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Collective neutrino oscillations on a quantum computer
with hybrid quantum-classical algorithm

Pooja Siwach®,'

2 Kaytlin Harrison 2" and A. Baha Balantekin

2%

'Nuclear and Chemical Science Division, Lawrence Livermore National Laboratory,
Livermore, California 94551, USA
2Department of Physics, University of Wisconsin—-Madison, Madison, Wisconsin 53706, USA

® (Received 17 August 2023; accepted 4 October 2023; published 27 October 2023)

We simulate the time evolution of collective neutrino oscillations in two-flavor settings on a quantum
computer. We explore the generalization of Trotter-Suzuki approximation to time-dependent Hamiltonian
dynamics. The trotterization steps are further optimized using the Cartan decomposition of two-qubit
unitary gates U € SU(4) in the minimum number of controlled-NOT (CNOT) gates making the algorithm
more resilient to the hardware noise. A more efficient hybrid quantum-classical algorithm is also explored
to solve the problem on noisy intermediate-scale quantum devices.
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I. INTRODUCTION

Neutrinos are dominant carriers of energy released during
the core-collapse supernova explosion. Understanding the
dynamics of this explosion would be greatly helped by a
complete treatment of neutrino transport. The very large
number of neutrinos emitted within tens of seconds during
supernovae explosion stream out of the star interacting with
each other and the surroundings. This problem cannot be
modelled exactly within the full many-body picture because
of the computational limitations. However, certain approxi-
mations can be made to simplify the problem (see e.g.,
Ref. [1]). These approximations may capture much of the
physics of the neutrino transport, but to ensure that we
are not missing any subtle issues, it would be beneficial to
evaluate the many-body evolution of the system for a
relatively large number of neutrinos. However, as the
number of neutrinos increase, conventional methods of
solving the time-dependent problems like the fourth order
Runge-Kutta (RK4) method, rapidly become obsolete
[2-10]. The tensor network methods can accommodate
larger many-body systems but only up to a few tens of
neutrinos which is also highly dependent on the initial
state [11]. These simulations become more complicated
when a more realistic scenario with three active flavors is
considered [12].

It is generally assumed that the quantum simulations
are a more natural way to simulate the quantum many-
body system. The simulations for the collective neutrino
oscillations on quantum computers have already been
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attempted [13—17]. Due to the hardware limitations, only
a few-neutrino systems could be simulated in these studies.
These studies consider a two-beam model for the collective
neutrino oscillations. In the present work, we are interested
in a model where each neutrino occupies a different energy
bin. We then have to simulate a time-dependent many-body
problem on the quantum computer.

Several quantum algorithms, from pure quantum to
variational principle based hybrid quantum-classical
algorithms, have been devised for simulating the time-
dependent Hamiltonian dynamics on a quantum computer
[18-28]. The most commonly used quantum algorithms for
the dynamics of a time-dependent Hamiltonian are sum-
marized in Ref. [24] with the details on circuit complexity
and Barren plateau. In summary, the pure quantum algo-
rithm, like trotterization, require very deep quantum circuits
with a large number of quantum gates. On the other hand,
the variational methods like variational quantum simula-
tions (VQS) [18,29,30] and variational fast forwarding
(VFF) [21] may face the Barren plateau problem. The
quantum assisted algorithm, which we are using in the
present work, is a hybrid quantum-classical algorithm and
it requires the quantum computer only once, that means
there is no classical feedback loop. Therefore, the Barren
plateau problem does not occur and the circuit complexity
is significantly reduced.

We are interested in simulating the dynamics of collective
neutrino oscillations under a time-dependent Hamiltonian on
a quantum computer. For this purpose, we first explore the
generalization of Trotter-Suzuki method, which does not
have any classical feedback loop, for the time-dependent
Hamiltonian. To reduce the circuit complexity, we incorpo-
rate the Cartan decomposition of two-qubit gates in terms of
minimum number of CNOT gates. For the utility of current
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noisy quantum computers, we utilize the hybrid quantum-
classical algorithm based on the quantum assisted algorithm.

This paper is organized as follows. We begin by giving a
brief description of the neutrino Hamiltonian which
describes the collective neutrino oscillations in Sec. II.
The quantum algorithms employed to simulate the time
evolution of the Hamiltonian are given in Sec. III. In Sec. IV,
we discuss the results obtained with both of the quantum
algorithms and compare them with the classical results. We
conclude the paper briefly sketching out possible potential
extensions in Sec. V.

