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Abstract—In this work, we propose a numerical method for
the solution of local generalized Nash equilibria (GNE) for
the class of open-loop general-sum dynamic games for agents
with nonlinear dynamics and constraints. In particular, we
formulate a sequential quadratic programming (SQP) approach
which requires only the solution of a single convex quadratic
program at each iteration and is locally convergent. Central to
the effectiveness of our approach is a non-monotonic line search
method and a novel merit function for SQP step acceptance
which helps to improve solver convergence beyond the local
neighborhood of a GNE. We demonstrate the effectiveness of the
algorithm in the context of car racing, where we see up to 32%
improvement of success rate when comparing against a recent
solution approach for dynamic games. We also make our code
available at https://github.com/zhu-edward/DGSQP.

I. INTRODUCTION

Real-world robotic systems must be able to operate safely
in an environment which is inhabited by other intelligent
agents who are each pursuing their own agenda. In the
process of doing so, it is likely that interactions between the
agents arise due to limitations on the shared workspace. How
the robot handles such interactions is critical to its perfor-
mance and safety as these scenarios typically involve inter-
agent constraints becoming active. The primary challenge
here is that of information availability, where agents, either
due to technological limitations or to maintain a competitive
advantage, do not share information with each other about
their intentions or future plans. It is therefore crucial to model
the behavior of the other agents in the environment when
planning the actions of the robot.

Whereas traditional approaches adopt a pipeline architec-
ture where an upstream module provides forecasts of the
behavior of other agents [1], [2], dynamic non-cooperative
games [3] provide a theoretical framework for simultaneous
prediction and planning for multiple ego-centric agents and
has seen many applications in trajectory optimization for
robotic systems [4], [5], [6], [7]. This is done by formulating
a set of coupled optimization problems which describe
the behavior of an agent as a function of the others’ in
the environment. Two solution or equilibrium concepts are
common for dynamic games, namely the Stackelberg and
Nash equilibria, which make different assumptions on the
structure of the game. A Stackelberg equilibrium can be
found for a game with an explicit leader-follower hierarchy
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[8], whereas a Nash equilibrium models the case when agents
make their decisions simultaneously. Our work focuses on
the selection of generalized Nash equilibria (GNE) [9], which
we believe to be a good fit for modeling the behavior of ego-
centric agents with state and input constraints when no a
priori structure is imposed on the order of the interactions.
Specifically, we propose an iterative approach for finding
GNE of a discrete-time dynamic game based on sequential
quadratic programming (SQP), which builds upon ideas from
[10]. In particular, we are able to handle general nonlinear
game dynamics and constraints on both the game state and
agent actions. Our primary contributions are the following:

1) Alocally convergent solver for GNE of dynamic games
with nonlinear dynamics and constraints.

2) A novel merit function, which when used in conjunc-
tion with a non-monotone line search strategy, greatly
improves solver convergence in practice.

3) A simulation study in the context of car racing which
shows up to 32% improvement in success rate when
comparing our approach with a recent method.

Related Work: [5], [11], [12] take a differential dynamic
programming approach to obtain a linear-quadratic approx-
imation of the dynamic game. However, the approach is
unable to explicitly account for inequality constraints and
instead include them in the cost function via barrier func-
tions. [13], [14] formulate a decomposition based method
called Iterative Best Response where the agents improve their
strategy in a sequential manner while holding the behavior
of all other agents fixed. It is shown that fixed points of
this algorithm correspond to GNE. However, the method
requires the solution of the same number of optimization
problems as agents and can be slow to converge in practice.
In contrast, our approach only requires the solution of a
single optimization problem at each iteration. The approach
proposed in this work is inspired by and builds upon [4]
and [10] with improvements which are demonstrated to be
essential to effectively solve the class of problems we are
interested in. [10] proposes a similar SQP approach for
the computation of feedback Nash equilibria, but does not
investigate its local behavior. Compared to [10], we also
introduce a new merit function and line search strategy which
improves solver convergence. [4] proposes a GNE solver
based on an augmented Lagrangian approach. The solver,
called ALGAMES, outperforms [5]. However, as will be
shown in our comparison, ALGAMES appears to struggle
with convergence in the context of car racing where more
complex dynamics and environments are introduced.
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II. PROBLEM FORMULATION

Consider an M -agent, finite-horizon, discrete-time,
general-sum, open-loop, dynamic game whose state is
characterized by the joint dynamical system:

Try1 = f(og, ur), (1)
where zi € X' and u] € U’ are the state and input of

B T T
agent 4 at time step k and z, = [z} ,...,zM ]T € R",
T T
ug = [up ,...,ul |7 € R™ are the concatenated states

and inputs of all agents. In this work, we will use the notation
—i

zy" and u;" to denote the vector of states and inputs of all
but the i-th agent.

