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MLCommons is an effort to develop and improve the artificial intelligence (Al)
ecosystem through benchmarks, public data sets, and research. It consists of
members from start-ups, leading companies, academics, and non-profits from
around the world. The goal is to make machine learning better for everyone. In
order to increase participation by others, educational institutions provide valuable
opportunities for engagement. In this article, we identify numerous insights
obtained from different viewpoints as part of efforts to utilize high-performance
computing (HPC) big data systems in existing education while developing and
conducting science benchmarks for earthquake prediction. As this activity was
conducted across multiple educational efforts, we project if and how it is possible
to make such efforts available on a wider scale. This includes the integration
of sophisticated benchmarks into courses and research activities at universities,
exposing the students and researchers to topics that are otherwise typically
not sufficiently covered in current course curricula as we withessed from our
practical experience across multiple organizations. As such, we have outlined the
many lessons we learned throughout these efforts, culminating in the need for
benchmark carpentry for scientists using advanced computational resources. The
article also presents the analysis of an earthquake prediction code benchmark
while focusing on the accuracy of the results and not only on the runtime; notedly,
this benchmark was created as a result of our lessons learned. Energy traces
were produced throughout these benchmarks, which are vital to analyzing the
power expenditure within HPC environments. Additionally, one of the insights is
that in the short time of the project with limited student availability, the activity
was only possible by utilizing a benchmark runtime pipeline while developing
and using software to generate jobs from the permutation of hyperparameters
automatically. It integrates a templated job management framework for executing
tasks and experiments based on hyperparameters while leveraging hybrid
compute resources available at different institutions. The software is part of a
collection called cloudmesh with its newly developed components, cloudmesh-
ee (experiment executor) and cloudmesh-cc (compute coordinator).

KEYWORDS

deep learning, benchmarking, hyperparameter search, hybrid heterogeneous
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1. Introduction

As today’s academic institutions provide machine learning
(ML), deep learning (DL), and high-performance computing
(HPC) educational efforts, we attempt to identify if it is possible
to leverage existing large-scale efforts from the MLCommons
community (Thiyagalingam et al., 2022; MLCommons, 2023).
We focus solely on challenges and opportunities cast by the
MLCommons efforts to achieve this goal.

To provide a manageable entry point into answering this
question, we summarize numerous insights that we obtained
while improving and conducting earthquake benchmarks within
the MLCommons
big data systems. This includes insights into the usability and
capability of HPC big data systems, the usage of the MLCommons
benchmarking science applications (Thiyagalingam et al., 2022)

Science Working Group, porting it to HPC

and insights from improving the applicability in educational efforts.

Benchmarking is an important effort in exploring and
using HPC big data systems. While using benchmarks, we can
compare the performance of various systems. We can also
evaluate the system’s overall performance and identify potential
areas for improvements and optimizations either on the system
side or the algorithmic methods and their impact on the
performance. Furthermore, benchmarking is ideal for enhancing
the reproducibility of an experiment, where other researchers can
replicate the performance and find enhancements to accuracy,
modeling time, or other measurements.

While for traditional HPC systems, the pure computational
power is measured such as projected by the TOP500 (Dongarra
etal., 1997; Top500, 2023), it is also important to incorporate more
sophisticated benchmarks that integrate different applications, such
as the file system performance (which can considerably impact the
computation time). This is especially the case when fast GPUs are
used that need to be fed with data at an adequate rate to perform
well. If file systems are too slow, then the expensive specialized
GPUs cannot be adequately utilized.

Benchmarks also offer a common way to communicate the
results to its users so that expectations on what is possible are
disseminated within the computing and educational community.
This includes users from the educational community. Students
often have an easier time reproducing a benchmark and assessing
the impact of modified parameters as part of the exploration of the
behaviors of an algorithm. This is especially the case in DL, where
a variety of hyperparameters are typically modified to find the most
accurate solution.

Such parameters should include not only parameters related to
the algorithm itself but also explore different systems parameters
such as those impacting data access performance or even
energy consumption.

Within this article, we identify opportunities in four different
areas as depicted in Figure 1 to enhance the MLCommons efforts
we have been involved in as part of the MLCommons Science
Working Group. This includes areas in hardware, applications,
education, evaluation, and outreach. These areas intersect heavily
with each other to create an integrated holistic benchmark effort
for DL.

Hence, we not only try to identify pathways and exemplars
of how such efforts can enhance educational efforts by leveraging
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expertise from MLCommons into educational efforts, but also
consider the unique opportunities and limitations that apply when
considering their use within educational efforts.

In general, we look at opportunities and challenges about

o insights from MLCommons toward education and
o insights from education toward MLCommons.

The article is structured as follows: First, we provide an
introduction to MLCommons (Section 1.1). Next, we provide
some insights about ML in educational settings and the
generalization of ML to other efforts (Section 2.1). We then
specifically analyze which insights we gained from practically
using MLCommons in educational efforts (Section 2.2). After
this, we focus on the earthquake forecasting application, describe
it (Section 3), and specifically identify our insights in the
data management for this application (Section 3). As the
application used is time-consuming and is impacted by policy
limitations of the educational HPC data system, a special
workflow framework has been designed to coordinate the many
tasks needed to conduct a comprehensive analysis (Section 3).
This includes the creation of an enhanced templated batch
queue mechanism that bypasses the policy limitations but makes
the management of the many jobs simple through convenient
parameter management (Section 3). In addition, we developed
a graphical compute coordinator that enables us to visualize
the execution of the jobs in a generalized simple workflow
system (Section 3). To showcase the performance (Section 4.2)
of the earthquake forecasting application, we present data for
the runtime (Section 4.2.2) and for the energy (Section 4.2.6).
We complete the article with a brief discussion of our results
(Section 5).

1.1. MLCommons

MLCommons is a non-profit organization with the goal
to accelerate ML innovation to benefit everyone with the
help of over 70 members from industry, academia, and
government (MLCommons, 2023). Its main focus is developing
standardized benchmarks for measuring performance systems
using ML while applying them to various applications.

This includes, but is not limited to, application areas from
healthcare, automotive, image analysis, and natural language
processing (NLP). MLCommons is concerned with benchmarking
training (Mattson et al., 2019) and validation algorithms to measure
progress over time. Through this goal, MLCommons investigates
ML efforts in the areas of benchmarking, data sets in support of
benchmarking, and best practices that leverage ML.

MLCommons is organized into several working groups
that address topics such as benchmarking related to training,
training on HPC resources, and inference conducted on data
centers, edge devices, mobile devices, and embedded systems.
Best practices are explored in the areas of infrastructure and
power. In addition, MLCommons also operates working groups
in the areas of Algorithms, DataPerf Dynabench, Medical, Science,
and Storage.
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FIGURE 1

Integrated
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Overview of aspects of opportunities for an integrated educational effort for MLCommons while using applications from the Science Working Group.
GPU, graphics processing unit; CPU, central processing unit; DL, deep learning.
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The Science Working Group is concerned with improving
the science beyond just a static benchmark (Thiyagalingam et al.,
2022). The work reported here has been conducted as part of the
MLCommons Science Working Group goals.

A list of selected benchmarks for the working groups focusing
on inference, training, and science are shown in Table 1.

Due to the strong affiliation with industry as well
as the integration of national labs and academic HPC
provides
point for academic participation. Over the years, we have
participated and
integrated aspects of MLCommons into our educational

centers, MLCommons a well-positioned starting

significantly in MLCommons’s efforts

activities.  Hence, since its inception, we leveraged
the MLCommons activities and obtained a number
of important educational insights that we discuss in

this article.

Summary section 1.1:

o Challenges: The rigor of applying benchmarks
requires special attention to reproducible experiments.
Educational resources may be limited and a
benchmark of a full HPC system may not be possible
within an educational computing center while not
interrupting other shared usage.

o Opportunities: MLCommons provides a rich set of
benchmarks in a variety of areas that comprehensively
encompass many aspects of DL applications that are of
interest for educational efforts.
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2. Insights for educational activities

Next, we discuss our insights while focusing on educational
activities. This includes general observations about machine
learning methods, libraries, tools and software carpentry,
benchmark carpentry, and infrastructure. We then discuss in
specific terms how MLCommons-related topics shape our insights.
This includes insights of MLCommons while using it in educational
settings leading to the potential to create a course curriculum. We
then focus on the earthquake application while presenting lessons
learned while improving such a large application as part of the
code development, data management, and workflow to conduct
extensive hyperparameter-based experiments. This leads us to
develop tools that simplify monitoring (time and energy), as well as
tools to manage jobs and computations while taking into account
policy limitations at the HPC center.

2.1. Insights of ML in education

Before starting with the insights from MLCommons on our
efforts, we will first consider some of our experience regarding
topics taught in educational activities for ML in general. We
distinguish ML methods, applications that use or can use ML, the
libraries used to apply these methods for applications, software
development tools, and finally the infrastructure that is needed
to execute them. Understanding these aspects will allow other
ML endeavors to benefit from the time-saving, latest technology
solutions we have identified that will devote more time to applying
ML to real-world problems.

frontiersin.org



von Laszewski et al.

TABLE 1 MLCommons benchmarks.

10.3389/fhpcp.2023.1233877

Name Training Inference HPC Science Area

MiniGo yes Neural network-based Go Al using TensorFlow

Mask R-CNN yes Instance segmentation, developed on top of faster R-CNN

DLRM yes yes Deep Learning Recommendation Model

BERT yes yes Natural language processing

ResNet-50 v1.5 yes yes Image classification

RetinaNet yes yes Object detection

RNN-T yes yes Speech recognition

3D U-Net yes yes Medical imaging

OpenCatalyst yes Chemical reactions analysis

DeepCam yes Deep learning climate segmentation benchmark

CosmoFlow (Mathuriya et al., 2018) yes Cosmology and nongalactic astrophysics

Earthquake yes Earthquake forecasting

Uno yes Predicting tumor response to drugs

Cloudmask yes Cloud masking

StemDL yes Space group classification of solid-state materials from STEM data using
deep learning

HPC, high-processing computing; Al, artificial intelligence; R-CNN, region based convolutional neural network; DLRM, deep learning recommendation model; BERT, bidirectional encoder

representations from transformers; ResNet, residential energy services network; RNN-T, recurrent neural network transducer; STEM, scanning transmission electron microscope.

The aim is not to inundate students with all possible facets
of machine learning but rather to guide students toward the
completion of an interesting, memorable, applicable, real-world
project that the student can take and apply to other projects.
This necessitates finding a balance between automating the
developer setup (providing a ready-to-go environment) and leaving
such setup to the student, which can impart knowledge through
self-learning. MLCommons provides an ideal starting point for a
learning experience as it introduces the student to benchmarking,
which is used within the earthquake application discussed later.

2.1.1. ML methods

We list some topics associated with traditional methods in
machine learning (ML) and artificial intelligence (AI) that are
frequently taught in classes. This includes clustering (exemplified
via k-means), image classification, sentiment analysis, time-series
prediction, surrogates (a new topic often not taught), and
neural networks (with various standard architectures such as
convolutional neural networks [CNNs], recurrent neural networks
[RNNs], and artificial neural networks [ANNs]). More traditional
methods also include modeling techniques such as random forests,
decision trees, K-nearest neighbor, support vector machines,
and genetic algorithms. These methods are frequently collected
into three distinct algorithmic groups: supervised learning,
unsupervised learning, and reinforcement learning.

From this small list, we can already see that a comprehensive
course curriculum needs to be carefully developed, as it is arduous
to cover the topics required in a one-semester course with sufficient
depth, but it needs to span the duration of a student’s curriculum
in AL
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2.1.2. Libraries

There are several diverse libraries and tools that exist to support
the development of AI and ML products. As an example, we list a
subset of frequently used software libraries and tools that enable the
ML engineer and student to write their applications.

First, we note that at the university level, the predominant
programming language used for machine learning and data science
is Python. This is evident from the success and popularity
of sophisticated libraries such as scikit-learn, PyTorch, and
TensorFlow. In recent years, we have seen a trend that PyTorch
has become more popular at the university level than TensorFlow.
Although the learning curve of these tools is significant, they
provide invaluable opportunities while applying them to several
different applications. As a result, we integrate these tools into our
benchmarks and multi-use toolkit, cloudmesh.

In contrast, other specialized classes that focus on the
development of faster, graphics processing unit (GPU)-based
methods typically use C++ code leveraging the vendor’s specialized
libraries to interface with the GPUs such as Nvidia CUDA.

2.1.3. Tools and software carpentry

Unfortunately, today’s students are not sufficiently exposed
to software carpentry at the beginning of their studies, as we
found while working with four different student groups from three
different universities, despite the university curriculum consisting
of Python and Al classes.