II. THE NEUTRINO HAMILTONIAN

In general, it is considered that the flavor evolution of
neutrinos depends on the vacuum oscillations, the inter-
action of neutrinos with the background matter [Mikheyev-
Smirnov-Wolfenstein (MSW) matter effects], and the
neutrino-neutrino (v — v) interaction. In the present work,
similar to Refs. [6,7,11], we consider the settings where
the v —v interaction is dominant such that the MSW
matter effects can be ignored. Therefore, in the mass basis,
the total Hamiltonian of the system considered can be
written as [6]

H=H,+H, ==Y ol,+ut) Y J,-Jy. (1)
@

0,0 ,w#w'

where first and second terms correspond to the vacuum
oscillations and the v — v interaction, respectively. Here,
@ represents the vacuum oscillation frequency and pu(t)
accounts for the v — v interaction strength which is time-
dependent and averaged over angles between the momenta
of interacting neutrinos [11]. The isospin operators 7w are
half of the Pauli spin matrices o, = X, Y, Z; J,, = 6,,/2.

We consider the discrete, equally spaced vacuum frequen-
cies such that w; = im,, where w,=1.055x 1071 MeV is
an arbitrary reference frequency. Therefore, replacing the
isospin operators with the Pauli spin matrices and trans-
forming to the flavor basis, the Hamiltonian for an N
neutrino system becomes

1 V=1
H= 3 [; o (i + 1)(sin 0X; — cos Z;)

N=1 N=1
+ u(1) Z(Xixj‘f'yiyj‘f'zizj) . (2)
i=0 i

We plot the quantities in units of @ !, therefore we omit
@, in further equations. To separate out the Hamiltonian’s
time-independent and time-dependent parts, we write the
Hamiltonian as

H(t) = H; + u(1)Hp, (3)

where H; and Hp represent the vacuum oscillations (time
independent) and the v — v interaction (time dependent),
respectively. The strength of the interaction, y, provides the
time dependence. We consider the same form of u(¢) as
given in Refs. [6,11].

III. QUANTUM ALGORITHM
FOR TIME EVOLUTION

In order to understand the dynamics of the system under
the Hamiltonian given in Eq. (2), the following time-
dependent Schrodinger equation has to be solved:

() = HOly (1), @

where H(t) is the time-dependent Hamiltonian given in
Eq. (2). The solution to the above Eq. (4) is given by

e+ ) =7 e (=i [ Heyar ) [y, 9

where 7 is the time-ordering operator. For a time-
independent Hamiltonian H(7) = H, V t, Eq. (5) becomes

lw(t + Ar)) = exp (—iH ALy (1)). (6)

To perform the quantum simulations of time-evolution of
many neutrino system under the time-dependent Hamiltonian
H(t) given in Eq. (2), we explore three algorithms in
this work.

A. Trotterization formula
for a time-dependent Hamiltonian

For simplicity, let us consider a time-independent
Hamiltonian with the solution of corresponding
Schrodinger equation given in Eq. (6). The exponential
in this equation is difficult to compute especially when the
Hamiltonian has several noncommutative terms. Therefore,
an approximate solution in terms of product of exponentials
is required for solving it on quantum computers. The
trotterization [31,32] is a useful procedure in that direction;
for example, if H = ), H,, where H; are noncommutative
operators, then the exponential given in Eq. (6) under first-
order trotterization becomes

oA Hy He—iAtHk + O[(Ar)?]. (7)
k

To compute the exponential of Hamiltonian approximately,
we can implement Eq. (7) such that

e_iA[Zka ~ He—iAtHk (8)
k
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and the solution is accurate up to error of order O[(Ar)?].
Higher-order formulas for trotterization reviewed in
Ref. [33] can further reduce the order of errors.