Each agent ¢ attempts to minimize its own cost function,
which is comprised of stage costs I} and terminal cost I,
over a horizon of length N:

N—-1

Ji(x,u’) = Z (g, ul) + Uy (zn) (2a)
k=0

= Jiul, ..., uM z), (2b)

where x = {x¢,..., 2y} and u’ = {u},...,u’,_,} denote
state and input sequences over the horizon. Note that the
cost in (2a) for agent ¢ depends on its own inputs and the
joint state. We arrive at (2b) by recursively substituting in
the dynamics (1) to the cost function, which are naturally
a function of the open-loop input sequences for all agents.
The agents are additionally subject to n. constraints

C(ut,...,uM z) <o, (3)
which can be used to describe individual constraints as
well as coupling between agents and where we have once
again made the dependence on the joint dynamics implicit.
For the sake of brevity, when focusing on agent i, we
omit the inital state xy and write the cost and constraint
functions as J*(u’,u™) and C(u’,u™). Let us now define
the conditional constraint set

U'u™) ={u’ | C(u',u™) <0},
which can be interpreted as a restriction of the joint con-
straint set for agent ¢ given some u ™. We assume that the
sets A and U* are compact and the functions f, J*, and C
are twice continuously differentiable on X’ and U.
A. Generalized Nash Equilibrium
We define the constrained dynamic game as the tuple:

F:(NaXauafv{‘]i ?ihc)' (4)
For such a game, a GNE is attained at the set of feasible input
sequences u = {u’}*, which minimize (2) for all agents 1.
Formally, we define this solution concept as follows:

Definition 1. A generalized Nash equilibrium (GNE) [9] for
the dynamic game I' is the set of open-loop solutions u* =
{u**}M, such that for each agent i:

Ji(ui’*,uﬁi’*) S Ji(ui,uﬁi’*), \vxui c Z/[i(uﬁi’*).
If the condition holds only in some local neighborhood of
u®*, then u* is denoted as a local GNE.

In other words, at a local GNE, agents cannot improve
their cost by unilaterally perturbing their open-loop solution

in a locally feasible direction. The local GNE for agent ¢ can
be obtained equivalently by solving the following constrained
finite horizon optimal control problems (FHOCP):
ui’*(u”"*) = arg min Ji(ui, uﬁi’*) (5)
subject to  C'(u’,u™*) < 0.
where u™"* correspond to local GNE solutions for the other
agents. Note that we are assuming uniqueness of the local
GNE of (4). This will be made formal in the next section. A
distinct advantage of using (5) to model agent interactions
is that a dynamic game allows for a direct representation
of agents with competing objectives as the M objectives
are considered separately instead of being summed together,
which is typical in cooperative multi-agent approaches [15].

III. AN SQP APPROACH TO DYNAMIC GAMES

In this section, we propose a method which iteratively
solves for open-loop local GNE of dynamic games using
sequential quadratic approximations. In particular, we will
derive the algorithm and present guarantees on local conver-
gence, which is based on established SQP theory. We begin
by defining the Lagrangian functions for the M coupled
FHOCPs in (5):

Ei(ui, uﬂi’*, /\z) _ Ji(ui7 uﬂi,*) + C«(ui7 uﬂi,*)T/\i7
where we have again omitted the dependence on the initial
state zo for brevity. As in [4], we require that the Lagrange
multipliers A’ > 0 are equal over all agents, i.e \' =\ = ),
Vi, 7 € {1,..., M}. Under this condition, the GNE from (5)
are also known as normalized Nash equilibria [16].

