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Objective: — To identify and assess whether three major risk factors that due to differential access to flexible
resources might help explain disparities in the spread of COVID-19 across communities with different socio-
economic status, including socioeconomic inequalities in social distancing, the potential risk of interpersonal
interactions, and access to testing.

Methods: Analysis uses ZIP code level weekly COVID-19 new cases, weekly population movement flows, weekly
close-contact index, and weekly COVID-19 testing sites in Southern California from March 2020 to April 2021,
merged with the U.S. census data to measure ZIP code level socioeconomic status and cofounders. This study first
develops the measures for social distancing, the potential risk of interactions, and access to testing. Then we
employ a spatial lag regression model to quantify the contributions of those factors to weekly COVID-19 case
growth.

Results: Results identify that, during the first COVID-19 wave, new case growth of the low-income group is two
times higher than that of the high-income group. The COVID-19 case disparity widens to four times in the second
COVID-19 wave. We also observed significant disparities in social distancing, the potential risk of interactions,
and access to testing among communities with different socioeconomic status. In addition, all of them contribute
to the disparities of COVID-19 incidences. Among them, the potential risk of interactions is the most important
contributor, whereas testing accessibility contributes least. We also found that close-contact is a more effective
measure of social distancing than population movements in examining the spread of COVID-19.

Conclusion: — This study answers critically unaddressed questions about health disparities in the spread of COVID-
19 by assessing factors that might explain why the spread is different in different groups.

1. Introduction

Declared by the World Health Organization (WHO) as a pandemic on
March 11, 2020, the coronavirus 2019, or COVID-19, has swept the
world and raised global awareness of the threat that current and future
pandemics hold for human populations (Altindis and Ghafour, 2021;
Cascella et al., 2022; Watson et al., 2022). While among unvaccinated
populations everyone might be equally likely to be infected with
COVID-19 from a biological perspective, substantial literature docu-
ments significant sociodemographic inequalities in the spread of the
disease (Hooper et al., 2020; Clouston et al., 2021; Hu et al., 2022; Lee
et al., 2022). For example, Hooper et al. (2020) reported that the rates of

* Corresponding author.

COVID-19 are greatest among Latino and African American populations.
Clouston et al. (2021) found that the growth of COVID-19 incidence is
slower in counties with higher socioeconomic status after public health
policy led to lockdowns. Lee et al. (2022) observed a 48% higher risk of
infection among Hispanic people compared with white people.

There are also many studies aiming to explain what lead to such
inequality. Clouston et al. (2021) apply the theory of fundamental social
causes (FCT) to explain the negative relationship between the COVID-19
incidence and socioeconomic status at the county level after social
distancing was implemented. FCT was developed to explain the persis-
tence of socioeconomic and racial health disparities in disease and death
across space and time, regardless of the intervening mechanisms and the
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particular health outcome(s) in question (Link and Phelan, 1995; Phelan
et al., 2010). This theory proposes that the reproduction of health
inequality emerges when people use “flexible” resources such as
knowledge, money, power, prestige, and beneficial social connections to
strive, individually or collectively, for advantageous health circum-
stances. These resources can be used to avoid risks and adopt protective
strategies no matter what the most prevalent diseases in a particular
place or time happen to be. Based on the FCT theory, Clouston et al.
(2021) suggested that the socioeconomic inequalities lead to differen-
tiated access to flexible resources to implement social distancing, which
might cause the disproportionate distribution of COVID-19 incidence
across counties with different socioeconomic status.

While Clouston et al. (2021) did not explicitly measure the dispar-
ities of social distancing across different socioeconomic status groups,
much work measured social distancing disparities using a variety of
human mobility metrics, such as point of interest (POI) visits (Jay et al.,
2020; Weill et al., 2020; Hu et al., 2022), time spent at or away from
home (Borgonovi and Andrieu 2020; Jay et al., 2020; Weill et al., 2020;
Hu et al., 2022), number of gathering (Lee et al., 2022), and mobility
flows (Chang et al., 2021; Hou et al., 2021). These studies all consis-
tently show significant disparities in social distancing across different
socioeconomic status groups. However, it remains unclear how dispar-
ities in social distancing contribute to COVID-19 incidence during
different stages of the pandemic. Hu et al. (2022) even found that
counties with better social distancing implementations, in terms of
reducing their movement and increasing their staying home percentage,
do not always have lower infection rates, indicating that disparities in
social distancing cannot fully explain the disparities in COVID-19. Then
the question is what other disparities resulting from different access to
flexible resources are shaping the health disparity in the spread of
COVID-19 during different stages of the pandemic?