To efficiently use the libraries and methods, as well as the
infrastructure used to execute software on shared HPC computers,
students need a basic understanding of software engineering tools
such as a text editor and code management system. A subset of
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this is often referred to as software carpentry (Wilson et al., 2014).
Topics of immediate importance include the ability to (1) obtain a
moderate grasp of terminal use with Unix commands, (2) leverage
the features of a professional integrated development environment
(IDE), (3) be familiar with a code management system and version
control, (4) ensure the availability of the code using open sources,
(5) understand how to collaborate with others, and (6) utilize
queuing systems as used within shared resources managed in HPC
centers.

It is vital to instill these industry-standard practices within
apprentices new to Al utilization of HPC systems, beyond just
the simplest example, to efficiently use the resources and plan
benchmark experiments. These skills are key to evolving a
beginner’s research and class experience toward intermediate and
advanced knowledge usable in the industry so they can further
contribute to altruist Al applications and the dissemination of work
within academia. Moreover, these students will bring valuable and
lucrative skill sets with them to their future professional careers.

Although many centers offer Jupyter as an interactive use
of the HPC resources, such notebooks are often designed to be
simple one-off experiments, not allowing for encapsulation or
expansion into other code. Furthermore, the queuing system time
imitations within HPC environments hinder the reproducibility
of experiments as the time requirements may only allow one
experiment as we have experienced with our application.

Pertaining to educational insights, we observed that most
students own Microsoft Windows-based desktops and have never
come in contact with a terminal using commandline tools. This
is backed up by the fact that Microsoft's Windows 10 possesses
68.75% of the operating system (OS) market as of 2023 (Norem,
2023). Hence, the students cannot often navigate a Unix HPC
environment, where ML is commonly conducted in a shared
resource. This also exacerbates students’ manual code expenditure,
as Unix commands such as grep, £ind, and make are typically
not known, and automation of the programs building the workflow
to execute a benchmark experiment efficiently is limited.

However, as part of our efforts, we found an easy way to not
only teach students these concepts but also access HPC machines
via a terminal straight from the laptop or desktop. While built-
in terminals and shells can be used on macOS and Linux, the
ones on Windows are not Unix-like. Nevertheless, the use of
the open-source, downloadable Git Bash on Windows systems
provides a Unix-like environment. We also leverage Chocolatey, a
package manager that mimics the Unix package tools. Alternatively,
Windows Subsystem for Linux achieves the same result while
directly being able to run Linux in a virtual machine on the
computers. However, for students with older or resource-limited
machines, the latter may not be an option. To efficiently use
the terminal, the elementary use of commands needs to be
taught, including the use of a simple command line editor. While
leveraging bash on the command line, it becomes easy to develop
tutorials and scripts that allow the formulation of simple shell
scripts to access the HPC queuing system.

Furthermore, sophisticated programming tools that readily
exist in cross-OS portable fashion on the laptop/desktop can be
used to develop or improve the code quality of the software.
This includes the availability of IDEs (such as PyCharm and
VSCode) with advanced features such as syntax highlighting, code
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inspection, and refactoring. As part of this, applying uniform
formatting such as promoted by PEP 8 (www, 2023) increases
code readability and uniformity, thereby effortlessly improving
collaboration on code by various team members.

Although such IDEs can become quite complex with the
evolution of their corresponding toolchains (Fincher and Robins,
2019), in our case, we can restrict their use toward code
development and management. As such, habits are immediately
introduced that improve the code quality. Furthermore, these tools
allow collaborative code development through group editing and
group version control management. Together, they help students
write correct code that meets industry standards and practices (Tan
etal., 2023).

From our experience, this knowledge saves significant effort
in time-intensive programs such as Research Experiences for
Undergraduates, which typically only last one semester and require
the completion of a student project. As part of this, we observed
that integrated software carpeting while also integrating IDEs
benefits novice students as they are more likely to contribute to
existing research activities related to scientific ML applications.
Such sophisticated IDEs are offered as free community editions
or are available in their professional version for free to students
and open-source projects. Such IDEs also provide the ability to
easily write markdown text and render the output while writing.
This is very useful for writing documentation. Documentation is
a necessity in ML research experiences as a lack thereof creates a
barrier to entry (Konigstorfer and Thalmann, 2022).

As previously mentioned, most recently, these tools also allow
writing code remotely, as well as in online group sessions fostering
collaboration. Hence, peer programming has become a reality, even
if the students work remotely with each other. This is further
proven by free online IDEs such as Replit, where students can
edit the same file simultaneously (Kovtaniuk, 2022). However, such
features have now become an integral part of modern IDEs such as
PyCharm and vscode, so the use of external tools is unnecessary.
Due to this, we noticed an uptake among students in using
the remote editing capabilities of more advanced editors such as
PyCharm and vscode; alongside their superiority while developing
code, a command editor on the HPC terminal was often avoided.
However, this comes with an increased load on the login nodes,
which is outweighed by the developers’ convenience and code
quality while using such advanced editors. HPC centers are advised
to increase their capabilities significantly to support such tools
while increasing their resources for using them by their customers.

Finally, the common choice for collaborative code management
is Git, with successful social coding platforms such as GitHub and
GitLab. These code management systems are key for teams to share
their developed code and enable collaborative code management.
However, they require a significant learning curve. An important
aspect is that the code management systems are typically hosted in
the open, and the code is available for improvement at any time.
We found that students who adopt the open-source philosophy
perform considerably better than those who may store their code
in a private repository. The openness fosters two aspects:

o First, the code quality improves as the students put more

effort into the work due to its openness to the community.
This allows students to share their code, improve other
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code, and gain networking opportunities. Also, perhaps
most importantly, this allows scientists to replicate their
experiments to ensure similar results and validity.

« Second, collaboration can include research experts from the
original authors and researchers that would otherwise not be
available at the university. Hence, the overall quality of the
research experience for the student increases as the overall
potential for success is implicitly accessible to the student.

An additional tool is JupyterLab, created by Project Jupyter.
It provides a web browser interface for interactive Python
notebooks (with file extension ipynb). The strength here is a rich
external ecosystem that allows us to interactively run programs
while integrating analysis components to utilize data frames and
visualization to conduct data exploration. For example, this is
possible by using web browser interfaces to either the HPC-
hosted Jupyter notebook editor or Google Colab. The unfortunate
disadvantage of using notebooks is that, while the segmentation
of code into cells can provide debugging convenience, this format
may break proper software engineering practices such as defining
and using functions, classes, and self-defined Python libraries that
lead to more sustainable and easier-to-manage code. An upside
to Jupyter notebooks is that they possess an integrated markdown
engine that can provide sophisticated documentation built in; we
have also identified that students without access to capable local
machines can leverage Google Colab, which is a free platform for
using Jupyter notebooks. Jupyter notebooks accessing HPC queues
are currently often made available through web-based access as
part of on-demand interfaces to the HPC computing resource (uva,
2023).

Regrettably, live collaborative editing of Jupyter notebooks is
not yet supported on some platforms such as Replit and PyCharm.
However, vscode does support this feature, even within the browser,
eliminating the need to download a client. We expect that such
features will eventually become available in other tools.

While topical-focused classes such as ML and DL is obviously
in the foreground, we see a lack of introducing students to software
carpeting and even the understanding of HPC queuing systems in
general. Tools such as Jupyter and Colab that are often used in
such classes deprive the students often from the needed underlying
understanding of efficiently using shared GPU resources for ML
and DL.

Hence, students are often ill prepared for software carpeting
needs that arise in more advanced applications of DL utilizing
parallel and concurrent DL methodologies. Furthermore,
programming language classes are often only applied to teaching
Python while only emphasizing the language aspects but not with a
sustainable, practical software engineering approach. Because ML
is a relatively new venture in the computing field, there is not yet a
definitive set of standards meant for beginning students. The lack
of emphasizing standards as part of teaching activities such as these
relates to a general problem at the university level.

We alleviate difficulties such as these encountered within
research experience by leveraging a cross-platform cloud-
computing toolkit named cloudmesh. This toolkit, alongside our
use of professional IDEs and version control, allows students to
focus less on manual code expenditures and operating system
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debugging, and more on HPC use and ML development on data
sets such as from the Modified National Institute of Standards
and Technology (MNIST), among others. We acknowledge the
importance of saving time as it is a precious commodity in
research experiences. The use of cloudmesh reduces the entry
barrier surrounding the creation of machine learning benchmark
workflow applications, as well as our standardized benchmarking
system, MLCommons. This system is easily implemented as long
as programmers can utilize the capabilities of an industry-standard
IDE. Since we emphasize reproducibility and openness with other
contributors, then an open-source solution like MLCommons
is necessary.

2.1.4. Benchmark carpentry

Benchmark carpentry is not yet a well-known concept
while focusing on applying software carpentry, common
benchmark software, and experiment management aspects to
create reproducible results in research computing. To work toward
a consolidated effort of benchmark carpentry, the experiences and
insights documented in this article have recently been reported
to the MLCommons Science Working Group. Throughout the
discussion, we identified the need to develop an effort focusing on
benchmark carpentry that goes beyond the aspects typically taught
in software carpentry while focusing on aspects of benchmarks
that are not covered. This includes a review of other benchmark
efforts such as TOP500 and Green500, the technical discussion
around system benchmarks including SPEC benchmarks, as well
as tools and practices to better benchmark a system. Special
effort needs not only to be placed on benchmarking the central
processing unit (CPU) and GPU capabilities but also on what
effect the impact of the file system or the memory hierarchy has.
This benchmarking ensures reproducibility while leveraging the
findability, accessibility, interoperability, and reusability principle.
Furthermore, using software that establishes not only immutable
baseline environments such as Singularity and Docker but also
the creation of reproducible benchmark pipelines and workflows
using cloudmesh-ee and cloudmesh-cc, is beneficial. Such efforts
can also be included in university courses, and the results of
developing material for and by the participants can significantly
pervade the concept of a standardized benchmarking system such
as MLCommons’s MLPerf.

2.1.5. Infrastructure

An additional aspect ML students must have exposure to is
the need for access to computational resources due to distinct
hardware requirements resulting from using an advanced ML
framework. One common way of dealing with this is to use
preestablished ML environments like Google Colab, which is
easy to access and use with limited capability for free (with the
option of obtaining a larger computational capability with a paid
subscription). However, as Colab is based on Jupyter notebooks,
we experience the same disadvantages discussed in Section 2.1.3.
Furthermore, benchmarking can become quite expensive using
Google Colab depending on the benchmark infrastructure needs.
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Another path to obtain resources for machine learning can
be found in the cloud. This may include infrastructure-as-a-
service and platform-as-a-service cloud service offerings from
Amazon, Azure, Google Cloud, Salesforce, and others. In addition
to the computational needs for executing neural networks and
DL algorithms, we also find services that can be accessed
mainly through REpresentational State Transfer Application
Programming Interface (REST APIs) offering methods to integrate
the technology into the application research easily. Most popular
tools focus on NLP, such as translation and, more recently,
on text analysis and responses through OpenAls ChatGPT and
Google’s Bard.

However, many academic institutions have access to campus-
level and national-level computing resources in their HPC centers.
In the United States, this includes resources from the Department
of Energy and the National Science Foundation (NSF). Such
computing resources are accessed mostly through traditional batch
scheduling solutions (such as Slurm SLURM, 2003), which allows
for sharing limited resources with a large user community. For
this reason, centers often implement a scheduling policy that puts
significant restrictions on the computational resources that can be
used simultaneously and for a limited period. The number of files
and the access to a local disk on compute nodes constituting the
HPC resources may also be limited. This provides a potential very
high entry barrier as these policy restrictions may not be integrated
into the application design from the start. Moreover, in some cases,
these restrictions may provide a significant performance penalty
when data are placed in a slow network file system (NFS) instead
of directly in memory (often the data do not fit in memory) or
in NVMe storage if it exists and is not restricted on the compute
nodes. It is also important to understand that such nodes may
also be shared with other users and it is important to provide the
infrastructure requirements upfront regarding computation time,
memory footprint, and file storage requirements accurately so that
scheduling can be performed most expediently. Furthermore, the
computing staff maintains the software on these systems and is
typically tailored for the HPC environment. It is best to develop
with the version provided, which may target outdated software
versions. Container technologies reduce the impact of this issue
by enabling users of the HPC center to provide their own custom
software dependencies as an image.

