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We simulate the time evolution of collective neutrino oscillations in two-flavor settings on a quantum
computer. We explore the generalization of Trotter-Suzuki approximation to time-dependent Hamiltonian
dynamics. The trotterization steps are further optimized using the Cartan decomposition of two-qubit
unitary gates U∈ SUð4Þ in the minimum number of controlled-NOT (CNOT) gates making the algorithm
more resilient to the hardware noise. A more efficient hybrid quantum-classical algorithm is also explored
to solve the problem on noisy intermediate-scale quantum devices.
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I. INTRODUCTION

Neutrinos are dominant carriers of energy released during
the core-collapse supernova explosion. Understanding the
dynamics of this explosion would be greatly helped by a
complete treatment of neutrino transport. The very large
number of neutrinos emitted within tens of seconds during
supernovae explosion stream out of the star interacting with
each other and the surroundings. This problem cannot be
modelled exactly within the full many-body picture because
of the computational limitations. However, certain approxi-
mations can be made to simplify the problem (see e.g.,
Ref. [1]). These approximations may capture much of the
physics of the neutrino transport, but to ensure that we
are not missing any subtle issues, it would be beneficial to
evaluate the many-body evolution of the system for a
relatively large number of neutrinos. However, as the
number of neutrinos increase, conventional methods of
solving the time-dependent problems like the fourth order
Runge-Kutta (RK4) method, rapidly become obsolete
[2–10]. The tensor network methods can accommodate
larger many-body systems but only up to a few tens of
neutrinos which is also highly dependent on the initial
state [11]. These simulations become more complicated
when a more realistic scenario with three active flavors is
considered [12].
It is generally assumed that the quantum simulations

are a more natural way to simulate the quantum many-
body system. The simulations for the collective neutrino
oscillations on quantum computers have already been

attempted [13–17]. Due to the hardware limitations, only
a few-neutrino systems could be simulated in these studies.
These studies consider a two-beam model for the collective
neutrino oscillations. In the present work, we are interested
in a model where each neutrino occupies a different energy
bin. We then have to simulate a time-dependent many-body
problem on the quantum computer.
Several quantum algorithms, from pure quantum to

variational principle based hybrid quantum-classical
algorithms, have been devised for simulating the time-
dependent Hamiltonian dynamics on a quantum computer
[18–28]. The most commonly used quantum algorithms for
the dynamics of a time-dependent Hamiltonian are sum-
marized in Ref. [24] with the details on circuit complexity
and Barren plateau. In summary, the pure quantum algo-
rithm, like trotterization, require very deep quantum circuits
with a large number of quantum gates. On the other hand,
the variational methods like variational quantum simula-
tions (VQS) [18,29,30] and variational fast forwarding
(VFF) [21] may face the Barren plateau problem. The
quantum assisted algorithm, which we are using in the
present work, is a hybrid quantum-classical algorithm and
it requires the quantum computer only once, that means
there is no classical feedback loop. Therefore, the Barren
plateau problem does not occur and the circuit complexity
is significantly reduced.
We are interested in simulating the dynamics of collective

neutrino oscillations under a time-dependent Hamiltonian on
a quantum computer. For this purpose, we first explore the
generalization of Trotter-Suzuki method, which does not
have any classical feedback loop, for the time-dependent
Hamiltonian. To reduce the circuit complexity, we incorpo-
rate the Cartan decomposition of two-qubit gates in terms of
minimum number of CNOT gates. For the utility of current
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noisy quantum computers, we utilize the hybrid quantum-
classical algorithm based on the quantum assisted algorithm.
This paper is organized as follows. We begin by giving a

brief description of the neutrino Hamiltonian which
describes the collective neutrino oscillations in Sec. II.
The quantum algorithms employed to simulate the time
evolution of the Hamiltonian are given in Sec. III. In Sec. IV,
we discuss the results obtained with both of the quantum
algorithms and compare them with the classical results. We
conclude the paper briefly sketching out possible potential
extensions in Sec. V.