In this paper, we fill this research gap by identifying and assessing
three factors that due to differential access to flexible resources might
help explain disparities in the spread of COVID-19 across communities
with different socioeconomic status. The first are factors related to the
implementation of social distancing guidelines which were only
incompletely adhered to perhaps in part because of social circumstances
limiting the capacity of some people to do so. As mentioned earlier,
many different measures of social distancing have been used in the
literature. Noi et al. (2022) analyzed and compared twenty-six mobility
and contact-related indices across nine various sources and suggested
that any single measure might not describe all aspects of mobility. As a
result, we propose to use two distinct social distancing measures to more
accurately capture social distancing and COVID-19 transmission dy-
namics among individuals. The first measure is the mobility flow matrix
that summarizes the amount of population movement between any two
communities within a certain time interval, e.g., daily or weekly. It has a
strong potential for tracking temporal changes in COVID-19 trans-
missions risk, providing in-depth insights into how movement patterns
affect health disparities in COVID-19 incidence (Kang et al., 2020b;
Schlosser et al., 2020; Tan et al., 2021). The second measure is the
close-contact index, a measure that assesses the number of close-contact
interactions using anonymized mobile phone device location data. We
approximate the close-contact index by calculating how many devices
come within 5 m of the target device within a 5-min window based on
their GPS locations (Ye and Gao 2022). Crawford et al. (2022) created
the 2-m close-contact index to model Connecticut’s town-level
COVID-19 transmission dynamics. They suggested that the
close-contact index resulted in a better model fit than other mobility
metrics. However, no research to date has analyzed whether there are
socioeconomic inequalities in close-rate contact.

The second risk factor we will measure is the potential risk of
interpersonal interactions. The various measures of social distancing
quantify the likelihood of interpersonal interactions but do not fully
capture the potential risk of such interactions. When COVID-19 first
emerged on January 2020, communities with high socioeconomic status
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(SES) had the highest number of COVID-19 cases because their inter-
national travels had high risk of getting infected (Clouston et al., 2021).
Then when COVID-19 spread across communities the risk shifted. High
SES groups secluded themselves whereas lower SES groups work and
residential circumstances enforced a greater degree of interpersonal
contact (Shin et al., 2021; Fiske et al., 2022). We propose two measures
to approximate the potential risk of interpersonal interactions. One is
the number of COVID-19 cases in the community two weeks prior to the
current assessment an indicator that assessed the potential risk of in-
teractions with infected people in the community. The other is the
number of COVID-19 cases in neighboring communities in the two
weeks prior to the current assessment, which can signal the risk of in-
teractions occurring with neighboring communities.

Third we evaluate inequalities in communities’ access to COVID-19
testing across different socioeconomic status groups to explore
whether they are contributing to disparities in the spread of COVID-19.
Early testing is a crucial protective factor to prevent COVID-19 spread.
However, states across the United States experienced insufficient testing
access in the early stages of the pandemic and uneven geographic dis-
tribution of testing sites even after test volume increased (Rader et al.,
2020; Schmitt-Grohé et al., 2020; Tao et al., 2020). Existing studies
mainly focused on the first two or three months of COVID-19 (Tao et al.,
2020; Kang et al., 2020a; Schmitt-Grohé et al., 2020), whereas the
time-varying effect of testing accessibility in different stages of the
pandemic, among different socioeconomic status, in particular, is
largely unknown.

Specifically, we will investigate the dynamics of health disparities in
the spread of COVID-19 at the ZIP code level in Southern California from
April 2020 to April 2021. The following research questions guide this
effort: 1) Do disparities in the spread of COVID-19 appear and evolve
across communities with different socioeconomic statuses during
different stages of pandemic, 2) Are there inequalities in social
distancing, the potential risk of interpersonal interactions, and access to
testing across communities with different socioeconomic status, and if so
how do such disparities evolve during different stages of pandemic? 3)
How do any inequalities in these risk and protective factors contribute to
the production of health disparity in the spread of COVID-19 during
different stages of the COVID-19 pandemic?

