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Abstract

Modularity is a key concept in designing synthetic gene circuits, as it allows for constructing complex
molecular systems using well-characterized building blocks. One of the major challenges in this
field is that these modular components often do not function as expected when assembled into
larger circuits. One of the major issues is caused by resource competition, where multiple genes
in the circuit compete for the same limited cellular resources, such as transcription factors and
ribosomes. In addition, the mutual inhibition between synthetic gene circuits and cell growth results
in growth feedback that significantly impacts its host-circuit dynamics. However, the complexity of
the gene circuit dynamics under intertwined resource competition and growth feedback is not fully
understood. This study developed a theoretical framework to examine the dynamics of synthetic
gene circuits by considering both growth feedback and resource competition. Our results suggest a
cooperative behavior between resource-competing gene circuits under growth feedback. Cooperation
or competition is non-monotonically determined by the metabolic burden threshold. These two
diverse effects could lead to the activation or deactivation of one circuit by the other. Lastly, the
cooperativity mediated by growth feedback can attenuate the winner-takes-all resource competition.
These findings show that coupling growth feedback and resource competition plays a crucial role
in the dynamics of the host-circuit system, and understanding its effects helps control unexpected

gene expression behaviors.

1. Introduction

Synthetic gene circuits usually need multiple modules to achieve complicated functions. Ideal

modularity could greatly facilitate the construction process of multi-module gene circuits. However,
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these well-characterized modules in isolation could be undesirably connected by indirect context-
dependent interactions [1, 2, 3, 4, 5, 6, 7], such as resource competition and growth feedback. Re-
source competition exists between circuit modules where one module exploits the limited resources
in the host cells for its transcription and translation at the expense of other modules [8, 9, 10].
Growth feedback is found between the synthetic circuit and host cell growth, where the expression
of synthetic gene circuits inhibits the growth rate by causing a metabolic burden to the host and in
return is affected by cell growth-mediated dilution [11, 12, 13, 14]. These indirect interactions be-
tween modules can lead to unexpected outcomes if the whole circuit design is under any assumption
of ideal modularity.

Previous works have studied the implications of resource competition on the deterministic and
stochastic behavior of synthetic gene circuits [8, 9, 15, 10, 16]. For example, Qian et al. found
that the intended monotonically increasing dose-response curve of an activation cascade circuit
was found to be biphasic or monotonically decreasing due to resource competition [9]. Zhang
et al. found that the resource competition of a synthetic gene circuit with two bistable switch
modules led to a winner-takes-all outcome instead of the expected co-activation [10]. That is, one
of the modules takes most of the resources, making it hard to activate the other module and co-
activate the system. Feedback and feedforward control strategies have been proposed to mitigate
the effects of resource competition and allow the system to achieve the co-activation of two modules
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

On the other hand, growth feedback creates another layer of complexity in the circuit-host
system. For example, Zhang et al. demonstrate that growth feedback could affect circuit memory
depending on the network topology [28]. In addition, growth feedback can lead to the emergence of
unexpected qualitative states [29, 30] or oscillations [31]. However, the combined effects of growth
feedback and resource competition on a circuit-host system have not been elucidated.

Here, we studied how growth feedback could affect the dynamics of multi-module gene circuits
under resource competition. We developed a mathematical modeling framework incorporating both
resource competition and growth feedback. First, we found that coupling modules through growth
feedback could lead to cooperativity between them and thus counteract the effects of resource
competition. We demonstrated the existence of the cooperativity between two simple genes under
growth feedback and characterized the mathematical conditions that allow cooperative behavior.

In addition, we analyzed the cooperativity of a system with one inducible gene module and one



self-activating module. We found that an inducible gene can activate or deactivate the latter mod-
ule. Similarly, a self-activation gene circuit’s bistability could lead to a bistable competition or
cooperation behavior in a constitutive expressing gene. Lastly, we found that the growth feedback
could buffer the winner-takes-all effect caused by resource competition. Thus, the resource compe-
tition between gene circuits and their interaction with growth feedback could significantly impact

the dynamics of synthetic gene circuits involving multiple modules.