One of the popular container frameworks for HPC centers is
Singularity, and some centers offer Docker as an alternative. As
images must bring all the software needed to run a task, they quickly
become large in size, and it is not feasible to just copy the image
from your local computer but to work with the center to create the
image within the HPC infrastructure. This is especially true when
a university requires all resources to be accessed through a virtual
private network (VPN). Here, one can often see a factor of 10 or
more slowdown in transfer and access speeds (Tovar et al., 2021).

All these elements must be learned; establishing an
understanding of these subjects can take considerable time.
Hence, using HPC resources has to be introduced with specialized
educational efforts often provided by the HPC center. However,
sometimes these general courses are not targeted specifically to
running a particular version of PyTorch or TensorFlow with
cuDNN, but just the general aspect of accessing the queues.
Although these efforts often fall under the offerings of software
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carpentry, the teaching objective may fall short as the focus is
placed on a limited number of software, supported by the center
instead of teaching how to install and use the latest version of
TensorFlow. Furthermore, the offered software may be limited
in case the underlying GPU card drivers are outdated. Software
benchmarks need not only the newest software libraries but also
the newest device drivers, which can only be installed by the HPC
support team.

Furthermore, specifically customized queues demanding
allocations, partitions, and resource requirements may not be
documented or communicated to its users, and a burden is
placed on the faculty member to integrate this accurately into the
course curriculum.

Access to national-scale infrastructure is often restricted to
research projects that require following a detailed application
process. The faculty supervisor conducts this process and not the
student. Background checks and review of the project may delay
the application. Additional security requirements, such as the use of
Duo Mobile, SSH keys, and other multifactor authentication tools
must be carefully taught.

In case the benchmark includes environmental monitoring
such as temperatures on the CPU/GPU and power consumption,
access may be enabled through default libraries and can be
generalized while monitoring the environmental controls over
time. However, HPC centers may not allow access to the overall
power consumption of entire compute racks as it is often very
tightly controlled and only accessible to the HPC operational
support staff.

2.2. Insights of MLCommons in education

The MLCommons benchmarks provide a valuable starting
point for educational material addressing various aspects of the
machine and deep learning ecosystem. This includes benchmarks
targeted to a variety of system resources from tiny devices to the
largest research HPC and data systems in the world while being able
to adapt and test them on platforms between these two extremes.
Thus, they can become ideal targets for adaptation in AI classes that
want to go beyond typical introductory applications such as MNIST
that run in a small amount of time.

We have gained practical experience while adapting
benchmarks from the MLCommons Science Working Group
while collaborating with various universities and student groups
from the University of Virginia (UVA), New York University,
and Indiana University. Furthermore, it was used at Florida
A&M University as a research experience for undergraduates
(REU) and is now executed at the UVA as research activity
by a past student from the REU (Fleischer et al, 2022). The
examples provide value for classes, capstones, REUs, team project-
oriented software engineering and computer science classes,
and internships.

We observed that traditional classes limit their resource needs
and the target application to a very short period so assignments
can be conducted instantly. Some MLCommons benchmarks go
well beyond this while confronting the students not only with the
theoretical background of the ML algorithm but also with big data
systems management, which is required to execute benchmarks due
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to their data and time requirements. This is especially the case when
hyperparameters are to be identified to derive scientifically accurate
examples. It is also beneficial in that it allows the students to explore
different algorithms applied to these problems.

From our experiences with these various efforts, we
found that the following lessons provided significant add-on
learning experiences:

o Teamwork. Students benefit from focusing on the success
and collaboration of the entire team rather than mere
individualism, as after graduation, students may work in
large teams. This includes not only the opportunity for pair
programming but also the fact that careful time planning in
the team is needed to succeed. This also includes how to
collaborate with peers using professional, industry-standard
coding software and management of code in a team through
a version control system such as Git. As others point
out (Raibulet and Fontana, 2018), we also see an increase in
enthusiasm and appreciation of teamwork-oriented platforms
when such aspects are employed in coding courses. While
courses may still focus on the individual’s progress, an
MLCommons Benchmark benefits from focusing on grading
the team and taking the entire project and team progress into
a holistic grade evaluation.

o Interdisciplinary research. Many of the applications in
MLCommons require interdisciplinary research between the
domain scientists, ML experts, and information technology
engineers. As part of the teamwork, students have the
opportunity to participate not only within their discipline
but learn about how to operate in an interdisciplinary team.
Such multidisciplinary experience not only broadens their
knowledge base but also strengthens their market viability,
making them attractive candidates for diverse job possibilities
and career opportunities in the ever-evolving technological
landscape (Zeidmane and Cernajeva, 2011).

o System benchmarking versus science benchmarking.
Students can learn about two different benchmarking
efforts. The first is system-level benchmarking in which a
system is compared based on a predefined algorithm and its
parameters measuring system performance. The second is the
benchmarking of a scientific algorithm in which the quality
of the algorithms is compared with each other, where system
performance parameters are a secondary aspect.

o Software ecosystem. Students are often using a course-
provided, limited, custom-defined environment prepared
explicitly for a course that makes course management for the
teacher easier but does not expose the students to various
ways of setting up and utilizing the large variety of software
related to big data systems. This includes setting up Python
beyond the use of Conda and Colab notebooks, the use of
queuing systems, containers, and cloud computing software
for AI, DL, and HPC experiments as well as other advanced
aspects of software engineering. Benchmarking introduces
these concepts to students in a variety of configurations and
environments, providing them with a more research- and
industry-like approach to managing software systems.
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» Execution ecosystem. While in-class problems typically do

not require as many computing resources, some of the
examples in MLCommons require a significant organizational
aspect to select and run meaningful calculations that enhance
the accuracy of the results. Careful planning with workflows
and the potential use of hybrid heterogeneous systems
significantly improves the awareness to deal with not only
the laptop but also the large available resources students
may get access to while leveraging flagship-class computing
resources, or their own local HPC system when available.
Learning to navigate an HPC system is imperative to teach to
students and can be augmented by professor-created toolkits
and platforms (Zou et al., 2017). We found it necessary
to provide additional documentation to address the staff-
provided HPC manual while focusing on specific aspects that
are not general in nature but are related to group and queue
management specifically set up for us by staft. This includes
documentation about the accounting for system policies,
remote system access, and frugal planning of experiments
through the prediction of runtimes and the planning of
hyperparameter searches (Claesen and De Moor, 2015; von
Laszewski et al., 2022). This can also include dealing with
energy consumption and other environmental parameters.
Parallelization. The examples provide a basis for learning
about various parallelization aspects. This includes the
parallelization on not only the job level and hyperparameters
searches but also on the use of parallelization methods
provided by large-scale GPU-based big data systems.
Input/Output (I0) data management. One other important
lesson is the efficient and effective use of data stores to execute.
For example, DL algorithms require a large number of fast
IO interactions. Having access to sufficient space to store
potentially larger data sets is beneficial. Also, the time needed
to send data from the external storage to the GPU should
be small to ensure that the GPUs have sufficient data to
perform well without bottleneck. Such management is vital to
be taught within education as the entirety of ML depends on
the organization of data (Shapiro et al., 2018).

Data analysis. The examples provide valuable input to
further enhance abilities to conduct non-trivial data analysis
through advanced Python scripts while integrating them in
coordinated runs to analyze log files that are created to validate
the numerical stability of the benchmarks. This includes the
utilization of popular data analysis libraries (such as Pandas)
as well as visualization frameworks (such as Seaborn). It also
allows students to focus on identifying a result that can be
communicated in a professional manner.

Professional and academic communication. The results
achieved need to be communicated to a larger audience
and the students can engage in a report, paper, and
presentation writing opportunities addressing scientific and
professional communities.

Benefits to society. The MLCommons benchmarks are
including opportunities to improve the quality of ML
algorithms that can be applied to societal tasks. Obviously,
improving benchmarks such as earthquake forecasting are
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beneficial to society and can motivate students to participate
in such educational opportunities.

2.2.1. MLCommons DL-based proposed course
curriculum

In this section, we explore the idea to potentially create a course
curriculum utilizing the MLCommons effort. For this to work and
focus for MLCommons, the course can focus on DL while using
examples from MLCommons benchmarks as well as additional
enhancements into other topics that may not be covered.

In contrast to other courses that may only focus on DL
techniques, this course will have the requirement to utilize
significant computational resources that are, for example, available
on many campuses as part of an HPC or a national scale facility
such as NSF’s Access. Alternatively, Google Colab can be used;
however, it will have the disadvantage of not using HPC resources
from local or national HPC centers as discussed earlier.

1. Course overview and introduction: Here the overview of the
course is provided. Goals and expectations are explained and
an introduction to deep learning is provided. This includes
the history and applications of DL, a basic introduction
to optimization technologies and neural networks, and the
connection between MLCommons Applications is presented.

2. Infrastructure and benchmarking: An overview of
MLCommons-based DL applications and benchmarks are
discussed and will include a wide variety reaching from tiny
devices to supercomputers and hyperscale clouds. Google Colab
will be introduced. Practical topics such as using ssh and batch
queues are discussed. An explicit effort is placed on using a
code editor such as PyCharm or VSCode. Elementary software
infrastructure is discussed while reviewing Python concepts
for functions, classes, and code packaging with pip. The use of
GitHub is introduced.

3. CNNs: A deeper understanding is taught by focusing on CNNs.
The example of Mask R-CNN is explained.

4. RNNs: RNNs are taught and applications of RNNs are discussed.
The RNN-T application focusing on speech recognition is
presented and analyzed.

5. NLP: As NLP has such a big impact on industry and academia,
additional lectures in that area are presented. This includes
large language models, analyzing text, applications of NLP,
language translation, and sentiment analysis. Practical examples
are introduced while looking at ChatGPT. From MLCommons,
the applications DLRM, BERT, and RNN-T are discussed.

6. Project presentations: The last part of the class is focused on
a project presentation that students can conduct in a team or
individually. It should showcase an application and performance
results on one or multiple HPC data systems, or include an
improvement to an existing MLCommons benchmark. It is
expected that the students write a high-quality project report.
Ideally, each team will submit its result to MLCommons. A good
start here is the Science Working Group as it provides rolling
submissions and its focus is accuracy and not speed, which is
often a topic of interest in academia.

7. Submitting expanding MLCommons benchmarks: The results
obtained can be also submitted to MLCommons. Here we
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see two opportunities: first the submission of results from
standardized benchmarks provided by MLCommons and,
second, the inclusion of new scentific application results
submitted to the MLCommons Science Working group.

Adaptations of this material are possible and can be made
accordingly to stay up to date with community AI developments as
well as efforts newly covered in MLCommons. The semester-long
project is accompanied by biweekly practical mini-assignments
showcasing selected results and implementations of a particular
topic. The final outcome will be a project report. Grading
and integration can be done based on the instructors and the
university course requirements that university policies may govern.
Practically, we believe that grading the project will be sufficient;
however, we observed that weekly graded assignments may be
needed to compete with other weekly homework-oriented graded
classes that require immediate attention by the students. The
curriculum can be divided into several sections that can be taught
over a semester in either a graduate or undergraduate class or a
combination thereof. The curriculum could be used in its entirety,
or selected aspects could be taught.

Summary section 2:

o Challenges: Students lack knowledge of software
carpentry despite taking programming and AI classes
at universities. Software carpeting tools such as
terminals, command line tools, and IDEs are not
sufficiently utilized although they provide significant
benefits for professional code development and
management of shared resources. Today’s DL students
often have only knowledge about Jupyter notebooks or
Google Collab resulting in one-cell-at-a-time-oriented
programming rather than a proper more sophisticated
software engineering approach. Using computing
resources at HPC centers may pose a considerable
on-ramp hurdle, especially when combined with
queuing systems and container technologies that vary
in their implementation between centers; specialized
documentation must be available.

« Opportunities: Software carpeting could be offered
as an additional class and made a prerequisite for
taking Al classes, or become an integral part of the
DL experience. This should include learning about
terminal commands, accessing queuing systems, IDEs,
code management, and collaborative code development
going beyond the usage of Jupyter notebooks.
Benchmark carpentry should be offered in addition to
software carpentry while focusing on unique aspects of
reviewing common benchmark practices and applying
them to DL applications. Tools such as cloudmesh used
in several MLCommons applications allow leveraging
creating simple standardized interfaces to time-based
benchmarks and the display of the results in a
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human-readable form. Exposing students to knowledge
about shared HPC resources used for DL rather
than just reusing cloud resources offers a deeper
understanding of resource-efficient resource utilization
in a resource-starved environment as well as the
costs associated with them having an impact on
affordable benchmarks. MLCommons covers a wide
variety of topics and it is conceivable to develop
a comprehensive course curriculum around it that
could be either used in its entirety or adapted
based on interests as well as selectively taught. To
address variations in the HPC technologies used, center
documentation can be developed by an organization
but may have to be adapted to simplify it while focusing
on storage, compute, and container technologies and
specifics offered. This course curriculum provides the
opportunity to emphasize teamwork while focusing on
a larger project.

