
Harvesting Wasted Clock Cycles for Efficient
Online Testing

Eslam Yassien∗, Yongjia Xu∗, Hui Jiang∗, Thach Nguyen†, Jennifer Dworak∗, Theodore Manikas∗, Kundan Nepal†
∗ Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
†School of Engineering, University of St. Thomas, Saint Paul, Minnesota, USA

Abstract—Mission-critical systems often require some testing
to occur while the system is running. In many cases, this involves
taking parts of the system off-line temporarily to apply the tests.
However, hazards that occur during regular processor execution
require the addition of stall cycles to maintain program cor-
rectness. These stall cycles generally perform no other function.
In this paper, we focus on testing the ALU during those stall
cycles to identify new errors or defects that arise during program
execution due to aging and increased temperature that may slow
down the circuitry or cause permanent defects. We investigate
the time to detection of a fault (both stuck-at and transition)
that may have caused silent data corruption. In addition, we
identify the relationship between the programs running and the
list of functional faults and how this impacts the test set length.
Finally, we discuss area and performance impacts for the physical
implementation of the approach.

Index Terms—field testing, DFT, stall cycles, silent data cor-
ruption, online testing, ATPG

I. INTRODUCTION

Mission-critical systems are often required to perform test-
ing at power-up, periodically during circuit operation when
one or more parts of the system can be temporarily taken
offline, and/or at shutdown. Such test sessions must be highly
effective and efficient. Especially during circuit operation, the
need to take cores/circuits offline to implement tests that cover
the cores/circuits repeatedly means that every dedicated testing
clock cycle must be used to its maximum efficiency. Thus,
test sets must be short, and the process of applying them
must avoid significant performance degradation during normal
operation.

Previous researchers have focused on different aspects of
on-line testing. CASP (Concurrent Autonomous chip self-test
using Stored test Patterns) provides architectural and operating
system level support for testing one or more cores during
normal operation using test patterns stored in non-volatile
memory [1], [2]. VAST (Virtualization-Assisted concurrent
autonomous Self-Test) expands on this idea and adds vir-
tualization support to efficiently apply online self-test and
diagnostics at the system level [3]. Similarly, Logic Built-In
Self-Test (LBIST) and Memory Built-In Self-Test (MBIST)
can be used both during manufacturing and in the field. LBIST
is commonly implemented using an LFSR (Linear Feedback
Shift Register) or another pseudorandom pattern generator
to apply a large number of patterns to the circuit [4]–[11].

This work was supported by NSF CCF1812777 and CCF1814928.

In these approaches, test results are captured as a signature
using a MISR (multiple input signature register) that can be
compared against an expected signature.

An alternate approach is Software-Based-Self-Test (SBST),
which uses code snippets placed into a cache for test and
verification. The focus of previous research in SBST is on the
types of code that should be used for test [12]–[20]. When
using this approach for field testing, the test procedure is
generally reserved for defined test intervals that occur when
the device under test can be temporarily taken offline.

To avoid the need to take the device offline for field testing,
a related instruction level technique for processor core self-
testing was proposed by Shamshiri [21], [22], with updates
by Jafari [23]. The technique relied on the compiler to detect
data/control hazards and insert TIS (i.e. test) instructions
instead of NOPs directly into the code. While this approach
addressed the limitations of previous SBST methods, it re-
quired a modification of the instruction set. In addition, the
method could only be applied to code that had been generated
with their proposed technique. Similarly, [24] uses a micro-
architectural checkpointing mechanism to create periods of
execution during which distributed on-line built-in self-test
(BIST) mechanisms check for hardware failures in a 4-wide
VLIW processor. For instance an ALU is checked by adding
a BIST unit and an additional 9-bit ALU. If a failure is
detected, the system operates at a reduced performance level.
The approach is able to detect 89% of the stuck-at faults, but
they do not consider delay/transition faults in that paper.