2. Results

2.1. Modeling Framework for Synthetic Gene Circuit by Considering Both Resource Competition
and Growth Feedback

Different host-circuit mathematical models have been developed in previous works to describe
the growth feedback [28] or resource competition [10]. Here we incorporated the resource competi-
tion between multiple modules in circuits based on the theoretical framework developed by Zhang
et al. [10]. In addition, we added the dilution rate and metabolic burden based on the model-
ing framework from [28]. The general ordinary differential equations for synthetic circuits with

multiples genes are given by:
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where z; is the expression level of gene-¢, and v; is the overall gene expression rate of gene-i. R;
is the concentration of active promoters for gene-i bound by transcription factors,and d; is the
degradation rate constant of the gene-i product. @Q; is the overall capacity of limited resources
in the host cell available for gene-i expression. Therefore, the maximum production rate is v; R;,
and the effect of the resource competition is given by 1/(3>7_, % + 1). The cell growth rate
effect without metabolic burden is kgg, and the maximum dilution rate is kgg * x;. The growth
attenuation by metabolic burden is given by 1/(3";_; 1}—: + 1), where J; is the metabolic burden
threshold for gene-i expression. This framework is suitable for analyzing the system’s steady state

in the exponential growth phase.
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Figure 1: Analysis of the synthetic gene circuit with one constitutive expressing module and one module with
the inducible promoter. (A-B) Diagram of interactions between a synthetic gene circuit by considering resource
competitive only (A, Top), or both resource competition and growth feedback (B, Top). The level of zo (blue
line) and growth rate (orange line) with the increase of x1 under the context with and without growth feedback,

respectively(Bottom).



2.2. Two Competing Circuits Could Cooperate under Growth Feedback

First, we studied the synthetic gene circuit with one module with inducible promoter z; (Module
1) and one constitutive expressing module 25 (Module 2). We analyzed how expression levels of gene
1 and 2 (2155 and zag,) and growth rate change with module 1 inducer, Ry under conditions without
(1A, top) and with (1B, top) growth feedback. By increasing the values of Ry, we expect an increase
on Ti1ss. Accordingly, ross with a fixed value of Ry is expected to decrease due to the resource
competition from z;. Figure 1A (bottom) shows a linear decrease of steady-state values of x5 (blue
line) with the increase of 1 for a system without considering the growth feedback. Given that the
metabolic burden caused by synthetic genes was not considered, the system’s growth rate (orange
line) is not affected by gene expression. In addition, model analysis reveals that this phenomenon
can occur for any positive parameter value set (See supplementary material, proposition 1). This
idea case is consistent with previous works [8].

Next, we incorporated the growth feedback into the system by considering the growth rate re-
duction caused by the metabolic burden from the gene circuit (1B, top). Now the growth rate
decreases with an increase of 15 (Figure 1B, Bottom). Interestingly, xoss first increases simul-
taneously with xq, then decreases. The increment of xos implies some cooperativity between the
two modules, different from the competitive effect due to resource competition. An increase of x;
expression decreases the growth rate and the growth-mediated dilution of x5 and thus benefits the
xo expression. When x5 increases, it also causes additional metabolic burden and a decrease in the
growth rate, which ultimately leads to an further increase in x5. With a further increase of x1, the
resource competition between modules starts to be significant, which decreases x5 after reaching
a maximum level. Therefore, two competing genes can cooperate with each other under growth

feedback under some conditions.