3. Earthquake forecasting

While we so far have focused on the general applicability
of MLCommons benchmarks as potential options to develop an
educational curriculum, we focus next on an exemplar for a
potential semester-long project and their insights toward the goal
of using it as an educational tool.

Although MLCommons has many applications, we decided to
use an application from the MLCommons Science Working Group
as we most closely work as part of this group. It has four major
benchmarks as documented in Thiyagalingam et al. (2022) in von
Laszewski et al. (2023).

However, here we focus on the earthquake benchmark code
that creates a Time Series Evolution Operator (TEvolOp) to be
applied to several scientific applications such as hydrology and
COVID-19 predictions. We focus on this application because,
in contrast to other MLCommons applications it is written as a
Jupyter notebook and therefore intercepts with many educational
efforts using Jupyter notebooks. We restrict our report to the efforts
related to earthquake forecasting as it is one of the first applications
from the MLCommons Science Working Group that have been
used in educational class projects.

The scientific objective of the earthquake benchmark is to
extract the evolution using earthquake forecasting while utilizing
time series forecasting.

The earthquake benchmark uses a subset of the overall
earthquake data set for the region of Southern California. While
conventional forecasting methods rely on statistical techniques, we
use ML for extracting the evolution and testing the effectiveness
of the forecast. As a metric, we use the Nash-Sutcliffe Efficiency
(NSE) (Nash and Sutcliffe, 1970). Other qualitative predictions are
discussed in Fox et al. (2022).

One of the common tasks when dealing with time series is
the ability to predict or forecast them in advance. Time series
capture the variation of values against time and can have multiple
dimensions. For example, with earthquake forecasting, we use
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geospatial data sets that have two dimensions based both on time
and spatial position. The prediction is considerably easier when we
can identify an evolution structure across dimensions. For example,
by analyzing earthquake data, we find a strong correlation between
nearby spatial points. Thus, nearby spacial points influence each
other and simplify the time-series prediction for an area. However,
as earthquake faults and other geometric features are not uniformly
distributed, such correlations are often not clearly defined in spatial
regions. Thus it is important to look not only at the region but
also at the evolution in time series. This benchmark extracts the
evolution of time series applied to earthquake forecasting.

3.1. Earthquake data

The data for this earthquake are described in Thiyagalingam
etal. (2022). It uses a subset of the earthquake data from the United
States Geological Survey (USGS) focused on Southern California
between latitude 32°N to 36°N and longitude: —120°S to —114°S).
The data for this region cover all earthquakes since 1950. The data
include four measurements per record: magnitude, spatial location,
depth from the crust, and time. We curated the data set and
reorganized it in different temporal and spatial bins. “Although the
actual time lapse between measurements is one day, we accumulate
this into fortnightly data. The region is then divided into a grid of
40 x 60 with each pixel covering an actual zone of 0.1 deg x0.1
or 11km x 11km grid. The dataset also includes an assignment
of pixels to known faults and a list of the largest earthquakes in
that region from 1950. We have chosen various samplings of the
dataset to provide both input and predicted values. These include
time ranges from a fortnight up to four years. Furthermore, we
calculate summed magnitudes and depths and counts of significant
quakes (magnitude < 3.29)” (Fox et al., 2022). Table 2 depicts the
key features of the benchmark (Thiyagalingam et al., 2022).

3.1.1. Implementation

The reference implementation of the benchmark includes three
distinct deep learning-based reference implementations. These
are a long short-term memory (LSTM)-based model, a Google
Temporal Fusion Transformer (TFT) (Lim et al, 2021)-based
model, and a custom hybrid transformer model. The TFT-based
model uses two distinct LSTMs, covering an encoder and a decoder
with a temporal attention-based transformer. The custom model
includes a space-time transformer for the decoder and a two-
layer LSTM for the encoder. Figure2 shows the TFT model
architecture. Each model predicts NSE and generates visualizations
illustrating the TFT for interpretable multi-horizon time-series
forecasting (Lim et al., 2021).

For this article, we adopted the same calculations as defined
in Fox et al. (2022): “We have chosen various samplings of the
dataset to provide both input and predicted values. These include
time ranges from a fortnight up to 4 years. Further, we calculate
summed [according to Equation (1)] magnitudes and averaged
depths (according to Equation (2)) and counts of significant
earthquakes [magnitude > 3.29, Equation (3)]. We use the concept
of energy averaging when there are multiple events in a single
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TABLE 2 Summary of the earthquake TEvolOp benchmark.

Attributes Description

Earthquake forecasting (Lim et al., 2021; Fox et al.,
2022, 2023; von Laszewski, 2023b).

Area

Improve the quality of earthquake forecasting in a
region of Southern California.

Objectives

Normalized Nash-Sutcliffe model efficiency
coefficient (NNSE) with 0.8 < NNSE < 0.99

Metrics

Richter measurements
with spatial and
temporal information
(Events).

Data Type:

Input: Earthquakes since 1950.

Size: 11.3GB
(Uncompressed),
21.3MB (Compressed)

Training samples: 2,400 spatial bins
Validation samples: 100 spatial bins
Source: USGS servers (von

Laszewski, 2023b)

Reference Implementation | (Fox etal., 2023)

USGS, United States Geological Survey.

space-time bin. Therefore, the magnitude assigned to each bin is
defined in Equation (1) as "log(Energy)” where we sum over events
of individual magnitudes .y en;. We also use energy averaging
defined in Equation (2) for quantities Qp;, such as the depth of
an earthquake that needs to be weighted by their importance when
averaging over a bin.”

1 Events
My, = log(Energy) = — lo 101-5Mevent 1
bin = log(Energy) = T logyy 3 (1)
in bin
Events
Z IOI'Smeveervent
Energy weighted Quantity Qp;y,, = in b;ems (2)
Z lol-smevent
in bin
Events
Multiplicityy;, = Z Multiplicityeyen: subject to a constraint (3)
in bin

In this article, we only focus on the TFT implementation. The
TFT inputs and outputs are described next (Fox et al., 2022).

« Static Known Inputs (five inputs): four space-filling curve
labels of fault grouping, linear label of pixel.

o Targets (four targets): my;,(F: At,t) for At = 2,14,26,52
weeks. Calculated for t+ — 52 to t for encoder and ¢ to t +
52 weeks for decoder in 2 week intervals. 104 predictions
per sequence.

« Dynamic known inputs (13 inputs): P;(cosg,y) for I = 0 to
4 COSperiod(t), Silperiod(t) for period = 8, 16,32, 64.
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FIGURE 2
Temporal fusion transformer model architecture (Fox et al.,, 2022).
LSTM, long short-term memory.

o Dynamic unknown inputs (nine inputs): Energy-
averaged depth, multiplicity, multiplicity m > 3.29 events

mpin(B: AL, t) for At = 2,4,8, 14,26, 52 weeks.

These data can be input based on the time series. Backward
data can be taken up to 1 year before the current date, and
forward data can be taken up to 4 years into the future. The
data are then enriched with the LSTM models on time and other
factors like spacial location, fault grouping and energy produced at
location. Feature selection is done. The data are then fed into an
attention learning module, which learns trends and more complex
relationships based on the data across all time steps and can
apply this knowledge to any number of time steps. More feature
selection is done. Then finally the data are run through quantile
regression. The loss is calculated by mean aboslute error (MAE).
This repeats until all epoch runs are done and the iteration that
had the lowest loss is used to create predictions. Normalized Nash
Sutcliffe efficiency (NNSE) and mean squared error (MSE) are used
as a goodness of fit metric.

More details of the TFT model applied to the earthquake
application are presented in Fox et al. (2022). More general details
about TFT models can be found in Lim et al. (2021).

3.1.2. Insights into development of the code

The original code was developed with the goal of creating a
DL method called TEvolOp to apply special time-series evolution
for multiple applications including earthquake, hydrology, and
COVID-19 prediction. The code was presented in a large Python
Jupyter notebook on Google Colab. Due to the integration of
multiple applications (hydrology and COVID-19), the code is
complex and challenging to understand and maintain. For this
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reason, the total number of lines of 13,500 was reduced by more
than 2,400 lines when the hydrology and the COVID code were
removed. However, at the same time, we restructured the code
and reached a final length of about 11,100 lines of code. The code
was kept as a Jupyter notebook in order to test the applicability
of benchmarking applications presented at notebooks rather than
converting it into a pure Python script. The code included all
definitions of variables and hyperparameters in the code itself. This
means that the original code needed to be changed before running
it in case a hyperparameter needed to be modified.

This code has some challenges that future versions ought to
address. First, the code includes every aspect that is not covered by
TensorFlow and contains a customized version of TFT. Second, due
to this the code is very large, and manipulating and editing the code
are time-consuming and error-prone. Third, as many code-related
parameters are managed still in the code, running the same code
with various parameters becomes cumbersome. In fact, multiple
copies of the code need to be maintained when new parameters are
chosen, instead of making such parameters part of a configuration
file. Hence, we started moving toward the simplification of the code
by introducing the concept of libraries that can be pip installed, as
well as adding gradually more parameters to configuration files that
are used by the program.

The advantage of using a notebook is that it can be augmented
with lots of graphs that give updates on the progress and its
measurement accuracy. It is infeasible for students to use and
replicate the run of this notebook on their own computers as
the runtime can be up to two days. Naturally, students use their
computers for other purposes and need to be able to use them on
the go, not having the luxury to dedicate such a prolonged time to
running a single application. Hence, it is desirable to use academic
HPC centers that provide interactive jobs in the batch queues in
which Jupyter notebooks could be run. However, running such a
time-consuming interactive job is also not possible in most cases.
Instead, we opted to use Jupyter notebooks with a special batch
script that internally uses Papermill (Papermill, 2020) and leverages
an HPC queuing system to execute the notebook in the background.
Papermill will execute the notebook and include all cells that have
to be updated during runtime, including graphics in a separate
runtime copy. The script we developed needed to be run multiple
times with different hyperparameters such as the number of epochs.
As the HPC system is a heterogeneous GPU system having access to
A100, V100, P100, and RTX2080 graphics cards, the choice of the
GPU system must be able to be configurable. Hence, the batch script
includes the ability to also read in the configuration file and adapt
itself to the needed parameters so such parameters can be separated
from the actual notebook. This is controlled by a sophisticated but
simple batch job generator, which we discuss in Section 3.

Summary choosing the earthquake benchmark

application:

o Opportunities: Using a scientific application as a
project within the educational efforts allows students
to identify pathways on how to apply DL knowledge to
such applications.
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Furthermore, we have chosen an application written
as a Jupyter notebook to identify if students have an
easier time with it and to see if benchmarks can be
easily generated if notebooks are used instead of just
Python programs. We identify that existing tools such
as Papermill can provide the ability to run Jupyter
notebooks in queuing systems while running them as
tasks in the background and capturing cell output.

o Challenges: Understanding a scientific application
can be quite complex. Having a full implementation
using DL for it, still provides challenges as data
and algorithm dependencies need to be analyzed
and domain knowledge needs to be communicated
to gain deeper understanding. It is important to
separate the runtime environment variables as much
as possible from the actual notebook. The coordination
of such variables can be challenging and tools such as
cloudmesh-ee make such integration simple.

3.2. Insights into data management from
the earthquake forecasting application

In data management, we are concerned with various aspects of
the data set, the data compression and storage, and the data access
speed. We discuss insights into each of them that we obtained while
looking at the earthquake forecast application.

3.2.1. Data sets

When dealing with data sets, we typically encounter several
issues. These issues are addressed by the MLCommons benchmarks
and data management activities so that they provide ideal
candidates for education without spending an exorbitant amount
of time on data. Such issues typically include access to data without
privacy restrictions, data preprocessing that makes the data suitable
for DL, and data labeling in case they are part of a well-defined
MLCommons benchmark. Other issues include data bias, noisy
or missing data, as well as overfitting while using training data.
Typically the MLCommons benchmarks will be designed to limit
such issues. However, some benchmarks such as the science group
benchmarks, which are concerned with improving the science, have
the option to potentially address these issues in order to improve
the accuracy. This could even include injecting new data and
different preprocessing methods.