II. THE NEUTRINO HAMILTONIAN

In general, it is considered that the flavor evolution of
neutrinos depends on the vacuum oscillations, the inter-
action of neutrinos with the background matter [Mikheyev-
Smirnov-Wolfenstein (MSW) matter effects], and the
neutrino-neutrino (ν − ν) interaction. In the present work,
similar to Refs. [6,7,11], we consider the settings where
the ν − ν interaction is dominant such that the MSW
matter effects can be ignored. Therefore, in the mass basis,
the total Hamiltonian of the system considered can be
written as [6]

H ¼ Hν þHνν ¼ −
X

ω

ωJzω þ μðtÞ
X

ω;ω0;ω≠ω0

J⃗ω · J⃗ω0 ; ð1Þ

where first and second terms correspond to the vacuum
oscillations and the ν − ν interaction, respectively. Here,
ω represents the vacuum oscillation frequency and μðtÞ
accounts for the ν − ν interaction strength which is time-
dependent and averaged over angles between the momenta
of interacting neutrinos [11]. The isospin operators J⃗ω are
half of the Pauli spin matrices σω ¼ X, Y, Z; J⃗ω ¼ σω=2.
We consider the discrete, equally spaced vacuum frequen-

cies such that ωi ¼ iω0, where ω0¼1.055×10−16MeV is
an arbitrary reference frequency. Therefore, replacing the
isospin operators with the Pauli spin matrices and trans-
forming to the flavor basis, the Hamiltonian for an N
neutrino system becomes

H ¼ 1

2

!XN−1

i¼0

ω0ðiþ 1Þðsin θXi − cos θZiÞ

þ μðtÞ
XN−1

i¼0

XN−1

j>i

ðXiXj þ YiYj þ ZiZjÞ
"
: ð2Þ

We plot the quantities in units of ω−1
0 , therefore we omit

ω0 in further equations. To separate out the Hamiltonian’s
time-independent and time-dependent parts, we write the
Hamiltonian as

HðtÞ ¼ HI þ μðtÞHD; ð3Þ

where HI and HD represent the vacuum oscillations (time
independent) and the ν − ν interaction (time dependent),
respectively. The strength of the interaction, μ, provides the
time dependence. We consider the same form of μðtÞ as
given in Refs. [6,11].

III. QUANTUM ALGORITHM
FOR TIME EVOLUTION

In order to understand the dynamics of the system under
the Hamiltonian given in Eq. (2), the following time-
dependent Schrödinger equation has to be solved:

i
d
dt

jψðtÞi ¼ HðtÞjψðtÞi; ð4Þ

where HðtÞ is the time-dependent Hamiltonian given in
Eq. (2). The solution to the above Eq. (4) is given by

jψðtþ ΔtÞi ¼ T
!
exp

#
−i

Z
tþΔt

t
Hðt0Þdt0

$"
jψðtÞi; ð5Þ

where T is the time-ordering operator. For a time-
independent Hamiltonian HðtÞ ¼ H; ∀ t, Eq. (5) becomes

jψðtþ ΔtÞi ¼ exp ð−iHΔtÞjψðtÞi: ð6Þ

To perform the quantum simulations of time-evolution of
many neutrino system under the time-dependent Hamiltonian
HðtÞ given in Eq. (2), we explore three algorithms in
this work.

A. Trotterization formula
for a time-dependent Hamiltonian

For simplicity, let us consider a time-independent
Hamiltonian with the solution of corresponding
Schrödinger equation given in Eq. (6). The exponential
in this equation is difficult to compute especially when the
Hamiltonian has several noncommutative terms. Therefore,
an approximate solution in terms of product of exponentials
is required for solving it on quantum computers. The
trotterization [31,32] is a useful procedure in that direction;
for example, ifH ¼

P
k Hk, whereHk are noncommutative

operators, then the exponential given in Eq. (6) under first-
order trotterization becomes

e−iΔt
P

k
Hk ¼

Y

k

e−iΔtHk þO½ðΔtÞ2&: ð7Þ

To compute the exponential of Hamiltonian approximately,
we can implement Eq. (7) such that

e−iΔt
P

k
Hk ≈

Y

k

e−iΔtHk ð8Þ
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and the solution is accurate up to error of order O½ðΔtÞ2&.
Higher-order formulas for trotterization reviewed in
Ref. [33] can further reduce the order of errors.
The above mentioned trotterization approach can be

generalized to the time-dependent Hamiltonian case.
However, only a few algorithms have been devised for
this case [33–35]. If HðtÞ ¼