A direct consequence of writing the constrained dynamic
game in the coupled nonlinear optimization form of (5) is
that, subject to regularity conditions, solutions of (5) must
satisfy the KKT conditions below:

Ve L, u™* ) =0, Vi=1,...,M, (6a)
C(ul™, ..., uM*) <o, (6b)
C(ub, ..., uM*) T =0, (6¢)
A > 0. (6d)

We therefore propose to find a local GNE as a solution to the
KKT system (6) in an iterative fashion starting from an initial
guess for the primal and dual solution, which we denote as
u and X > 0 respectively, and taking steps p’, and p;, at
iteration g, to obtain the sequence of iterates:

U, = U, + Py Agyl :)\q—i—p;\. @)
In particular, we form a quadratic approximation of (6a) and

linearize the constraints in (6b) about the primal and dual
solution at iteration ¢ in a SQP manner [17] as follows:

Vil ‘C}I Vu27u1 ,Cé VuN11u1 Ll
Varwl?  V2LL2 Vot e L3
L= , , : :
Vit LY Voo g £ V2, LM
he = [V J! Vi J? Var JM] T
Gy = [VaCy VuC, VauCyl
By = projo((Lq + Lq)/2) + €I, ®)
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where the subscript ¢ indicates that the corresponding
quantity is evaluated at the primal and dual iterate u,
and A\,. Here, ¢ > 0 is a regularization coefficient, I
is the identity matrix of appropriate size, and proj., =
S max{0, s;}v;v;” denotes the operation which projects
the symmetric matrix X € R"*" onto the positive semi-
definite cone, where s; and v; denote the i-th eigenvalue and
eigenvector of X respectively. Using this approximation, we
solve for the step in the primal variables via the following
convex quadratic program (QP):

1 o
u . ~.u u T u
pg =arg min, - op Bp" + hyp (9a)
subject to Cy + Ggp" < 0. (9b)
where we denote p% = [plT7 pM T]T. Denote the La-

grange multipliers corresponding to the solution of (9) as
dq. We then define the step in the dual variables as

Py =dg— Ag. (10
We note that in contrast to the approach used in [13] and [14],
which require the solution of M optimization problems, our

SQP procedure requires the solution of only a single QP at
each iteration.

A. Local Behavior of Dynamic Game SQP

We make the following assumptions about the primal and
dual solutions of (5):

Assumption 1. Solutions {u®*}M 1 and \* of (5) satisfy the

following, for each i € {1,...,M}:

e The rows of the Jacobian of the active constraints
at the local GNE, i.e. V,:C(u**, u™"*), are linearly
independent (LICQ).

o dTV2.Li(u*, u™* M)d > 0, Vd # 0 such that
Ve C(ut* u™*)Td =0,

It is straightforward to see that (6) and Assumption 1
together constitute necessary and sufficient conditions for a
primal and dual solution of (5) for agent i to be locally
optimal and unique. When these conditions hold for the
solutions over all agents, satisfaction of the requirements for
a unique local GNE follow immediately. This result was
proven formally in [10]. Note that, as in [18] and [10],
Assumption 1 is standard and can be verified a posteriori.

To analyze the local behavior of the iterative procedure
as defined by (7), (8), and (9), let us assume that uy and
Ao are close to the optimal solution and the subset of active
constraints at the local GNE, which we denote as C, with
Jacobian G, is known and constant at each iteration q.
Therefore, for the purposes of this section, we can replace
the inequality constraint in (9b) with the equality constraint:

Cy+ Ggp™ =0. an
We refer to the QP constructed from (9a) and (11) as EQP.

It was shown in [18], [17] that under the aforementioned
assumptions, the traditional SQP step is identical to a Newton
step for the corresponding KKT system. The SQP step
therefore inherits the quadratic convergence rate of Newton’s
method in a local neighborhood of the optimal solution [18,
Theorem 3.1]. However, in the case of dynamic games,

the equivalence between the SQP procedure and Newton’s
method is no longer exact since the matrix L, is not
symmetric in general. To see this, let us first state the joint
KKT system for the equality constrained version of (5):
* *\ Vuﬁ(u*, /\*) —
F(uv/\)_|: C_v(u*) :|_03
Where V,£L(u*, \*) denotes the concatenation of (6a) for all
agents. For the system of equations (12), the Newton step at
iteration ¢ is the solution of the linear system:
i Sl
G, O o ’
On the other hand, by the first order optimality conditions
for EQP, we have that the SQP step must satisfy
5[
Gy, 0] |p o '
When the matrix L, is positive definite and € = 0, (14) and
(13) are equivalent. This corresponds to the special case of
potential games [19]. However, this is not true in general
for our SQP step, which implies that we cannot inherit the
quadratic convergence of Newton’s method. Instead, the SQP
step from (9a) and (11) can be seen as a symmetric approx-
imation to the Newton step. As such, we can establish local
linear convergence for our SQP procedure via established
theory for SQP with approximate Hessians. The proof for
Theorem 1 can be found in [20].