The above mentioned trotterization approach can be
generalized to the time-dependent Hamiltonian case.
However, only a few algorithms have been devised for
this case [33-35]. If H(r) = >_; Hy(t), the time-evolution
operator given in Eq. (5) approximately becomes [33]

T{exp <—i / i H(ﬂ)dﬂﬂ ~ Hexp(—iAtHk(t + A7),

©)

Utilizing the product formulas given in Egs. (8) and (9),
we can write the trotterization formula for Hamiltonian
corresponding to collective neutrino oscillations given in
Eq. (3) as

T {exp (—i [ i <;H’,‘ + ﬂ(z’)zm:Hg> dt’)]

~ Hexp (—iAtH’;)H exp(—iAmu(r + An)HB).  (10)
k m

1. Quantum circuit with brute force

To simulate the neutrino system, we have to design the
quantum circuits corresponding to Eq. (10) to be imple-
mented on the quantum computer. For illustration, let
us consider a two-neutrino system. The corresponding
Hamiltonian derived from Eq. (2) can be written as

1
H= 5 [sin Xy — cos 0Zy + 2sin X, — 2 cos 6Z,
+ u(t)(Xo X1 + Yo¥ | + ZoZ,)). (11)

Utilizing Eq. (9), and using the shorthand notations for
sin@ = s and cos = c, the time-evolution operator can be
written as

U(t+ At,1) = e~ 5501Xo G5CAIZy =isAIX, HicALZ,

% e—é’y(HAz)AtX(,Xl e—%ﬂ(HAt)AzYoY,

« e—%,u(H*AI)AIZ“Zl . (12)

2. Decomposition of two-qubit gates
in minimal number of CNOTsS

As can be seen in Figs. 1 and 2, the total number of 19
single-qubit gates and six CNOT gates are required to
simulate the two-neutrino Hamiltonian for a single time
step. The one-body term requires only four single-qubit
gates and the remaining 15 single-qubit and 6 CNOT
gates are required for the two-body interaction term
XoX| +YoY| +ZyZ,. The two-body term can be simu-
lated by decomposing the corresponding two-qubit unitary

E— RX (SAt)

Rz(—CAt) —

— Rx(2sAt) —

Rz(—2cAt) —

FIG. 1. The quantum circuit corresponding to the one-body
time-independent term in the two-neutrino Hamiltonian given in
Eq. (12).

— & [Fa} b

(a)

Rz(uIAt) e

(b)

> 95

s o—{TE

(©)

FIG. 2. The quantum circuits corresponding to (a) e

—%M’Afzozl ,
(b) e~/ AXoX1 and (c) e 'A%t exponentials of two-body time-
dependent term in the two-neutrino Hamiltonian given in
Eq. (12), where y' = u(r + Ar).

gate e~ #(TANAXX 1 +YoY1+2021) i terms of minimal CNOT

gates. As derived in Refs. [36,37], an arbitrary two-qubit
unitary gate U € SU(4) can be decomposed into a quantum
circuit with a maximum of three CNOT gates and four
layers of single-qubit gates. The quantum circuit corre-
sponding to the two-body interaction term of neutrino
Hamiltonian under this scheme is given in Fig. 3. One can
see that for a two neutrino case, it requires three CNOT
gates and eight single-qubit gates for two-body interaction
term, reducing them by a factor of nearly half. Therefore,
under this scheme, the quantum simulation become more
resilient to the gate errors and hardware noise.

— i {s—1x] Rx(n/2) }—
— : d

FIG. 3. The
e~ A(XoX 1 +YY 1+

quantum  circuit  corresponding  to

Z1) exponential of two-body time-dependent
term in the two-neutrino Hamiltonian given in Eq. (12), in terms
of minimum number of CNOT gates.
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B. Quantum assisted simulator:
Hybrid quantum-classical algorithm

As can be noticed from the trotterization algorithm
given in previous subsection, a large number of single
and two-qubit gates are required to perform quantum
simulations even for a small system of two neutrinos.
Decomposing the two-qubit gates in the minimum number
of CNOTs reduces the circuit depth, but still the number of
gates is very large to perform the simulations on the NISQ
devices. Therefore, to harness the full potential of NISQ
devices and perform the simulations with limited errors, we
explore a hybrid quantum-classical algorithm based on the
quantum assisted simulator (QAS) [24,38]. The algorithm
is well-documented in Ref. [38], but we present a minimal
description here including the modification implemented in
our work.

First, we explain the algorithm for time-independent
Hamiltonian which can be easily extended to the time-
dependent case. Assume that the Hamiltonian can be
written as the linear combination of r unitaries such that

H= zr:ﬂ,-U,-. (13)
i=1

In the QAS, we take the ansatz as a time-dependent
linear combination of m basis states |y;) given by

Ba)) = Y a0y, (14)

i=0

where «;(7) €C. The normalization of the ansatz wave
function, i.e., (¢(a)|¢(a)) = 1, can be accomplished as

a'fa =1, (15)
where & is the matrix having overlaps of basis states
Eij= <l/’i|Wj>' (16)

Using the Dirac and Frenkel variational principle, we get
the final equation as

da(t) .
57— lDa(l), (17)
where

Dij= > BlwilUilw;). (18)
k

After solving for a(r), we can update the parameters as
a;(t 4 6t) = a;(t) + a;(1)dt, (19)

and hence the wave function given in Eq. (14).