2.8. Cooperation between Two Clircuits is non-monotonically Controlled by Metabolic Burden Thresh-

old

We further analyzed the model to find the condition that allows the system to show the co-
operative behavior revealed in Figure 1B (bottom). Here, the cooperativity is quantified by the
increment of Module 2 expression (z2ss ) with respect to an increment of Module 1 expression

(2155 ). Through analysis (see more detail in Supplementary Material 2.1 ), we found the following



parameter condition:

1 Q2 1 Ja J2 kgo

w2 =
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(2)

The system shows a cooperative relation if the above condition is satisfied for a bounded range of R;.
On the other hand, a parameter set that does not follow the above condition shows only competitive
behavior. Each term in the parameter condition is interpreted as follows: 1/@Q); represents the load
of x; using resources available for the synthetic genes circuit. Q2/(Q2 + R2) is the fraction of
resource that zy takes from the limited resource for synthetic gene circuits. 1/J; is the factor
modifying the host’s metabolic burden caused by x;. Ja/(J2 + Rg) is the fraction of the metabolic
burden generated by 5. The kgo/(kgo + d2) and da/(d2 + kgo) represent the fraction of the loss
rate for Module 2 driven by dilution and degradation, respectively. To find the parameter condition
of cooperativity, the left-hand side term of the condition should be as low as possible and the
right-hand side term should be as greater as possible.

From the above condition, we can see that the ); and J; are the important parameters for
the cooperativity. This is reasonable as they represent the strength of the growth feedback and
resource competition. To demonstrate the dependence of the cooperativity on them, we analyzed
the mathematical model for the case where the two modules have equal values for () and J, that
is, Q1 =Q2=Q and J, = J, = J.

We used two characteristics to measure the intensity and robustness of the cooperativity be-
tween the two competing modules (Figure 2A), the maximum relative increment (MRI), and the
competition relief range (CRR). MRI quantifies the extent of increment of one module expression
because of the expression of the competing module. MRI is calculated as the maximum relative
change between the expression level of module 2 with and without module 1 expression. That is,
MRI is defined as 100 x |zass — T20|/T20, Where o955 and x9g are the module 2 expression level with
and without x; expression respectively. MRI corresponds to the intensity of cooperativity. CRR
describes the total range of one module induction where the other module expression increases.
CRR is defined as the range of module 1 expression level x155 where the module 2 expression is en-
hanced. That is, in CRR, x2ss are higher than the expected expression without module 1 expression
Z29. CRR indicates the robustness of the cooperativity between the competing genes.

Figure 2B shows the dependence of MRI (blue line) and CRR (orange line) on J with a fixed

value of Q). Interestingly, both MRI and CRR first increase before reaching their maximum and
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Figure 2: Analysis of the condition for the cooperativity between two competing modules. (A) Diagram of the two
features to quantify the cooperative behavior. The maximum relative increment (MRI) is the maximum relative
change between the expression level of module 2 with and without module 1 expression. The competition relief range
(CRR)represents the range of z1ss where the module 2 expression is enhanced by expressing module 1. (B) The
dependence of MRI (left) and CRR (right) on J with fixed Q (Q = 75.14). Colormaps of MRI (C) and CRR (D) in

the space of @ and J. Red lines represent the parameter condition (see the inequality equation 3).



then decrease with metabolic burden threshold .J, showing a nonmonotonic dependence. Low or
high values of J do not show cooperative behavior. For a fixed value of @, a maximum level of
cooperativity can be found with an optimal value of J. In the previous section, we show that
the cooperativity in competing genes is driven by growth feedback. It is reasonable for the low
level of cooperativity under a large value of J since the metabolic burden caused by one module
is insufficient to significantly change the dilution rate of the other module. For a small value of .J,
the metabolic burden is significant that both modules could be expressed at high levels with highly
reduced dilution rate, which also leads to a high level of resource competition and diminishes the
level of cooperativity.

To understand the system’s condition with competition relief, we estimated the value of MRI
and CRR for in the space of J and @ (Figure 2 C and D). Cooperativity cannot be achieved with
high competition (low values Q). Within this white region, we expect that the system behaves
like the one is shown in Figure 1A (competition domain). Increasing the @ value decreases the
competition between two modules, and thus gives the system the chance to have cooperativity and
increase the MRI and CRR value . That is, a decrease in competition between gene modules creates
a higher level of cooperativity.