2. Study area and data

Our study area focuses on six counties of Southern California,
including Los Angeles County, Orange County, San Diego County,
Riverside County, Imperial County, and San Bernardino County,
including 556 ZIP code areas and a total population of 21.23 million in
the year 2020 (Fig. 1). This study area is selected not only because of
data availability but also due to its socioeconomic and geographic di-
versity of the population. The average population of the 556 ZIP code
areas is 34,256, with a standard deviation of 22,855.

To analyze the disparity dynamics in COVID-19 incidence and
related disparities from 2020 to 2021, we obtained the daily COVID-19
confirmed cases at the ZIP code level and the locations of testing sites
between March 23, 2020, and April 5, 2021, from the California
Department of Public Health (CDPH). The first specialized COVID-19
testing sites were opened on March 26, 2020. As of April 11, 2021,
1933 active testing sites were identified in Southern California, which is
15 times the number that were open in April 2020 (126 sites). Among
them, 71% of the sites required appointments before testing, further
restricting accessibility. To estimate testing capacity, we collected the
weekly county-level COVID-19 testing data from the CDPH. In addition,
we acquired the latest 2020 American Community Survey (ACS) 5-year
estimates from U.S. Census to analyze variations in socioeconomic status
at the ZIP code level.
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Fig. 1. Study area ZIP codes and median household income in 2020.

3. Method

In this section, we first present the methods used to measure the
disparities in COVID-19 incidences, social distancing, potential risk of
interactions, and testing accessibility across communities with different
socioeconomic status. Then we develop a spatial regression model to
evaluate the contributions of the socioeconomic inequalities in social
distancing, the potential risk of interactions, and testing accessibility to
the production of health disparities in the spread of COVID-19 during
different stages of the COVID-19 pandemic.

3.1. Measure disparities in COVID-19 incidence

To evaluate how health disparities in the spread of COVID-19
emerged and evolved across communities with different socioeco-
nomic status during different stages of pandemic, we classified the 556
ZIP codes into three groups (high, medium, and low-income groups)
based on their median household income, and assess how the weekly
COVID-19 incidences vary across high and low-income groups at each
week from March 23, 2020, to April 5, 2021. As shown in Fig. 1, the 139
ZIP codes within the bottom 25% quantile median household income are
considered as the low-income group. Their corresponding median
household income varies from 0 to $58,070. Similarly, the 139 ZIP codes
within the top 25% quantile of median household income was consid-
ered as high-income group, with median household income varying
from $99,352 to $222,982. We summarize the weekly COVID-19 in-
cidences by adding up the reported daily COVID-19 cases for each day of
the week. In total, 54 weekly COVID-19 incidence are analyzed.

3.2. Socioeconomic inequalities in social distancing

As mentioned earlier, we used two measures to track social
distancing behavior using the mobility flow matrix and the close-contact
rate. Based on SafeGraph data that include millions of anonymous mo-
bile phone users ‘visits to various places, Kang et al. (2020b) presented a
method to generate a daily and weekly multiscale human mobility flow
dataset in the U.S. Following this method, we created a mobility flow
matrix for each week between March 23, 2020, and April 5, 2021 to
estimate the amount of population movement between any two ZIP
codes within a given week. With the mobility flow matrix we can
calculate the total number of population inflows to each ZIP code as a
measure of interactions with other communities. Mathematically, if we
use F; as the number of population movements from ZIP code j to i at

week t, the total number of population inflows to ZIP code i at week t,
denoted by TF:, can be represented as:

"=,
J

@

In addition to the mobility flow matrix, we also employed a large-scale
anonymized mobile phone device location panel data that we acquired
from UberMedia that covers 70% of the U.S. population. The proxy of
close contacts of each mobile device is measured by calculating how
many devices come within 5 m of the target device within a 5-min
window based on their GPS locations (Ye and Gao 2022). In this way,
a close-contact index (S}) is created for each ZIP code at each week
between March 23, 2020, and April 5, 2021, to approximate the average
number of close-contacts per person at the ZIP code. It is important to
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note that both mobility measures are created based on a sample of
mobile device data, and then population weighting is used to approxi-
mate the measure for the entire population at ZIP code.