The most important step in QAS is choosing the ansatz.
The selection of ansatz suggested in Ref. [38] is based
on the cumulative K-moment states. The K-moment states
are a set of quantum states which can be defined as
U;....U,U; lw) where U; €U are the unitaries forming
the Hamiltonian. The cumulative K-moment states are a
union set of all, i.e., 0-moment, 1-moment up to K-moment
states. Therefore, in the case of the time-independent
Hamiltonian, the ansatz can be defined as the linear
combination of cumulative K-moment states, which
can be calculated by applying the unitaries U; of the
Hamiltonian given in Eq. (13).

In the case of the time-dependent Hamiltonian of the
form

H(1) = H; + f(1)Hp. (20)

where H; =Y, /U, and Hp = >, vV, are the linear
combinations of unitaries U; and V, respectively, the only
difference in the algorithm comes at the point of designing
an ansatz. For the Hamiltonian of the form given in
Eq. (20), the ansatz can be designed based on the effective
form of the Hamiltonian given in the theory of quantum
control. The effective Hamiltonian can be written as a
linear combination of all nested commutators of H; and
Hp, such that

Hey = Zcicp (21)

where Ci (S {H[, [H[, HD]’ [H[, [H[, HDH’ .. } Similar to
directly using U; in the case of time-independent
Hamiltonian as explained above, we can use the C;’s to
form the ansatz for the time-dependent case. However, not
all C;s are unitary, and hence these can be further decom-
posed into the unitary terms forming a bigger set of basis
states. Now, similar to Eq. (18), D; j can be written as

Dy =Y AlwilUdw,) + F(DD relwil Vilwy).  (22)

Therefore, we need to calculate the matrix elements
&;j and D;; on the quantum computer only once. Then,
Eq. (17) can be solved on the classical computer. In this
way, the simulations can be performed with minimal errors.
The matrix element &;; and D;; can be conveniently
calculated on the quantum computer using Hadamard test.
The quantum circuit for the Hadamard test is shown in
Fig. 4. The K-moment matrix elements can be written as

gij = <l//i|l//j> = <W0|UZ--~ULUJK--'U]‘,|‘//0>, (23)

and

Dij:<Wi|Un|Wj>:<W0|U:'rl"'U;LKUntK~"Uj1|l//O>’ (24)
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|0)

%) 1 U |

L1

FIG. 4. The quantum circuit corresponding to Hadamard test
for calculating Re(w|U|w) which is the difference between
measuring 0 and 1 on the ancilla qubit.

such that the Hadamard test can be utilized for their
computation on the quantum computer.

To illustrate the QAS algorithm for the time-dependent
case, we consider the two-neutrino Hamiltonian given in
Eq. (11). For this Hamiltonian

1
H, = 3 [sin@(Xy + 2X;) — cosO(Zy + 2Z,)], (25)

and
HD ==

[(XoX1 + YoYy + ZyZ,)]. (26)

N[ =

Following the above explained technique to calculate the
set of permitted operators to design the ansatz, the obtained
set contains the following operators

S - {I’ X()7ZOvX13Z]7XOXla Y0Y17Z()Zl’

ZoY 1, YoZ1, YoX 1, XoY1, ZoX1, XoZ1}. (27)
Even if we consider only I-moment cumulative set to
generate the basis states, using the entire set leads to 14
basis states. Computing the &;; and D;; requires several

operations to be performed on the quantum computer. Also,
the number of coupled equations to be solved on the
classical computers is large. We notice that the several
operators lead to the same basis states except the phase.
Therefore, we can use a smaller set of operators
{I, Xy, X1, XyX} only, to generate the basis. For an initial
state |wq) = |00), we get

ly1) = Xolwo), (28)
lya) = X, lwo), (29)
lws) = XoXi |wo)- (30)

We utilize these basis states to calculate the overlaps &;;
and D;;, and solve the corresponding set of differential

equations. The results for survival probabilities are given in
next section.