Interestingly, both MRI and CRR first increase and then decreases with parameter .J, showing a
nonmonotonic dependence on the metabolic burden threshold. For a fixed value of ), a maximum
level for cooperativity can be found with an optimal value of J (Figure 2C-D; dashed green lines on
the colormap). Interestingly, the optimal value of J for the maximum cooperativity increases with
Q@ (Figure 2C-D; dashed green lines), which is largely due to the opposite effects from growth feed-
back and resource competition. Remarkably, the boundary between competition and cooperative
domains is defined by the parameter condition discussed above for J = J; = Jo, and Q = Q1 = @3,

and is given by:
1 < 1 J kgo

(@+R2) = (J+Ra) y4 R, (dzj—iigo) kgo + d2

(3)

2.4. Activation and Deactivation of One Self-activating Circuit by one Resource-Competing Circuit

To explore the implication of the cooperativity phenomenon on a more complicated circuit,
here, we developed and analyzed a mathematical model for a system with a gene with an inducible

promoter (x1) and a self-activation (z5) module (Figure 3A). For this system, Ry is defined as
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Figure 3: Analysis of the synthetic gene circuit with a gene with an inducible promoter and a self-activation module.
(A) Diagram of interaction between a synthetic gene circuit with a gene with an inducible promoter (z1) and self-
activation (z2) modules and growth rate. (B) The bifurcation diagram of s with respect to Rq. Solid and dashed
lines correspond to stable and unstable steady state points. Solid circles denote the saddle-node bifurcation points
(blue, orange, yellow, and purple for SN1-4, respectively). (C-D) Two-parameter bifurcation diagram shows the
dependence of the saddle-nodes (SN1-4) on J (Q in (D)) and R;. SN1 (blue line), SN2 (orange line), SN3 (yellow
line), and SN4 (purple line) correspond to the saddle-node bifurcation points. The red region represents the ON-state
of o Module, the green region corresponds to the system bistability, and the white region represents the OFF-state

of the z2 module



follows:

(Isa - x2)?
Ry = (hkpp+ —22"2_ _).N,
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where N, is the plasmid copy number, and the /g4 is the induction parameter of the self-activation.
kos is the parameter that represents a basal production for the self-activation module.

We first performed a one-parameter bifurcation analysis to understand how one competing gene
cooperates with the self-activation module. As shown in Figure 3B, four saddle nodes (SN1-4) were
found in the bifurcation diagram of x, with respect to R;. The four saddle nodes represent the
value of R; where an x5 steady state appears or vanishes. It is noted that for low values of Ry, the
system is monostable with low expression level of x5 due to the high dilution rate. However, an
increase of R; above SN1 (blue circle) activates the switch due to the cooperativity. That is, the
expression of module 1 causes metabolic burden and decreases the host cell growth rate and, thus,
the dilution of module 2. Module 2 with reduced dilution, is able to be activated. Activated module
2 can be maintained at the ON state even if the R; value is reduced until SN3 (yellow circle). The
system shows bistability with values of Ry between SN1 and SN3. An increase of R; to larger values
makes the competition between the two modules significant and thus leads to the decrease of 5.
Thus, module 1 turns off the self-activation switch at another saddle-node bifurcation point SN4
(purple circle). That is, another bistable region appears between SN2 and SN4, which is driven
by competition. Finally, x5 stays in the OFF state for values of R; greater than SN4. Hence, a
simple gene module can turn a self-activation switch module on or off by creating a cooperative or
competitive environment.

It is noted that for low values of Ry, the system is monostable with a low expression level of x5
because the self-activation circuit is not strong enough to be activated under the condition with a
high dilution rate. However, an increase of R; above SN1 (Figure 3B, blue circle) attenuates the
growth rate significantly enough to activate the self-activation switch. Activated module 2 can be
maintained at the ON state with the high metabolic burden caused by itself even if the R; value is
reduced until SN3 (Figure 3B, yellow circle). That is, the system shows bistability with values of R,
between SN1 and SN3 due to the cooperativity between a SA and an inducible gene circuit. This
implies a mechanism by which some signaling pathways are activated due to a change in growth
rate by any other factors. A similar phenomenon has been seen in natural systems. Kueh et at.
report that the feedback between the cell cycle and regulatory factor PU.1 could regulate myeloid
differentiation [32].