12)

13)

(14)

Theorem 1. Consider the dynamic game defined by (4). Let
Assumption 1 hold. Then there exist positive constants €1 and
€9 such that if

[up —u*[| < e, [[Bo — L*|| < eg,

and Nog = —(GoG ) 1Goho, then the sequence (uy,\;)
generated by the SQP procedure (7) and (9) converges
linearly to (u*, \*).

IV. A NOVEL MERIT FUNCTION AND NON-MONOTONE
LINE SEARCH STRATEGY FOR DYNAMIC GAME SQP

We have shown that our proposed SQP approach exhibits
linear convergence when close to a local GNE. However,
as is commonly seen with numerical methods for nonlinear
optimization, a naive implementation of the procedure de-
fined by (7), (8), and (9) often performs poorly due to overly
aggressive steps leading to diverging iterates. In this section,
we introduce a merit function and line search method which
will help address this problem in practice. These components
will be used to determine how much of the SQP step py and
p;‘ can be taken to make progress towards a local GNE while
remaining in a region about the current iterate where the QP
approximation (9) is valid.

A. A Novel Merit Function

In traditional constrained optimization, merit functions
typically track a combination of cost value and constraint
violation. In the context of dynamic games, this is not as
straightforward as the agents may have conflicting objec-
tives and a proposed step may result in an increase in the
objectives of some agents along with a decrease in others’.
We also cannot just simply sum the objectives as minimizers
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of the combined cost function may not be local GNE. We
therefore propose the following merit function:

1
oA, s p) = SIVL N3 + pllCw) = sk, A5)

where VL(u, \) is the concatenation of (6a) for all agents
and define y(u, \) = (1/2)||VL(u, \)||3. The slack variable
s = min(0, C'(u)) is defined element-wise such that C' — s
captures violation of the inequality constraints and we define
the step p* = C(u) + G(u)p"™ — s. Compared to the merit
function from [10], which only included the first term of
(15), ours includes the I' norm term, which is a common
choice in nonlinear optimization [17] and whose purpose
will be described shortly. Clearly, the merit function attains
a minimum of zero at any local GNE. However, we note
that this merit function is not exact [17] since the first order
conditions are only necessary for optimality.

Since we would like the sequence of iterates to converge
to the minimizers of ¢, it follows that at each iteration we
would like the step to achieve a decrease in ¢. In other words,
we would like the directional derivative of ¢ evaluated along
the step to be negative. Following a simple derivation in [20],
the directional derivative of ¢ can be written as:

D(p(u, A, 85 1), p*,p*) = (Vury)P — pf|C = s]|1,  (16)

where p = [p* ', pAT]T. From (16) it follows that that given
C — s # 0, we can select a value for g > 0 such that the
directional derivative is negative for the step p* and p*. As
such, we propose the following expression to compute g,
given some p € (0,1):

ez (Vury)p/((1=p)[|C = s), (17
which results in D(¢p(u, \; p), p%,p*) < —pul|C — sl
In the case when C — s = 0, the directional derivative
is not guaranteed to be negative as its sign is now fully
dependent on the residual between the KKT matrix L and
its symmetric approximation B. This fact can be verified by
deriving an expression for the first term of (16). For dynamic
games where the agents have highly coupled and differing
objectives, i.e. when L is highly non-symmetric, it is likely
that the approximation would suffer and that we may not
be able to achieve a decrease in the merit function. For this
reason, we utilize a non-monotone strategy for the line search
step, which will be discussed in the following.

B. A Non-Monotone Line Search Strategy

Line search methods are used in conjunction with merit
functions to achieve a compromise between the goals of
making rapid progress towards the optimal solution and
keeping the iterates from diverging. This is done by finding
the largest step size o € (0,1] such that the following
standard decrease condition is satisfied [18]:

d(ug + api, Ay + apy, sq + apl; 1) (18)

< ¢(ug, Mg, 5¢; 1) + CaD(p(ug, Ag, 543 1), D> 1)
where ¢ € (0,0.5). However, since our merit function is not
exact, the line search procedure can be susceptible to poor
local minima which do not correspond to local GNE. We
therefore include in our approach a non-monotone approach
to line search called the watchdog strategy [21]. Instead of