To address the limitations of previous research, we have
developed a method for the dynamic insertion of tests into an
already-running program so that cycles that would otherwise
be wasted may be used for field testing. In particular, we show
how stall cycles may be replaced with functionality that can
be used to check at least some of core’s circuitry without:

1) changing the state of the machine,
2) interfering with the execution of the program, or
3) requiring modification of the Instruction Set Architecture

(ISA).
Specifically, we explore the detection of stuck-at and transition
faults in the ALU, depending upon the number of consecutive
stall cycles that are available. We explore different approaches
to applying transition test pattern pairs to reduce the time to
detection or increase coverage. We also investigate the degree
to which the number of test patterns that need to be stored



can be reduced if only those faults that are identified as likely
to be of importance during functional operation are targeted.
Finally, we consider the time and area overhead introduced.

II. ARCHITECTURE

Fig. 1. A simplified view of the 5-stage pipeline.

In this paper, we consider the classic 5-stage in-order RISC-
V pipeline shown in Figure 1, consisting of the following
stages: Instruction Fetch (IF), Instruction Decode (ID), Ex-
ecution (EX), Data Memory (MEM), and Write Back (WB)
[25]. Multiple events could cause stall cycles and NOPs to
be inserted into this pipeline. For example, a load instruction
followed by an instruction that uses the result of that load
results in at least a one-cycle NOP being inserted into the
pipeline between the ID and EX stages. For an architecture
with cache memory, a miss in the instruction cache may cause
multiple NOP cycles to enter the pipeline between the IF and
ID stages, while a data cache miss may prevent instructions
from advancing and insert multiple NOPs between the MEM
and WB stages. Furthermore, mispredicted branches require
that instructions along the incorrect branch be flushed from
the pipeline so that the program execution is not corrupted.

Fig. 2. Additional hardware (shaded) added to facilitate ALU test. All Test
control signals are denoted in red. Only portions of the pipeline directly
affected by our approach is shown.

In this paper, we explore the addition of limited circuitry
as shown in Figure 2, to test the ALU (and possibly other
circuitry in the EX stage. The additional circuitry consists
of small memory to hold test patterns (inputs to the ALU
and responses), muxes to switch to the test patterns when a
stall is detected, and a comparator to determine if the test

was passed. Additions to the control logic include the address
generator and control for enable and select signals for the
added circuitry.

In this work, we consider both stuck-at and transition fault
detection. Stuck-at fault tests require only a single pattern
memory and can help detect permanent defects that arise
due to aging (e.g. electromigration that can cause a short
between two circuit nodes.) However, transition faults are also
important. In addition to aging, environmental variations, such
as temperature and voltage, can cause extra delay to appear in
the processor during program execution that was not present
at power-on. Because stall cycles may appear more frequently
than the time that would be required for a test pattern to shift
through the chain, we use a second pattern memory to hold an
independent observation pattern instead of using a traditional
Launch-on-Shift (LoS) approach.

In Figure 2, the extra circuitry used to insert a test pattern is
placed in the decode stage, and the inserted muxes are used to
switch between the normal ALU operands and control signals
and the ones inserted by the test on a stall. Similarly, the
comparator and test responses are placed in the MEM stage.
We do this so that unacceptable delays from the ID/EX through
the ALU to the EX/MEM pipeline registers can be detected
more reliably.

III. FAULT TARGETING AND TEST GENERATION

When manufacturing test sets are generated, generally all
possible faults belonging to a particular fault model (e.g. stuck-
at or transition) are targeted. It is common to find that a
large percentage of the faults (e.g. 80%) are detectable with
a relatively small number of patterns (e.g. the first 20% of
patterns in the test set). The majority of the patterns are needed
to detect a relatively small number of “hard-to-detect” faults.

In this work, we are concentrating on tests to be applied in
the field, instead of at manufacturing. Furthermore, the tests
are to be applied during program execution from a very small
memory. Thus, we want to make sure that we are judicious in
selecting the faults to target. Intuitively, faults that can actually
affect the correctness of the ALU’s operation for the running
program are more likely to lead to silent data corruption if the
problem is not detected. Thus, our first goal is to determine
which ALU faults could actually cause errors when different
programs are run. This will help determine the amount of test
set reduction that is possible.