10



We further performed a two-parameter bifurcation analysis with respect to Ry versus J and @,
which shows the dependence of the R; values of the saddle nodes with respect to the J and () value
(Figure 3 C and D). Figure 3 C shows that by increasing the values of J (decrease of the metabolic
burden), SN1 (blue curve) and SN2 (orange curve) merge where the monostable ON-state region
(red region) vanishes. In this region, the monostable ON-state of x2 module can be turned off by
increasing or decreasing the value of R;. Further, increasing J could lead to the vanishing of SN3
and SN4, leading to the loss of cooperativity between the two modules and the non-activation of
module 2. On the other hand, with low values of J (high metabolic burden, below the dashed line
in Figure 3C), SN3 vanishes. That is, the module 2 switch can be turned on by module 1, but can
only be turned off by the resource competition from z; (increasing Rp). Figure 3D shows the two-
parameter bifurcation with respect to Ry and (). The monostable ON-state region between SN1 and
SN2 expands with decreasing the resource competition between genes (increasing @)). Meanwhile,
the SN1 and SN2 merge by increasing module resource competition (decreasing ). Under this
condition, module 2 cannot turn on by changing R;. Lowering the values of @ (increasing the
competition) makes module 1 suppress the switching capacity of module 2, leading to a monostable
OFF-state where 27 dominates. Under the non-fair resource competition parameter set (Q1 # Q2
and J; # Jy), we expect a similar outcome with respect to J; and @y (Figure S1 A and B). The
change in J; and @ provoked a similar change seen in Figures 3 C and D. Therefore, under certain
parameter conditions, an inducible gene expression could activate or deactivate a self-activation

circuit.

2.5. Emergent Bistability in one Constitutively Fxpressing Circuit induced by One Bistable Resource
Competitor

In the last section, we analyzed how the dynamics of one self-activation circuit could be pertur-
bated by expressing one resource-competing circuit using one constitutively expressing circuit as
one example. One bistable self-activation circuit could lead to two states with different cell growth
rates and resource levels, significantly affecting the dynamics of other circuits in the same cell.
Here we explore how the bistable behavior of one self-activation circuit affects the expression of one
constitutively expression (CE) gene circuit.

First, we performed a one-parameter bifurcation analysis with respect to the SA circuit inducer

dose (Iga) with different Q values (Figures 4 A-B). Increasing Is4 activates the SA circuit at
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threshold SN2, and decreasing Is4 deactivates it at threshold SN1. That is, the SA circuit is
bistable between SN1 and SN2. Interestingly, the CE circuit also becomes bistable with the same
thresholds. However, the CE circuit bistable behavior depends on the @) values. For a small @
value, the resource competition between the SA and CE circuits is significant. Thus, the SA circuit’s
activation leads to the CE circuit’s deactivation (Figure 4A). However, with a large Q value, the
SA circuit activation leads to the CE circuit’s further expression at higher level (Figure 4B) due
to the reduced resource competition and dilution effect. That is, high resource availability (Q)
for synthetic genes promotes stronger cooperation from self-activation to constitutive gene circuit.
Taken together, when the cooperativity between two circuits is dominant, the emergent bistable
behavior of the CE circuits aligns with the SA circuit while running in the opposite direction when
the resource competition dominates.