3.3. Socioeconomic inequalities in potential risk of interactions

As discussed previously, we use two measures to approximate the
potential risk of interpersonal interactions. One is the number of COVID-
19 cases at the community two weeks ago (Ct~2) to indicate the potential
risk of interactions that are occurring inside of the community. A 14-day
or 2-week time lag is applied to capture the incubation period of COVID-
19. Ahouz and Golabpour (2021) examined intervals between 1 and 14
days and found that 14 days is the optimal time period to predict the
incidence of COVID-19.

We also develop a measure to estimate the potential risk of in-
teractions occurring among neighboring communities. Specifically, let
C! represent the number of COVID-19 cases at ZIP code i at week t, then
the potential risk of interactions with its neighboring communities at
week t, denoted by R!, can be approximated by the following equation:

R = t—2 FVJTZ 2
i ZC/ * TF'—2 @

j

The R! is essentially a weighted sum of the number of COVID-19
cases at neighboring communities two weeks ago. The weight used
here is the proportion of the population movements from j to i in the
total movements into i (Tl Ff’2). By using such a weighted sum we can
take into account both the number of cases at neighboring communities
and the number of interactions between i and its neighboring commu-
nities. The potential risk of interaction with neighboring communities
will be high when there are a large number of COVID-19 cases in its
neighboring communities and a large number of population movements
between them two weeks ago. Such risk of interaction will be minimal if
there are very few COVID-19 incidences in its neighboring communities
and very few population movements between them two weeks ago.

3.4. Socioeconomic inequalities in testing accessibility

We adopted the enhanced two-step floating catchment method
(2SFCA) to assess testing accessibility. First proposed by Radke and Mu
(2000) and later enhanced by Luo and Wang (2003) and Luo and Qi
(2009), it is one of the most widely used methods to measure access to
health care providers. The index takes into account geographic prox-
imity and is essentially a form of physician-to-population ratio, which is
easy to interpret. Following the 2SFCA, the community’s access to
COVID-19 testing sites will be computed using the following two steps:

Step 1: For each testing site k, we search all ZIP codes that are within
its 30-min drive time (this is the service area of testing site k). 30-min
drive time is a commonly used rational threshold in health care-
related accessibility studies (Wang and Luo, 2005; Tao et al., 2020).
Then we compute the testing-to-population ratio, Vi, within the catch-
ment area:

Vi=—t— 5 3

ic{dy <30}

Where Tj, is the testing capacity of testing site k at week t, estimated
using the county-level tests count (the weekly number of tests in a
county divided by its number of active testing sites). P; is the population
at ZIP code i whose centroid falls within service area of testing site k
(dix < 30), dy is the travel time between ZIP code i and testing site k. The
testing-to-population ratio V} is essentially a ratio of facility capacity to
demand, integrating both the demand (P;) and the capacity at testing
sites (T¢).

Step 2: For each ZIP code i, we search all testing sites k that are within
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its 30-min drive time (that is the catchment area of ZIP code i), and sum
up the testing-to-population ratios V}, (derived in step 1), at these lo-
cations as the testing accessibility (A{) of ZIP code i at week t as follows:
A= Y v, C))

L
ke{dy <30}

In this way the testing accessibility A} considers the access to all testing
sites within 30-min driving time. It is important to note that Af is a
summation of testing-to-population ratios so there is no bounding value
for it. It is a relative measure. A higher value of A} indicates better access
to testing.

3.5. Analyzing contributions of socioeconomic inequalities in risk and
protective factors to disparities in COVID-19 incidence

To assess the contributions of the risk and protective factors
described above to disparities in the spread of COVID-19 during
different stages of the pandemic, we constructed a cross-sectional spatial
lag regression model for each week between March 23, 2020, and April
5, 2021. The spatial lag regression model is adopted because it can
capture the neighboring effect of COVID-19 transmission and address
the issue of spatial autocorrelation (Anselin, 1988). Following previous
notation, for each week t a cross-sectional spatial lag regression model is
constructed as follows:

Ct:ertCr +/)MX! +]/IZ + ut (5)