P
k HkðtÞ, the time-evolution

operator given in Eq. (5) approximately becomes [33]

T
!
exp

#
−i

Z
tþΔt

t
Hðt0Þdt0

$"
≈
Y

k

expð−iΔtHkðtþ ΔtÞÞ:

ð9Þ

Utilizing the product formulas given in Eqs. (8) and (9),
we can write the trotterization formula for Hamiltonian
corresponding to collective neutrino oscillations given in
Eq. (3) as

T
!
exp

#
−i

Z
tþΔt

t

#X

k

Hk
I þ μðt0Þ

X

m

Hm
D

$
dt0

$"

≈
Y

k

exp ð−iΔtHk
I Þ
Y

m

expð−iΔtμðtþ ΔtÞHm
DÞ: ð10Þ

1. Quantum circuit with brute force

To simulate the neutrino system, we have to design the
quantum circuits corresponding to Eq. (10) to be imple-
mented on the quantum computer. For illustration, let
us consider a two-neutrino system. The corresponding
Hamiltonian derived from Eq. (2) can be written as

H ¼ 1

2
½sin θX0 − cos θZ0 þ 2 sin θX1 − 2 cos θZ1

þ μðtÞðX0X1 þ Y0Y1 þ Z0Z1Þ&: ð11Þ

Utilizing Eq. (9), and using the shorthand notations for
sin θ ¼ s and cos θ ¼ c, the time-evolution operator can be
written as

Uðtþ Δt; tÞ ¼ e−
i
2sΔtX0e

i
2cΔtZ0e−isΔtX1eicΔtZ1

× e−
i
2μðtþΔtÞΔtX0X1e−

i
2μðtþΔtÞΔtY0Y1

× e−
i
2μðtþΔtÞΔtZ0Z1 : ð12Þ

2. Decomposition of two-qubit gates
in minimal number of CNOTs

As can be seen in Figs. 1 and 2, the total number of 19
single-qubit gates and six CNOT gates are required to
simulate the two-neutrino Hamiltonian for a single time
step. The one-body term requires only four single-qubit
gates and the remaining 15 single-qubit and 6 CNOT
gates are required for the two-body interaction term
X0X1 þ Y0Y1 þ Z0Z1. The two-body term can be simu-
lated by decomposing the corresponding two-qubit unitary

gate e−
i
2μðtþΔtÞΔtðX0X1þY0Y1þZ0Z1Þ in terms of minimal CNOT

gates. As derived in Refs. [36,37], an arbitrary two-qubit
unitary gate U∈ SUð4Þ can be decomposed into a quantum
circuit with a maximum of three CNOT gates and four
layers of single-qubit gates. The quantum circuit corre-
sponding to the two-body interaction term of neutrino
Hamiltonian under this scheme is given in Fig. 3. One can
see that for a two neutrino case, it requires three CNOT
gates and eight single-qubit gates for two-body interaction
term, reducing them by a factor of nearly half. Therefore,
under this scheme, the quantum simulation become more
resilient to the gate errors and hardware noise.

FIG. 1. The quantum circuit corresponding to the one-body
time-independent term in the two-neutrino Hamiltonian given in
Eq. (12).

FIG. 2. The quantum circuits corresponding to (a) e−
i
2μ

0ΔtZ0Z1 ,
(b) e−

i
2μ

0ΔtX0X1 , and (c) e−
i
2μ

0ΔtY0Y1 exponentials of two-body time-
dependent term in the two-neutrino Hamiltonian given in
Eq. (12), where μ0 ¼ μðtþ ΔtÞ.