Algorithm 1: Dynamic Game SQP (DG-SQP)
Input: ug, p, ¢

1 g+ 0, Ao max((), —(GoGa—)_lGoho);

2 while not converged do

3 By, hg, Gq, Cq + (8);

a | py, py < (9, (10);

5 sq < min(0,Cy), py « Cy + Gypy — 545

6

7

8

9

if Cy — 54 # 0 then
| Compute  from (17);

else
| p0;
10 end
11 Ugy1, Ag+1 < watchdog line search;
12 q+—q+1
13 end

14 return u* < ug, A < Ay

insisting on a sufficient decrease in the merit function at
every iteration, this approach allows for relaxed steps to be
taken for a certain number of iterations, which can lead to
increases in the merit function. The decrease requirement
(18) is then enforced after the prescribed number of relaxed
iterations. The rationale behind this strategy is that we can
use the relaxed steps as a way to escape regions where it
is difficult to make progress w.r.t. the merit function. The
algorithm is presented in detail in [20].

C. The Dynamic Game SQP Algorithm

By combining the elements previously discussed, we arrive
at the dynamic game SQP (DG-SQP) algorithm presented in
Algorithm 1. The algorithm requires as input initial guesses
of open-loop input sequences for each agent. Line 1 initial-
izes the primal and dual iterates, where the dual variables
are initialized as the least squares solution to (6a). Lines 2
to 13 perform the SQP iteration which has been described in
Sections III and IV. An iterate is said to have converged to a
local GNE if it satisfies the KKT conditions described in (6)
up to some user specified tolerance. Namely, for some given
€1, €2, €3 > 0, we require the conditions || VL(ug, A\g)|lec <
e1, [[C(ug)|lse < €2, [A; C(ug)| < €3 be satisfied in order
for the algorithm to terminate successfully. We allow the
algorithm to terminate with relative tolerance if the difference
between successive primal and dual iterates are below a
given threshold for a given number of iterations. Note that
when this occurs, the solution may not be a local GNE. The
algorithm outputs the open-loop strategies for the M agents
and the corresponding dual multipliers.

V. SIMULATION STUDY

In this section, we use simulation studies to demonstrate
the performance of our DG-SQP (DS) algorithm and to
compare our approach with the recently proposed GNE
solver ALGAMES (AL) [4]. The DG-SQP algorithm was
implemented in Python All results were obtained on a
desktop with a 2.5 GHz 11th-Gen Intel Core i7 CPU.

We demonstrate our approach in the context of head-
to-head car racing, where our approach would be used by
a vehicle to simultaneously obtain an open-loop control

3214
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 10,2023 at 21:06:14 UTC from IEEE Xplore. Restrictions apply.



Fig. 1: Example of the initial guess (left) and a corresponding local GNE
(right) of horizon length N = 25 for two agents on a curved track segment
with a 90° turn. The circles represent the collision avoidance constraints.
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Fig. 2: Largest non-zero constraint violation at solver convergence (top) and
failure (bottom) of DG-SQP (left) and ALGAMES (right). The dashed line
corresponds to constraint violation of 1073.

sequence and predictions of its opponent’s behavior. We
assume that no information about future plans is shared
between agents and that they must avoid collisions with each
other while also remaining within the boundaries of the track.
In our examples, the agents are described by the kinematic
bicycle model [22] with the following state and input vectors:
T = [PuDys Vs, 8rey]T € RS, u = [a,8]T € R,
where p = (p,,py) are the Cartesian position and v, is the
longitudinal velocity of the vehicle’s center of gravity (CoG).
The remaining states are expressed in a Frenet reference
frame [23] which is defined w.r.t. the centerline of the track.
s and e, denote the distance travelled along the track and
lateral deviation from the centerline, of the CoG, respectively.
ey is the deviation between the vehicle’s heading and the
tangent angle of the track centerline at s [24]. We obtain
the discrete-time dynamics using Euler discretization with a
time step of 75 = 0.1 s. The inputs to the vehicle are the
longitudinal acceleration a and front wheel steering angle
0. We define the collision avoidance and track boundary
constraints using the expressions (r’+17)2 —||p —p7||3 < 0
and —W/2 < e} < W/2 where r* and r/ are the radii of the
circular collision buffers for agents ¢ and j respectively and
W is the width of the track. We subject the input magnitude
and rate to identical box constraints for all agents.