IV. RESULTS

We perform the quantum simulations for the two-neutrino
and four-neutrino systems utilizing all the algorithms
described above. We take the time step as 0.2, and the
number of shots as 1024 for all sets of calculations. For every
time step, 50 runs of calculations are performed, and the
median and median absolute deviation are calculated for
the estimation of exact value and the error bars, respectively.
We do all the calculations on the IBM’s QASM simulator.
We start our simulations at 7 = 210.64awy; .

In the case of the two-neutrino system, the results with the
trotterization for the time-dependent Hamiltonian labeled as

1.001
AR RRERRRREE
0.951 1 }HHH 134 HHHMMH
+#I' Hw“»}}”*”}””*
§:UO.9O~ HH'H'}H'H} +|'|'|'+|'++++ TExact
< U T s
UL E L
0.85 | } 1 H H*
| WWHV*W}W
0.801 d*" 4 l
210 220 230 240 250 260 270 280 290 300
t (wgl)

FIG. 5.

The survival probability for the neutrino in @, bin to be in the v, flavor in case of the two-neutrino system with the initial state

|vov,). Quantum simulation results with the trotterization for the time-dependent Hamiltonian are labeled as “Trotter,” and the classical

results are labeled as “Exact.”
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1.001
T
~ H Lt }+|'+|'H”|'++++ P+
30,90/ bt ! T (Bt i ++ H
’fw +H“+ || t Carltan b “HH“I"'HH
0.85- * | 1l +E A ++ }+ {! +}
R R
0.80- H Y ¢
210 220 230 240 250 260 270 280 290 300
t (wgl)

FIG. 6. Same as Fig. 5, but with the quantum algorithm with the minimum number of CNOTs for two-qubit gates labeled as “Cartan.”

“Trotter” are given in Fig. 5. At initial times, since the
quantum circuits are shallow, the quantum simulation results
match exactly with the classical results (“Exact”) with
negligibly small error bars. However, with the increase in
time, the results start deviating more from the classical
results. These deviations can be understood in terms of the
circuit depth which increases as the time increases.

As explained in Sec. III A, the number of gates and
circuit depth can be reduced by utilizing the Cartan

decomposition of two-qubit gates in terms of minimum
number of CNOT gates. Under this scheme, the quantum
simulation results labeled as “Cartan” for a two-neutrino
system are given in Fig. 6. Similar to the results with
trotterization, in the case of two neutrino system, the
quantum simulation results match exactly with the classical
ones at initial times. With the increase in time, due to
increase in circuit depth, the simulation results deviate
from the classical ones. However, there are no significant

1.00 1

0.95 1

E—
—
v
—

0.90 * |

— 0.851 b §

= i

3 p
~0.80 1 } 4N
a b +

) p
0.75 1 BiRL *

>

0.70 1

B S

0.65 1

A —
——v"

b —— Exact

|' " ¢

Trotter

nal
—=
==
—=
—=

.-y
——
—e—y—
—y

i

-

210 220 230

FIG. 7.

240

250 260 270

t (wyt)

The survival probability for the neutrino in @, bin to be in the v, flavor in case of the four-neutrino system with the initial state

|v,)®*. Quantum simulation results with the trotterization for the time-dependent Hamiltonian are labeled as “Trotter,” and the classical

results are labeled as “Exact.”
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1.00 ]
0.95<X' ﬁ' ﬁﬁv MmMﬁﬁﬁ 'ﬁ’-
bb PP i A b M b X A
0901t by e b [k o
4 b i ] i t " " Al | | ‘ f
~ 0851 | [t} b P T A
3 ] f dun; ¢ +++++‘++++++ —— Exact §
£0.80 ’ i " Ll {  Cartan
QS 2RI ++ t Ll b b
IR b dl | b
0751 | | + ++ +++++++++ 1
} b b b b
ozof (W IEW Y (AR WH e +
U§ t bl
065] § u * Q u" u’ u+ M+ Q u f
' ' (L T U I [ A
210 220 230 240 250 260 270
t (wyh)

FIG. 8.

Same as Fig. 7 but with the Cartan decomposition of two-qubit gates in terms of minimum number of CNOT gates. The

quantum simulation results are labeled as “Cartan” and the classical ones are labeled as “Exact.”

differences between the “Trotter” and “Cartan” results,
because the length of the circuits in the case of two-
neutrinos is still comparable. The main advantage of
“Cartan” over “Trotter” will be seen on the real quantum
devices due to the hardware noise.