3.2.2. Data compression

An issue of utmost importance, especially for large data sets,
is how the data are represented. For example, we found that
the original data set was 11 GB for the earthquake benchmark.
However, we found the underlying data were a sparse matrix, and
was easily lossless compressed by a factor of 100. This is significant,
as in this case the entire data set can be stored in GitHub or moved
quickly into memory. The compressed xz archive file is only 21 MB,
and downloading only the archive file using wget takes 0.253 s on
the HPC. In case the data set and its repository are downloaded
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with Git, we note that the entire Git repository is 108MB (von
Laszewski, 2023b). On the Rivanna Supercomputer, downloading
this compressed data set only takes 7.723 s. Thus, it is preferred
to just download the data using wget. In both cases, the data are
compressed. To uncompress, the data will take an additional 1min
2.522 s. However, if we were to download the data in uncompressed
form, it would take &~ 3 h 51 s. The reduction in time is due
to the fact that the data are sparse, and the compression allows a
significant reduction needed to store and thus transfer the data.

From this simple example, it is clear that MLCommons
benchmarks can provide students insights into how data are
managed and delivered to, for example, large-scale computing
clusters with many nodes while utilizing compression algorithms.
We next discuss insights into infrastructure management while
using file systems in HPC resources. While often object stores are
discussed to host such large data sets, it is imperative to identify
the units of storage in such object stores. In our case, an object
store that would host individual data records is not useful due
to the vast number of data points. Therefore, the best way to
store these data, even in an object store, is as a single entry of
compressed overall data. Other MLCommons Science Working
Group benchmarks have data sets in the order of 500 GB-12 TB.
Other tools, such as Globus transfer, can be used to download
larger data sets. Obviously, these sets need special considerations
when placed on a computing system where the students’ storage
capacities may be limited by policy.

3.2.3. Data access

Besides having proper data and being able to download
them efficiently from the location of storage, it is imperative
to be able to access it in such a way that the GPUs used
for DL are being fed with enough data without being idle.
Our performance results were somewhat surprising and had a
devastating effect on the overall execution time. We found that
the performance was more than twice as fast on the personal
computer while using an RTX3090 in contrast to using the
HPC center recommended file systems when using an A100.
For this reason, we have made a simple test and measured
the performance to read access the various file systems. The
results are shown in Table 3, which include not only various file
systems at the UVA’s Rivanna HPC but also a comparison with a
personal computer.

Based on this observation, it was of great disadvantage to
consider running the earthquake benchmark on the regularly
configured HPC nodes as they ran on some resources for almost
24h due to the policy limit the Rivanna system allows for one
job. Hence, we were allowed to use a special compute node
that has additional non-volatile memory express (NVMe) storage
available and accessible to us. On those nodes (in the Table listed
as /localscratch), we were able to obtain a very suitable
performance for this application while having a 10-fold increase
in access in contrast to the scratch file system and almost double
the performance given to us on the project file system. The
/tmp system—although fast—was not sufficiently large for our
application and performs slower than the /1localscratch setup
for us. In addition, we also made an experiment using a shared
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memory-based-hosted file system in the nodes random-access
memory (RAM).

What we learn from this experience is that an HPC system must
provide a fast file system locally available on the nodes to serve the
GPUs adequately. The computer should be designed from the start
to not only have the fastest possible GPUs for large data processing
but also have a very fast file system that can keep up with the data
input requirements presented by the GPU. Furthermore, in case
updated GPUs are purchased, it is not sufficient to just take the
previous-generation motherboard, CPU processor, and memory
but to update the hardware components and include a state-of-the-
art compute node. This often prevents the repurposing of the node
while adding just GPUs due to inefficient hardware components
that cannot keep up with the GPU’s capabilities.

' )

Summary of data management aspects:

o Challenges: Scientific applications require at times
large-scale storage spaces that can be provided while
using HPC compute centers. The speed of accessing
the data depends on where the data is and can
be stored in the HPC system. Performance between
systems can vary drastically showcasing differences
between shared, non-shared, NVMe-based storage, and
in-memory storage volumes.

o Opportunities: Input data needs to be placed on
appropriate storage options to satisfy the fastest possible
access guided by benchmarks. As scientific data are
often sparse, they could be significantly compressed,
and the time to access the data to move them and
uncompress them is often much shorter than the time
one needs to load the uncompressed data. Access to a
server to its local storage system is essential and must be
provided by the HPC center. Instead of old-fashioned
HDD:s or even SSDs, the fastest NVMe storage should
be provided.

3.3. Insights into DL benchmark workflows

As we are trying to benchmark various aspects of the
applications and the systems utilizing DL, we need to be able to
easily formulate runtime variables that take into account different
control parameters either of the algorithm or the underlying system
and hardware.

Furthermore, it is beneficial to be able to coordinate
benchmarks on remote machines either on a single system or
while using multiple systems in conjunction with hybrid and
heterogeneous multi-HPC systems. Thus, if we change parameters
for one infrastructure, it should be possible to easily and
automatically be applied to another infrastructure to identify the
impact on both. These concepts are similar to those found in cloud
and grid computing for job services (von Laszewski et al., 2002) and
for workflows (von Laszewski, 2005; von Laszewski et al., 2007).
However, the focus here is on ensuring the services managing the
execution are provided and controlled by the application user and
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TABLE 3 File transfer performance of various file systems on Rivanna and personal computers.

Machine File systems Bandwidth Speedup Description

Rivanna /scratch/$USER (sbatch) 32.1 MB/s 1.0 shared scratch space, batch mode
Rivanna /scratch/$USER (interactive) 34.8 MB/s 1.1 shared scratch space, interactive
Rivanna /home/$USER 42.9 MB/s 1.3 user’s home directory

MacM1 / 97.7MB/s 3.0 user’s home directly

Rivanna /project/$PROJECTID 105 MB/s 33 project-specific file system

Rivanna /tmp 285 MB/s 8.9 temporary file system on a node
Special Node Rivanna | /localscratch 403 MB/s 12.6 NVMe storage of the node

RAM disk Rivanna /dev/shm/ % 483 MB/s 15.1 simulated file system in a RAM disk
Personal Computer /home /$USER 607 MB/s 18.9 Sabrent 2TB NVMe

not necessarily by the cloud or HPC provider. Thus, we distinguish
the need for a workflow service that can utilize heterogeneous
HPC systems while leveraging the same parameter set to conduct
a benchmark for comparison by either varying parameters on the
same or other systems. Such a framework is presented by von
Laszewski et al. (2022, 2023) and is based on our earlier work on
workflows in clouds and grids.

In addition, we need a mechanism to create various runs with
different parameters. One of the issues we run into is that often our
runtime needs exceed that of a single job submission. Although
job arrays and custom configurations exist, they often lead to
longer runtimes that may not be met by default policies used in
educational settings. Thus, it is often more convenient to create
jobs that fall within the limits of the HPC center’s policies and
split the benchmarking tasks across a number of jobs based on the
parameter permutations. This also allows easier parallelization.

For this reason, von Laszewski et al. have implemented the
cloudmesh Experiment Executor (cloudmesh-ee) that provides
an easy-to-use batch job generator, creating parallel jobs based
on a permutation of experiment parameters that are defined
in a configuration file. The tool creates for each job its own
subdirectory, copies the code and configuration files into it, and
creates a shell script that lists all jobs to be submitted to the queuing
system. This also has the advantage that Jupyter notebooks can
easily be integrated into this workflow component, as a local copy
is generated in each directory and the output for each cell is created
during the program execution.

Furthermore, we need a simple system to measure the
performance and energy, while communicating the data in an easy
fashion to the users. This system was developed by von Laszewski
and contains two components: (a) a general stopwatch and (b) a
mechanism to monitor the GPU as discussed in Section 3.

We describe these systems briefly while focusing on their
applicability for benchmarks.

3.3.1. Cloudmesh monitoring

For years, we have provided a convenient StopWatch package
in Python to conduct time monitoring (von Laszewski, 2022a).
It is very easy to use and is focused on runtime execution
monitoring of time-consuming portions in a single-threaded
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Python application. Although MLCommons provides its own time-
measuring component, called mllog, it is clear from the name that
the focus is to create entries in a log file that is not easily readable
by a human and may require postprocessing to make it usable. In
contrast, our library contains not only simple labeled start and
stop methods, but it also provides a convenient mechanism to
print human-readable customizable performance tables. However,
it is possible to also generate a result table in other formats such as
comma-separated values (CSV), JavaScript object notation (JSON),
YAML ain’t markup language (YAML), shorthand for text (TXT),
and others. Human readability is especially important during a
debugging phase when benchmarks are developed. Moreover, we
also have developed a plugin interface to mllog that allows us to
automatically create mllog entries into an additional log file, so
the data may be used within MLCommons through specialized
analytics programs. A use case is depicted next (we have omitted
other advanced features such as function decorators for the
StopWatch to keep the example simple).

from cloudmesh.common.StopWatch
import StopWatch
# ...
StopWatch.event ("start")

# this where the timer starts
StopWatch.start ("earthquake")

# this is when the main benchmark

# starts
# ... run the earthquake code
# ... additional timers could be
# used here

with StopWatchBlock ("calc") :
# this is how to use a block timer
run_long calculation()

StopWatch.stop ("earthquake")

# this is where the main benchmark

# ends

StopWatch.benchmark ()

# prints the current results

To also have direct access to MLCommons events, we have
recently added the ability to call a StopWatch.event.

In addition to the StopWatch, we have developed a simple
command line tool that can be used, for example, in batch scripts
to monitor the GPU performance characteristics such as energy,
temperature, and other parameters (von Laszewski, 2022b). The
tool can be started in a batch script as follows and is currently
supporting NVIDIA GPUs:
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cms gpu watch --gpu=0 --delay=0.5 --
dense > gpul.log &

Monitoring time and system GPU information can
provide significant insights into the application’s performance
characteristics. It is significant for planning a time-
effective schedule for parameters while running a subset of

planned experiments.

3.3.2. Analytics service pipelines

In many cases, a big data analysis is split up into multiple
subtasks. These subtasks may be reusable in other analytics
pipelines. Hence, it is desirable to be able to specify and use them
in a coordinated fashion, allowing the reuse of the logic represented
by the analysis. Users must have a clear understanding of what the
analysis is doing and how it can be invoked and integrated.

The analysis must include an easy-to-understand specification
that encourages reuse and provides sufficient details about
its functionality, data dependency, and performance. Analytics
services may have authentication, authorization, and access
controls built-in that enable access by users controlled by the
service providers.

The overall architecture is depicted in Figure 3A. It showcases
a layered architecture with components dealing with batch job
generation, storage management, compute coordination, and
monitoring. These components sit on top of other specialized
systems that can easily be ported to other systems while using
common system abstractions.

Instead of focusing on the details of this architecture, we found
that the high-level use of it is very important as part of the
educational activities which also have an implication in general on
the use within any research activity.

We identified three beneficial concepts as part of the analytics
service pipelines (see Figure 4):

o Selection—Instead of performing all possible benchmarks, a
specific parameter set is selected and only that is run.

o Competition—From a number of runs, a result is identified
that is better than others. This may be, for example, the best of
n benchmark runs.

« Cooperation—A number of analytics components are run
(possibly in parallel) and the final result is a combination
of the benchmark experiments run in cooperation. This, for
example, could be that the job is split across multiple jobs due
to resource limitations.

In the earthquake code, we have observed all three patterns are
used in the benchmark process.

3.3.3. Workflow compute coordinator

Within HPC environments, scientific tasks can leverage the
processing power of a supercomputer so they can run at previously
unobtainable high speeds or utilize specialized hardware for
acceleration that otherwise is not available to the user. HPC can be
used for analytic programs that leverage machine learning applied
to large data sets to, for example, predict future values or to
model current states. For such high-complexity projects, there are
often multiple complex programs that may be running repeatedly

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1233877

in either competition or cooperation, as also in the earthquake
forecast application. This may even include resources in the same or
different data centers on which the benchmarks are run. To simplify
the execution on such infrastructures, we developed a hybrid multi-
cloud analytics service framework that was created to manage
heterogeneous and remote workflows, queues, and jobs. It can be
used through a Python API, the command line, and a REST service.
It is supported on multiple operating systems like macOS, Linux,
and Windows 10 and 11. The workflow is specified via an easy-to-
define YAML file. Specifically, we have developed a library called
Cloudmesh Compute Coordinator (cloudmesh-cc) (von Laszewski
et al., 2022) that adds workflow features to control the execution
of jobs on remote compute resources while at the same time
leveraging capabilities provided by the local compute environments
to directly interface with graphical visualizations better suited for
the desktop. The goal is to provide numerous workflows that in
cooperation enhance the experience of the analytics tasks. This
includes a REST service (see Figure 5A) and command line tools
to interact with it.