A. Extracting good machine states

In our experiments, we used the Verilog RTL source code of
the B-RISCV 5-stage RV32i Processor core [26]. The Verilog
netlist of the processor was synthesized and simulated using
the Xilinx Vivado tool-chain. The memory was not synthe-
sized, but was added during the testbench portion of Vivado
simulation. The processor was configured with a memory
system consisting of no cache. To provide realistic workloads
for simulation, C programs were compiled using the B-RISCV
compiler tool-chain, and the resulting binary was presented to
the Verilog simulation engine. During simulation, at each clock



cycle, the machine state of the ALU—consisting of the inputs
and the output of the ALU—were captured together with the
processor stall cycle information.

B. Functional Fault Simulation

The machine states from the simulated program execution
are saved to a file as “functional patterns.” Using a commercial
software tool, fault simulation can then be applied to the
functional patterns to generate a fault dictionary that records
which faults are detected by each pattern.

Once the fault dictionary has been generated for each C
program, the list of faults in the ALU that could cause errors
in that program can be obtained. For our experiments, the
simulations are performed on the ALU circuit design and five
different functional programs: Hanoi, Binary-Search, Factorial,
Factorial-Fibonacci, and Fibonacci. The number of functional
clock cycles required to run each program and the number of
those cycles that are stalls are shown in Table I.

TABLE I
NUMBER OF STALL CYCLES IN RISC-V PROCESSOR WITHOUT CACHE.

no. of no. of
Program functional cycles stall cycles

Hanoi 1518 251
Binary-Search 1990 811
Factorial 107276 59260
Factorial-Fib 128729 62290
Fibonacci 384792 54353

C. Test Set Generation

Automatic Test Pattern Generation (ATPG) is then run on
the new fault lists. Thus, the ATPG software generates test
patterns with a reduced number of patterns that cover all
the faults in the functional fault lists (as compared to the
full fault list). We experiment using: 1) stuck-at test sets for
stuck-at fault testing, and 2) transition test sets for stuck-at
and transition fault testing. As we can see from Table II,
the number of test patterns is much smaller than the number
of stall cycles, which will allow the test patterns to run
multiple times during the program execution. This will allow
us to detect problems that may not have been present at the
beginning of the program, but that develop during the course
of the program’s execution itself.

The top rows of Table II show data where the fault lists and
test sets are optimized for that particular program. However, in
reality, the programs and/or data used for functional analysis
will be different from the actual programs run in the field.
Thus, the bottom row corresponds to this scenario. The unions
of the fault lists for the three programs in the table: Hanoi,
Binary-Search, and Fibonacci were used as the final fault
lists for ATPG. The size of the fault lists (stuck-at and
transition) and the corresponding test set sizes are shown in the
row labeled “Cross-program.” Later, we will use the “Cross-
program” test set to insert tests for the Factorial-Fibonacci
and Factorial stall cycles to determine the fault detection
characteristics achieved when the program run is not a perfect
match for the test set. The last row of the table corresponds
to the number of test patterns required when the full fault list

is used for ATPG. Clearly, there are significant savings from
focusing on the faults that are more likely to be functional.
This is not surprising but it shows the magnitude of the
savings.

TABLE II
NUMBER TEST PATTERNS AND NUMBER OF FAULTS COVERED BY THEM.

no. of no. of no. of no. of
Test Set stuck-at stuck-at transition transition

test patterns faults covered test patterns faults covered

Hanoi 42 1675 43 745
Binary-Search 63 3007 64 1449
Factorial 53 1990 60 1005
Factorial-Fib 56 2033 58 1035
Fibonacci 42 1762 42 770
Cross-program 69 3074 70 1066
Full Test Set 194 6620 230 6620

IV. EXPERIMENTAL APPROACH AND RESULTS

A. Program Runtime Simulation

As described earlier, our approach aims to inject test pat-
terns into the stall cycles of a running program. If a stall is
detected in the program, a test pattern is inserted to utilize the
empty clock cycle; otherwise, functional operands are inserted
for normal operation. We evaluated our approach for each
of the C programs described in the last section using the
generated test sets and fault dictionaries. Figure 3 shows a
simplified flowchart of how we simulated test pattern insertion
into stall cycles to determine the ability of our approach to
detect developing problems as quickly as possible.