With an increase in the system size, i.e., a four-neutrino
system, the quantum simulation results for “Trotter” and
“Cartan” are shown in Figs. 7 and 8, respectively. In case of
trotterization for a time-dependent Hamiltonian, the results
start deviating from the exact ones at earlier times as
compared to the two-neutrino case. Furthermore, the
deviation at the later times is more pronounced as compared
to the two-neutrino case. We interrupt the simulations at
t = 270w;", because the computations become very time
consuming as time increases.

In the case of four-neutrino system with the quantum
algorithm with Cartan decomposition of two-qubit gates in
terms of the minimum number of CNOT gates, the results
shown in Fig. 8 exhibit more deviations as compared to
the two-qubit gates starting at the earlier times. However,
similar to the two-neutrino case, even with the reduction in
the number of gates in “Cartan” algorithm, the results with
both the methods i.e., “Trotter” and “Cartan” look com-
parable. Since we are using a simulator instead of real
quantum devices, the true advantage of this reduction in the
number of gates will be visible when the qubits are error
prone and the gates have hardware noise which occurs in
NISQ devices.

As can be seen from the results shown in Figs. 5-8, the
quantum simulations of the collective neutrino oscillations
for a large enough system are very difficult with the pure
quantum algorithm. To utilize the NISQ devices for this

problem to their full potential, we perform the simulations
with the hybrid quantum-classical algorithm explained in
Sec. I B. The results corresponding to the two-neutrino
and four-neutrino systems are given in Figs. 9 and 10,
respectively. In line with the literature [6,11], we plot the
survival probabilities in mass basis instead of flavor basis
as used in Figs. 5-8. The errors in the quantum simu-
lations results are negligible and hence cannot be seen in
the figures. The results match exactly with classical ones
which are not shown in the plots. With this hybrid
algorithm, we could perform the simulations up to very
long time with accuracy.

1.00 4

0.98 1

0961
IS — W2

Q. 0.94

0.92 1
0.90 1 ——

200 400 600 800 1000
t(wgt)

FIG. 9. The survival probability for two neutrino system for
the neutrinos to be in the first mass eigenstate v; with an initial
state [v9?).
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1.000 -

0.975 A

0.950
09251 — w1
o
3 | Tt W
=.0.900 —— s
Q.

0.875 — Ws

0.850

0.825 A

0.800 -

200 400 600 800 1000

t (wgh)

FIG. 10. Same as Fig. 9 but for a four neutrino system with an
initial state [1®4).

Since only a small part of the calculations i.e., the
computations of matrix elements is performed on the quan-
tum computer, this algorithm is very suitable for the NISQ
devices. However, in future when the quantum devices
become error proof, the second step of algorithm i.e., solving
Eq. (17), can also be performed on the quantum computer
making the algorithm fully quantum.

V. CONCLUSIONS

We have performed the quantum simulations of the
collective neutrino oscillations with a time-dependent
Hamiltonian using a hybrid algorithm. The generalization
of the trotterization to the time-dependent Hamiltonian has
been employed for the time evolution of the collective
neutrino oscillations. It has further been optimized by
performing the Cartan decomposition of two-qubit gates
in the minimum number of CNOT gates. The number of
gates and the circuit depth increase drastically for each time
step as the time progresses in both these algorithms.

However, in the later case, as the number of CNOT gates
reduces approximately by half, the algorithm becomes
more noise resilience and it makes it a better choice for
the NISQ quantum devices. However, it still has significant
deviations from the exact results.

We have employed the hybrid quantum-classical algo-
rithm based on the quantum assisted simulator technique to
simulate the time-evolution of collective neutrino oscilla-
tions. This algorithm does not have any classical feedback
loop and the number of quantum gates and circuit depth is
reduced significantly. Therefore, the quantum simulations
could be performed for sufficient time interval with
negligible errors.

The utilization of the quantum computer in the hybrid
quantum-classical algorithm used in the present work is
minimal. Only matrix elements are calculated on the
quantum computer and these are further used in simulating
the time-evolution on classical computer. This limited usage
makes this algorithm useful for the NISQ devices. However,
further improvements can be made to increase the employ-
ment of quantum computers. For example, the quantum
algorithm for simulating the linear algebraic equations can
be utilized to increase the role of quantum computer.
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