FIG. 3. The quantum circuit corresponding to
e−

i
2μ

0ΔtðX0X1þY0Y1þZ0Z1Þ exponential of two-body time-dependent
term in the two-neutrino Hamiltonian given in Eq. (12), in terms
of minimum number of CNOT gates.
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B. Quantum assisted simulator:
Hybrid quantum-classical algorithm

As can be noticed from the trotterization algorithm
given in previous subsection, a large number of single
and two-qubit gates are required to perform quantum
simulations even for a small system of two neutrinos.
Decomposing the two-qubit gates in the minimum number
of CNOTs reduces the circuit depth, but still the number of
gates is very large to perform the simulations on the NISQ
devices. Therefore, to harness the full potential of NISQ
devices and perform the simulations with limited errors, we
explore a hybrid quantum-classical algorithm based on the
quantum assisted simulator (QAS) [24,38]. The algorithm
is well-documented in Ref. [38], but we present a minimal
description here including the modification implemented in
our work.
First, we explain the algorithm for time-independent

Hamiltonian which can be easily extended to the time-
dependent case. Assume that the Hamiltonian can be
written as the linear combination of r unitaries such that

H ¼
Xr

i¼1

βiUi: ð13Þ

In the QAS, we take the ansatz as a time-dependent
linear combination of m basis states jψ ii given by

jϕðαðtÞÞi ¼
Xm−1

i¼0

αiðtÞjψ ii; ð14Þ

where αiðtÞ∈C. The normalization of the ansatz wave
function, i.e., hϕðαÞjϕðαÞi ¼ 1, can be accomplished as

α†Eα ¼ 1; ð15Þ

where E is the matrix having overlaps of basis states

Ei;j ¼ hψ ijψ ji: ð16Þ

Using the Dirac and Frenkel variational principle, we get
the final equation as

E
∂αðtÞ
∂t

¼ −iDαðtÞ; ð17Þ

where

Di;j ¼
X

k

βkhψ ijUkjψ ji: ð18Þ

After solving for α̇ðtÞ, we can update the parameters as

αjðtþ δtÞ ¼ αjðtÞ þ α̇jðtÞδt; ð19Þ

and hence the wave function given in Eq. (14).

The most important step in QAS is choosing the ansatz.
The selection of ansatz suggested in Ref. [38] is based
on the cumulative K-moment states. The K-moment states
are a set of quantum states which can be defined as
UiK…Ui2Ui1 jψi where Uil ∈U are the unitaries forming
the Hamiltonian. The cumulative K-moment states are a
union set of all, i.e., 0-moment, 1-moment up to K-moment
states. Therefore, in the case of the time-independent
Hamiltonian, the ansatz can be defined as the linear
combination of cumulative K-moment states, which
can be calculated by applying the unitaries Ui of the
Hamiltonian given in Eq. (13).
In the case of the time-dependent Hamiltonian of the

form

HðtÞ ¼ HI þ fðtÞHD; ð20Þ

where HI ¼
P

k βkUk and HD ¼
P

k γkVk are the linear
combinations of unitaries Uk and Vk, respectively, the only
difference in the algorithm comes at the point of designing
an ansatz. For the Hamiltonian of the form given in
Eq. (20), the ansatz can be designed based on the effective
form of the Hamiltonian given in the theory of quantum
control. The effective Hamiltonian can be written as a
linear combination of all nested commutators of HI and
HD, such that

Heff ¼
X

i

ciCi; ð21Þ

where Ci ∈ fHI; ½HI;HD&; ½HI; ½HI;HD&&;…g. Similar to
directly using Ui in the case of time-independent
Hamiltonian as explained above, we can use the Ci’s to
form the ansatz for the time-dependent case. However, not
all Cis are unitary, and hence these can be further decom-
posed into the unitary terms forming a bigger set of basis
states. Now, similar to Eq. (18), Dij can be written as

Dij ¼
X

k

βkhψ ijUkjψ jiþ fðtÞ
X

k

γkhψ ijVkjψ ji: ð22Þ

Therefore, we need to calculate the matrix elements
Eij and Dij on the quantum computer only once. Then,
Eq. (17) can be solved on the classical computer. In this
way, the simulations can be performed with minimal errors.
The matrix element Eij and Dij can be conveniently
calculated on the quantum computer using Hadamard test.
The quantum circuit for the Hadamard test is shown in
Fig. 4. The K-moment matrix elements can be written as