Fig. 3. Flowchart of the program runtime simulation and data collection

Figure 4 shows an example of the detection of node E
stuck-at-1 by functional and test patterns. Specifically, after
we parse the generated test sets, the pattern fault dictionaries,
and the extracted program machine states, we iterate over the
extracted program machine states. We also record the clock
cycle difference between when the fault could have first caused
an undetected error in a functional clock cycle and the current
stall cycle that detected the fault (e.g. time to detection of 170
cycles for the E stuck-at-1 fault the first time and 12 for the
second time).

Because the size of the test sets is well below the number of
stalls in the programs, the test sets are applied multiple times;
it is possible that a problem could develop during program
execution that was not present at the beginning. This is even



more true for transition faults as the circuit heats up and
delays increase. As a result, the clock cycle of first functional
detection is reset every time the fault is detected by a test
pattern. Thus, a new clock cycle difference, i.e. the time to
detection, is saved every time a fault is “first” detected by
a functional pattern (i.e. since the last test pattern) and then
subsequently detected by a test pattern.

Fig. 4. Example of E stuck-at-1 detection by functional and test patterns

B. Results for Stuck-at Fault Detections by Stuck-at Test Sets

Table III illustrates the results of our experiment. The first
column of values (Percentage of functional faults detected),
shows the fault coverage of our method for each of the five
programs we used in our experiments. The top rows of the
table show the Program-targeted test sets, while the bottom
rows show the Cross-program test set with miss-matched fault
lists. Even when the program is different, the Cross-program
test set is capable of detecting more than 95% of the functional
faults.

Then, we collected data for the time to detection for faults
that would cause an error in the program and later be detected
by a test pattern. For example, this would include both the 170
and 12 clock cycle times to detection shown in Figure 4. We
compute the median of these times to detection for each fault
individually. We then take the median of the medians across
all faults detected by the test set after a functional error occurs.
The computed median of these median times to detection are
shown in the last column of Table III.

In the programs, the first stalls occur around the 100th

clock cycle; thus, the detections of the first occurrences of
many of the faults are around 100 clock cycles. However, as
the program continues running, the stall cycles appear more
frequently and closely, making the programs’ median in the
range of 15-33 clock cycles.

Note that even though Factorial and Factorial-Fibonacci
were not perfectly matched to the fault list of the Cross-
program test set, the median time to detection for those faults
that are detected is still relatively low.

Also note that some faults appear for the first time in a
functional clock cycle very close to the end of the program
and there are not enough stall cycles afterwards to allow for

detection by a test pattern. In addition, the last functional
clock cycle of the program could have faults that are not
detected by subsequent tests. These cases are not included in
the calculation of the last column in Table III. To avoid these
scenarios, one could simply apply the full test-set at the end
of program execution to guarantee coverage.

TABLE III
STUCK-AT FAULT DETECTION

% functional faults detected Median time to fault
detection (clock cycles)

Program-targeted
Hanoi 100 33
Binary-Search 100 17
Factorial 100 15
Factorial-Fib 100 16
Fibonacci 100 31

Cross-program
Factorial 95.88 18
Factorial-Fib 95.97 25

C. Application to Transition Faults

We also explore the application of our approach to transition
faults. In this section, we follow the same steps explained in
the previous sections to create the equivalent input files for
our program runtime simulation. We generate transition test
pattern pairs and the corresponding pattern-faults dictionaries
for the transition faults they can detect.

We use the obtained data files to simulate the previously
mentioned five C programs. However, in the earlier sections,
dealing with stuck-at faults was simpler due to the need for
only one stall cycle to evaluate a test pattern for faults. In
contrast, with transition faults, we need two consecutive stall
cycles to allow us to inject a preconditioning pattern and then
an observation pattern. Additionally, when we encounter only
a single stall, we need to take the opportunity to apply a test
pattern and use it to detect stuck-at faults.

In Figures 5 and 6, we present two different effective ap-
proaches for test pattern injection for testing for both transition
and stuck-at faults.