We have tested the framework while running various MNIST
application examples, including multilayer perceptron, LSTM,
auto-encoder, CNNs and RNNs, and distributed training. A much
larger application using earthquake prediction has also been used.
Recently, the framework was applied by students to all applications
in the MLCommons Applications Working Group. Results of using
it outside of the earthquake code are available in von Laszewski et al.
(2023).

Figure 5A shows the REST specification and Figure 5B shows
the graphical user interface.

3.3.4. Parameterized experiment workflow job
generator

In traditional ML workflows, hyperparameter tuning and
configuration are key elements in assessing and optimizing the
performance of models. However, scaling hyperparameters for
highly parallel execution with heterogeneous hardware is complex.

Cloudmesh-ee (von Laszewski, 2023a; von Laszewski et al.,
2023) is a hyperparameter and configuration management toolkit
designed to address the generation of batch jobs with a consistent
and configurable interface based on hyperparameter values across
multiple development toolchains. One of its functions is to
create batch jobs based on parameterized job specifications and
configuration files. Cloudmesh-ee is part of the Cloudmesh
toolkit, a set of tools and libraries for managing cloud and
HPC resources from the command line, REST interfaces, or
graphical user interface (GUIs). Cloudmesh-ee can use a variety
of queuing systems and submission commands. Currently, we
provide interfaces to simple linux utility for resource management
(SLURM), load sharing facility (LSF), and secure shell (ssh).

The architecture of the cloudmesh-ee framework is depicted in
Figure 3B.

Cloudmesh-ee differentiates itself from other approaches
through its ability to generate a Cartesian product (permutation)
of hyperparameters to form independent experiment execution
profiles, making it trivial to scale an experiment from one execution
to thousands of configurations based on the ranges and their unique
combinations. The resulting output provides a generated Slurm or
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Architecture of the cloudmesh workflow service framework. (A) Architecture of the overall workflow framework. (B) Architecture of Workflow Script
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subsystem for linux; SLURM, simple linux utility for resource management; LSF, load sharing facility; SSH, secure shell.

LSF script and a YAML configuration file representing the specific
hyperparameters. By managing many highly configurable jobs with
cloudmesh-ee, the focus is placed on what hyperparameters to use
for experiments and reduce the possibility of human error when
running experiments over a range of hyperparameters.
Cloudmesh-ee takes two configuration files. The first is a YAML
file that includes all parameters used by the benchmark, including
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an experiment section that defines the Cartesian product. The
second is a Slurm template. From these files, it will create Slurm
scripts via the cloudmesh-ee commandline tool while

1. using a unique directory for the experiment,

2. taking a parameter set from the Cartesian product of the
experiment parameters,
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3. creating from a batch job template an instantiation of the
template while replacing all variables from the configuration file
and replacing the specific experiment parameters, and

4. creating an instantiation of the configuration file while
replacing all experiment parameters with the one for the
current experiment.

This is
experiment parameters.

executed for all permutations of the

An example of a configuration file config.yaml where we
iterate over epochs, gpus, and repeat it five times is shown next:

application:
name: earthquake

data: /scratch/{os.USER}/{application.

name }

experiment:
epoch: "1,30,60"
gpu: "al00,v100"
repeat: "1,2,3,4,5"

An example of a batch script in the cloudmesh template
markup follows:

#!/bin/bash

#SBATCH --job-name={experiment.repeat}-{
application.earthquake}

#SBATCH --nodes=1

#SBATCH --gres=gpu:{experiment.gpuj:1

#SBATCH --time=02:00:00

#SBATCH --mem=64G

#SBATCH -o {experiment.gpu}-{application
.earthquake}/{experiment.repeat}-%7j.
out

#SBATCH -o {experiment.gpu}-{application
.earthquake}/{experiment.repeat}-%7j.
err

#SBATCH --partition=bii-gpu

#SBATCH --account=bii dsc community

export USER_SCRATCH=/scratch/$USER

cd USER_SCRATCH

mkdir -p SUSER SCRATCH/{experiment.gpu
}-{application.earthquake}/%j.out

nvidia-smi
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cms gpu watch --gpu=0 --delay=0.5 --
dense > outputs/gpul.log &

python earthquake.py --config config.
yaml

seff $SLURM_JOB D

The variables can easily be referred to with a dot notation in the
templates. Variables in the YAML file can also be replaced so it is
possible to use abbreviations easily and in a consistent fashion in
the YAML file as well as in the batch script.

The configuration files and cloudmesh-ee can be configured
with parameters so that the files and directories are placed in
the right location, and repeatable experiments are created not
only on the original machine, but the template can also be easily
adapted onto other machines. An example of a variable replacement
specification in the YAML file is given for the data value where
not only the operating system variable os.USER is replaced,
but also the variable {application.name}. Obviously, this
is a significant functionality enhancement to a typical YAML
file. Multiple values are only possible under the experiment tag,
where a variable with multiple values is assigned a string of
comma-separated values.

One can choose a number of important parameters as part of
the permutation strategy to create different experiments. Common
variables are names of graphics cards (if available), memory,
file systems used, versions of Python, versions of TensorFlow,
epochs, learning rate, and many other important parameters that
can influence the benchmark. The reason why we only allow
the parameters with variation under experiment is to ensure
that there is no confusion with other parameters that may not
be modified and instead only represent a single value. However,
variables under experiment are also allowed to have just a single
value. Another interesting case is the introduction of a repeat
parameter, allowing the program to be executed multiple times
in order to, for example, support patterns of competition or
collaboration while selecting the best values or creating averages.
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The final output of cloudmesh-ee is a shell script that contains
all jobs that are to be executed with the defined permutations
over the parameters. One nice side effect of this is that the
jobs in the file can be run in parallel and the queuing system
can take over the scheduling of the job following the system-
defined queuing policies. However, it may also be possible
to create a collaborative group submission, using our earlier
introduced collaborative pattern, where multiple users submit a
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portion of the jobs so that policies restricting the number of
jobs per user can be avoided. Furthermore, if access to multiple
HPC machines is available, the jobs could be split among the
different machines. However, in that case, time measurements
may not be a useful parameter to benchmark. However, as in the
science group, we are concerned about accuracy, but in addition
the combination of a system composed of multiple resources
is meaningful.
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Our progress with the earthquake benchmark would not have
been possible if we did not have cloudmesh-ee to coordinate the
many experiments in a consistent fashion. One important aspect
is that the management of thousands of jobs that we ran was
simplified and the jobs could be created easily while fostering
reproducibility. The resulting jobs were run over a month, while
each job took many hours to complete.

We have practical experience from multiple teams where
coders spent multiple months developing programs and strategies
to coordinate their experiment executions; to circumvent this
expenditure, the cloudmesh experiment executor generated such
permutations within one day on a variety of systems.

Summary of workflow management aspects:

« Challenges:

In benchmarking, we often multiple
infrastructures and explore many different parameters.
This poses the problem of needing to tune and therefore
repeat the experiments. Furthermore, we observe that
with
benchmarks, policies at HPC centers may limit not

compare

longer time and larger resource-intensive

only the time to execute a benchmark but also the
number of jobs that can be executed in parallel.

o Opportunities: We have observed that competitive
and collaborative workflow patterns are frequent for
benchmarking. We have developed two frameworks
that assist in executing benchmarks on multiple HPC
systems helping to navigate challenges put in place by
center policies, but also allowing the management of
large-scale experiment executions through a compute
coordinator and an experiment executor that is part of
cloudmesh. Together the systems allow workflows to be
easily managed addressing job and experiment-related
workflows. The systems allow further enhancements
and even integration into analytics pipelines using
REST interfaces.

4. Benchmark results

In this section, we present some of our concrete benchmark
results for the earthquake application while mostly focusing
on accuracy while modifying hyperparameters to control the
benchmark. In addition to accuracy, we also have provided insights
into how the runtime can be predicted to allow scheduling hints for
the various batch jobs that we ran. We also have included a brief
observation about our experiences with energy monitoring and
why it is beneficial. It serves a an example for what students may be
able to accomplish. As we will see, the experiment has a significant
impact on the hardware configuration that is often overlooked by
efforts that do not conduct a holistic benchmark. We start the
section by describing the hardware used for the benchmarks.

Frontiersin High Performance Computing

10.3389/fhpcp.2023.1233877

4.1. Hardware used for this Research

The benchmarks we present in the next sections have been run
on a number of compute resources. This includes not only an HPC
at UVA but also a desktop, a laptop, and Google Colab to represent
different classes of computing resources that students have access
to. We used the following resources:

« Rivanna (Univerity of Virginia Research Computing, 2023)—
The Rivanna HPC cluster is a system hosted at UVA with
15 different hardware configurations spanning 575 nodes.
There exist five different classes of GPUs on these nodes. The
Rivanna HPC follows the condominium model and continues
to receive additions of nodes and upgrades at various times.

» Google Colab Google Colaboratory (2023)—This a free-to-
use interactive computing service offered by Google that
provides on-demand access to GPUs and TPUs. Google Colab
is designed to be used with ML and data analysis Google
Colaboratory (2023). When running with Google Colab,
multiple hardware configurations may be provided depending
on the instance type. The Pro+ plan allocates an NVIDIA
V100 with 53GB of RAM for a GPU configuration. The free
plan only offers 32 GB and a P100 GPU.

o Desktop—This is a custom-built desktop with an AMD 5950X
processor, 128GB memory, and fast NVMe storage.

o Laptop—This is a store-bought laptop with an AMD 5900HX
processor, 16GB memory, and NVMe storage.

The details of the machines are showcased in Table 4.

4.2. Earthquake forecast performance
measurements

The original code targets three applications: earthquake
forecasting, COVID-19 prediction, and hydrology prediction.
We determined that the code could be significantly modified
by removing other code unrelated to the earthquake prediction
application. This includes removing code for the two additional
applications targeting hydrology and COVID-19. Although
they use similar DL prediction algorithms, different data and
optimization parameters are used. Cloudmesh StopWatch methods
were added to obtain code runtime, start, stop, status, and event
actions of the different phases of the program. In addition, we
augmented the execution of the batch scripts with code that reports
energy and temperature using cloudmesh-gpu.

4.2.1. Reproducible experiments

One of the important lessons learned from working within
an educational environment is to ensure that experiments can be
reproduced early on in the coding process. This not only includes
saving the original data in an immutable storage facility but also
ensures that the code and parameters of the code are preserved for
each experiment. Specifically, we ensure this preservation by using
configuration files and Singularity containers.
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TABLE 4 Overview of the computing resources.

10.3389/fhpcp.2023.1233877

Machine Cores Memory Memory # GPUs # Nodes Commissioned
/ Node / Node / GPU / Node / Node

Rivanna (UVA) 128 2000 GB A100 80 GB 8 10 Feb 2022
128 1000 GB A100 40 GB 8 2 Jun 2022
28 255 GB K80 11GB 8 8 Jun 2018
28 255 GB P100 12GB 4 4 Jan 2018
28 188 GB V100 16 GB 4 1 Feb 2019
40 384 GB V100 32GB 4 12 Feb 2021
36 384 GB V100 32GB 4 2 Apr 2022
64 128 RTX3090 24 GB 4 5 Feb 2023
40 384 GB RTX2080T1 11GB 10 2 May 2021

Google Colab - 32GB P100 16 GB 1 - March 2022

Google Colab Pro+ - 53 GB V100 32GB 1 - March 2022

Desktop 5950X 32 128 GB RTX3090 24GB 1 1 Feb 2022

Laptop 5900HX 8 16 GB RTX3080 10 GB 1 1 Nov. 2021

Code used during a development phase should not be used
especially if they are developed with Jupyter Python notebooks
that could contain an implicit hidden state that causes side effects.
Hence, the benchmark must be saved in a clean fashion so that no
other result-impacting effects occur.

4.2.2. Measuring runtime

As the code requires a significant amount of time to execute,
we first had to estimate the projected runtime for a number of
epochs. Hence, after the code augmentations, we obtained for a
small number of epochs (2, 10) the runtime and projected the
runtime for various systems from these values. As our ML code
performs similarly to linear growth when increasing epochs, it was
possible to fairly accurately predict the performance while larger
numbers of epochs improved the prediction accuracy. As we need
to reserve resources on any shared compute resource if it is an
HPC system, such runtime predictions are extremely important to
accurately estimate to preserve allocation usage. For completeness
and to verify the linear behavior, we also executed performance
experiments with a larger number of epochs.

We also wished to estimate how much time is spent on the
GPU versus the rest of the program. This allowed us to predict
the runtime more accurately, and what impact setting up the
application has on the runtime. Figure 6A shows the time measured
for a two-epoch case for modeling prediction and the rest of the
application. The bars in the histogram are divided while the top
part indicates the model prediction for two epochs, and the bottom
part is the rest of the application’s runtime. These numbers can then
be used to generate predictions while varying the epoch numbers
as multipliers and using the benchmark data for the particular
GPU used.