The dependent variable is the number of COVID-19 cases at each ZIP
code at week t (CY). The number of COVID-19 cases is used as the
dependent variable rather than incidence rates (number of cases divided
by the population) because the mobility measures quantify the possible
number of interpersonal interactions and are essentially associated with
case growth instead of rate growth, as demonstrated in previous litera-
ture (Xiong et al., 2020; Weill et al., 2020; Hu et al., 2021). The inde-
pendent variables include spatial autoregressive term (W'C')
time-varying variables (X'), and non-time-varying independent vari-
ables (Z). The X" consist of the measures of social distancing that include
the number of total population inflows into each ZIP code two weeks ago
(TF*-2) and the close-contact index at each ZIP code two weeks ago
(872), the measures of potential risk of interactions that include the
number of cases two weeks ago (C'~2) and the weighted sum of the
number of COVID-19 cases at neighboring communities two weeks ago
(RY), and the testing accessibility measure two weeks ago (A“2). The
non-time-varying independent variables (Z) include population at each
ZIP code to control the impacts of population on the COVID-19 cases and
dummy variables indicating the income groups. Logarithmic trans-
formation is used for these variables to mitigate the nonnormality issues
(Xiong et al., 2020). For each week t we construct a spatial regression
model and estimate the coefficients (") of the time-varying variables
(X") to assess the potential impacts of these factors to COVID-19 inci-
dence. Then we rely upon how g vary at each week t to reflect how the
impacts of these variables to COVID-19 incidence might change across
different stages of pandemic. The spatial regression modeling was per-
formed using the latest open-source Python Spatial Analysis Library
(PySAL).

4. Results
4.1. Socioeconomic inequalities in the incidence of COVID-19

Fig. 2 illustrated the trend of the weekly new COVID-19 cases, in
which the center line indicates the mean of new cases counts among all
the ZIP codes. The shaded areas represent two standard deviations from
the mean. For the COVID-19 case, two major peaks can be observed. The
first peak appeared from June to July 2020, followed by a more sub-
stantial second surge from November 2020 to January 2021 (Fig. 2).
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Fig. 2. COVID-19 cases (C%) trend, overall (above) and high-vs. low-income groups (below).

Governor Gavin Newsom was among the first state governors to declare
a state of emergency on March 4, 2020, and issued the statewide shelter-
in-place order on March 19 (Friedson et al., 2021). A direct response to
this was a slow case growth between March and April 2020, with less
than 50 new cases weekly per ZIP code. In May, California followed a
gradual reopening plan to resume economic activities. With this
reopening, however, the number of confirmed cases increased notably
through mid-June, resulting in a delay of the state’s reopen plan and
enforcing another governor’s order on June 27 to close all businesses
again, in the midst of the first wave. The new case counts continued to
rise and reached the first peak in July, approaching 100 cases per ZIP
code. Then the number of new cases started to decline in mid-July and
remained stable until the advent of the second wave. California’s second
attempt at reopening started in mid-October 2020, which was then
followed by a second outbreak in early November, when COVID-19 case
counts reached unprecedented levels that dwarfed the summer wave in
July, soaring from 100 to nearly 400 new cases per ZIP code. After
January 2021, the growing pattern of new cases started to level off again
and returned to the 2020 pre-outbreak levels from February 2021.
According to the 2020 Census, high- and low-income groups share a
similar population size, representing 21% and 24% of the total popu-
lation, respectively. However, striking differences in COVID-19 in-
fections between the high- and low-income groups were observed in
both magnitude and variations (Fig. 2). The COVID-19 case growth of
the low-income group protruded almost two times higher than that of
high-income groups before November 2020, indicating a faster virus
spread in low-income communities. The inter-(income) group gap
widened to four times in the second wave, which peaked in December
2020. Meanwhile, considerable variations in COVID-19 cases were
noted among low-income groups as opposed to relatively minor intra-
group discrepancies among high-income communities. We also
computed the COVID-19 incidences per 10,000 population at each zip
code throughout the pandemic periods and the results are presented in

Appendix Fig. Al. As it shows, similar disparities are observed in the
incidence rate as well.