Fig. 5. Case 1: Apply preconditioning patterns at single stalls, one by one

The first approach, or Case 1, is illustrated in Figure 5.
In Case 1, when a single stall cycle is encountered, the
preconditioning pattern of the next pattern pair is injected and
evaluated for stuck-at faults. If the following clock cycle is also



Fig. 6. Case 2: Apply the same preconditioning pattern at single stalls until we
get two consecutive stalls and can apply the observation pattern and evaluate
for transition faults

TABLE IV
STUCK AT DETECTION BY TRANSITION TEST SETS

% faults detected Median time to faults
detection (clock cycles)

Case 1 Case 2 Case 1 Case 2
Program-targeted
Hanoi 97.67 99.22 33 16
Binary-Search 98.80 98.80 23 27
Factorial 98.69 98.69 16 15
Factorial-Fib 99.46 99.46 18 10
Fibonacci 99.04 99.04 32 12

Cross-program
Factorial 98.89 98.89 16 15
Factorial-Fib 98.92 98.92 22 15

a stall cycle, the observation pattern of the current test pattern
pair is then injected, and the full pattern pair is evaluated
for transition and stuck-at faults, and the address generator
advances to the next pattern pair. Otherwise, if the next clock
cycle is not a stall cycle, the address generator advances to the
next pattern pair so in the next stall cycle, the preconditioning
pattern of a new test pattern pair will be evaluated. This
approach allows for testing different preconditioning patterns
at single stall cycles but does not ensure testing with all pattern
pairs.

The second approach, or Case 2, is illustrated in Figure 6.
The main difference between Case 2 and Case 1 is how
we deal with single stall cycles. In Case 2, if we do not
encounter a consecutive stall cycle to apply the test pattern
pair for transition faults, we do not change the advance the
address generator. This means that the same preconditioning
test pattern will be applied again when the next stall cycle
eventually arrives. We only move to the next pattern pair in the
test set if we are able to apply both patterns of the pair in two
consecutive stall cycles. This approach allows us to ensure that
we evaluate all pattern pairs for transition and stuck-at faults
if the full test set fits the available stall cycle distribution.
However, this generally leads to repeatedly testing for the
same stuck-at faults when the same preconditioning pattern
is applied because the program includes a limited number of
consecutive stall cycles.

D. Results: Transition Test Sets

The results for the Case 1 and Case 2 scenarios are presented
in Tables IV and V. Table IV illustrates the stuck-at detection

results when we evaluate the application of the generated tran-
sition patterns for functional stuck-at fault detections (where
the preconditioning and observation patterns are both capable
of detecting stuck-at faults). The results show that a significant
percentage of functional stuck-at faults were detected with
both the Program-targeted and the Cross-program test sets
(over 97%). Note that only the functional transition faults
were targeted with the test set. As a result, some functional
stuck-at faults were not targeted during ATPG, leading to less
than 100% coverage. If higher coverage is desired, additional
patterns can be generated targeting the missed stuck-at faults
and added to the test set.

Case 2 appears to have a higher percentage of stuck-at
faults covered than Case 1 for Hanoi. Hanoi has only a small
number of two cycle stalls. In the case of a one-cycle stall,
Case 2 is designed to ensure that the observation pattern of
the pair is applied before we advance to the next pattern
pair. The observation patterns are better at detecting stuck-at
faults because the preconditioning patterns only need to setup
the excitation of the transition faults and do not require the
result to be propagated to an output. Not skipping observation
patterns (as is done in Case 1) helps to achieve a higher
functional stuck-at fault coverage.

The other programs have many two cycle stalls and thus
the observation patterns are eventually applied even if they
are sometimes skipped. This leads to coverage numbers of
Case 1 and 2 to be identical for the other programs and test
set combinations. Interestingly we were able to achieve better
Cross-program stuck-at fault coverage with the transition test
sets over the stuck-at test sets shown in Table III. We believe
this is because the transition test sets allow for both patterns
in the pair to detect stuck-at faults — roughly doubling the
number of patterns applied compared to Table III.

For most of the programs, the median time taken to detect
a fault (the median of the median number of clock cycles
until detection) is faster for Case 2 than Case 1. Once again
this may be due to ensuring the application of the observation
patterns so that they are not skipped.