Figure 6B indicates the time spent in the application. To
produce this graph, we ran the application (as previously
mentioned) while varying the epochs between 2 and 70 to obtain
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the runtime. The total runtime for various configurations with
different GPUs and file systems (where choices for the file system
existed) is shown in Figure 6B. This experiment was also run on
the desktop using an AMD 5950X with an RTX3090 and 128 GB
of memory while data were located on an NVMe. The data on
the HPC system were initially located on an NSF storage system
(indicated by the name project for the /project or scratch for the
/scratch file system). As we see, the desktop with an RTX3090 is
significantly faster than the HPC compute node equipped with any
other GPU (including an A100), which was a surprise not only
to the team but also to the research staff. To quantify this result,
we enumerate the results for a two-epoch case in Table 5. To our
surprise, we found that the RTX3090 machine was almost 2.67
times better than the HPC machine with an A100.

The same desktop computer also significantly outperformed
benchmarks conducted on Google Colab. We discovered that
Google Colab, although suitable for small epoch runs, quickly
deteriorated with an increasing number of epochs due to the older
GPUs with Google Colab’s present hardware availability.

The reason why the desktop performed so well is that it had up-
to-date, fast memory and that the data were hosted on fast NVMe
storage. As the earthquake application uses many data requests, fast
IO makes a big difference. This performance analysis has guided us
to propose changes to the HPC machine, which are in the process
of being implemented. Future expansions of the HPC machine
include a 28TB upgrade to the GPUs accessible NVMe storage. Our
benchmark is a good use case for motivating this update.

Based on these findings, we influenced a change in the
architecture of the HPC server nodes to add a file system with
NVMe storage on it. However, as our measurements show, the
desktop significantly outperformed the HPC system; additional
changes will need to take place even after this upgrade while
updating servers to the newest generation of NVIDIA hardware.
This upgrade will focus on increasing the bandwidth of data
transfers between the file system and the GPU so that the GPU can
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FIGURE 6
Performance time measurements. GPU. (A) Time of the best fit in seconds of performance measurements while using 2 epochs on various systems

with different GPUs. The lower portion (green) of each bar represents the setup time, while the upper portion (blue) represents the training and
prediction time. The setup time is constant throughout the experiments, while with an increasing number of epochs the training and prediction time
will dominate. (B) Time performance benchmark for various GPU cards on different systems and variations of epochs.

be properly utilized. We anticipate that such a system will become  reason for this is that during our experiments, we ran out of
available to us in the fall of 2023. memory on the desktop to produce the visualization that is

However, for our experiments, we were only running the  part of the overall program. The insight we gained is that one
desktop for up to 33 epochs, and the dotted line includes our  must ensure that the data feed to the GPU can keep up with
prediction of the runtime based on our previous values. The the GPU’s performance. It is not sufficient to add GPUs to a
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server that may not have adequately fast file systems, memory,
Or Processors.

For our next experiments, we need to distinguish the
different phases of the application in more detail. We have
augmented the code with timers that return information about the
following phases:

» Total. This shows the total runtime of the application and
includes all additional phases mentioned here.

o Initialize. Time to initialize all variables and data and split
data into train, validation, and test.

« Sampling locations. Time to sample time-series data into
2-week batches.

 Training or Model Fit. Time to train the model and determine
and save the best fit from all epochs.

« Bestfit or Bestfit Prediction. Time to find the best-fit model
to calculate predictions.

« Visualize. Time to organize all predictions into an organized
structure so the MSE and NNSE can be calculated, and
accuracy graphs can be identified.

o Final Plots. Time to gather data collected during model
runtime and move to a permanent directory and process
plots and graphs from data. Then, clean up data and close all
unneeded processes.

4.2.3. Accuracy performance benchmark

Since MLCommons Science Working Group’s focus is
improving an application’s accuracy, this section reports on the
accuracy of the earthquake application.

We observe that application loss for validation and training
intersects at the 30-33 epoch value (see Figure 7). We have also
tested larger epoch runs up to 90 epochs. Our best accuracy values
are found at our 90 epoch runs.

However, generally, we can say that at the intersection point,
the model’s performance on the validation set starts to degrade
while its performance on the training set continues to improve.
Hence, the model is fitting the training data too well while at
the same time not being able to generalize our validation data
leading to overfitting. As the training loss continues to decrease
with an increased number of epochs after the intersection point, the
model has become too complex and captures noise in the training
data. This analysis provides an excellent opportunity for future
benchmarking activities to deal with overfitting while considering
techniques such as early stopping, regularization, the reduction of
the model complexity, reorganization of the data, cross-validation,
and additional hyperparameter tuning.

4.2.4. Prediction parameters for input and
prediction data

For the rest of the experiments, we have chosen different input
and output vectors that are used as hyperparameters or prediction
parameters. In the subsequent benchmark results, these groupings
of data are used as part of the training to optimize their associated
accuracy values.

The data is grouped into 2 week periods. The model steps
through each of these 2-week groupings and uses training data
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TABLE 5 Runtime of the two-epoch case in seconds.

Timer ~ RTX3090 RTX3080 A10080GB V100 K80

Desktop Laptop Rivanna Rivanna | Rivanna
Total 6,589.4 8,348.5 17,574.8 20,295.0 | 28,343.3
Sampling 457.9 532.5 1,227.0 1,546.4 | 1,779.6
location
Training 1,103.2 2,068.9 1,373.0 1,671.4 | 6,967.3
Bestfit 4,420.3 4,997.1 13,022.1 14,795.1 | 17,037.6
Custom TFT Fit EARTHQ-newTFTv29 model loss 0.0320732 Val 0.0333816
— ftrain
—— val
10-*
g
6x 1072
4x1072
3x1072 |
0 20 40 60 80
epoch
FIGURE 7
Loss comparison between training and validation data. TFT,
temporal fusion transformer.

up to 1 year into the past from the current 2-week grouping. The
model uses up to 1 year, <26 data points, before the current 2-week
grouping run on the model as training data. For example, if the
model is taking the first 2 weeks of January 2000, it would take < 26
2-week groupings before that point as training data, so all 1999 data
would be 26 data points. Then it repeats this method with the next
2-week period in sequence, which would be the 2-week grouping of
weeks 3 and 4 of January 2000, and the training data would be the
previous 26 2-week groupings from that point or the first 2 weeks of
January 2000 and the previous 25 2-weeks groupings of 1999, all of
1999 data except first 2 weeks of 1999. It repeats this until all 2-week
groupings are used in the model.

We have introduced a convenient nomenclature for the data
input. This nomenclature uses the following rules that are applied
to control how parameters are used as input and output data:

o All data were grouped into 2-week periods.

o The term Now indicates the most recent rolling sequential
date from the data set; the Term #M or #Y corresponds to the
number of months or years prior to Now to use when sampling
the data.

« An optional moving window is applied based on a range of
2-week grouping from the specified time frame. For example,
2wk+26AVG is an abbreviation for performing the calculation
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over 26 groupings. When not specified, only one observation
is collected.

Applying these rules, a range of values is notated by first
specifying a 2-week grouping and then the number of observations
to include. For example, a value of 1Y 2wk+26AVG is 1 year from
the 2-week grouping the model is currently on; the rolling training
group is run on the data set, taking 26 2-week groupings from
that date. Another example is the value of I Year Back, which is a
single 2-week occurrence 1 year ago from the rolling training group.
Another example is Now 2wk+7AVG, which is 7 2-week groups
from the rolling training group.

4.2.5. Competitive accuracy benchmarks

Next, we summarize the competitive accuracy benchmark
where we use the nomenclature for the input and output
hyperparameters defining the time period used for the training
and validation. To simplify our presentation, we have decided
to use epoch values 2, 30, 70, and 90 for this articles
experiments. We took all results and sorted them for training
and validation separately by the accuracy values. This leads
to a ranking of the experiments by accuracy. In Table 6, we
present the top 20 accuracy values, while in Figures 8A, B,
we created a histogram showcasing how many accuracy values
fall into a certain bucket over all experiments for training
and validation.

From the table, we see that we achieve the best results using the
parameters (epoch=90, Next Year Back). From the histogram, we
see that the best results stem mostly from 90 epochs.

Hence, although we are mostly interested in identifying the best
accuracy value, it is also advantageous to reflect that data place the
90-epoch case above the other values, generally leading to better
results (see Figure 8A) for training.

To identify more details about the most accurate results and
the prediction parameters (hyperparameters) used to create them,
we have plotted the accuracy values in Figures 8C, D.

Here we have sorted the hyperparameters by the accuracy
values for the validation where the best accuracy for each
hyperparameter is identified and sorted in increasing fashion. We
have then taken the same order of the hyperparameters and applied
the order to the training. The diagrams include the minimum and
maximum accuracy values for a hyperparameter found using 2, 30,
70, and 90 as epochs, while the experiment has been repeated five
times. The average for each accuracy for a given epoch is shown.
Additionally, the confidence interval for each epoch is added as a
highlighted area.

The best average value for the hyperparameter Next Year Back
is 0.937 for training and 0.937 for validation (see Table 6).

Not only did we find that the best epoch for accuracy is 90,
but the best hyperparameters are also Next Year Back for average
NNSE and Next 6 Months Back for summed NNSE, meaning that
according to our nomenclature, the previous year and 6 months of
observation readings from the current rolling training group is used
as training data in support of our model.

Although we see, on average, better accuracy results with 30
epochs, the best accuracy values we still have seen with 90 epochs.
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This indicates that we have a higher variation of the results in the
90-epoch case. However, as we are competing for the best value and
not the average value, this variation has an advantage as we do not
as easily get stuck in a local minima.

One other observation we can make is that the training NNSE
value is higher than that of validation. This leads us to believe
that the input data may be incomplete to train the model more
accurately or that the input data need to be differently structured
to have a higher validation accuracy value. Hence, although this
work is a good starting point, we believe there is significant room
for improvement.

We can make similar observations when looking at the summed
accuracy values. However, here we see that more of the best
accuracy values are retrieved when using 90 epochs. We see in the
average and summed accuracy that the best 20 values have been
created with the prediction parameters of Next Year Back, Next 6
Month Back, and Next 3 Month Back. The average shows a more
uniform distribution of these parameters in the top 20 than the
summed NNSE values (see Figure 9).

As we can see further educational opportunities can be derived
from analyzing different prediction parameters and different input
data distributions.

Summary application benchmark:

o Challenges: students have a limited
understanding of HPC resources. This not only
includes the CPU and GPU but also network
and storage resources. How to use these resources
leads to optimizations while efficiently using the
hardware. While in some educational activities,
students only gain an understanding of a single model,
application benchmarks require measuring different
combinations of input and output data as well as
various models. This is important as in many cases the
best combination has to be found.

o Opportunities: We identified while providing students
with a detailed understanding of the hardware
optimizations by the students to utilize them have been
found. Furthermore, introducing a “leader-board” of
different models and applications using a variety of
input and output options provides the students with
a more general approach to identifying good results.
The students understand that different parameters for
benchmarks not only include the hyperparameters of a
DL algorithm but also the data used and the hardware.
Many topics can be added to this such as identifying
overfitting and how to prevent it, which is beyond the
scope of this article.

Today’s

4.2.6. Energy

When proposing research activities with students, discussions
about energy are a highly relevant and engaging topic in today’s
world due to the pressing issue of climate change. With increased
extreme weather, students become more aware of the necessity
for ML applications that can help increase understanding and
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analysis of such weather. Additionally, students understand the
need for cautious and responsible resource usage, with energy
consumption being a prime example that can be reasonably well
measured when using electronic devices such as GPUs. In our
interactions with students, we have observed that they are not
merely interested in finding out the best or most efficient results
but, once made aware of energy consumption measurement, that
they also want to understand more about how to measure it
and how it impacts different algorithms and use of different
compute resources. To cater to this curiosity, we have developed
an easy-to-use energy trace component that can be started
in parallel to our performance experiments, called cloudmesh-
gpu. It returns the energy at predefined time intervals and
contains examples on how to read and plot the data, as well
as calculate a traced energy consumption provided during the
traced events.