4.2. Socioeconomic inequalities in social distancing

Fig. 3 revealed the trend of population inflow among the 556 ZIP
codes in Southern California. Likewise, the center line was the average
population inflow of all the ZIP codes. The shaded areas indicated two
standard deviations from the mean. Overall, the population movements
experienced a slight drop in late March 2020 and reached the lowest
point in early April in response to California’s “shelter-in-place” order
enforcement. Despite minor fluctuations, population movements grew
gradually with the statewide reopening and remained stable from mid-
June to late November 2020. The Thanksgiving holiday in late
November 2020 was associated with a sharp rise in inter-community
travel. In contrast to the declining trend of COVID-19 infection cases,
the population movements kept growing moderately during the post-
holiday periods. The comparison of high- and low-income groups
revealed different dynamics. In the initial “stay-at-home” phase (from
late March to early May 2020), the population movements of the high-
income group reduced more than the low-income group. However,
beginning with the reopening in May, the high-income group reversed
the trend and had more movements than the low-income group, despite
a roughly similar inter-group movement pattern. Both groups displayed
similar intra-group variations, which largely overlapped in a consistent
way, as illustrated in Fig. 3.

The close-contact index illustrated a different aspect of social
distancing, compared to population inflow, especially after July 2020
(Fig. 4). The close-contact rate maintained a low level from March to
April 2020. It started to increase in May 2020 during the reopening and
rapidly formed a spike in mid-July 2020 (from 60 to 100 close contact
per person). A sharp drop occurred in late July 2020 after enforcing the
“shut-down-all-business” mandate and the number of close contacts per
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person touched the bottom of the below-40 level in August. After the
2020 summer “extreme event,” the close-contact index, despite several
fluctuations, remained at relatively low levels, below 100 per person. It
is important to note that the low-income group maintained a consis-
tently higher close-contact index-two times higher than the high-income
group.

4.3. Socioeconomic inequalities in the potential risk of interactions

Fig. 5 revealed the trend of the neighboring cases weighted by
population inflow, which allows us to better capture the inter-
community COVID-19 transmission risk. Derived from the neighboring
cases, its overall temporal trend is very similar to that of the COVID-19
cases but with higher magnitude and less variation. Overall, the
weighted neighboring cases of low-income ZIP codes were consistently
higher than those of the high-income, reflecting higher inter-community
COVID-19 transmission risk of the low-income areas, even though the
gap between the high and low-income groups was not as large as its
counterpart in Fig. 2, especially during second COVID-19 wave.

4.4. Socioeconomic inequalities in testing accessibility

As described in section 3.4, the testing accessibility measure is a
summation of testing-to-population ratios of all testing sites that are
within 30-min drive time of a ZIP code, so it is a relative measure
without bounding values. A higher value of the measure indicates better
access to testing. Fig. 6 shows that the overall testing accessibility varies
from 0.9 to 1.3 and exhibited the highest variations between May and
July 2020. Testing accessibility of the low-income group was slightly
higher than the high-income group. Specifically, the testing accessibility
of the low-income group, which started to increase one week ahead of
the high-income group in April 2020, gained a continuous rise initially
and remained above 1.25 after July 2020. In contrast, the high-income
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group’s testing accessibility stayed slightly below 1. However, there are
much more significant variations in testing accessibility among the low-
income groups than the high-income groups, as suggested by the shaded
areas that represent two standard deviations from the mean.

4.5. Contributions to disparities in COVID-19 incidence

The initial correlation analysis shows that the close-contact index
and population inflow are strongly correlated with the Pearson coeffi-
cient of 0.75. In addition, they were both strongly correlated to the total
population, with a correlation coefficient of 0.61 and 0.4, respectively.
As mentioned earlier, this is due to the fact that both mobility measures
are created based on a sample of mobile device data and population
weighting is used to approximate the measure for the entire population
at ZIP code. Given the strong correlation between these two mobility
measures, two sets of spatial lag regression models are constructed for
each week between April 6, 2020 and April 5, 2021, one including close-
contact index and other independent variables listed above, and the
other including population inflow and other independent variables lis-
ted above. The results show that close-contact models have overall
better model fits. As a result we report the results of close-contact models
here but include the coefficients of population inflow in the population
inflow regression models for comparative purpose. The weekly Pseudo
R? for close-contact models range from 0.34 to 0.97, with an average
value of 0.7, as shown in Fig. 7, indicating that the independent vari-
ables provide a good explanation of the variations in COVID-19 in-
cidences. Pseudo R? is the squared correlation between the observed and
predicted values for the dependent variable. Please note that it’s not a
true R? since it does not correspond to the share of the variance
explained by the model. The trend of the Pseudo R? corresponded with
the new COVID-19 incidence, with better model fits in the two COVID-
19 spikes than in the low tides.