A. Comparison with ALGAMES
We compare DS against a custom Python implementation

of AL. In this comparison study, all agents have identical
dynamics and use the following cost functions:

. . 1 . . 1 . ) )
I (2, ul) = §quTRlu;€ + iAu;TR;Au; (19a)

lv(zn) = —cpsiy +ce D jti arctan(sly — s%), (19b)
where Auj, = uj, — uj,_,. The stage cost (19a) penalizes
the input magnitude and rate with R*, R}, = 0. The terminal
cost (19b) captures the competitive nature of racing with

Fig. 3: Monte Carlo results on a racetrack for DG-SQP (left) and AL-
GAMES (right). Each point denotes the average sampled initial position for
the two agents. o, x denote successful and failed trials respectively.
cp,cc > 0, where the first term encourages progress along
the track and the second term is made small when agent ¢ is
ahead of all other agents.

We conduct the first comparison on a segment of curved
track to examine the effect of track curvature and game
horizon length on the performance of the GNE solvers. In
particular, we perform a Monte Carlo analysis by randomly
sampling feasible initial states near the start of the track
segment and roll out the initial guess via a PID controller
which maintains the car’s speed and lateral deviation from
the centerline, as seen in the left plot of Fig. 1. This guess
is then used to initialize both algorithms. We do 200 trials
each on tracks with 45, 75, and 90 degree turns for horizon
lengths of 10, 15, 20, and 25. The results are presented in
Tab. I. A trial is said to be successful if the iterates converge
to a point where the KKT conditions (6) are satisfied with
tolerance 1073, In the top plots of Fig. 2, it can be seen
that when successful, both algorithms return solutions which
satisfy the constraints.

Looking at the number of successful trials in the first
row of Tab. I, it is clear that DS and AL perform similarly
well for track segments with low curvature. These scenarios
are similar to those investigated in [4], where dynamic
games are played out on straight sections of road, and our
results appear to further corroborate the high success rate
of AL in these situations. However, as the curvature of the
track or horizon length increases, we see that, while both
solvers experience failures, DS outperforms AL in terms of
success rate, showing a 21% improvement in the case of
0 = 90° and N = 25. In row four of Tab. I we report
the average number of solves for the two approaches. For
DS and AL, this corresponds to the number of QPs and
linear systems that are solved, respectively. The average run
time of successful trials of DS (in seconds) is shown in the
fifth row. From this, we see that for horizons of moderate
length, our Python implementation can achieve near real-time
performance. We believe that an efficient implementation of
DS in a compiled language would achieve a similar level of
real-time performance as reported for AL in [4].

We turn next to the failure cases for the two solvers, where
we have split them into the two categories # Fail in row two
and # Max Iters. Reached in row three. # Fail counts the
trials of AL, where the iterations diverged, which is defined
as ||[VL(ug,A\g)|lc > 10°. For DG-SQP it additionally
counts trials where the QP in (9) returned infeasible. #
Max Iters. Reached counts the trials where a solver reached
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TABLE I: Monte Carlo results for M = 2 agents on a curved track with 6 degree turns and game horizon length N. The first and second row for the #
Conv, # Fail, # Max Iters. Reached, and # Solves statistics correspond to DG-SQP and ALGAMES respectively. The Time statistic is reported only for
DG-SQP. For the Time statistic, the mean and (standard deviation) in seconds over all successful trials are reported.

0 ‘ 45 ‘ 75 ‘ 90

N 10 15 20 25 10 20 25 10 15 20 25

4 Conv ‘ 200 199 199 185 ‘ 200 199 195 169 ‘ 200 197 193 172

200 199 189 172 200 192 180 136 198 193 167 142

. 0 0 0 0 0 0 0 0 0 0 0

# Fail ‘ 0 0 9 16 ‘ 0 16 39 ‘ 1 4 24 43

# Max lters. ‘ 0 1 1 15 ‘ 0 5 31 ‘ 0 3 7 28

Reached 0 1 2 12 0 4 25 1 3 9 15

‘ 3 6 14 17 3 21 25 4 9 25 17

# Solves ‘ 9 16 28 36 ‘ v 39 64 ‘ 12 28 57 77
Time [s] 10.02(0.01) 0.06(0.02) 0.24(0.14) 0.49(0.46)|0.03(0.01) 0.09(0.08) 0.44(0.26) 0.89(0.51)]0.03(0.02) 0.10(0.07) 0.41(0.19) 0.47(0.30)