We have actively observed that students students changed their
attitude from “I do not care how long the experiment runs as
I do not have to pay for it” to “I should care for how long it
runs as it has a direct impact on the energy consumption, which
may adversely impact the environment I am living in.” Such
discussions are also related to one aspect of an ethics discussion
of the use of AI. What is the impact on our environment when
using Al in general? We certainly do not provide an answer
to this question, but we use this curiosity to start students to
think more globally. For example, one could ask how much
energy is consumed by students learning AI with a standard
example that has been run abundantly, such as done in regular
AT classes with, for example, MNIST. Could we not replace it
with different benchmarks that relate directly to other applications
that have a more direct impact on the well-being of humans
such as earthquakes? However, we recognize that MNIST and
character recognition in general are useful to support the blind,
for example. Thus, bringing such examples into the research
experience for students is an important aspect with energy being
one metric to consider. Furthermore, it indirectly has an impact
on the operational cost of a center and future improvements
could associate the energy cost per kWh for particular regions
and time of the day to contrast regional differences in running
such applications.

Now that we have introduced why energy is a vital topic
to be included in benchmarks, we provide a more detailed
discussion about its technical aspects and how we applied it in
our analysis.

One aspect of energy consumption that is most often
discussed is cost. Energy consumption has become an important
factor in the evaluation of computing centers due to the
high costs associated with running them on a large scale.
This not only includes common compute center-based metrics
such as power usage effectiveness but also the measurement
of application-oriented energy consumption. Such application-
oriented comparisons have led to a ranking of the most energy-
efficient supercomputers as detailed in the Green500 list (Feng
et al., 2007). In such comparisons, the metric Energy Efficiency
is used and derived by the GFlops/watts value. Just like TOP500,
this benchmark is based on Linpack performance measurements
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(Top500, 2023). However, it is important to also consider
other applications when measuring energy consumption. Such
applications may consist of many different phases and may not
perform at the maximum potential performance of the available
hardware, or the available hardware may project a bottleneck for
the performance.

To measure the algorithm’s energy consumption, we need to
augment the application in such a way that we can monitor energy
use over the lifetime of the application execution. For this, we have
developed a simple-to-use energy trace program to monitor and
predict our energy uses called cloudmesh-gpu as introduced in
Section 3. We used for our initial experiments data hosted on an
NES file system in the data center as localscratch was not available
at the time.

With this program, we can create energy traces of the GPU.
An energy trace is a sample of energy measurements periodically
taken over time of the GPU. The period of the measurements can
be decreased to increase the accuracy of the energy measurements
over time. Our presentation here only includes measurements
of the GPU and does not include the measurement of the
servers, file system, or network energy consumption, as our focus
for this study is the impact on GPUs and to see if they are
efficiently used.

In our case, we chose to measure the GPU energy used every
second leading to an energy trace that we term EX,_, (GPU). Such
traces can be applied to the application running with different
hyperparameters. To showcase the drastically different energy
traces, we have limited our discussion to running applications on
different GPUs (A100 and V100) and different epochs (2, 30, and
70). These traces are depicted in Figures 10A-F. To better showcase
the impact of the different phases of the application, we have
augmented the traces with different colors for the different phases
of the application. We distinguish the phases called Initialize,
Training, Best Fit Prediction, Visualize, and Final plots. The meaning
of these phases has been explained in Section 4.2.2 and we have
used different colors for the phases in Figure 10 to distinguish
them better.

An important observation for the training phase (colored in
green) that the energy values of the GPU are significantly higher
than in the rest of the application, indicating a much higher
utilization of the GPU during that phase.

The other phases dealing with data reparation only show
a modest use of the GPU. We have measured the energy
consumption between different GPUs. When looking at the
energy traces in Figure 10, showing the differences between
A100 and the V100 GPUs, we note that the time on the
abscissa is significantly larger for the V100. Hence, overall
energy consumption per second will be significantly larger. The
fluctuations of the energy in the training phase can be explained
through the various repeated processes that exist within the training
of the DL application.

To compare the energy values between different GPUs such
as A100, V100, and P100, we can calculate the energy trace
consumption, defined as the sum of all energy values in an energy
trace Eg > ELZI .(GPU) applied to a hyperparameter such as the
epoch. We can then calculate the energy trace consumption per
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TABLE 6 Ranking of the top 20 accuracy values.

Rank NNSE Epoch Prediction parameter Rank NNSE Epoch Prediction parameter

(A) The top 20 average accuracy values based on hyperparameters with 2, 30, 70, and 90 epochs.

1 0.937 90 Next Year Back 1 0.937 90 Next Year Back
2 0.933 90 Next Year Back 2 0.931 90 Next Year Back
3 0.932 70 Next Year Back 3 0.931 70 Next Year Back
4 0.928 90 Next Year Back 4 0.927 90 Next Year Back
5 0.926 90 Next Year Back 5 0.925 90 Next Year Back
6 0.919 30 Next Year Back 6 0.917 30 Next Year Back
7 0.916 70 Next Year Back 7 0.915 70 Next Year Back
8 0.916 70 Next Year Back 8 0.915 70 Next Year Back
9 0.911 90 Next 6 Months Back 9 0.913 90 Next 6 Months Back
10 0.907 30 Next Year Back 10 0.906 30 Next Year Back
11 0.906 30 Next Year Back 11 0.904 90 Next 6 Months Back
12 0.902 90 Next 6 Months Back 12 0.904 30 Next Year Back
13 0.899 70 Next 6 Months Back 13 0.901 90 Next 6 Months Back
14 0.899 30 Next Year Back 14 0.899 70 Next 6 Months Back
15 0.899 90 Next 6 Months Back 15 0.899 70 Next 6 Months Back
16 0.897 70 Next 6 Months Back 16 0.896 30 Next Year Back
17 0.895 30 Next Year Back 17 0.894 30 Next Year Back
18 0.89 70 Next 6 Months Back 18 0.893 70 Next 6 Months Back
19 0.886 90 Next 6 Months Back 19 0.888 90 Next 6 Months Back
20 0.882 30 Next 6 Months Back 20 0.884 30 Next 6 Months Back

(B) The top 20 summed accuracy values based on hyperparameters with 2, 30, 70, and 90 epochs.

1 0.99 90 Next 6 Months Back 1 0.983 90 Next 6 Months Back
2 0.988 90 Next 6 Months Back 2 0.98 90 Next 6 Months Back
3 0.985 30 Next 6 Months Back 3 0.976 90 Next Year Back

4 0.984 30 Next Year Back 4 0.975 30 Next Year Back

5 0.983 70 Next 3 Months Back 5 0.974 30 Next 6 Months Back
6 0.982 90 Next Year Back 6 0.974 70 Next 3 Months Back
7 0.981 30 Next 6 Months Back 7 0.973 30 Next 6 Months Back
8 0.979 30 Next 3 Months Back 8 0.971 30 Next 3 Months Back
9 0.979 30 Next 3 Months Back 9 0.97 30 Next 3 Months Back
10 0.977 30 Next Year Back 10 0.97 30 Next Year Back

11 0.976 30 Next 3 Months Back 11 0.968 30 Next 3 Months Back
12 0.973 30 Next 3 Months Back 12 0.966 90 Next 3 Months Back
13 0.971 90 Next 3 Months Back 13 0.965 70 Next 3 Months Back
14 0.971 70 Next 3 Months Back 14 0.965 90 Next 3 Months Back
15 0.97 90 Next 3 Months Back 15 0.964 30 Next 3 Months Back
16 0.967 90 Next 3 Months Back 16 0.962 90 Next 3 Months Back
17 0.958 90 Next Year Back 17 0.954 90 Next Year Back

18 0.956 90 Year Back 2wk+7 18 0.942 30 Next 6 Months Back
19 0.955 90 Year Back 2wk+7 19 0.942 90 Next 6 Months Back
20 0.955 30 Year Back 2wk+7 20 0.939 70 Next 6 Months Back
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epoch which we plotted in Figure 11A. The time with higher epoch
numbers is dominated by the training time as seen in Figure 10.
Hence, the energy per epoch for lower numbers of epochs will
be small, while for larger numbers, the energy per epoch will be
higher. However, they will not change much with higher numbers
of epochs as demonstrated in Figure 11A. We also see that the K80
uses significantly higher energy than the other GPUs, with the A100
performing best. For K80 and 70 epochs, we could not obtain a
value as it was outside the allowed time to run applications on the
supercomputer defined by the center’s policy. We also see that the
standard deviation for the kWh/Epoch value becomes smaller with
an increasing number of epochs.

Frontiersin High Performance Computing

This means that the power usage of GPUs is generally constant
when training our benchmark model and could be used for
energy prediction.

In Figure 11B, we also depicted the energy trace per epoch.
However, in contrast to Figure 11A that was created using
the data on an NFS storage device, we included here the
values obtained for data hosted on a localscratch file system
and the project file system. While the localscratch uses NVMe
storage, the project file system is hosted on a shared GPFS
storage server. Accessing the data from there takes more
time and hence more energy is used during the benchmark
per epoch.
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FIGURE 9
Evaluation of the normalized Nash—Sutcliffe efficiency summed accuracy for epochs 2, 30, 70, and 90. (A) Histogram of the summed accuracy values
for every epoch over all experiments for training. (B) Histogram of the summed accuracy values for every epoch over all experiments for validation.
(C) Summed accuracy values over all experiments for training sorted by best training values. (D) Summed accuracy values over all experiments for
validation sorted by best validation values.

Hence, it offers a clear insight into how a file system can
negatively impact the energy as the runtime is enhanced and the
GPU time to cool down or adjust for reducing the energy is too
small to have an impact.

Additionally in Figure 11C, we summarize the total GPU
energy consumption of the traces from the complete execution
of the benchmark notebook depicting measures from the phases
Initialize, Training, Bestfit Prediction, Visualize, and Final Plots.
This graph is important, as it shows the impacts of the energy
usage of the GPU throughout the runtime and when compared
to the plots in Figures 11A, B, outlier events, such as a potential
interaction from other users sharing the benchmark infrastructure
can be identified.

Frontiersin High Performance Computing

Such phases and making clear that GPUs may not be used in
some of them could also lead to a rewrite of the code to also use
GPUs in these phases.

Students now have easy means to measure and improve
through algorithmic means the energy consumption in the various
phases, but also the overall consumption for a scientific application.
External data (ene, 2020) can be used to obtain information
about the cost of such calculations. However, in many cases, these
data need to be augmented as data centers may have special
pricing for energy consumption. Thus, it is very useful to also
consider greenhouse gas emissions instead (Oar, 2023). In our
future work, we like to integrate such data into the energy monitor
we have currently.
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FIGURE 11

Averaged energy consumption of various GPUs targeting a 1 second data sampling rate. The recorded values in (A) and all V100 reported are
produced with an NFS-mounted file system. The data for A100 in (B, C) are using localscratch’'s NVMe storage. GPU, graphical user interface; NFS,
network file system; NVMe, non-volatile memory express.
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Summary energy benchmarks:

o Challenges: MLCommons has not yet integrated a
comprehensive energy benchmark. Tools to easily
gather energy information are unknown to the students
and often not accessible.

o Opportunities: We have discovered that energy as
a topic attracts a number of students and increases
interest in applications. We have made simple tools
as part of cloudmesh available to create energy traces
and display their result. These tools were not only used
by the students but also to demonstrate that we used
the indeed GPUs, as our initial benchmark showed
they were very slow due to the use of a recommended
parallel file system. It showed to us that we need
to spend more time in future activities on energy
monitoring in general.

5. Discussion

This article summarizes a large body of work that addresses
multiple aspects of ML benchmarking. We identified that
benchmarking can lead to a significant educational contribution
to students and researchers. We identified that not only is
software carpentry needed but also benchmark carpentry, an
effort that we termed in conjunction with the MLCommons
Science Working Group. We have demonstrated that students
are capable of conducting sophisticated benchmarks while dealing
with complex system-related infrastructure and working with
policies set by HPC compute centers that deal with fair resource
management. To deal with this, we have also developed a
compute coordination and workflow management system in
two components called cloudmesh-ee and cloudmesh-cc
that allow benchmark jobs to be automatically generated from
hyperparameter permutations. It also allows us to coordinate such
benchmarks on different machines. We have identified the patterns
of selection, cooperation, and competition which are part of a
benchmark workflow. Furthermore, we have improved the original
benchmark code in many aspects. To simplify benchmarking,
we also developed an easy-to-use StopWatch that in contrast
to the mllog library used by MLCommons is simpler and is
immediately humanly readable. Finally, our benchmarks had a
significant impact on the operation and accessibility of software
in the educational cluster we used. Plans for new file system
management and updated compute nodes excite us to conduct
more such studies. We intend to submit our results to the
MLCommons Science Working Groups as earthquake forecasting
is one of their benchmark codes and efforts. We have outlined
opportunities and challenges how MLCommons benchmarks can
be integrated in Al classes and focusing on DL.

6. Nomenclature
6.1. Resource ldentification Initiative
Organization: RRID: SCR_011743
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