Most coefficients of the spatial lag model were significant at the 0.05

Neighboring Cases Weighted by Population Inflow
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Fig. 5. Neighboring cases weighted by population inflow (RY), overall (above) and high-vs. low-income groups (below).
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Fig. 7. Weekly Pseudo R? of spatial-lag models.

level. Fig. 8 shows significant coefficients of the 2-weeks-ago close-
contact index and population inflow, where the dot markers indicate
the coefficient estimates and error-bars represent their corresponding
standard errors. As the results shows, both showed consistent positive
associations with COVID-19 case changes. Both positive notwith-
standing, the close-contact index had a more substantial effect on the
COVID-19 case changes than population flow. The close-contact index is
significant over most of the time. Its coefficients range from 0.03 to 0.18
with an average value of 0.11, indicating that a 10% increase in the
close-contact index could lead to a 1.05% ((1.1%1! — 1) % 100%) in-
crease in the new case count two weeks later. Instead, the population
inflow has a weaker effect with its coefficients ranging from 0.02 to 0.09
averaged at a value of 0.05, suggesting that a 10% increase in the close-
contact index could lead to a 0.48% ((1.1°% — 1) x 100%) increase in
the new case count two weeks later.

Fig. 9 shows significant coefficients of 2-weeks-ago local cases and 2-
weeks-ago weighted neighboring cases. From April 2020 to April 2021,
these two variables had the most potent positive effects on the COVID-19
spread. Both positive notwithstanding, the 2-weeks-ago local case has a
more substantial effect on the COVID-19 case changes than 2-weeks-ago
weighted neighboring cases, with corresponding average coefficients of
0.55 and 0.27, respectively, while controlling for each other and other
covariates. On average, a 10% increase in 2-weeks-ago local cases and 2-
weeks-ago weighted neighboring cases could lead to a 5% and 3% rise in
new case count two weeks later, respectively.

In the first two weeks of April 2020, the weighted neighboring cases
initially showed a stronger effect on case growth than 2-weeks-ago local
cases. During this time, COVID-19 incidences at a ZIP code were
dominated by the neighboring cases, where a 10% rise in weighted
neighboring cases could trigger a 4%-7% increase in new cases two
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weeks later. After two weeks, the local case became stronger than
neighboring cases, and kept growing during the first COVID-19 spike,
leading to a 7% increase in new cases two weeks later as the result of a
10% growth in local cases.

Meanwhile, weighted neighboring cases diminished and became
insignificant after mid-August 2020. At this stage, however, the cumu-
lative growth of local cases dominated the virus spread, whereas the
effects of the neighboring cases became negligible. After the first COVID-

Sep-28 Nov-2 Dec-14 Jan-25 Mar-1 Apr-5

Weighted Neighboring Case

cases (C'~?) and 2-week-ago weighted neighboring cases (R").

19 spike, the effects of local cases gradually declined but raised again
during the second spike, when a 10% increase in local cases could lead to
a 9% increase in new cases two weeks later. These two variables
exhibited similar alternating trends to the second COVID-19 wave. Un-
like in the first wave, however, the coefficients of weighted neighboring
cases were consistently lower than local cases in the second wave,
suggesting that local cases are more dominant than neighboring cases as
a factor affecting the formation of the second COVID-19 wave.



R. Wei et al.

Unlike the social distancing and potential risk of interaction mea-
sures, the coefficients of testing accessibility bounced between positive
and negative throughout the study period and it was only significant
over 28% of the time.

5. Discussion

In this paper, we analyze three potential social inequalities in risk
and protective factors and use them to help explain the disparities in the
spread of COVID-19 across communities with different socioeconomic
status during various stages of the pandemic. There are several major
findings that worth further discussion.

First, we identified striking differences in COVID-19 infections be-
tween the high- and low-income groups in both magnitude and varia-
tions. During the first COVID-19 wave, weekly new cases from the low-
income group were two times the size of the high-income. In the second
wave, this gap widened to four times. This suggests the powerful impacts
of socioeconomic status on health outcomes.

Second, when measuring the inequalities in the implementation of
social distancing, we found that people from high-income areas sharply
reduced and remained substantially below their low-income area
counterparts with respect to close contact during every stage of the
pandemic, even though there are higher population movements in the
high-income areas than the low-income areas after May 2020.