Next, we can examine the transition faults detection results
in Table V. Our method achieves a very high percentage of
transition fault detection. The Program-targeted test sets are
all at 100% coverage except for Hanoi in Case 1, as the
iteration through the pattern pairs causes some pairs to never
get applied, especially because the double stall cycles are

TABLE V
TRANSITION FAULTS DETECTION

% faults detected Median. time to faults
detection (clock cycles)

Case 1 Case 2 Case 1 Case 2
Program-targeted
Hanoi 94.90 100 266 167
Binary-Search 100 100 66 72
Factorial 100 100 104 101
Factorial-Fib 100 100 101 101
Fibonacci 100 100 387 335

Cross-program
Factorial 93.53 93.53 129 112
Factorial-Fib 93.43 93.43 157 120



scarce in Hanoi. The Cross-program test sets also show good
coverage with over 93% coverage of the functional faults even
when tested with patterns that target mismatched fault lists.
Similar to what we saw earlier, the median time taken to detect
a fault (the median of the median number of clock cycles until
detection) is faster for Case 2 than Case 1 for most programs.
Thus, overall, Case 2 appears to be the better approach to
implement.

E. Overhead

To measure the area and performance overhead, we used the
OpenLane [27] EDA toolset to convert the Verilog RTL de-
scriptions of the BRISC-V core (without the memory blocks)
and map them to standard cells for ASIC implementation using
the SkyWater SKY130 PDK [28]. The overall increase in die
area was 5.4%, and the overall impact on the clock frequency
of the original design was just 1.2%. If the memories or caches
that would normally accompany the processor were included
in the base die area, then the overhead percentage would be
even less.

V. CONCLUSION AND FUTURE WORK

In this paper, we explored the insertion of test patterns into
stall cycles in a RISC-V processor to detect faults in the ALU.
When only the faults that could have caused an error for
a program are targeted with the ATPG, the number of test
patterns required is much less than a full test pattern set for
both the stuck-at test set as well as the transition test set. If a
set of applications is perfectly known a priori (e.g. as might
occur in an embedded system) we achieve very high coverage.
We also see that if the application is not perfectly known (e.g.
Cross-program examples), we can still achieve reasonably high
stuck-at (96% when targeting stuck-at faults and 99% when
targeting transition faults) and transition (94%) fault coverage
for functional faults.

We also collected data that showed that the time between
when a fault could cause an error in the program and when it
could be detected by a subsequent test in a stall cycle is quite
small. This time is also reduced by the smaller test set size—
which allows the patterns to be reapplied during execution of
the program.

This work primarily focused on detecting faults in the ALU.
Future work will apply the proposed approach that inserts tests
during stall cycles to other parts of the processor, such as the
other parts of the EX stage, the data memory and other logic
in the datapath and/or control.

REFERENCES

[1] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent autonomous chip
self-test using stored test patterns,” in Design, Automation and Test in
Europe, DATE. IEEE, 2008, pp. 885–890.

[2] Y. Li, O. Mutlu, and S. Mitra, “Operating system scheduling for efficient
online self-test in robust systems,” in Proc. of Intl. Conf. on Computer-
Aided Design. ACM, 2009, pp. 201–208.

[3] H. Inoue, Y. Li, and S. Mitra, “VAST: Virtualization-assisted concurrent
autonomous self-test,” in Proc. Intl. Test Conf. IEEE, 2008, pp. 1–10.

[4] B. Konemann, G. Zwiehoff, and J. Mucha, “Built-in test for complex
digital integrated circuits,” IEEE Journal of Solid-State Circuits, vol. 15,
no. 3, pp. 315–319, Jun 1980.

[5] T. R. Damarla, W. Su, M. J. Chung, C. E. Stroud, and G. T. Michael,
“A built-in self test scheme for vlsi,” in Proc.of ASP-DAC’95 with EDA
Technofair. IEEE, 1995, pp. 217–222.

[6] A. S. Abu-Issa, I. K. Tumar, and W. T. Ghanem, “SR-TPG: A low
transition test pattern generator for test-per-clock and test-per-scan
BIST,” in Intl. Design Test Symposium (IDT), Dec 2015, pp. 124–128.

[7] L. Lai, J. H. Patel, T. Rinderknecht, and W.-T. Cheng, “Hardware
efficient LBIST with complementary weights,” in 2005 Intl. Conf. on
Computer Design, Oct 2005, pp. 479–481.