Eij ¼ hψ ijψ ji ¼ hψ0jU†
i1…U†

iKUjK…Uj1 jψ0i; ð23Þ

and

Dij ¼ hψ ijUnjψ ji¼ hψ0jU†
i1…U†

iKUnUjK…Uj1 jψ0i; ð24Þ
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such that the Hadamard test can be utilized for their
computation on the quantum computer.
To illustrate the QAS algorithm for the time-dependent

case, we consider the two-neutrino Hamiltonian given in
Eq. (11). For this Hamiltonian

HI ¼
1

2
½sin θðX0 þ 2X1Þ − cos θðZ0 þ 2Z1Þ&; ð25Þ

and

HD ¼ 1

2
½ðX0X1 þ Y0Y1 þ Z0Z1Þ&: ð26Þ

Following the above explained technique to calculate the
set of permitted operators to design the ansatz, the obtained
set contains the following operators

S ¼ fI; X0; Z0; X1; Z1; X0X1; Y0Y1; Z0Z1;

Z0Y1; Y0Z1; Y0X1; X0Y1; Z0X1; X0Z1g: ð27Þ

Even if we consider only 1-moment cumulative set to
generate the basis states, using the entire set leads to 14
basis states. Computing the Eij and Dij requires several

operations to be performed on the quantum computer. Also,
the number of coupled equations to be solved on the
classical computers is large. We notice that the several
operators lead to the same basis states except the phase.
Therefore, we can use a smaller set of operators
fI; X0; X1; X0X1g only, to generate the basis. For an initial
state jψ0i ¼ j00i, we get

jψ1i ¼ X0jψ0i; ð28Þ

jψ2i ¼ X1jψ0i; ð29Þ

jψ3i ¼ X0X1jψ0i: ð30Þ

We utilize these basis states to calculate the overlaps Eij
and Dij, and solve the corresponding set of differential
equations. The results for survival probabilities are given in
next section.

IV. RESULTS

We perform the quantum simulations for the two-neutrino
and four-neutrino systems utilizing all the algorithms
described above. We take the time step as 0.2, and the
number of shots as 1024 for all sets of calculations. For every
time step, 50 runs of calculations are performed, and the
median and median absolute deviation are calculated for
the estimation of exact value and the error bars, respectively.
We do all the calculations on the IBM’s QASM simulator.
We start our simulations at t ¼ 210.64ω−1

0 .
In the case of the two-neutrino system, the results with the

trotterization for the time-dependent Hamiltonian labeled as

FIG. 4. The quantum circuit corresponding to Hadamard test
for calculating Rehψ jUjψi which is the difference between
measuring 0 and 1 on the ancilla qubit.

FIG. 5. The survival probability for the neutrino in ω1 bin to be in the νe flavor in case of the two-neutrino system with the initial state
jνeνei. Quantum simulation results with the trotterization for the time-dependent Hamiltonian are labeled as “Trotter,” and the classical
results are labeled as “Exact.”
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“Trotter” are given in Fig. 5. At initial times, since the
quantum circuits are shallow, the quantum simulation results
match exactly with the classical results (“Exact”) with
negligibly small error bars. However, with the increase in
time, the results start deviating more from the classical
results. These deviations can be understood in terms of the
circuit depth which increases as the time increases.
As explained in Sec. III A, the number of gates and

circuit depth can be reduced by utilizing the Cartan

decomposition of two-qubit gates in terms of minimum
number of CNOT gates. Under this scheme, the quantum
simulation results labeled as “Cartan” for a two-neutrino
system are given in Fig. 6. Similar to the results with
trotterization, in the case of two neutrino system, the
quantum simulation results match exactly with the classical
ones at initial times. With the increase in time, due to
increase in circuit depth, the simulation results deviate
from the classical ones. However, there are no significant

FIG. 6. Same as Fig. 5, but with the quantum algorithm with the minimum number of CNOTs for two-qubit gates labeled as “Cartan.”