Third, inequalities in social distancing, the potential risk of in-
teractions, and testing accessibility go a long way in explaining varia-
tions in COVID-19 incidence. Specifically, the potential risk of
interactions contributes most to the spread of CVID-19, whereas testing
accessibility has the least impacts. While both 2-weeks-prior local case
and 2-weeks-prior weighted neighboring cases have significant effects
on COVID-19 incidences, their strength exhibits alternating rises and
falls during the two COVID-19 waves. The neighboring cases dominate
in the early stage of community spread, but local cases become domi-
nant during the peak season. The two-week time lag could allow early
warning of an incoming peak. In terms of the two social distancing
measures, the close-contact rate is more impactful than the population
inflows. This helps explain why people in high-income areas have lower
infections even though their population movements are higher than
those in low-income areas. People in high-income areas avoid the more
impactful factor — close contact, and did not limit themselves by
avoiding the one we found less impactful — mobility. The testing
accessibility was negatively associated with case changes for most of the
time, illustrating that 2-weeks-prior testing could effectively identify
infected populations and trigger behavior changes like (self-) quaran-
tines, isolation, or mask-wearing (Li et al., 2020; Skoll et al., 2020).
However, testing accessibility had not become significant until May
2020, indicating the inadequate supply at the beginning of the
COVID-19 spread (Schmitt-Grohé et al., 2020; Tao et al., 2020).

There are also several limitations in our research that call for further
research. First, our analysis only includes the data from March 23, 2020
to April 5, 2021. During this period, the vaccines are not widely avail-
able so that the impacts of vaccines might be minimal. However vacci-
nation data and further analysis are needed to account for the impacts of
vaccines. Second, the number of COVID-19 cases is used as the depen-
dent variable in our spatial regression models rather than incidence
rates (number of cases divided by the population) because the mobility
measures quantify the possible number of interpersonal interactions and
are essentially associated with case growth instead of rate growth, as
demonstrated in previous literature (Xiong et al., 2020; Weill et al.,
2020; Hu et al., 2021). While we include population as a controlling
variable in our regression model to mitigate the impacts of population
on the number of cases, the strong correlations between mobility mea-
sures and population also undermine such efforts. Third, information on
the weekly testing site’s capacity was derived from the county-level
COVID-19 Cases Tests data from the California Department of Public
Health (CDPH), which did not capture the heterogeneity of testing
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accessibility at the ZIP code level. Additionally, we could not track the
accessibility to testing sites through public transit as our accessibility
index was limited to car access only. This might not cause significant
inaccuracies because public transit was not available in many counties
due to pandemic during 2020 and driving is the major community
method in southern California. We also use the ZIP code centroid as the
proxy when measuring the travel time between ZIP codes and testing
sites. This could also cause inaccuracies in the accessibility measure.
Third, confirmed cases and positive test data alone might not accurately
reflect the severity of income-related health disparities. Studies have
demonstrated that the addition of COVID-19-induced death data can
overcome the well-documented inconsistencies in reported cases and
tests. Thus, better illuminating the inequality embedded among the
income-divided communities coping with the COVID-19 infection (e.g.,
Chen and Krieger, 2021). Despite these limitations, this research con-
tributes significantly to understanding health disparities in the spread of
COVID-19 because of its testing of different possible mechanisms
through which such disparities may have arisen.

6. Conclusion

Since the COVID-19 outbreak in the U.S., California has one of the
highest number of COVID-19 cases. We set out to answer critically un-
addressed questions about health disparities in the spread of COVID-19
in Southern California and the reasons for these spread patterns. Our
study identified the emergence and persistence of health disparities in
the spread of COVID-19 across communities with different socioeco-
nomic status from April 2020 to April 2021. To better understand what
contributes to such health disparities, we further examined three major
socioeconomic inequalities that could plausibly result from differential
access to flexible resources, including social distancing, disparities in
potential risk of interactions, and disparities in testing accessibility. We
observed significant disparities in all of them among communities with
different socioeconomic status. In addition, all of them contribute to the
disparities of COVID-19 incidence. Among them the potential risk of
interactions is the most important contributor, whereas testing accessi-
bility contributes least. We also found that close-contact is a much more
important measure of social distancing than population movements in
examining the spread of COVID-19.
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