[8] G. Zeng and H. Ito, “Hybrid BIST for system-on-a-chip using an
embedded fpga core,” in 22nd IEEE VLSI Test Symposium, 2004.
Proceedings., April 2004, pp. 353–358.

[9] K. Ichino, T. Asakawa, S. Fukumoto, K. Iwasaki, and S. Kajihara,
“Hybrid BIST using partially rotational scan,” in Proc.10th Asian Test
Symposium, 2001, pp. 379–384.

[10] A. Carbine and D. Feltham, “Pentium(R) Pro processor design for test
and debug,” in Proc. of Intl. Test Conf. (ITC), Nov 1997, pp. 294–303.

[11] ——, “Pentium(R) Pro processor design for test and debug,” in Proc.Intl.
Test Conf. 1997, Nov 1997, pp. 294–303.

[12] A. Krstic, W.-C. Lai, K.-T. Cheng, L. Chen, and S. Dey, “Embedded
software-based self-test for programmable core-based designs,” IEEE
Design & Test of Computers, vol. 19, no. 4, pp. 18–27, 2002.

[13] C.-P. Wen, L.-C. Wang, K.-T. Cheng, K. Yang, W.-T. Liu, and J.-J.
Chen, “On a software-based self-test methodology and its application,”
in VLSI Test Symposium, 2005. Proceedings. 23rd IEEE. IEEE, 2005,
pp. 107–113.

[14] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” in Proc. of
the 40th annual Design Automation Conf. ACM, 2003, pp. 548–553.

[15] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Transactions on Computer-aided design of integrated circuits and sys-
tems, vol. 24, no. 1, pp. 88–99, 2005.

[16] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” in Processor Design.
Springer, 2007, pp. 447–481.

[17] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Micropro-
cessor software-based self-testing,” IEEE Design & Test of Computers,
vol. 27, no. 3, pp. 4–19, 2010.

[18] P. Bernardi, L. Ciganda, M. De Carvalho, M. Grosso, J. Lagos-Benites,
E. Sánchez, M. S. Reorda, and O. Ballan, “On-line software-based self-
test of the address calculation unit in risc processors,” in Test Symposium
(ETS), 2012 17th IEEE European. IEEE, 2012, pp. 1–6.

[19] D. Gizopoulos, A. Paschalis, and Y. Zorian, Embedded processor-based
self-test. Springer Science & Business Media, 2013, vol. 28.

[20] A. Kamran, “HASTI: hardware-assisted functional testing of embedded
processors in idle times,” IET Computers & Digital Techniques, vol. 13,
no. 3, pp. 198–205, 2019.

[21] S. Shamshiri, H. Esmaeilzadeh, and Z. Navabi, “Test instruction set
(TIS) for high level self-testing of cpu cores,” in Test Symposium, 2004.
13th Asian. IEEE, 2004, pp. 158–163.

[22] ——, “Instruction-level test methodology for CPU core self-testing,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 10, no. 4, pp. 673–689, 2005.

[23] R. Jafari, E. Z. Salehi, and Z. Navabi, “Utilizing NOPs for online
deterministic testing of simple processing cores,” in 2015 10th Intl. Conf.
on Design Technology of Integrated Systems in Nanoscale Era (DTIS),
2015, pp. 1–2.

[24] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin,
“Ultra low-cost defect protection for microprocessor pipelines,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 5, pp. 73–82, 2006.

[25] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
RISC-V Edition: The Hardware Software Interface. Morgan Kaufmann,
2017.

[26] S. Bandara, A. Ehret, D. Kava, and M. Kinsy, “BRISC-V: an open-
source architecture design space exploration toolbox,” in Proc. of the
Intl. Symp. on Field-Programmable Gate Arrays, ser. FPGA ’19. New
York, NY, USA: ACM, 2019, pp. 306–306.

[27] “OpenLane,” Dec. 22, 2022. [Online]. Available: https://github.com/The-
OpenROAD-Project/OpenLane

[28] “Skywater PDK,” Dec. 22, 2022. [Online]. Available:
https://github.com/google/skywater-pdk