FIG. 7. The survival probability for the neutrino in ω1 bin to be in the νe flavor in case of the four-neutrino system with the initial state
jνei⊗4. Quantum simulation results with the trotterization for the time-dependent Hamiltonian are labeled as “Trotter,” and the classical
results are labeled as “Exact.”
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differences between the “Trotter” and “Cartan” results,
because the length of the circuits in the case of two-
neutrinos is still comparable. The main advantage of
“Cartan” over “Trotter” will be seen on the real quantum
devices due to the hardware noise.
With an increase in the system size, i.e., a four-neutrino

system, the quantum simulation results for “Trotter” and
“Cartan” are shown in Figs. 7 and 8, respectively. In case of
trotterization for a time-dependent Hamiltonian, the results
start deviating from the exact ones at earlier times as
compared to the two-neutrino case. Furthermore, the
deviation at the later times is more pronounced as compared
to the two-neutrino case. We interrupt the simulations at
t ¼ 270ω−1

0 , because the computations become very time
consuming as time increases.
In the case of four-neutrino system with the quantum

algorithm with Cartan decomposition of two-qubit gates in
terms of the minimum number of CNOT gates, the results
shown in Fig. 8 exhibit more deviations as compared to
the two-qubit gates starting at the earlier times. However,
similar to the two-neutrino case, even with the reduction in
the number of gates in “Cartan” algorithm, the results with
both the methods i.e., “Trotter” and “Cartan” look com-
parable. Since we are using a simulator instead of real
quantum devices, the true advantage of this reduction in the
number of gates will be visible when the qubits are error
prone and the gates have hardware noise which occurs in
NISQ devices.
As can be seen from the results shown in Figs. 5–8, the

quantum simulations of the collective neutrino oscillations
for a large enough system are very difficult with the pure
quantum algorithm. To utilize the NISQ devices for this

problem to their full potential, we perform the simulations
with the hybrid quantum-classical algorithm explained in
Sec. III B. The results corresponding to the two-neutrino
and four-neutrino systems are given in Figs. 9 and 10,
respectively. In line with the literature [6,11], we plot the
survival probabilities in mass basis instead of flavor basis
as used in Figs. 5–8. The errors in the quantum simu-
lations results are negligible and hence cannot be seen in
the figures. The results match exactly with classical ones
which are not shown in the plots. With this hybrid
algorithm, we could perform the simulations up to very
long time with accuracy.

FIG. 8. Same as Fig. 7 but with the Cartan decomposition of two-qubit gates in terms of minimum number of CNOT gates. The
quantum simulation results are labeled as “Cartan” and the classical ones are labeled as “Exact.”

FIG. 9. The survival probability for two neutrino system for
the neutrinos to be in the first mass eigenstate ν1 with an initial
state jν⊗2

e i.
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Since only a small part of the calculations i.e., the
computations of matrix elements is performed on the quan-
tum computer, this algorithm is very suitable for the NISQ
devices. However, in future when the quantum devices
become error proof, the second step of algorithm i.e., solving
Eq. (17), can also be performed on the quantum computer
making the algorithm fully quantum.

V. CONCLUSIONS

We have performed the quantum simulations of the
collective neutrino oscillations with a time-dependent
Hamiltonian using a hybrid algorithm. The generalization
of the trotterization to the time-dependent Hamiltonian has
been employed for the time evolution of the collective
neutrino oscillations. It has further been optimized by
performing the Cartan decomposition of two-qubit gates
in the minimum number of CNOT gates. The number of
gates and the circuit depth increase drastically for each time
step as the time progresses in both these algorithms.

However, in the later case, as the number of CNOT gates
reduces approximately by half, the algorithm becomes
more noise resilience and it makes it a better choice for
the NISQ quantum devices. However, it still has significant
deviations from the exact results.
We have employed the hybrid quantum-classical algo-

rithm based on the quantum assisted simulator technique to
simulate the time-evolution of collective neutrino oscilla-
tions. This algorithm does not have any classical feedback
loop and the number of quantum gates and circuit depth is
reduced significantly. Therefore, the quantum simulations
could be performed for sufficient time interval with
negligible errors.
The utilization of the quantum computer in the hybrid

quantum-classical algorithm used in the present work is
minimal. Only matrix elements are calculated on the
quantum computer and these are further used in simulating
the time-evolution on classical computer. This limited usage
makes this algorithm useful for the NISQ devices. However,
further improvements can be made to increase the employ-
ment of quantum computers. For example, the quantum
algorithm for simulating the linear algebraic equations can
be utilized to increase the role of quantum computer.
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