50 iterations without converging. From these results, it is
clear that the majority of the AL failure cases (68.1%) were
due to the solver diverging, whereas DS fails primarily due
to reaching the maximum allowable iterations. We observe
that in many of the DS failure cases, the iterates exhibit
oscillatory behavior and fail the stationarity requirement of
(6a). However, it is important to note that even in failure,
most of the DS iterates remain feasible at termination (up to a
tolerance of 10~3), whereas for AL, they do not. This is seen
in the bottom plots of Fig. 2, which shows the distribution of
constraint violation for the iterates returned by failed trials.
We believe that this is due to the explicit linearized inequality
constraints in DS. In AL, the iterates may not satisfy any
form of the inequality constraints (linearized or otherwise),
especially when the estimate of the Lagrange multipliers is
poor. In practice, this is important as it is likely that in the
case of failure, the outputs of DS, though not local GNE,
can still be used as feasible solutions to the dynamic game.
We conduct a second comparison on the racetrack shown
in Fig. 3 to investigate the performance of the solvers in a
more diverse set of racing conditions. For this study, we fix
the game horizon to N = 15 and randomly sample the initial
states of two agents such that an interaction is likely to occur
over the horizon. Specifically, the agents start within 1.2 car
lengths of each other and are traveling in the CCW direction
at velocities that exhibit at most a 25% difference. Out of the
1000 trials, we observe that DS was successful in 814 trials
whereas AL was successful in 618 trials. This is a 31.7%
improvement in success rate. Of the trials where the solvers
failed, DS (AL) saw 13 (203) instances of divergence or QP
failure and 185 (179) instances of reaching max iterations.
Fig. 3 illustrates the distribution of solver outcomes w.r.t.
the averaged initial positions of the two agents. We note
that failure cases for DS occur more frequently in sections
of the racetrack with high curvature. This mirrors the trend
observed in the previous study and highlights a limitation of
our approach which will be investigated in future work.

B. Effect of Merit Function and Non-Monotone Strategy

We next investigate the effect of the merit function and
non-monotone line search strategy proposed in Section IV.
We are especially interested in the case where the agent ob-
jectives are different as this induces asymmetry in the matrix
L4, which adversely affects the quality of our symmetric
approximation B, in (9). For this study, we consider the
two agent scenario where the car in front (Agent 1) would
like to block the one behind (Agent 2) and impede their

100
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2 —2 0 2
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Fig. 4: Stationarity, i.e. | VL(ug, Aq)|lco. of iterate at termination of DG-
SQP using the non-monotone line search with the novel merit function
from Section IV (left) and standard backstepping line search with the merit
function from [10] (right).

progress. As such, we add the term (1/2)cy(e, ;. — €5 )%,
with ¢, > 0, to the stage and terminal cost functions in (19)
for Agent 1 and keep the cost function for Agent 2 the same.
This additional term encourages Agent 1 to match the lateral
position of Agent 2 on the track. We compare the terminal
value of ||[VL(ug, Ay)|| for our approach with a variant of
DS which uses a traditional backstepping line search and the
merit function from [10]. The results are shown in Fig. 4 for
200 trials on a track segment with 6 = 90° and N = 25,
where it is clear that, for this track segment, our proposed
modifications greatly improve the quality of the solution at
termination of the DG-SQP algorithm. We observe a median
stationarity of 9.369 x 1074, compared to 19.76 when none
of the proposed modifications are used.

VI. FUTURE WORK

In this work, we have presented an SQP based approach to
the solution of GNE for open-loop dynamic games, which
has provable local convergence and good practical perfor-
mance stemming from novel modifications to the standard
SQP algorithm from [10]. We have shown that, in the context
of head-to-head car racing, our approach outperforms the
recent ALGAMES solver in terms of success rate. However,
we observe that our approach can still suffer from conver-
gence issues when dealing with problems with long horizons,
highly nonlinear dynamics, or highly asymmetric cost. In
future work, we hope to address these shortcomings by
further investigating merit functions and line search strategies
which can be tailored to dynamic games. Finally, we note
that the GNE finding problem for open-loop dynamic games
can be cast as a nonlinear mixed complementarity problem
(MCP) for which there exists the notable PATH solver [25],
which exhibits structural similarities to our approach. The
key difference being that we form local approximations of
the GNE finding problem via QPs instead of the linear MCPs
in [25]. A detailed comparison between our approach and the
PATH solver is forthcoming in future work.
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