ 1600
T 0.54 8
E: g
5 0321 £ 1500
T 0.50 - N
£ g
2 0,484 E 1400 -

0.46 1 1

Low High Low Hilgh
WM Load WM Load

Figure S: Left: Effect of WM and VL on primary task accuracy. Right: The effects of WM and VL on primary task RT. The
error bars represent the unbiased one standard error as imple
mented by the Pandas sem function.



https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sem.html

Mental Demand WM X VL

10.0 —— VL High
—$— VL Low

Mental Demand

Lc;w H\Igh
WM Load
Figure 6. Effects of WM and VL on self-report mental demand. Bottom Right: Effects of WM and VL on secondary task
accuracy. The error bars represent the unbiased one standard error as implemented by Pandas ‘sem’ function.

Secondary Task Accuracy WM X VL

—$— VL High
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Figure 7: Regions of interest overlaid over the 42-channel fNIRS montage. Red circles represent light sources, blue circles
represent light detectors. Red, green, blue, and purple lines represent a channel of measured data that falls into the WM, VL, AL,
and MT ROlIs, respectively. In the schematic picture, Nz represents the nasion, Iz represents the inion, LPA and RPA represent
the left and right pre-auricular regions, respectively (used in standard EEG 10-20 landmarking).
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Figure 8: T-values from Table 3, overlayed over the fNIRS ROIs of multitasking, WM, VL, and AL. For HbO (left side) the red
spectrum indicates increased activation, with darker red indicating more increased activation. For HbR (right) blue suggests more

activation at that region, with darker blue indicating higher levels of activation.
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Figure 9: Working Memory Main Effects (HYM — LWM) and VL Main Effects HY" — LV% overlaid over a brain, with nasion (Nz)
and inion (Iz) locations added for reference. Only significant channels (¢ < 0.05) are shown. For HbO, positive ¢z-values (red)
correspond to relatively larger activity for the first term in the contrast, and negative #-values (blue) correspond to larger activity
for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region. Green * indicates
regions that are mutually exclusive (shown by one but not the other) between the WM and VL main effects tests.
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Figure 10: Contrasts: (WM"ighyLlow) - (VLhighWM!o%) and its inverse (VLMg"WM'oV) - (WMMighVLIow) gverlaid over a brain, with
nasion (Nz) and inion (Iz) locations added for reference. Only significant channels (¢ < 0.05) are shown. For HbO, positive #-
values (red) correspond to relatively larger activity for the first term in the contrast, and negative z-values (blue) correspond to
larger activity for the second term. For HbR contrasts, negative #-values (blue) correspond to larger activation in that region.

Figure Captions
Figure 1: Typical time response of HbO and HbR after stimulus (such as completing a n-back task). HbO peaks between 4-6s
following the stimuli and HbR dips at the same time.

Figure 2: The shape sorting testbed. The a) instruction screen directs the participant on the primary task target shape and target
bins. Participants then sort the correct target shape out of a list of possible shapes (b) into the correct numbered bins (c).
Participants are assigned a callsign (d) and a secondary auditory task is presented through the right side of the headphones, where
the information can either be ignored (g) or where it must be attended to (f). Each task session lasts 45 seconds with time being
counted down (e), before filling out surveys and beginning a new task, with new updated instructions.

Figure 3: Left (instructions before a task begins). Top right: An example of a search task where the VL is low because target and
distractors share no features in common. Bottom right: an example of a search task where the VL is high: 1 feature is shared. See
(Nhan Tran et al., 2021) for an example of this task implemented in a mixed reality context.

Figure 4: Sensor set-up included a Tobii 4c eye tracker and a NIRx Sport2 fNIRS device.

Figure 5: Left: Effect of WM and VL on primary task accuracy. Right: The effects of WM and VL on primary task RT. The
error bars represent the unbiased one standard error as implemented by the Pandas sem function.

Figure 6. Effects of WM and VL on self-report mental demand. Bottom Right: Effects of WM and VL on secondary task
accuracy. The error bars represent the unbiased one standard error as implemented by Pandas ‘sem’ function.

Figure 7: Regions of interest overlaid over the 42-channel fNIRS montage. Red circles represent light sources, blue circles
represent light detectors. Red, green, blue, and purple lines represent a channel of measured data that falls into the WM, VL, AL,
and MT ROIs, respectively. In the schematic picture, Nz represents the nasion, Iz represents the inion, LPA and RPA represent
the left and right pre-auricular regions, respectively (used in standard EEG 10-20 landmarking).

Figure 8: T-values from Table 3, overlayed over the fNIRS ROIs of multitasking, WM, VL, and AL. For HbO (left side) the red
spectrum indicates increased activation, with darker red indicating more increased activation. For HbR (right) blue suggests more
activation at that region, with darker blue indicating higher levels of activation.

Figure 9: Working Memory Main Effects (HYM — LWM) and VL Main Effects HVL — LVL> overlaid over a brain, with nasion (Nz)
and inion (Iz) locations added for reference. Only significant channels (¢ < 0.05) are shown. For HbO, positive z-values (red)
correspond to relatively larger activity for the first term in the contrast, and negative #-values (blue) correspond to larger activity
for the second term. For HbR contrasts, negative t-values (blue) correspond to larger activation in that region. Green * indicates
regions that are mutually exclusive (shown by one but not the other) between the WM and VL main effects tests.

Figure 10: Contrasts: (WMMe'VLIow) - (VLhighWwM*) and its inverse (VLhg"WMeY) - (WMPEVLIW) overlaid over a brain, with
nasion (Nz) and inion (Iz) locations added for reference. Only significant channels (g < 0.05) are shown. For HbO, positive #-
values (red) correspond to relatively larger activity for the first term in the contrast, and negative #-values (blue) correspond to
larger activity for the second term. For HbR contrasts, negative #-values (blue) correspond to larger activation in that region.
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