It is noted that the saddle-node points shift to the left when the @ value increases (Figure
4A-B). This is reasonable given that the @ value indicates the level of available resources to the
circuits in the host cell. Thus, with a large @ value, the basal level at the OFF state for SA Circuit
becomes larger. In addition, the resource-mediated inhibition from the CE circuit becomes smaller.
All these factors lead to the reduced activation threshold for the SA circuit. This is confirmed
by our two-parameter bifurcation result, which shows that increasing the value of @ decreases the
Is 4 values at the saddle nodes (Figure 4C). Hence, increasing the resource availability for synthetic
circuits changes not only the emergent bistable of the CE circuit but also decreases the deactivation
and activation thresholds. To further understand how the effect of the SA circuit on the CE circuit
depends on the resource availability, the expression levels of the CE circuit at the ON/OFF states
around the threshold SN2 as a function of the Q value are shown in Figure 4D. We found that
the two curves intersect at Q =~ 7.3 (the dashed line in Figure 4D), separating the system into
the competitive (left) and cooperative domain (right). Our results suggest that one circuit could
become bistable because of a bistable circuit in the same host cell, and it could switch on or off

upon the activation of the bistable circuit, depending on resource availability.

2.6. Cooperativity Could be Used to Remediate Winner-Take-All Resource Competition

In the previous section, the model analysis revealed how constitutive gene modules could switch
on and off a self-activation module based on cooperativity or competition with a bistable circuit.

Following, we studied the gene circuit system with two self-activation modules (Figure 5A). For
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Figure 5: Cooperativity induced by the Growth feedback remediates the winner-take-all (WTA) competition of two
self-activation modules. (A) Diagram of interaction between a synthetic gene circuit with two self-activation modules
and growth rate. (B) Nullcline analysis. Green and red lines represent the nullcline (dz1/dt = 0, dz2/dt = 0) for z1
and z2, respectively. Solid and dashed circles represent stable and unstable steady states. Black arrows represent the
directional field of the system. (C-F) Cell fates in the space of inducer Is 41 and Ig a2, starting from the OFF-OFF
state, normalized with respect to the switch activation thresholds under conditions with neither competition nor
growth feedback (C), with resource competition and no growth feedback (D); competition with metabolic burden

(E)(J1 = J2 = 15), and high metabolic burden (F)(J1 = J2 = 4).
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this system, R; and Ry are defined as

(Isar - x1)? )
Ri=|kpp+ ——"—77—| N,
1 ( 01 (ISAl . .131)2 I 1 pl

(Isaz - 12)* )
2 ( 02 (ISAQ K x2)2 + 1 p2

where Ny, is the plasmid copy number, and Is 4; is the inducer dose of the self-activation. ko, is
a basal production rate for the self-activation module. i € {1,2} denotes the module index. Figure
5B shows the nullcline (green and red curves) and direction field (black arrows) of the system, where
nine steady states were found at the intersections between the nullclines (circles). The directional
field reveals four stable steady states (solid color circles), including the low expression (OFF-OFF
state), activation of module 1 only (ON-OFF state), activation of module 2 only (OFF-ON state),
and co-activation of both modules (ON-ON state). That is, the co-activation of competing self-
activation modules could exist even if a high resource competition between the modules (low values
of @1 and Q2) was used. The reason is that the incorporation of growth feedback in the model
could lead to some level of cooperation to counteract resource competition.

We further analyzed how co-activation is affected by the cooperativity induced by the growth
feedback. Figure 5 C-F shows the final steady states of the system in the space of the normalized
inducer doses of two modules starting from an OFF-OFF state, under conditions with no normal and
high metabolic burden, respectively. The red and green regions represent the activation of module
1 or module 2, respectively. The white region represents the OFF-OFF state, and the yellow region
represents the co-activation state. Without neither resource competition nor growth feedback, the
two modules are independent, so the activation of one module does not affect the other, leading to
the ideal modularity (Figure 5C). Figure 5D shows that a high level of resource competition leads to
a significantly reduced co-activation region (yellow area) and a large winner-take-all (WTA) region in
the system without growth feedback. This provides an alternative strategy to mitigate the Winner-
Takes-All resource competition in addition to the proposed negative feedback and feedforward
controllers in the previous works [24, 25]. Incorporating the growth feedback into the system (figure
5E) expands the co-activation region and reduces the winner-take-all region. In addition, a system
with a higher metabolic burden could further reduce the WTA behavior and expand the activation

region to close the ideal case (Figure 5E). The non-normalized heat map (Figure S2) shows that
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the activation threshold is reduced under growth feedback. This is consistent with a change in the
activation threshold of the self-activation circuit reported in the previous studies [30, 28]. It also
implies that the change in the activation threshold of bistable switch by growth feedback does not
depend on resource competition. Thus, the growth feedback contributes to cooperativity, which

leads to the robustness of the co-activation of two competing self-activation modules system.

3. Conclusion

Growth feedback and resource competition are two most critical context-dependent factors that
could significantly affect the robustness of our synthetic gene circuits [29, 28, 33, 34, 35]. While
the effects of growth feedback on synthetic gene circuits and the consequences of resource com-
petition on multi-module circuits have been extensively studied separately [10, 36], the combined
impact of both factors in the same system is not fully understood. Here we present an effort to
investigate the perturbation of the host-circuit system behavior by coupling these two factors. Our
general modeling framework approach provides a theoretical tool for future studies of designing
multi-module gene circuits, where both resource competition and growth feedback are important.
Moreover, our analysis suggests that it is important to consider both in one system. Our results
reveal unexpected phenomena of multiple-module gene circuits arising from the interplay between
growth feedback and resource competition. A new phenomenon, cooperative behavior between two
competing modules, was found through growth feedback. Our model analysis uncovers the param-
eter condition that ensures the cooperativity of the system. This parameter condition provides a
qualitative design principle for the future design of multi-module synthetic gene circuits in a com-
petitive or cooperative way. This cooperativity is a consequence of two factors, the attenuation of
cell growth-mediated dilution by high metabolic burden and the weak mutual inhibition induced by
competing for limited resources. Thus, two gene modules could benefit from the presence of each
other under the circumstance where the resource competition is not severe and the metabolic bur-
den caused by the circuit is significant. This could be plausible if the host cell growth is susceptible
to exogenous gene plasmid.

The cooperativity and competition induced by the host-circuit interactions could be utilized to
tune the synthetic circuit dynamics. For example, our analysis suggests that a monostable resource-
competing circuit could activate (by cooperation) or deactivate (by competition) a self-activating

circuit. This phenomenon implies that one circuit could be used to tune the dynamics of the other
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circuit bidirectionally. Interestingly, bistable module cooperation could generate bistability in a
non-bistable circuit in the presence of growth feedback and other competing circuits. Manipulating
gene circuits’ state by cooperativity and competition could bring an alternative way to control
circuit functionality under host-circuit interactions. Additionally, the emergence of cooperativity
in competing gene modules under growth feedback brings new insight for mitigating resource com-
petition in addition to negative feedback and feedforward controllers. Here we demonstrated how
cooperativity could mitigate WTA resource competition. Previously, Zhang et al. showed that two
competing modules exhibit a winner-takes-all behavior where only one of the two modules dom-
inates the limited resources and highly expresses itself only [10]. However, in the context where
the modules generate a sufficiently high metabolic burden, the resulting growth feedback could im-
prove the robustness of the system’s co-activation state. That is, module cooperativity can enhance
the co-activation of multiple modules in synthetic gene circuits. It would also be interesting to
investigate the potential usages of cooperativity in other synthetic gene circuit systems in future
studies. While enhancing cooperativity while impairing the competition in a host-circuit system
remains challenging, future quantitative studies will provide more insights. Ribosome allocation
between synthetic and endogenous plays an important role in the host-circuit system [35]. There-
fore, it would be important to study how resource competition and metabolic burden relate to each
other. Identifying this relationship could help to understand cooperativity in competing genes even
further.

Overall, while this research provides valuable insights into the complex dynamics of synthetic
gene circuits, there are still limitations that could be addressed in future studies. Here, our analysis
considers two types of gene circuits to demonstrate the modeling framework. Future works could
consider the effects of other circuits and other factors in the system. For example, previous studies
have shown a relationship between important circuit parameters such as transcription/translation
rates and growth rate [37, 12, 38, 39]. Therefore, it would be valuable to study the cooperation
between multiple exogenous circuits under growth feedback by considering these additional factors

under various growth conditions.
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